WorldWideScience

Sample records for hts bulk magnet

  1. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  2. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  3. Large-scale HTS bulks for magnetic application

    Science.gov (United States)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  4. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  5. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  6. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    International Nuclear Information System (INIS)

    Kim, S.B.; Ikegami, T.; Matsunaga, J.; Fujii, Y.; Onodera, H.

    2013-01-01

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method

  7. Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore

    International Nuclear Information System (INIS)

    Itoh, Yoshitaka; Yanagi, Yousuke; Nakamura, Takashi

    2017-01-01

    A new type of superconducting bulk magnet for compact nuclear magnetic resonance (NMR) devices with high magnetic-field homogeneity has been developed by inserting an HTS film cylinder into a bulk superconductor bore. Annular 60 mmϕ Eu-Ba-Cu-O bulk superconductors with a larger inner diameter (ID) of 36 mm were sandwiched between bulk superconductors with a smaller ID of 28 mm, and the total height of the bulk superconductor set was made to be 120 mm. The inner height of central wide bore space was optimized by magnetic-field simulation so that the influence of the bulk superconductor's paramagnetic moment on applied field homogeneity was minimized during the magnetization process. An HTS film cylinder, in which Gd-Ba-Cu-O tapes were wound helically in three layers around a copper cylinder, was inserted into the bulk bore in order to compensate for the inhomogeneous field trapped by the bulk superconductor. The superconducting bulk magnet composed of the above bulk superconductor set and the film cylinder were cooled by a GM pulse tube refrigerator and magnetized at 4.747 T using the field cooling (FC) method and a conventional superconducting coil magnet adjusted to below 0.5 ppm in magnetic-field homogeneity. The NMR measurement was conducted for an H_2O sample with a diameter of 6.9 mm and a length of 10 mm by setting the sample in the center of the 20 mm ID room-temperature bore of the bulk magnet. The magnetic-field homogeneity derived from the full width at half maximum (FWHM) of the "1H spectrum of H_2O was 0.45 ppm. We confirmed that the HTS film inner cylinder was effective in maintaining the homogeneity of the magnetic field applied in the magnetization process, and as a result, a magnetic field with a homogeneity of less than 1 ppm can be generated in the bore of the bulk magnet without using shim coils. (author)

  8. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  9. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  10. Characterization of pinning stability of HTS Gd123 bulks by using a pulsed-field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, R; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Yamaguchi, K [Sumitomo Heavy Industries Ltd., ThinkPark Tower, 1-1-2, Osaki, Shinagawa-ku, Tokyo 141-6025 (Japan); Kimura, Y [Kawasaki Heavy Industries Ltd., Technical Institute System Technology Development Center, 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Ida, T, E-mail: m084025@kaiyodai.ac.j [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Toyota-gun, Hiroshima 725-0231 (Japan)

    2010-06-01

    High-temperature superconductor (HTS) Gd-bulks are used for field-pole magnets of rotating machines. We have conducted a study of pulsed-field magnetization (PFM) for the bulks to be magnetized alternatively on the rotor. Performances of HTS bulks have been qualified on the basis of the field-cooling magnetization (FCM). HTS bulks are a kind of crystals containing lots of tiny crystals boundaries. It is difficult to find comparable data between PFM and FCM results, mainly because of the different pinning stability through both processes. We need to assess an effective method of characterization for the flux pinning stability under PFM. We compared two HTS bulks: one shows a flux flow and relatively small trapped flux while the other is magnetized with a little flux instability and a large integrated trapped flux. These Gd123 bulks are 100 mm in diameter and 20 mm in thickness. After applying PFM at the liquid nitrogen temperature, we measured the trapped field density distribution and introduced a new parameter representing the trapped flux instability at each position on the surface of the bulk. We propose a way of visualization of the flux pinning instability of the HTS bulks.

  11. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    Science.gov (United States)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  12. The decay properties of the trapped magnetic field in HTS bulk superconducting actuator by AC controlled magnetic field

    International Nuclear Information System (INIS)

    Kim, S.B.; Uwani, Y.; Joo, J.H.; Kawamoto, R.; Jo, Y.S.

    2011-01-01

    The electric device applications of a high temperature superconducting (HTS) bulk magnet, having stable levitation and suspension properties according to their strong flux pinning force, have been proposed and developed. We have been investigating a three-dimensional (3-D) superconducting actuator using HTS bulks to develop a non-contract transportation device which moves freely in space. It is certain for our proposed 3-D superconducting actuator to be useful as a transporter used in a clean room where silicon wafers, which do not like mechanical contact and dust, are manufactured. The proposed actuator consists of the trapped HTS bulk as a mover and two-dimensionally arranged electromagnets as a stator. Up to now, the electromagnets consisted with iron core and copper coil were used as a stator, and each electromagnet was individually controlled using DC power supplies. In our previous work, the unstable movement characteristics of HTS bulk were observed under the DC operation, and the AC electromagnets driven with AC controlled current was proposed to solve these problems. In general, the trapped magnetic field in HTS bulk was decayed by a time-varying external magnetic field. Thus, it needs to optimize the shapes of AC electromagnets and operating patterns, the decay properties of the trapped magnetic field in the HTS bulk mover by the AC magnetic field should be cleared. In this paper, the influences of the frequency, the overall operating time, the strength of magnetization field and drive current against the decay of trapped magnetic field were experimentally studied using the fabricated AC electromagnets.

  13. A novel HTS magnetic levitation dining table

    Science.gov (United States)

    Lu, Yiyun; Huang, Huiying

    2018-05-01

    High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.

  14. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  15. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    International Nuclear Information System (INIS)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Hayakawa, H

    2010-01-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  16. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082025@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  17. Magnetic separation technique for groundwater by five HTS melt-processed bulk magnets arranged in a line

    International Nuclear Information System (INIS)

    Oka, T.; Seki, H.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Fujishiro, H.; Hayashi, H.; Yokoyama, K.; Stiehler, C.

    2011-01-01

    A magnetic separation was practically conducted by 10-pole HTS bulk magnets. The HTS bulk magnets were activated to 2.5 T by feeding pulsed fields of 6 T. The separation ratio of actual groundwater exceeded 70% at less than 4.8 l/min. The flocks without magnetite powder were obviously attracted to the magnetic poles. A magnetic separation study for groundwater purification has been practically conducted by using the multi-pole magnet system. The magnetic pole was composed of 10 open magnetic spaces by arranging five HTS melt-processed bulk magnets in a line in a vacuum sheath. The individual bulk magnets were activated by feeding intense pulsed magnetic fields up to 6 T. The magnetic field distribution was estimated with respect to various pole arrangements. The actual groundwater samples of Sanjo City were processed so as to form large precipitates by adding the coagulant and pH controlling. The maximum separation ratio of the iron-bearing precipitates has exceeded over 70% when slurry water was exposed to 10 magnetic poles of up to 2.5 T at a flowing rate of less than 4.8 l/min. An obvious attraction of flocks to the magnetic poles was observed even when the water contains no magnetite powder at the flow rate of 1.01 l/min. This implies the validity of the multi-pole magnet system with respect to the actual application to water purification.

  18. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    Science.gov (United States)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  19. Novel attempt to create uniform magnetic-field space generated by face-to-face settled HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Ichiju, Kana; Higa, Kazuya; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Yokoyama, Kazuya; Nakamura, Takashi

    2017-01-01

    Various experimental attempts have been made to obtain a uniform magnetic field in the space between face-to-face HTS bulk magnets that could possibly be utilized as NMR magnets. In general, the magnetic fields emitted from the magnetic pole surfaces containing HTS bulk magnets are characterized as non-uniform field distributions. Since the NMR magnets require highly uniform magnetic-field spaces, it has been assumed to be difficult to form uniform magnetic-field spaces between magnetic poles placed face-to-face. The authors modified the shapes of the magnetic-field distribution from convex to concave by attaching ferromagnetic iron plates to the pole surfaces. The magnets were then set face-to-face with various gaps of 30-70 mm, and the experimental data on magnetic-field uniformity was precisely measured in the space. In order to detect the NMR signals, the target performance for uniformity was set as 1,500 ppm throughout the 4-mm span on the x-axis, which is equivalent to performance in the past when the world's first detection of NMR signals was observed in the bore of hollow-type HTS bulk magnets. When we combined the concave and convex field distributions to compensate the uneven field distributions, the data of the best uniformity reached 358 ppm and 493 ppm in the 30 mm and 50 mm gaps, respectively, which exceeded the target value for the purpose of detecting the NMR signals within the space. Furthermore, it was shown that the field distributions change from concave to convex shape without any change at 1.1 T in the range from 7 to 11 mm in the 30-mm gap, indicating that the distributions are uniform. This suggests the possibility that the uniform magnetic-field space between the HTS bulk magnets set face-to-face expands. (author)

  20. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  1. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  2. Development of magnetic drug delivery system using HTS bulk magnet

    International Nuclear Information System (INIS)

    Terada, T.; Fukui, S.; Mishima, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2008-01-01

    Magnetic drug delivery system (MDDS) is the method which the magnetic seeded drug is injected into a blood vessel and then controlled and accumulated by a magnet located outside of the human body. A high accumulation efficiency of the drug to a local diseased part and reduction in side-effects to normal organs are expected by using MDDS. The most important element in MDDS is a magnetic field generator. The high temperature superconducting (HTS) bulk magnet which can generate high magnetic field and magnetic field gradient extending to a point distant from the magnet in several ten millimeters is necessary to achieve the MDDS. In this study, the computer simulation and model experiment were conducted in order to confirm the applicability of MDDS to ovary of the cow body

  3. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  4. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  5. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  6. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Felder, B; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082028@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ota-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below T{sub c}. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  7. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Science.gov (United States)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  8. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Suyu; Wang Jiasu

    2009-01-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  9. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  10. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Jiasu; Wang Suyu; He Qingyong

    2007-01-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor

  11. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor.

  12. Mechanical design of a synchronous rotating machines with Gd-Ba-Cu-O HTS bulk pole-field magnets operated by a pulsed-field magnetization with armature copper coils

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Kimura, Y [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ohtani, I [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Morita, E [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ogata, H [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Izumi, M [Department of Electronic and Mechanical Engineering, Tokyo University of Marine Science and Technology, Koto-ku, Tokyo 135-8533 (Japan); Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Hiroshima 725-0231 (Japan); Sugimoto, H [Department of Electrical and Electronic Engineering, Fukui University, Fukui 910-8507 (Japan); Miki, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan); Kitano, M [Kitano Seiki Co. Ltd., Ohta-ku, Tokyo 143-0024 (Japan)

    2006-06-01

    We studied a high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk pole-field magnets. The structure of a HTS motor is an axial gap type with neither brushes/slip rings nor iron core. The specific feature is that the rotor pole-field magnets of bulk are magnetized with pulsed current flow through vortex-type armature copper windings. The rotor pole bulks and armature coils are cooled down with liquid nitrogen. Cooling and magnetization of bulk pole field magnets are performed inside of the rotor. The trapped peak magnetic field of more than 0.5 T of the bulk magnets provided the motor performance of 3.1 kW with 720 rpm. In order to attain high output, single rotor plate with 8 bulks was substituted with a twinned rotor plates with 16 bulks together with triple layer armature units. We report on the test results and performance of the present twinned rotor-type HTS synchronous motor.

  13. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  14. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    International Nuclear Information System (INIS)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S.; Wang, J.

    2008-01-01

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk magnet, it is

  15. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  16. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  17. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    International Nuclear Information System (INIS)

    Longcai, Zhang

    2014-01-01

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius

  18. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  19. Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements

    Science.gov (United States)

    Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.

    Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.

  20. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    International Nuclear Information System (INIS)

    Zhang, Longcai; Wang Jiasu; He Qingyong; Zhang Jianghua; Wang Suyu

    2007-01-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state

  1. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Zhang Jianghua [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state.

  2. Remagnetization effects due to lateral displacement above a PMG on bulk HTS magnet

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Ren, J. F.; Li, L. L.; Yang, X. F.; Ye, C. Q.; Wang, S. Y.

    2012-12-01

    For a high-Tc superconducting (HTS) maglev system with large force requirements, the use of magnetized bulk high-Tc superconductor magnets (MBSCMs) is a good candidate because of its strong flux pinning ability and corresponding high trapped flux. Different from the rare-earth permanent magnet (PM), the trapped flux of a MBSCM is sustained by the supercurrent produced by a magnetizing process, so the trapped flux is sensitive to variations of the supercurrent. The lateral displacement of a MBSCM above a PM guideway (PMG) will provide disturbance of the applied field and then alter the supercurrent as a process of remagnetization. Different magnetization histories will bring different remagnetization characteristics and consequently diverse levitation performances for a MBSCM during the lateral displacements. When the MBSCMs are applied into the HTS maglev system, the influence of lateral displacements on levitation performance should be taken into consideration. This article investigates the remagnetization characteristics of a MBSCM when it is subject to the lateral displacements above a PMG with different trapped magnetic flux and opposite magnetization polarities. Relevant analyses about the internal supercurrent configuration based on the critical state model are also included to better understand the remagnetization characteristic of a MBSCM.

  3. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow

  4. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  5. Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Jiasu; Wang Suyu; Zheng Jun; He Qingyong [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    The guidance force of the YBCO bulk over a NdFeB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In our previous work, we explained that the decay was due to the temperature rise of the HTS bulk caused by AC losses. In this paper, we adopted an analytic model to evaluate the decay of the critical current density of the bulk. And based on the analytic results and the Bean critical-state model, we calculated the guidance force as a function of times. Compared with the experimental results, the calculation results have almost the same trend and can qualitatively reveal the characteristics of guidance force of HTS bulk in this situation. Therefore, the guidance force decay of HTS bulk in the maglev vehicle system can be evaluated simply by this numerical method.

  6. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  7. Single pulsed-field magnetization on Gd-Ba-Cu-O Bulk HTS assembled for axial-gap type rotating machines

    International Nuclear Information System (INIS)

    Morita, E; Matsuzaki, H; Kimura, Y; Ohtani, I; Izumi, M; Nonaka, Y; Murakami, M; Ida, T; Sugimoto, H; Miki, M; Kitano, M

    2006-01-01

    We employed Gd-bulk HTS magnets as rotating poles for a smaller and lighter axial-gap type rotating machine. The bulk was placed between two vortex-type armature coils and cooled down to 77 K under zero-field. Pulsed current was applied to the vortex-type magnetizing coils. The trapped field distribution and transient flux behaviour strongly depend on the radial dimension of the armature vortex-type coil. In the present study, we show that there is an optimal radial dimension of magnetizing coils to the given bulk disk size to give a homogeneously conical distribution of the trapped flux

  8. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  9. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  10. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  11. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  12. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  13. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    Science.gov (United States)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  14. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  15. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    International Nuclear Information System (INIS)

    Liu Minxian; Wang Yan

    2012-01-01

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  16. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Liu Minxian, E-mail: liukey_sjtu@263.net [School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Wang Yan [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2012-01-15

    The characteristic of the levitation force relaxation was studied by experiment. The levitation force is attenuated with the application of the AC external magnetic field. The decay increases with the amplitude of the A external magnetic field. The decay is almost independent of the frequency of AC field. In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  17. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  18. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  19. Influence of shape and thickness on the levitation force of YBaCuO bulk HTS over a NdFeB guideway

    International Nuclear Information System (INIS)

    Ren Zhongyou; Wang Jiasu; Wang Suyu; Jiang He; Zhu Min; Wang Xiaorong; Song Honghai

    2003-01-01

    Levitation forces of YBaCuO bulk high temperature superconductors (HTS) with different shape and size over a NdFeB guideway were studied. Here, the concentrating magnetic field of the NdFeB guideway was 1.2 T, and the YBaCuO bulk HTSs include three cylindrical samples with different diameter and thickness and one hexagonal sample. The maximum levitation force is as high as 85.3 N at a gap of 5 mm between the bottom surface of YBaCuO bulk HTS and the top surface of the NdFeB guideway, where the applied magnetic field is about 0.8 T. The results show that the shape and the size have large influences on the levitation force of YBaCuO bulk HTSs

  20. Gd-123 bulk field pole magnets cooled with condensed neon for axial-gap type synchronous motor

    International Nuclear Information System (INIS)

    Sano, T.; Kimura, Y.; Sugyo, D.; Yamaguchi, K.; Izumi, M.; Ida, T.; Sugimoto, H.; Miki, M.

    2008-01-01

    We have conducted to develop an axial-gap type synchronous propulsion motor with Gd-bulk HTS field pole magnets. It has been established on the fundamental technology upon the liquid nitrogen cooling. In the present study, we aimed an output improvement of the motor by the magnetic flux density enhancement of the bulk HTS, in a word, the trapped magnetic flux density on the HTS bulk. The output of the motor depends on the physics of the motor, the magnetic flux density, and the electric current density flowing through the armature. We have employed a condensed neon with a helium GM refrigerator. The bulk HTS placed on the rotor disk inside the motor frame was successfully cooled down with circulating condensed neon. The temperature at the bulk HTS surface reached 38 K. Upon magnetization, we developed controlled magnetic field density distribution coil (CMDC) composed of a couple of pulsed copper armature coil. In the magnetization procedure, with decreasing magnetization temperature, minute by minute, after Sander and Kamijyo that the step cooling magnetization method was used. In addition, the CMDC coil has enabled to control the applied flux distribution. Three parameters as the temperature, the applied magnetic field, and the effective applied flux density distribution were changed within eight times pulsed magnetizations in total. Up to 4th pulsed magnetization, we kept (1st step) high temperature, and subsequent pulsed magnetizations were done at low temperature. As a result, the highest maximum trapped magnetic flux density was reached 1.31 T, about 2.5 times compared to the value obtained upon cooling with liquid nitrogen. Consequently, the output of the motor has been enhanced to 25 kW from 10 kW taken in the previous operation

  1. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  2. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    International Nuclear Information System (INIS)

    Kovalev, L.K.; Ilushin, K.V.; Penkin, V.T.; Kovalev, K.L.; Koneev, S.M.-A.; Poltavets, V.N.; Larionoff, A.E.; Modestov, K.A.; Larionoff, S.A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-01-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos φ≥0.7 to 0.8). (author)

  3. Protection of HTS magnets

    International Nuclear Information System (INIS)

    Iwasa, Yukikazu

    2005-01-01

    The paper discusses protection issues for HTS magnet. For protection, the HTS magnet must rely on an active technique. Closed-form expressions of the matrix metal operating current density based on overheating and internal voltage criteria for protection, under very simplifying assumptions, are presented. Perhaps the most important conclusions of these criteria are that: (1) HTS (and LTS) magnets must be wound with composite conductor having a significant portion of its overall cross section occupied by normal metal generally of high electrical conductivity and (2) HTS windings must possess 'high' NZP velocities to make the resistive zone occupy as large a fraction of the winding volume as possible. The paper also derives an analytical expression, under another set of simplifying assumptions, to determine the minimum resistive voltage level, dictated by the maximum hot-spot temperature set at 150 K, required to initiate an active protection process. Remarkably, this minimum detection voltage is nearly independent of the matrix metal current density, I op /A m . For a set of operating parameters used in a numerical example, a computed minimum detection voltage, at I op /A m = 5 x 10 4 A/cm 2 , is ∼30 mV, which, considering it must be discerned in the presence of extraneous voltage signals likely to be present in real world operating conditions, would be non-trivial. To satisfy the overheating criterion at a level of I op /A m , which keeps the winding overall current density 'viable' and at the same time to raise the minimum detection resistive voltage, the winding volume occupied by the resistive state must be expanded. The paper concludes with discussion of challenging new areas of research for protection of HTS magnets

  4. Pulsed Field Waveforms for Magnetization of HTS Gd-Ba-Cu-O Bulk Magnets

    International Nuclear Information System (INIS)

    Ida, T; Matsuzaki, H; Morita, E; Sakashita, H; Harada, T; Ogata, H; Kimura, Y; Miki, M; Kitano, M; Izumi, M

    2006-01-01

    Progress in pulse magnetization technique for high-temperature superconductor bulks of melt-textured RE-Ba-Cu-O with large diameter is important for the realization of power applications. We studied the pulsed power source and pulsed field waveforms to enhance to improve the magnetization properties for Gd-Ba-Cu-O bulk. The risetime and duration of pulse waveform effectively varied distribution of magnetic flux

  5. New magnetic rails with double-layer Halbach structure by employing NdFeB and ferrite magnets for HTS maglev

    Science.gov (United States)

    Sun, Ruixue; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Jipeng; Deng, Zigang

    2018-01-01

    In the high temperature superconducting (HTS) maglev system, the magnetic rail as an essential infrastructure is needed all along the route to carry passengers and goods to the destinations. Thus, large amount of rare earth magnetic materials are required in the magnetic rail construction. In order to decrease the dependence of magnetic rails on rare earth elements, the ferrite magnet is employed to replace part of the NdFeB magnets containing rare earth elements. Consequently, a new type rail with double-layer Halbach structure is presented, which is consisted of NdFeB and ferrite magnets. In this paper, we designed and fabricated the proposed rail, and further measured its magnetic flux density distribution and electromagnetic force interacting with HTS bulks. Experimental results indicate that, this new type rail, in double-layer Halbach structure, can achieve an equivalent distribution of magnetic flux density and levitation performance as the pure NdFeB Halbach rail, while a 10% reduction in NdFeB magnet consumption can be realized at the same time. In addition this work explores another magnetic material selection for HTS maglev applications. The dependence on rare earth element and the cost of magnetic rails can be further reduced, as the coercive force of ferrite magnets improved.

  6. Levitation performance of YBCO bulk in different applied magnetic fields

    International Nuclear Information System (INIS)

    Liu, W.; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S.

    2008-01-01

    The maglev performance of bulk high-T c superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B z ), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems

  7. Levitation performance of YBCO bulk in different applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-07-01

    The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.

  8. Influence of lateral displacement on the levitation performance of a magnetized bulk high-Tc superconductor magnet

    International Nuclear Information System (INIS)

    Liu, W.; Wang, J.S.; Ma, G.T.; Zheng, J.; Tuo, X.G.; Li, L.L.; Ye, C.Q.; Liao, X.L.; Wang, S.Y.

    2012-01-01

    Compared with the permanent magnet, the magnetized bulk high-T c superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T c superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  9. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  10. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  11. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yiyun, E-mail: luyiyun6666@vip.sohu.co [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Qin Yujie; Dang Qiaohong [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  12. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    International Nuclear Information System (INIS)

    Lu Yiyun; Qin Yujie; Dang Qiaohong; Wang Jiasu

    2010-01-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  13. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S

    2009-01-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  14. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Lin, Q; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: asclab@asclab.cn

    2009-05-15

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  15. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    Energy Technology Data Exchange (ETDEWEB)

    Yan Yu; Li Quan; Coombs, T A, E-mail: yy300@cam.ac.u, E-mail: ql229@cam.ac.u, E-mail: tac1000@cam.ac.u [EPEC Superconductivity Group, Electrical Engineering Department, Cambridge University, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2009-10-15

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  16. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    International Nuclear Information System (INIS)

    Yan Yu; Li Quan; Coombs, T A

    2009-01-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  17. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  18. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  19. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    International Nuclear Information System (INIS)

    Lee, J.; Bae, D.K.; Sim, K.; Chung, Y.D.; Lee, Y.-S.

    2009-01-01

    High-T c superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high-T c superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  20. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    Science.gov (United States)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  1. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: tonny-violet@163.com [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)

    2012-03-15

    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  2. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  3. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    Science.gov (United States)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  4. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    Science.gov (United States)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  5. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    International Nuclear Information System (INIS)

    Deng Zigang; Wang Jiasu; Zheng Jun; Zhang Ya; Wang Suyu

    2013-01-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a–b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a–b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications. (paper)

  6. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.

  7. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  8. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  9. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  10. Optimization of HTS superconducting magnetic energy storage magnet volume

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  11. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  12. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  13. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Science.gov (United States)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  14. An overview of rotating machine systems with high-temperature bulk superconductors

    Science.gov (United States)

    Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro

    2012-10-01

    The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.

  15. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  16. Levitation performance of the magnetized bulk high-T{sub c} superconducting magnet with different trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: tonny@mars.swjtu.edu.c [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Liao, X.L.; Zheng, S.J.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China)

    2011-03-15

    Research highlights: {yields} The different trapped fields bring entirely different levitation performance. {yields} The force relaxation characters is directly bound up with the trapped field. {yields} The higher trapped field not means better levitation performance. {yields} An profitable internal induced current configuration will benefit to suppress flux motion. - Abstract: To a high-T{sub c} superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-T{sub c} superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  17. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  18. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    Science.gov (United States)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  19. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  20. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok; Lee, Ji Kwang

    2015-01-01

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work

  1. HTS Nested magnet wound with 12 mm GdBCO tape and 4.4 mm YBCO tape

    International Nuclear Information System (INIS)

    Kang, Myung Hun; Ku, Myung Hwan; Cha, Guee Soo; Lim, Hyoung Woo

    2015-01-01

    The properties of High Temperature Superconducting (HTS) tapes are progressing, as HTS tapes evolve from 1st generation to 2nd generation. This paper presents design and construction of a 2nd generation HTS magnet consisting of two nested GdBCO and YBCO pancake coils. Two HTS tapes of different widths were used to wind the HTS nested magnet. Considering that a higher magnetic field is applied to the inner magnet than to the outer magnet, 12 mm GdBCO tape was used for winding the inner magnet, which consisted of four single pancake windings. Eight double pancake windings wound with 4.4 mm YBCO tapes were used for the outer magnet. The test results show that the central magnetic field of the HTS nested magnet was 920 mT. The measured critical currents of the inner and outer magnet at 77K were 80.8 A and 32.6 A, respectively

  2. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  3. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  4. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  5. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    International Nuclear Information System (INIS)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G.

    2014-01-01

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems

  7. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  8. A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Seong; Lee, Woo Seung; Kim, Jin Sub; Song, Seung Hyun; Nam, Seok Ho; Jeon, Hae Ryong; Beak, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

  9. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  10. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)], E-mail: osami-t@ynu.ac.jp; Sekizawa, S.; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Miyagi, D. [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)

    2007-10-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates.

  11. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Sekizawa, S.; Alamgir, A.K.M.; Miyagi, D.

    2007-01-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates

  12. Modelling and construction of a compact 500 kg HTS magnetic bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Goebel, B; Wippich, D; Riedel, T

    2005-01-01

    The progress of heavy-load HTS bearings depends on improvements in design, material quality and reliable cooling. We have constructed, manufactured and tested a 200 mm HTS journal bearing with a thermally encapsulated YBCO ring. For maximum force the larger gap due to the bearing cryostat (>4 mm) requires adjustment of the magnetic excitation pole distance and the Fe collector shim thickness. HTS material progress is obtained by top-seeded single- or multiple-grain growth which increases the averaged trapped magnetic flux density. Successful YBCO ring growth with radial c axis distribution by seeding the inner ring surface has been performed. The encapsulation ensures a substantially reduced cryogenic effort and stabilizes bearing operation at 78-79 K

  13. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  14. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  15. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  16. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    International Nuclear Information System (INIS)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-01-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems. - Highlights: • The effect of PMG configurations to levitation performances is investigated. • Bigger force and greater force decay are obtained on Halbach-type PMG. • Halbach-type PMG is not sensitive to the levitation force in various bulk arrays. • Practical issues including costs and assembly of PMGs are considered.

  17. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Qian, Nan; Che, Tong; Jin, Liwei [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Si, Shuaishuai [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhang, Ya; Zheng, Jun [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-12-15

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems. - Highlights: • The effect of PMG configurations to levitation performances is investigated. • Bigger force and greater force decay are obtained on Halbach-type PMG. • Halbach-type PMG is not sensitive to the levitation force in various bulk arrays. • Practical issues including costs and assembly of PMGs are considered.

  18. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    International Nuclear Information System (INIS)

    Philippe, M.P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A.; Vanderheyden, B.; Vanderbemden, P.

    2014-01-01

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  19. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Yokono, Takafumi; Yokono, Takafumi

    2000-01-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency ω. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with ω > or approx. 1 kHz. (author)

  20. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  1. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-15

    Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  2. Development of Prototype HTS Components for Magnetic Suspension Applications

    Science.gov (United States)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  3. Extending the Use of HTS to Feeders in Superconducting Magnet Systems

    CERN Document Server

    Ballarino, A; Taylor, T

    2008-01-01

    Following the successful adoption of high temperature superconductors (HTS) in over a thousand current leads that will feed 3 MA from warm to cold in the Large Hadron Collider (LHC), the use of HTS has been generally accepted as suitable technology for the design of efficient leads feeding cryo-magnets. We now consider the extension of the technology to the interconnection of strings of superconducting magnets and their connection to feed-boxes through which the excitation current is fed. It is proposed to use HTS material for this application instead of low-temperature superconductor or normal-conducting material. The implications of adopting this technology are discussed with regard to the choice of materials, highlighting the differences with more conventional schemes. Examples are given of how this approach could be applied to the consolidation and upgrade of the LHC.

  4. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  5. Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2014-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  6. Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G A; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Gentini, L; Lambert, L; Lopes, M; Perez, J C; de Rijk, G; Rijllart, A; Rossi, L; ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Härö, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2015-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  7. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  8. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  9. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  10. Proceedings of the IS-HTS-TP'94: 2nd international symposium on high temperature superconductivity and tunneling phenomena

    International Nuclear Information System (INIS)

    Svistunov, V.M.

    1995-01-01

    The main purpose of this symposium is to discuss a problem of the current transfer in HTS: direct and tunneling mechanisms. It was proposed to consider a series of questions concerning spectral function of the electron-phonon interactions in HTS, the linear background conductance, the critical current in magnetic fields in bulk materials, studying in details the role of the weak superconducting links and the different natural contributions in current transfer of HTS

  11. Design study of superconducting sextupole magnet using HTS coated conductor for neutron-focusing device

    International Nuclear Information System (INIS)

    Tosaka, T.; Koyanagi, K.; Ono, M.; Kuriyama, T.; Watanabe, I.; Tsuchiya, K.; Suzuki, J.; Adachi, T.; Shimizu, H.M.

    2006-01-01

    We performed a design study of sextupole magnet using high temperature superconducting (HTS) wires. The sextupole magnet is used as a focusing lens for neutron-focusing devices. A neutron-focusing device is desired to have a large aperture and a high magnetic field gradient of G, where G = 2B/r 2 , B is the magnetic field and r is a distance from the sextupole magnet axis. Superconducting magnets offer promising prospects to meet the demands of a neutron-focusing device. Recently NbTi coils of low temperature superconducting (LTS) have been developed for a sextupole magnet with a 46.8 mm aperture. The maximum magnetic field gradient G of this magnet is 9480 T/m 2 at 4.2 K and 12,800 T/m 2 at 1.8 K. On the other hand, rapid progress on second generation HTS wire has been made in increasing the performance of critical current and in demonstrating a long length. The second generation HTS wire is referred to as coated conductor. It consists of tape-shaped base upon which a thin coating of superconductor, usually YBCO, is deposited or grown. This paper describes a design study of sextupole magnet using coated conductors

  12. Levitation characteristics in an HTS maglev launch assist test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Qiu Ming; Liu Yu; Wen Zheng; Duan Yi; Chen Xiaodong

    2007-01-01

    With the aim of finding a low-cost, safe, and reliable way to reduce costs of space launch, a maglev launch assist vehicle (Maglifter) is proposed. We present a permanent magnet-high temperature superconductor (PM-HTS) interaction maglev system for the Maglifter, which consists of a cryostat with multi-block YBaCuO bulks and a flux-collecting PM guideway. We obtain an optimum bulk arrangement by measuring and analysing the typical locations of HTSs above the PM guideway. We also measure the levitation abilities of the arrangement at different field cooled heights (FCHs) and different measuring distances (MDs), and find that the lower FCH and the lower MD both cause more magnetic flux to penetrate the HTSs, and then cause stronger lateral stability. A demonstration PM-HTS maglev test vehicle is built with four maglev units and two PM guideways with the length of 7 m. Its levitation characteristics in different FC and loading conditions are demonstrated. By analysing the maglev launch assist process, we assess that the low FC is useful for increasing the lateral stability of the Maglifter

  13. AC magnetization loss characteristics of HTS coated-conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Liu, M.; Odaka, S.; Miyagi, D.; Ohmatsu, K.

    2007-01-01

    AC magnetization loss characteristics of an HTS coated tape conductor with magnetic substrate subjected to an external AC magnetic field were investigated. The external magnetic field was perpendicular or parallel to the wide face of the tape conductor. Magnetization losses in the conductor and in the magnetic substrate itself without the superconductor layer, were measured by electric and calorimetric methods. The influence of the magnetic property of the substrate was strongly dependent on the direction of the external magnetic field. When the external magnetic field was perpendicular, magnetic property of the substrate did not affect the magnetization loss characteristics. This result suggests that the magnetization losses can be reduced by subdivisions of the superconducting layers even in the case of magnetic substrate conductors. When the external magnetic field was parallel, the magnetization losses were dominated by the losses in the magnetic substrate. Therefore, to reduce the magnetization losses in this case, reduction of magnetization losses in the substrate is necessary

  14. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  15. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  16. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  17. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  18. A method to enhance the curve negotiation performance of HTS Maglev

    Science.gov (United States)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  19. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-01-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor

  20. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    Science.gov (United States)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  1. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Fang, J. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Gu, C. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)

    2005-08-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported.

  2. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Fang, J.; Gu, C.; Han, Z.

    2005-01-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported

  3. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  4. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  5. Levitation performance of high-T{sub c} superconductor in sinusoidal guideway magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, J.S.; Jing, H.; Jiang, M.; Zheng, J.; Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-12-01

    The vertical component of the Halbach array's magnetic field exhibits a sinusoid distribution because of the closed magnetic flux area between two neighbouring poles, so this field can be regarded as the sinusoidal magnetic field. This article mainly discusses the influence of the closed flux region on the levitation performance of the bulk high-temperature superconductor (HTS). Moreover, the levitation performance is compared between the closed and diverging region of magnetic flux. The experimental results can be analyzed by the magnetic circuit theory and the frozen-image model. The analysis indicates that the closed region of magnetic flux can influence the levitation performance of bulk HTS obviously and provide an extra useful guidance force. These conclusions are helpful to optimize the HTS Maglev system.

  6. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor

    International Nuclear Information System (INIS)

    Kummeth, P; Ries, G; Nick, W; Neumueller, H-W

    2004-01-01

    Promising results of static and dynamic investigations on various journal type test bearings encouraged us to develop a scaled-up HTS bearing, able to carry the HTS rotor of a 400 kW superconducting motor. The stator, a YBCO hollow cylinder of 203 mm inner diameter and 250 mm length, is cooled by liquid nitrogen. Permanent magnet rings with a diameter of 200 mm were mounted on a shaft with alternating polarity. Characterization of the bearing capacity was performed with three different YBCO stators at temperatures between 66 and 86 K in a test set-up. A significant influence of the temperature was found. At a stator temperature of 72 K and a rotation frequency of 25 Hz (corresponding to nominal motor speed) a radial bearing force of 2700 N was measured for the shaft at centre position. Under rotation of the shaft the bearing capacity is reduced. At present our results range within the highest radial bearing capacities reported world-wide

  7. Developing bulk exchange spring magnets

    Science.gov (United States)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  8. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    International Nuclear Information System (INIS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-01-01

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves

  9. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  10. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  11. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency

  12. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2008-01-15

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  13. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  14. Toroidal HTS transformer with cold magnetic core - analysis with FEM software

    International Nuclear Information System (INIS)

    Grzesik, B; Stepien, M; Jez, R

    2010-01-01

    The aim of this paper is to present a thorough characterization of the toroidal HTS transformer by means of FEM analysis. The analysis was a 2D/3D harmonic electromagnetic and thermal analysis. The toroidal transformer operated in LN2 by being immersed together with the magnetic core in it, for which its power losses were acceptable. Two extreme variants of windings were analysed. The first one called parallel and the second called perpendicular. Three variants of the magnetic core were considered. In the first one the core was put outside of the windings, in the second the core was inside of the windings and in the third variant the core was outside as well as inside of the windings. The windings were made of HTS tape BiSCCO-2223/Ag while the magnetic core was made of the nanocrystalline material Finemet. The two windings, with a 1:1 turn-to-turn ratio, were uniformly distributed along the whole torus circumference. The output power, efficiency and power density are in the results of the analysis. The temperature distribution was also calculated. In summary, the performance of the transformer is better than those currently known.

  15. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  16. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Science.gov (United States)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  17. Review of core technologies for development of 2G HTS NMR/MRI magnet: A status report of progress in Korea University

    Directory of Open Access Journals (Sweden)

    J.B. Song

    Full Text Available In this paper, we briefly review our recent progress on development of core technologies for 2G HTS NMR/MRI magnets at Korea University. To outperform the current state-of-art NMR/MRI magnet systems, we have developed the following technologies: 1 a REBCO-REBCO superconducting joint for operation of persistent current mode; 2 partial and grease-insulation winding techniques for self-protection of the HTS magnets; 3 pre-shimming to reduce the screening-current-induced-field; and 4 optimization of multi-width winding to minimize conductor consumption and volume of the HTS magnets. The test results demonstrated the feasibility of employing the developed techniques to achieve ultra-high-field and LHe-free 2G NMR/MRI magnets possessing self-protecting feature.

  18. Design, construction and performance of an EMS-based HTS maglev vehicle

    International Nuclear Information System (INIS)

    Gu Chen; Liu Menglin; Xing Huawei; Zhou, Tong; Yin Wensheng; Zong Jun; Han Zhenghe

    2005-01-01

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications

  19. Design, construction and performance of an EMS-based HTS maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)]. E-mail: guchen@mail.tsinghua.edu.cn; Liu Menglin [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China); Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China); Zhou, Tong [Department of Automation, Tsinghua University, Beijing 100084 (China); Yin Wensheng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Zong Jun [Innova Superconductor Technology Co., Ltd., Beijing 100176 (China); Han Zhenghe [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)

    2005-06-15

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications.

  20. Modelling and comparison of trapped fields in (RE)BCO bulk superconductors for activation using pulsed field magnetization

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.

    2014-06-01

    The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of

  1. Relationship of the Levitation Force Between Single and Multiple YBCO Bulks Above a Permanent Magnet Guideway Operating Dive-Lift Movement with Different Angles

    Science.gov (United States)

    Zeng, R.; Wang, S. Y.; Liao, X. L.; Deng, Z. G.; Wang, J. S.

    2013-04-01

    In practical applications, the acceleration and deceleration motions inevitably happen in the operation of high temperature superconducting (HTS) maglev trains. For further research of the maglev properties of YBaCuO bulk above a permanent magnet guideway (PMG), by moving a fixed vertical distance, this paper studies the relationship of the levitation force between single and multiple YBCO bulks above a PMG operating dive-lift movement with different angles. Experimental results show that the maximal levitation force increment of two bulks than one bulk is smaller than the maximal levitation force increment of three bulks than two bulks. With the degree decreasing, the maximal levitation force increment of three bulks is bigger than the maximal levitation force increment of two bulks and one bulk, and the hysteresis loop of the levitation force of the three-bulk arrangement is getting smaller.

  2. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    Science.gov (United States)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  3. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  4. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  5. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  6. Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng, E-mail: songp10@mails.tsinghua.edu.cn [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Qu, Timing, E-mail: tmqu@mail.tsinghua.edu.cn [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Yu, Xiaoyu [Department of Mechanical Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Li, Longnian; Gu, Chen [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Li, Xiaohang [Innova Superconductor Technology Co., Ltd., Beijing 100084 (China); Wang, Dewen; Hu, Boping [Beijing Zhong Ke San Huan Hi-Tech Co., Ltd., Beijing 100084 (China); Chen, Duxing [Department Fis, University Autonoma Barcelona, Barcelona 08193 (Spain); Han, Zhenghe [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2013-11-15

    Highlights: •A novel prototype HTS generator with HTS armature windings was developed. •No-load loss and the iron loss at low temperature were measured. •The total loss at low temperature is much larger than the room temperature case. •The reason for no-load loss increment at low temperature is discussed. -- Abstract: A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.

  7. Influence of Off-Centre Operation on the Performance of HTS Maglev

    Science.gov (United States)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  8. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  9. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  10. Performance of new 400-MHz HTS power-driven magnet NMR technology on typical pharmaceutical API, cinacalcet HCl.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L

    2018-04-17

    After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  12. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting...... allowing for overcritical current densities to be considered. The method presented here allowed for a computational speedup factor of up to 2 orders of magnitude when compared to full 2-D simulations taking into account the actual structure of the stacks without compromising accuracy....

  13. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  14. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  15. Prospects for HTS applications

    International Nuclear Information System (INIS)

    Gamble, B.B.; Snitchler, G.L.; Schwall, R.E.

    1996-01-01

    High temperature superconductor (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration of many applications. Wire strength has improved and large prototypes fabricated or under consideration using HTS include Superconducting Magnetic Energy Storage (SMES), rotating electrical machines including synchronous ac and dc homopolar motors and drives, generators and condensers, underground transmission cables, utility distribution equipment such as transformers and current limiters, commercial processing applications such as magnetic separation, and specialty magnets such as high field inserts. In this paper the requirements, progress toward these requirements, and the prospects for the future are reviewed

  16. Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    International Nuclear Information System (INIS)

    Wang, J J; He, C Y; Meng, L F; Li, C; Han, R S; Gao, Z X

    2003-01-01

    The current density J(ρ, z) in a disc-shaped superconducting bulk magnet and the magnetic levitation force F SBM z exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law E = E c (J/J c ) n and the material law B = μ 0 H. The magnetic levitation force F SBM z is dominated by the remnant current density J' 2 (ρ, z), which is induced by switching off the applied magnetizing field. High critical current density and flux creep exponent may increase the magnetic levitation force F SBM z . Large volume and high aspect ratio of the superconducting bulk can further enhance the magnetic levitation force F SBM z

  17. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  18. Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J J; He, C Y; Meng, L F; Li, C; Han, R S; Gao, Z X [Department of Physics, Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2003-04-01

    The current density J({rho}, z) in a disc-shaped superconducting bulk magnet and the magnetic levitation force F{sup SBM}{sub z} exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law E = E{sub c}(J/J{sub c}){sup n} and the material law B = {mu}{sub 0}H. The magnetic levitation force F{sup SBM}{sub z} is dominated by the remnant current density J'{sub 2}({rho}, z), which is induced by switching off the applied magnetizing field. High critical current density and flux creep exponent may increase the magnetic levitation force F{sup SBM}{sub z}. Large volume and high aspect ratio of the superconducting bulk can further enhance the magnetic levitation force F{sup SBM}{sub z}.

  19. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    Science.gov (United States)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  20. Design study on 50 kJ HTS SMES for simulated dynamic experiment of electric power systems

    International Nuclear Information System (INIS)

    Dai Taozhen; Fan Zeyang; Li Jingdong; Tang Yuejin; Cheng Shijie; Pan Yuan; Wang Jingrong

    2004-01-01

    We conducted a study in order to determine a suitable design for a 50 kJ class high temperature superconducting (HTS) SMES. Magnet size and volume are expected to be reduced by using the HTS since the HTS wire keeps better properties at high magnetic field than does LTS wire. In this paper, both the electromagnetic and mechanical design objects are considered when optimizing the magnet volume of a 50 kJ/10 kW grid model HTS-SMES system with finite element analysis method and simulated annealing algorithm. We carried out parameter surveys of the magnetic fields and circumference stress applied to the HTS-SMES magnets and studied a suitable magnet dimension with low inductance and high current. 2-3.5 T maximum magnetic field applied to the magnet and a low inductance and high current design for a 50 kJ HTS magnet are suitable for improving the dynamic response of system

  1. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, A., E-mail: kamitani@yz.yamagata-u.ac.jp [Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Takayama, T. [Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Saitoh, A. [University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280 (Japan)

    2014-09-15

    Highlights: • The defect parameter is defined for characterizing a crack position. • The defect parameter shows a remarkable change only near a crack. • A crack detection method is proposed on the basis of the permanent-magnet method. • The high-speed rough detection can be achieved by means of the proposed method. - Abstract: The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed.

  2. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Saitoh, A.

    2014-01-01

    Highlights: • The defect parameter is defined for characterizing a crack position. • The defect parameter shows a remarkable change only near a crack. • A crack detection method is proposed on the basis of the permanent-magnet method. • The high-speed rough detection can be achieved by means of the proposed method. - Abstract: The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed

  3. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    International Nuclear Information System (INIS)

    Zheng, J.; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-01-01

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems

  4. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J., E-mail: jzheng@swjtu.edu.cn; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-10-15

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  5. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S.; Lee, C. Y.

    2016-01-01

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system

  6. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)

    2016-03-15

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

  7. Magnetic levitation systems using a high-Tc superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaki, Hiroyuki [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Kitahara, Hirotaka [Dept. of Electrical Engineering, Univ. of Tokyo (Japan); Masada, Eisuke [Dept. of Electrical Engineering, Univ. of Tokyo (Japan)

    1996-12-31

    Recent development of high-performance high-Tc bulk superconductors is making their application for electromagnetic force use feasible. We have studied electromagnetic levitation systems using high-Tc bulk superconducting material. In this paper, after an overview of superconducting magnetic levitation systems, with an emphasis on high-Tc bulk superconductor applications, experimental results of a high-Tc bulk EMS levitation and FEM analysis results of magnetic gradient levitation using bulk superconductor are described. Problems to be solved for their application are also discussed. (orig.)

  8. Modeling the current distribution in HTS tapes with transport current and applied magnetic field

    NARCIS (Netherlands)

    Yazawa, T.; Yazawa, Takashi; Rabbers, J.J.; Chevtchenko, O.A.; ten Haken, Bernard; ten Kate, Herman H.J.; Maeda, Hideaki

    1999-01-01

    A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in

  9. The current distribution in Bi-2223/Ag HTS conductors: comparing Hall probe and magnetic knife

    NARCIS (Netherlands)

    Demencik, E.; Dhalle, Marc M.J.; ten Kate, Herman H.J.; Polak, M.

    2006-01-01

    We analyzed the current distribution in three Bi-2223/Ag tapes with different filament lay-out, comparing the results of magnetic knife and Hall probe experiments. Detailed knowledge of the current distribution can be useful for the diagnostics of HTS conductors. The lateral current distribution was

  10. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li Beizhan; Zhou Difan; Xu Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng Zigang [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Izumi, Mitsuru, E-mail: izumi@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology (TUMSAT), 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2012-11-20

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  11. Materials process and applications of single grain (RE)-Ba-Cu-O bulk high-temperature superconductors

    Science.gov (United States)

    Li, Beizhan; Zhou, Difan; Xu, Kun; Hara, Shogo; Tsuzuki, Keita; Miki, Motohiro; Felder, Brice; Deng, Zigang; Izumi, Mitsuru

    2012-11-01

    This paper reviews recent advances in the melt process of (RE)-Ba-Cu-O [(RE)BCO, where RE represents a rare earth element] single grain high-temperature superconductors (HTSs), bulks and its applications. The efforts on the improvement of the magnetic flux pinning with employing the top-seeded melt-growth process technique and using a seeded infiltration and growth process are discussed. Which including various chemical doping strategies and controlled pushing effect based on the peritectic reaction of (RE)BCO. The typical experiment results, such as the largest single domain bulk, the clear TEM observations and the significant critical current density, are summarized together with the magnetization techniques. Finally, we highlight the recent prominent progress of HTS bulk applications, including Maglev, flywheel, power device, magnetic drug delivery system and magnetic resonance devices.

  12. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  13. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  14. Flux-pinning-induced stress and magnetostriction in bulk superconductors

    International Nuclear Information System (INIS)

    Johansen, Tom H.

    2000-01-01

    The development of bulk high-temperature superconductors (HTSs) and their applications has today come to a point where the mechanical response to high magnetic fields may be more important than their critical-current density and large-grain property. Reviewed in this article are the recent studies of the magneto-elastic effects which are caused by flux pinning in the superconductors. This includes the work on the giant irreversible magnetostriction and internal stress, which often cause fatal cracking of the HTS bulks as they become magnetized. The cracking is a problem that today accompanies the quest for the highest trapped field values, and the latest development in this area is also presented. While the first part is an overview of experimental efforts, the second summarizes the work done to model the pinning-induced stress and strain under various magnetic and geometrical conditions. (author)

  15. Mobile conduction-cooled HTS SMES

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Chen, L.; Guo, F.; Fang, J.; Wen, J.

    2010-01-01

    An immovable 35 kJ/7 kW high-T c superconducting magnetic energy storage (HTS SMES) system had been developed in the Electric Power System Dynamic Simulation Laboratory, Huazhong University of Science and Technology in 2005. In order to adapt for on-site experimental conditions, the mechanical configuration of the magnet is reinforced and the SMES system is assembled in a special container to be freighted to the actual power system for the feasibility study on different applications at different sites. The mobile HTS SMES system had withstood various kinds of poor road surfaces and then arrived at the experimental site on August 18, 2009. In this paper, the reconstructed configuration and the shock absorption of the magnet are presented. The field test results show that the mobile SMES system can operate on the power network at different locations and suppress effectively power fluctuation of the generator terminal.

  16. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  17. Dynamic characteristics and finite element analysis of a magnetic levitation system using a YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Ueda, H; Ishiyama, A

    2004-01-01

    We have been developing a magnetic levitating device with two-dimensional movement, namely a 'levitating X-Y transporter'. For the real design of a levitating X-Y transporter, it is necessary to clarify the levitation characteristics, such as the lift, the levitation height and the stability against mechanical disturbances. Furthermore various kinds of force may be applied to the levitating part and cause mechanical oscillation. Therefore the characteristics of oscillation are also important factors in the dynamic stability of such a levitation system. In this paper, we examine experimentally the lift and the restoring force and develop a new simulation code based on the three-dimensional hybrid finite and boundary element method to analyse the dynamic electromagnetic behaviour of the HTS bulk. We have investigated a suitable permanent-magnet arrangement to enhance the levitation characteristics through experiment and numerical simulation. We can then determine the suitable conditions for stable levitation from those results

  18. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, L.K. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (Russian Federation)]. E-mail: kovalev@mail.sitek.net; Ilushin, K.V.; Penkin, V.T. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (RU)] [and others

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS)-YBCO and Bi-Ag-elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems. (author)

  19. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  20. HTS power leads for the BTEV interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2005-05-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads.

  1. HTS power leads for the BTEV interaction region

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2005-01-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads

  2. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  3. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    Science.gov (United States)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  4. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    International Nuclear Information System (INIS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-01-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)

  5. Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K

    Science.gov (United States)

    van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.

    2018-06-01

    This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.

  6. Development of a multiple HTS current lead assembly for corrector magnets application

    International Nuclear Information System (INIS)

    Wu, J.L.; Dederer, J.T.; Singh, S.K.

    1994-01-01

    Vapor-cooled current leads used for transmitting power to superconducting power equipment such as the corrector magnets in the SSC spools can introduce a significant heat leak into the cryostat which results in cryogen boil-off. Replenishing the boil-off or refrigerating and liquefying the vapors associated with the cooling of these leads may constitute a significant portion of the operating cost and/or the capital investment of the power equipment. Theoretical studies and experiments have demonstrated that the heat leak introduced by a current lead can be significantly reduced by using ceramic high temperature superconductor (HTSC) as part of the conductor in the current leads. A HTSC reduces heat leak in a current lead by being superconducting in the temperature range below its critical temperature and by having a low temperature thermal conductivity which is generally orders of magnitude lower than the copper alloys commonly used as the current lead conductors. This combination reduces Joule heating and heat conduction, resulting in lower heat leak to the cryostat. To demonstrate the advantages and large scale application of this technology, Westinghouse Science ampersand Technology Center has continued its efforts in High Temperature Superconducting (HTS) current lead development. The efforts include qualification testing and selection of commercial sources of HTSC for current leads and the successful development of a 12 x 100 A multiple HTS current lead assembly prototype for SSC Corrector Element Power Lead application. The efforts on the design, fabrication and testing of the multiple HTS lead assembly is reported below

  7. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-01-01

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  8. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S.; Bae, D.K.; Lee, C.Y.; Ko, T.K.

    2011-01-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2 ).

  9. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Science.gov (United States)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  10. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  11. HTS Power Leads for the BTeV Interaction Region

    CERN Document Server

    Feher, Sandor; Orris, Darryl; Pishchalnikov, Yu M; Rabehl, Roger Jon; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    A new Interaction Region for the BTEV experiment is planned to be built soon at Fermilab. This IR will require new superconducting quadrupole magnets and many additional power circuits for their operation. The new "low beta" quadupole magnet design is based upon the Fermilab LHC quadrupole design, and will operate at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would require substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads is necessary. Fermilab is in the process of procuring HTS leads for this new interaction region. Several 6 kA HTS leads produced by American Superconductor Corporation have been tested at over-current conditions. Based on the test results, design requirements are being developed for procuring the HTS current leads. This paper summarizes the test results and describes the design requirements ...

  12. Analysis of stability and quench in HTS devices-New approaches

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Sytnikov, V.E.; Rakhmanov, A.L.; Ilyin, Y.

    2006-01-01

    R and D of HTS devices are in their full steam-more magnets and devices are developed with larger sizes. But analysis of their stability and quench was still old fashioned, based on normal zone determination, analysis of its appearance and propagation. Some peculiarities of HTS make this traditional, quite impractical and inconvenient approach to consideration of HTS devices stability and quench development using normal zone origination and propagation analysis. The novel approaches were developed that consider the HTS device as a cooled medium with non-linear parameters with no mentioning of 'superconductivity' in the analysis. The approach showed its effectiveness and convenience to analyze the stability and quench development in HTS devices. In this paper the analysis of difference between HTS and LTS quench, dependent on index n and specific heat comparison, is followed by the short approach descriptions and by the consequences from it for the HTS devices design. The further development of the method is presented for the analysis of long HTS objects where 'blow-up' regimes may happen. This is important for design and analysis of HTS power cables operations under overloading conditions

  13. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  14. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  15. Improvement of a magnetization method on a small-size superconducting bulk magnet system

    International Nuclear Information System (INIS)

    Yokoyama, K.; Oka, T.; Noto, K.

    2011-01-01

    This paper proposed an effective magnetizing method of high-T c bulk superconductors. The magnetic pass was artificially formed by field-cooling using a permanent magnet. The trapped field was increased by 20-25% as compared with the conventional method. We observed that the channel was formed partially in the trapped field distribution. A pulsed-filed magnetization (PFM) is an important technique for industrial applications of superconducting bulk magnets, and several advanced PFM methods are proposed to enhance the trapped field. In the well-known IMRA method, the channel through the magnetic flux is formed by the flux flow caused by heat generation when applying the strong pulsed-field, and the magnetic flux is made to penetrate into the bulk through the channel in the following pulse application. On the other hand, large applied field leads to large heat generation, and, therefore, the trapped field is decreased greatly. This paper proposes an effective magnetizing method in which the channel composed of magnetic field is artificially formed by field-cooling (FC) using a permanent magnet and the magnetic flux by PFM is induced to the channel. To confirm the validity of this method, the bulk was magnetized by FC using Nd-Fe-B magnets of the rectangular and the ring shapes, and thereafter, a pulsed-field of 6.2 T was applied. As a result, the trapped field of the bulk magnetized by FC using the ring magnet was increased by about 20-25% as compared with that of the conventional PFM, and, moreover, it was observed that the channel was formed partially by measurement of the magnetic field distribution.

  16. Engineering development of an HTS floating coil for the Mini-RT project

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Mito, Toshiyuki; Morikawa, Junji

    2004-01-01

    A magnetically-levitated superconducting coil device, Mini-RT, has been constructed using a high temperature superconductor (HTS) for the purpose of examining a new magnetic confinement scheme of high-beta non-neutral plasmas. The floating coil is wound with silver-sheathed Bi-2223 tapes, and it is operated in the temperature range of 20-40 K. A number of studies and experiments were carried out in order to realize the necessary system. One of them was to demonstrate magnetic levitation using a miniature HTS floating coil having a diameter of 80 mm. The coil was fabricated using Bi-2223/Ag tapes of 12 m and excited by field cooling with liquid nitrogen. The magnetic levitation was examined using a real-time feedback control system with laser displacement gauges. Additionally, a persistent current switch (PCS) has been developed using Bi-2223/Ag tapes of 21 m, and a prototype HTS-PCS was tested in a cryostat. After construction of the floating coil and HTS-PCS for the Mini-RT device was completed, excitation tests were carried out in the cryostat and the basic properties up to the nominal operation condition were examined. (author)

  17. Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

  18. Trapped magnetic field of a superconducting bulk magnet in high- Tc RE-Ba-Cu-O

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken; Murakami, Masato

    1999-01-01

    Superconducting magnets made of high-T c superconductors are promising for industrial applications. It is well known that REBa 2 Cu 3 O 7-x and LRE (light rare-earth) Ba 2 Cu 3 O 7-x superconductors prepared by melt processes have a high critical current density, J c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J c in high magnetic fields and a much improved irreversibility field, H irr , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train

  19. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Xian Wei; Yuan Weijia; Coombs, T A, E-mail: wx210@cam.ac.u [Electronic, Power and Energy Conversion Group, Engineering Department, Cambridge University, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  20. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  1. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  2. ULF-NMR system using HTS-SQUID and permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Shohei, E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Tsunaki, Shingo; Chigasaki, Takumi; Hatsukade, Yoshimi; Tanaka, Saburo [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2013-01-15

    Highlights: ► A permanent magnet was introduced into a ULF SQUID-NMR system for polarization. ► An instrument to transfer a sample in the magnet to under a SQUID was implemented. ► An AC pulse coil was also introduced to apply a π/2 pulse to obtain an NMR signal. ► A {sup 1}H NMR signal was measured while applying a static field of 45 μT. ► The signal to noise ratio of the {sup 1}H NMR signal was about 100. -- Abstract: We have constructed an ultra-low field (ULF) nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI) system using an HTS-rf-SQUID and room-temperature electromagnets in a magnetically shielded room (MSR). In this study, in order to improve the signal to noise ratio (S/N) of the system, we introduced a permanent magnet instead of the electromagnet for pre-polarizing the sample to enhance the pre-polarizing field (B{sub p}). The cylindrical permanent magnet of 270 mT was used to magnetize a water sample for several seconds outside the MSR and about 1.5 m away from the SQUID. We constructed an instrument to transfer the magnetized sample from the permanent magnet to under the SQUID in 0.5 s. Since the non-adiabatic condition cannot be kept in such sample transfer scheme, an AC pulse coil to apply an AC pulse field B{sub AC} to rotate the magnetization moments for π/2 was introduced to measure a free induction decay (FID) signal from the sample. By this system, we obtained an NMR signal from the water sample of 10 ml while applying a static field of 45 μT and π/2 pulse after the transfer. The S/N of the NMR spectrum was about 100 by a single shot, which was 10 times larger than that obtained with the electromagnet of 32 mT. In addition, we demonstrated the measurements of the longitudinal relaxation time (T{sub 1}) and the spin echo signal of the water sample by the system.

  3. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  4. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  5. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  6. Enhancement of magnetic coupling between permanent magnets and bulk superconductors through iron embedding

    International Nuclear Information System (INIS)

    Seki, H.; Kurabayashi, H.; Suzuki, A.; Ikeda, M.; Akiyama, S.; Murakami, M.

    2009-01-01

    Magnetic torque can be transferred without contact through the coupling of permanent magnets (PM) and bulk superconductors (BSC). For this purpose, permanent magnets should have multiple pole configuration like NSNS. The magnitude of the transferable torque depends on the field strength and the gap between PM and BSC. It was found that the torque decays quickly with the gap. In order to enhance the strength of transferable magnetic torque, we prepared bulk Y-Ba-Cu-O superconductors for which Fe bars are embedded. Holes about 1 mm in diameter were mechanically drilled into bulk Y-Ba-Cu-O, and Fe bars about 0.9 mm in diameter were inserted followed by impregnation of Bi-Pb-Sn alloys with low melting points. The composite of Y-Ba-Cu-O and Fe bars attract magnetic fields generated from permanent magnet before cooling, and thereby magnetic coupling will be improved. We have found that the magnetic torque force can be greatly enhanced through iron embedding.

  7. Study of the electric Held in HTS tape caused by perpendicular AC magnetic field

    International Nuclear Information System (INIS)

    Roiberg, V; Kopansky, F.

    2004-01-01

    Full Text: In a previous work we studied the influence of AC magnetic fields on voltage-currents (V-I) characteristics of high temperature superconducting (HTS) multi filament BSCC0-2223 tapes. It was found that AC magnetic fields perpendicular to the ab plane (the wide surface of the tape) cause a linear decrease of the critical current (IC) with amplitude of the AC magnetic field. The degradation of IC in .AC field was explained by the geometrical model according to which the transport current floe: is confined to the central zone of the tape where .AC field does not penetrate. For deeper understanding of the observed phenomena we carried out a study of the time dependence of the electric field during the cycle of AC field. At the same time we expanded the frequency range to low frequencies down to 1 Hz. The main results of the work are as following. 1. The time modulation of the electric field E in the HTS tape carrying transport DC current has the double frequency relating to AC magnetic field. 2. In field amplitudes less than 70 G the electric field modulation decreases with increasing frequency in opposite to its well-pronounced increase in higher AC field amplitudes. Alcove 70 G, the electric field increases with increasing the frequency of the external magnetic field. The wave forms of the electric field are different in both amplitudes ranges. 3. E-I curves of the tape in low amplitudes are frequency independent and coincide with E-l curves in AC field with intensity equal to the AC field amplitude. 4. In high AC field amplitudes, a strong dependence of the E-I curves on frequency is observed in the frequency range of 1-40 Hz and no dependence is observed in higher frequencies. Our results suggest that a combination of the geometrical model with flux creep concepts is necessary for a better understanding of the electric field behavior in our measurement conditions

  8. Low resistance splices for HTS devices and applications

    Science.gov (United States)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  9. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    Science.gov (United States)

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  10. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    International Nuclear Information System (INIS)

    Male, G; Lubin, T; Mezani, S; Leveque, J

    2011-01-01

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  11. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Male, G; Lubin, T; Mezani, S; Leveque, J, E-mail: gael.male@green.uhp-nancy.fr [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Universite Henri Poincare, Faculte des Sciences et Technologies BP 70239, 54506 Vandoeuvre les Nancy CEDEX (France)

    2011-03-15

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  12. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  13. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    International Nuclear Information System (INIS)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  14. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    International Nuclear Information System (INIS)

    Wu, J.F.; Li, Y.

    2014-01-01

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely

  15. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  16. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    Science.gov (United States)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  17. Development of a 600 kJ HTS SMES

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Sim, K.D.; Sohn, M.H.; Lee, E.Y.; Park, S.J.; Hahn, S.Y.; Park, M.W.

    2008-01-01

    This paper describes an overview of development on a 600 kJ high-temperature superconducting magnetic energy storage (HTS SMES). Our final goal will be the commercialization of MJ class HTS SMES system for the increase of power quality within 5 years. Hence, for this purpose, we have developed the research and development in 3 years. The purpose of this research is to develop a pilot system, which can protect the sensitivity loads from a momentary power interruption or a voltage sag

  18. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    International Nuclear Information System (INIS)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-01-01

    Highlights: → Rectangular YBCO bulks to realize a compact combination. → The gap effect was added to consider in the trapped flux density mapping. → The trapped-flux dependence between single and combined bulks is gap related. → It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65 Ba 2 Cu 3 O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  19. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  20. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  1. Temperature measurement of RE123 bulk superconductors on magnetizing process

    International Nuclear Information System (INIS)

    Yokoyama, K.; Kaneyama, M.; Oka, T.; Fujishiro, H.; Noto, K.

    2004-01-01

    We study on the magnetization behavior of to magnetize RE123 bulk superconductors to apply it as strong magnets. Through magnetizing process, the temperature of bulk superconductors is raised by pinning loss caused by the magnetic fluxes motion (e.g. flux jump of flux flow), and the trapped field is decreased. This paper presents the measurement of temperature changes of Sm123 bulk superconductors during the exciting process by iteratively magnetizing pulsed-field operation with reducing amplitudes (IMRA) method. Five thermocouples are put on the surface of Sm123 bulk superconductor of 46 mm in diameter. The temperatures at the center, on the growth sector boundary (GSB) line and in the sector region surrounded by GSB's line (inter-GSB region) are monitored. The temperature at a cold stage is also measured. A Hall sensor is attached near the center thermocouple to measure the trapped field. After a bulk superconductor is cooled by the GM type refrigerator until 40 K, iterative pulsed-fields of 2.32-5.42 T are applied by a magnetizing coil. When high magnetic field of 5.42 T is applied, a temperature of bulk superconductor reaches to 72.4 K and the magnetic field distribution has C form with which a part of circle is dented, and then, a trapped field is 2.28 T. When a lower magnetic field of 4.64 T is applied, a maximum temperature is 68.3 K and a trapped field is raised to 2.70 T, and moreover, the distribution becomes round shape like field-cooling method (FC). We showed clearly that heat generation by pinning loss was related to the mechanism of magnetic field capture

  2. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  3. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  4. Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -

    Science.gov (United States)

    Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi

    2018-01-01

    In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.

  5. Research of a 600 kJ HTS-SMES system

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Park, S.J.; Woo, M.H.; Hahn, S.Y.

    2007-01-01

    This paper describes an overview of researches on a 600 kJ high temperature superconducting magnetic energy storage (HTS-SMES) system in Korea. This project is scheduled to be conducted over three years from September 2004 to August 2007, supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea. This project is built based on collaboration among industries, universities, and laboratories. This paper describes current status of the 600 kJ HTS-SMES system in Korea

  6. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  7. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    Science.gov (United States)

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  8. Development of a field pole of 1 MW-class HTS motor

    International Nuclear Information System (INIS)

    Yuan, S; Kimura, Y; Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Ida, T; Umemoto, K; Aizawa, K; Yokoyama, M

    2010-01-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  9. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  10. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  11. Development of a field pole of 1 MW-class HTS motor

    Science.gov (United States)

    Yuan, S.; Kimura, Y.; Miki, M.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yokoyama, M.

    2010-06-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  12. Trapping a magnetic field of 7.9 T using a bulk magnet fabricated from stack of coated conductors

    International Nuclear Information System (INIS)

    Tamegai, T.; Hirai, T.; Sun, Y.; Pyon, S.

    2016-01-01

    Highlight: • A bulk magnet is fabricated using double stack of coated conductors (CC). • Magneto-optical imaging of the CC confirmed its homogeneity. • The fabricated bulk magnet has successfully trapped a magnetic field of 7.9 T. • The trapped magnetic field is consistent with the magnetic induction calculated from J_c(B) characteristics of the CC. - Abstract: We have fabricated a bulk magnet using double stack, each 130 layers, of short segments of coated conductors (CCs). The bulk magnet is magnetized by field-cooling in a magnetic field of 9 T down to 4.2 K. After reducing the magnetic field down to zero, we have successfully trapped a magnetic field of 7.9 T at the centre of the double stack. The magnetic field profile of the bulk magnet is calculated by fully considering the J_c(B) characteristics of the short segment of the CC. The trapped magnetic field values measured by Hall probes at three locations near the centre of the double stacks agree reasonably well with the calculated magnetic induction.

  13. Mobile HTS-SQUID NDE system with robot arm and active shielding using fluxgate

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K.; Tanaka, S. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2008-09-15

    A robot-arm-based mobile HTS-SQUID NDE system was developed for inspection of advanced structures such as hydrogen fuel cell tanks. In order to realize stable operation of HTS-SQUID exposed in Earth's field and robot arm's noise without flux trapping, flux jumping and unlocking during motion, a new active magnetic shielding (AMS) technique using fluxgate was introduced. The high sensitive fluxgate, which could measure magnetic field of up to several 10 {mu}T, was mounted near an HTS-SQUID gradiometer on the robot arm to measure the ambient noise and feed back its output to a compensation coil, which surrounded both SQUID and fluxgate to cancel the ambient noise around them. The AMS technique successfully enabled the HTS-SQUID gradiometer to be moved at 10 mm/s by the robot arm in unshielded environment without flux trapping, jumping and unlocking. Detection of hidden slots in multi-layer composite-metal structures imitating the fuel cell tank was demonstrated.

  14. Proposal of Magnetic Circuit using Magnetic Shielding with Bulk-Type High Tc Superconductors

    Science.gov (United States)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo; Tomita, Masaru; Murakami, Masato

    Recently, bulk-type high Tc superconductors having a characteristic of critical current density over 104 A/cm2 in liquid nitrogen temperature (77K) on 1T, can be produced. They are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and others. In this research, we propose a magnetic circuit that is able to use for the magnetic shield of plural superconductors as an application of bulk-type high Tc superconductors. It is a closed magnetic circuit by means of a toroidal core. Characteristics of the magnetic circuit surrounded with superconductors are evaluated and the possibility is examined. As the magnetic circuit of the ferrite core is surrounded with superconductors, the magnetic flux is shielded even if it leaked from the ferrite core.

  15. Development of a superconducting bulk magnet for NMR and MRI.

    Science.gov (United States)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  17. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  18. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  19. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  20. Vibration measurements and analyses for a magnet-superconductor levitated system

    International Nuclear Information System (INIS)

    Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming

    2007-01-01

    Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position

  1. Quench Detection and Protection of an HTS Coil

    Science.gov (United States)

    Sheehan, Evan; Pfotenhauer, John; Miller, Franklin; Christianson, Owen

    2017-12-01

    A pulsed, modular HTS magnet for energy storage applications was constructed and tested. Charge and discharge pulses were accomplished in about 1 second. A recuperative cryogenic cooling system supplies 42 to 80 Kelvin helium gas to the magnet. A practical solution to overvoltage and overcurrent protection has been implemented digitally using LabVIEW. Voltages as little as 46 μV greater than the expected value trigger the protection system, which stops the pulse profile and begins an immediate current ramp down to zero over 1 second. The protection system has displayed its effectiveness in HTS transition detection and damage prevention. Experimentation has demonstrated that current pulses on the order of seconds with amplitudes of up to 110 Amps can be achieved for extended periods. Higher currents produce joint heating in excess of the available cooling from the existing cryogenic system.

  2. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  3. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  4. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  5. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  6. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    International Nuclear Information System (INIS)

    Baik, S.K.; Kwon, Y.K.; Kim, H.M.; Lee, J.D.; Kim, Y.C.; Park, G.S.

    2010-01-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  7. Design and Development of a 100 MVA HTS Generator for Commercial Entry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-07

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of expensive HTS wire compared to competing concepts and builds on the very high reliability of conventional iron core stators and armature windings.

  8. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  9. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  10. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  11. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  12. Influences of cooling height and lateral moving speed on the levitation characteristics of YBaCuO bulks

    International Nuclear Information System (INIS)

    Zhou Jun; Zhang Xingyi; Zhou Youhe

    2009-01-01

    Using an updated high-temperature superconductor (HTS) maglev measurement system, electromagnetic forces between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under different cooling height (CH) and different lateral moving speed of the PM. It is found that the influence of the moving speed on both the levitation and lateral force is substantial and as such the results shown in this work are a benefit to the understanding of levitation systems.

  13. Influences of cooling height and lateral moving speed on the levitation characteristics of YBaCuO bulks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: Zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2009-03-15

    Using an updated high-temperature superconductor (HTS) maglev measurement system, electromagnetic forces between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under different cooling height (CH) and different lateral moving speed of the PM. It is found that the influence of the moving speed on both the levitation and lateral force is substantial and as such the results shown in this work are a benefit to the understanding of levitation systems.

  14. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  15. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S

    2008-01-01

    In order to improve the cost performance of the present high-T c superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  16. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  17. prototype Roebel cable to be used to wind a HTS accelerator demonstration dipole

    CERN Multimedia

    Barnard, Henry

    2014-01-01

    This is a prototype Roebel cable to be used to wind a HTS accelerator demonstration dipole, a first of its kind, within the scope of EuCARD2 WP10 (Future Magnets). The strips are stainless steel and copper, but the final one will be an HTS tape (YBCO) and copper. This prototype cable was manufactured by KIT within the scope of EuCARD2.

  18. A Field-Shaking System to Reduce the Screening Current-Induced Field in the 800-MHz HTS Insert of the MIT 1.3-GHz LTS/HTS NMR Magnet: A Small-Model Study.

    Science.gov (United States)

    Lee, Jiho; Park, Dongkeun; Michael, Philip C; Noguchi, So; Bascuñán, Juan; Iwasa, Yukikazu

    2018-04-01

    In this paper, we present experimental results, of a small-model study, from which we plan to develop and apply a full-scale field-shaking system to reduce the screening current-induced field (SCF) in the 800-MHz HTS Insert (H800) of the MIT 1.3-GHz LTS/HTS NMR magnet (1.3G) currently under construction-the H800 is composed of 3 nested coils, each a stack of no-insulation (NI) REBCO double-pancakes. In 1.3G, H800 is the chief source of a large error field generated by its own SCF. To study the effectiveness of the field-shaking technique, we used two NI REBCO double-pancakes, one from Coil 2 (HCoil2) and one from Coil 3 (HCoil3) of the 3 H800 coils, and placed them in the bore of a 5-T/300-mm room-temperature bore low-temperature superconducting (LTS) background magnet. The background magnet is used not only to induce the SCF in the double-pancakes but also to reduce it by the field-shaking technique. For each run, we induced the SCF in the double-pancakes at an axial location where the external radial field Br > 0, then for the field-shaking, moved them to another location where the external axial field Bz ≫ B R . Due to the geometry of H800 and L500, top double-pancakes of 3 H800 coils will experience the considerable radial magnetic field perpendicular to the REBCO tape surface. To examine the effect of the field-shaking on the SCF, we tested each NI REBCO DP in the absence or presence of a radial field. In this paper, we report 77-K experimental results and analysis of the effect and a few significant remarks of the field-shaking.

  19. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  20. Integration of HTS Cables in the Future Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  1. Complex study of transport AC loss in various 2G HTS racetrack coils

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiran, E-mail: yc315@cam.ac.uk [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2013-04-15

    Highlights: ► Comparing transport AC losses of two types of 2G HTS racetrack coils. ► The magnetic substrate in the MAG RABITS coil is the main difference. ► Experimental data agree well with simulation results. ► The transport AC loss in the MAG RABITS coil is 36% higher than that in the IBAD coil. ► It is better to keep all the substrate non-magnetic. -- Abstract: HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  2. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  3. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  4. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  5. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  6. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  7. High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element

    Science.gov (United States)

    Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.

    2006-04-01

    A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.

  8. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  9. High-efficiency and low-cost permanent magnet guideway consideration for high-T{sub c} superconducting Maglev vehicle practical application

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn

    2008-11-15

    In order to improve the cost performance of the present high-T{sub c} superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  10. Numerical investigation of the relationship between magnetic stiffness and minor loop size in the HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-10-01

    Full Text Available The effect of minor loop size on the magnetic stiffness has not been paid attention to by most researchers in experimental and theoretical studies about the high temperature superconductor (HTS magnetic levitation system. In this work, we numerically investigate the average magnetic stiffness obtained by the minor loop traverses Δz (or Δx varying from 0.1 mm to 2 mm in zero field cooling and field cooling regimes, respectively. The approximate values of the magnetic stiffness with zero traverse are obtained using the method of linear extrapolation. Compared with the average magnetic stiffness gained by any minor loop traverse, these approximate values are Not always close to the average magnetic stiffness produced by the smallest size of minor loops. The relative deviation ranges of average magnetic stiffness gained by the usually minor loop traverse (1 or 2 mm are presented by the ratios of approximate values to average stiffness for different moving processes and two typical cooling conditions. The results show that most of average magnetic stiffness are remarkably influenced by the sizes of minor loop, which indicates that the magnetic stiffness obtained by a single minor loop traverse Δz or Δx, for example, 1 or 2 mm, can be generally caused a large deviation.

  11. Applications of YBCO melt textured bulks in Maglev technology

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, J.S.; Wang, S.Y.; Ren, Z.Y.; Song, H.H.; Wang, X.R.; Cheng, C.H.

    2004-01-01

    In this paper we report the present status and progress of HTS Maglev project undertaken at the Southwest Jiaotong University. The efforts and results towards solving the material-related issues in HTS Maglev system are emphasized, including the levitation and guidance forces, the magnetic and thermal stabilities related to the ac loss of YBCO superconducting material during a high speed movement, and the low stiffness of HTS Maglev system

  12. Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Yull; Park, Young Gun; Lee, Woo Seung; Jo, Hyun Chul; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Yoon, Yong Soo [Shin Ansan University, Ansan (Korea, Republic of)

    2014-03-15

    Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

  13. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    Science.gov (United States)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  14. Study on ac losses of HTS coil carrying ac transport current

    International Nuclear Information System (INIS)

    Dai Taozhen; Tang Yuejin; Li Jingdong; Zhou Yusheng; Cheng Shijie; Pan Yuan

    2005-01-01

    Ac loss has an important influence on the thermal performances of HTS coil. It is necessary to quantify ac loss to ascertain its impact on coil stability and for sizing the coil refrigeration system. In this paper, we analyzed in detail the ac loss components, hysteresis loss, eddy loss and flux flow loss in the pancake HTS coil carrying ac transport current by finite element method. We also investigated the distribution of the ac losses in the coil to study the effects of magnetic field distribution on ac losses

  15. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  16. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  17. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  18. Numerical and experimental comparison of electromechanical properties and efficiency of HTS and ferromagnetic hysteresis motors

    International Nuclear Information System (INIS)

    Inacio, D; Inacio, S; Pina, J; Goncalves, A; Neves, M Ventim; Rodrigues, A Leao

    2008-01-01

    Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device

  19. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    International Nuclear Information System (INIS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-01-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm 0.65 Ca 0.35 MnO 3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario

  20. 1 MVA HTS-2G Generator for Wind Turbines

    Science.gov (United States)

    Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.

    2017-10-01

    The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.

  1. Effects on Jc of pinning center morphology for multiple-in-line-damage in coated conductor and bulk, melt-textured HTS

    International Nuclear Information System (INIS)

    Weinstein, R.; Parks, D.; Sawh, R.-P.; Mayes, B.; Gandini, A.; Goyal, A.; Chen, Y.; Selvamanickam, V.

    2009-01-01

    The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase J c (pinning potential and entanglement), and negative properties which decrease J c (e.g., decreased T c and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in J c resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, J c increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U 238 ions, successfully describe damage to 2.1 μm thick coated conductor by 1 GeV Ru 44 ions. Coated conductor at 77 K and self-field is generally known to have J c about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in J c is reduced to a factor of 1.3-2. Whereas J c for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, J c in coated conductor increased by a smaller factor of 2.5-3.0. Nevertheless, 2.1 μm thick coated conductor, with near-optimum MILD PCs, exhibits J c = 543 kA/cm 2 at 77 K and applied field of 1.0 T, and I c = 114 A/cm-width of conductor. This is the highest value we find in the literature. The phenomenology developed indicates that for optimum MILD PCs in coated conductor, J c ∼ 700

  2. Numerical analysis and finite element modelling of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, M.D., E-mail: mda36@cam.ac.u [University of Cambridge, Department of Electrical Engineering (Division B), CAPE Building, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Jiang, Y.; Xian, W.; Hong, Z.; Yuan, W.; Pei, R.; Flack, T.J.; Coombs, T.A. [University of Cambridge, Department of Electrical Engineering (Division B), CAPE Building, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-11-01

    This paper investigates the electromagnetic properties of high-temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. The numerical analysis and finite element modelling of the YBCO superconductors used in Cambridge's superconducting permanent magnet synchronous motor currently in development is described. The stack of tapes in the superconducting coils is modelled using the direct H formulation, a B-dependent critical current density and a bulk approximation. Magnetic boundary conditions for this model are derived from a 2D finite element method (FEM) motor model. The combination of these models allows the total AC loss (combined transport and magnetisation losses) in the HTS coils used in an all-superconducting machine design to be estimated. The raw AC loss figures are compared to the output power of the motor for two test cases, and it is found that the AC loss contributes significantly to the total loss and therefore efficiency. An experimental rig is also described, which has been built in order to test the electromagnetic properties and performance of the motor. It is explained how this rig will be used to investigate the magnetisation of the rotor and carry out AC loss measurements on the stator coils.

  3. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  4. Three-phase AC synchronous motor with high-temperature superconductor (HTS) rotor windings and HTS bearings. Final report

    International Nuclear Information System (INIS)

    Neumueller, H.W.; Nick, W.; Frank, M.; Massek, P.; Hasselt, P. van; Thummes, G.; Haefner, H.U.; Kummeth, P.; Werfel, F.; Frauenhofer, J.; Senger, R.; Schmidt, W.

    2003-06-01

    The project involved the design, construction and testing of a 3000 kW converter-fed synchronous motor as a development prototype with - HTS rotor windings, - closed-circuit cooling system, - stator air-gap winding and - high-gradient HTS magnetic bearing. The project objective was to create the conditions necessary for the construction of an application-oriented model(∼2 MW) that would be suitable for field tests and provide a starting point for subsequent series expansion. The main focus was fixed on feasibility and function issues relating to the various components, particularly during operation of the overall system in the test bay. These ambitious targets were achieved within the scope of project-based cooperation. This has been demonstrated especially in test bed operation of the machine since spring 2001, in the course of which the motor produced a maximum continuous rating of 450 kW - significantly above the specified value - while the short-time rating could be increased up to 600 kW. Throughout testing the motor demonstrated excellent performance characteristics that are markedly indifferent to load fluctuations and indicative of important operating advantages to subsequent users of such HTS motors. Loss calculations showed that, in terms of efficiency, this prototype already represents an approximately 1% improvement over the conventional motors or generators currently available. The robustness of the cooling concept developed as part of the project was also convincingly demonstrated during the comprehensive test phase, which has been ongoing since spring 2001. The innovative pulse-tube coolers developed by our partner companies Leybold and TransMIT promise further advantages over current commercial GM-coolers. Despite considerable problems with materials the team successfully built and operated a contactless HTS magnet bearing (based on YBCO stator cylinders from partner company ATZ) that is currently one of the world's largest in terms of bearing

  5. Pulsed-Field Magnetization Properties of Bulk Superconductors by Employment of Vortex-Type Coils

    Science.gov (United States)

    Deng, Z.; Shinohara, N.; Miki, M.; Felder, B.; Tsuzuki, K.; Watasaki, M.; Kawabe, S.; Taguchi, R.; Izumi, M.

    Vortex-type magnetizing coils are gaining more and more attention to activate bulk superconductors in pulsed-field magnetization (PFM) studies, compared with solenoid-type ones. Following existing reports, we present experimental results of the different penetration patterns of magnetic flux between the two kinds of coils. It was found that the magnetic flux will primarily penetrate inside the bulk from the upper and lower surfaces by using vortex coils, rather than from the periphery in the case of solenoid coils. Moreover, the bulk submitted to a small pulsed-field excitation exhibits a similar field profile as the excitation field (convex or concave shape); a phenomenon named field memory effect. The use of vortex- or solenoid-type coils in PFM will pose an influence on the initial flux penetration patterns during the flux trapping processes, but both coils can finally excite the best conical trapped field shape of the bulk.

  6. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  7. Magnetic imaging of antiferromagnetic and superconducting phases in R bxF e2 -yS e2 crystals

    Science.gov (United States)

    Hazi, J.; Mousavi, T.; Dudin, P.; van der Laan, G.; Maccherozzi, F.; Krzton-Maziopa, A.; Pomjakushina, E.; Conder, K.; Speller, S. C.

    2018-02-01

    High-temperature superconducting (HTS) cuprate materials, with the ability to carry large electrical currents with no resistance at easily reachable temperatures, have stimulated enormous scientific and industrial interest since their discovery in the 1980's. However, technological applications of these promising compounds have been limited by their chemical and microstructural complexity and the challenging processing strategies required for the exploitation of their extraordinary properties. The lack of theoretical understanding of the mechanism for superconductivity in these HTS materials has also hindered the search for new superconducting systems with enhanced performance. The unexpected discovery in 2008 of HTS iron-based compounds has provided an entirely new family of materials for studying the crucial interplay between superconductivity and magnetism in unconventional superconductors. Alkali-metal-doped iron selenide (AxF e2 -yS e2 , A =alkali metal ) compounds are of particular interest owing to the coexistence of superconductivity at relatively high temperatures with antiferromagnetism. Intrinsic phase separation on the mesoscopic scale is also known to occur in what were intended to be single crystals of these compounds, making it difficult to interpret bulk property measurements. Here, we use a combination of two advanced microscopy techniques to provide direct evidence of the magnetic properties of the individual phases. First, x-ray linear dichroism studies in a photoelectron emission microscope, and supporting multiplet calculations, indicate that the matrix (majority) phase is antiferromagnetic whereas the minority phase is nonmagnetic at room temperature. Second, cryogenic magnetic force microscopy demonstrates unambiguously that superconductivity occurs only in the minority phase. The correlation of these findings with previous microstructural studies and bulk measurements paves the way for understanding the intriguing electronic and magnetic

  8. Soft magnetic properties of bulk amorphous Co-based samples

    International Nuclear Information System (INIS)

    Fuezer, J.; Bednarcik, J.; Kollar, P.

    2006-01-01

    Ball milling of melt-spun ribbons and subsequent compaction of the resulting powders in the supercooled liquid region were used to prepare disc shaped bulk amorphous Co-based samples. The several bulk samples have been prepared by hot compaction with subsequent heat treatment (500 deg C - 575 deg C). The influence of the consolidation temperature and follow-up heat treatment on the magnetic properties of bulk samples was investigated. The final heat treatment leads to decrease of the coercivity to the value between the 7.5 to 9 A/m (Authors)

  9. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2007-09-15

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.

  10. Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields

    International Nuclear Information System (INIS)

    Vanderbemden, P; Hong, Z; Coombs, T A; Ausloos, M; Babu, N Hari; Cardwell, D A; Campbell, A M

    2007-01-01

    Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample

  11. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  12. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  13. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  14. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  15. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  16. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-01-01

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN 2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications

  17. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  18. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  19. Comparative study of magnetic ordering in bulk and nanoparticles of Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3}: Magnetization and electron magnetic resonance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Goveas, Lora Rita, E-mail: loragoveas@gmail.com [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); St. Joseph' s College of Arts and Science, Bangalore 560027 (India); Anuradha, K. N. [Department of Physics, Dr. Ambedkar Institute of Technology, Bangalore 560056 (India); Bhagyashree, K. S.; Bhat, S. V. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-05-07

    To explore the effect of size reduction to nanoscale on the hole doped Sm{sub 0.65}Ca{sub 0.35}MnO{sub 3} compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  20. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  1. Metal-as-insulation variant of no-insulation HTS winding technique: pancake tests under high background magnetic field and high current at 4.2 K

    Science.gov (United States)

    Lécrevisse, T.; Badel, A.; Benkel, T.; Chaud, X.; Fazilleau, P.; Tixador, P.

    2018-05-01

    In the framework of a project aiming at fabricating a 10 T high temperature superconducting (HTS) insert to operate in a 20 T background field, we are investigating the behavior of pancakes consisting of a REBCO HTS tape co-wound with a stainless steel tape (metal-as-insulation (MI) coil). The MI winding is inducing a significant turn-to-turn electrical resistance which helps to reduce the charging time delay. Despite this resistance, the self-protection feature of no-insulation coils is still enabled, thanks to the voltage limit of the power supply. We have built a single pancake coil representative of the pancake that will be used in the insert and performed tests under very high background magnetic field. Our coil experienced over 100 heater induced quenches without a measureable increase of its internal resistance. We have gathered stability and quench behavior data for magnetic fields and engineering current densities (je ) in the range of 0–17 T and 0–635 A mm‑2 respectively. We also present our very first experiments on the insert/outsert interaction in the case of a resistive magnet fault. We show that if self-protection of the MI winding is really effective in the case of a MI coil quench, a major issue comes from the outsert fault which induces a huge current inside the MI coil.

  2. Surface-spin magnetism of antiferromagnetic NiO in nanoparticle and bulk morphology

    International Nuclear Information System (INIS)

    Jagodic, M; Jaglicic, Z; Jelen, A; Dolinsek, J; Lee, Jin Bae; Kim, Hae Jin; Kim, Young-Min

    2009-01-01

    The surface-spin magnetism of the antiferromagnetic (AFM) material NiO in nanoparticle and bulk morphology was investigated by magnetic measurements (temperature-dependent zero-field-cooled (zfc) and field-cooled (fc) dc susceptibility, ac susceptibility and zfc and fc hysteresis loops). We addressed the question of whether the multisublattice ordering of the uncompensated surface spins and the exchange bias (EB) effect are only present in the nanoparticles, originating from their high surface-to-volume ratio or if these surface phenomena are generally present in the AFM materials regardless of their bulky or nanoparticle morphology, but the effect is just too small to be detected experimentally in the bulk due to a very small surface magnetization. Performing experiments on the NiO nanoparticles of different sizes and bulk NiO grains, we show that coercivity enhancement and hysteresis loop shift in the fc experiments, considered to be the key experimental manifestations of multisublattice ordering and the EB effect, are true nanoscale phenomena only present in the nanoparticles and absent in the bulk.

  3. Ferrofluid magnetization in the bulk and in the vicinity of an interface to Si

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, A.; Axelrod, L.; Gordeev, G.; Major, J.; Zabenkin, V.; Toperverg, B.P

    2003-07-01

    The process of ferrofluid (FF) magnetization in low magnetic field is investigated by polarized neutrons in the bulk of the sample and in the vicinity of its bottom interface with an Si wafer. The bulk magnetization is determined in experiments on the Larmor precession of the polarization vector of neutrons passing through the FF sample. The magnetization of the bottom layer is obtained with polarized neutron reflectometry. An appreciable difference between those two cases is shown.

  4. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Science.gov (United States)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  5. Bi-2223 HTS winding in toroidal configuration for SMES coil

    International Nuclear Information System (INIS)

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  6. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  7. A study on electromagnetic and mechanical characteristics of the field coil in HTS motor

    International Nuclear Information System (INIS)

    Kim, S.B.; Kadota, T.; Joo, J.H.; Sano, H.; Murase, S.; Lee, S.H.; Hong, J.P.; Kim, H.M.; Kwon, Y.K.; Jo, Y.S.

    2010-01-01

    High temperature superconducting (HTS) motors electromagnetically consist of a rotator wound with HTS wires and an armature with conventional copper wires like Litz wire. The HTS rotor windings, as field coils, consist of a straight part and an end-ring part. Because a major rotation torque is induced by an interaction between magnetic fields and current-carrying conductors in the straight part, most of mechanical stresses in the motor occur at the straight part. An end-ring is placed in the edge of the straight part and used to connect to each adjacent straight-part coils. The magnetic fields by coil currents concentrate on the end-ring part, therefore, it is expected that the critical current of the entire coil, straight and end-ring, can be determined by the magnitude of the field in the end-ring. This paper deals with the overall J c degradation in the end-ring part by self-field generated from the coil. In addition to electromagnetic analyses, we have performed a numerical analysis in order to evaluate mechanical stresses in the straight part of field coil by armature reaction on steady-state operation. The analytical results will be presented in this paper.

  8. Influence of the inductor shape, and the magnetization processes on a trapped magnetic flux in a superconducting bulk

    Energy Technology Data Exchange (ETDEWEB)

    Gony, B., E-mail: bashar.gony@univ-lorraine.fr; Linares, R.; Lin, Q.; Berger, K.; Douine, B.; Leveque, J.

    2014-08-15

    Highlights: • We tested two inductors: vortex coil and system of three coils. • The system of three coils is better than the vortex coil. • We presented and compared two processes of PFM method. • Similar results were found for the two processes. - Abstract: In this paper, we study the form of the inductor for producing a magnetic field in a superconductor bulk by using a method of PFM (Pulsed Field Magnetization). We tested two inductors: vortex coil and system of three coils, where we found the best results with the system of three coils. After that, we presented two processes for trapping a magnetic field in the bulk: direct magnetization and successive magnetization where we found similar results.

  9. Materials processing, pulsed field magnetization and field-pole application to propulsion motors on Gd123 bulk superconductors

    International Nuclear Information System (INIS)

    Izumi, M; Xu, C; Xu, Y; Morita, E; Kimura, Y; Hu, A; Ichihara, M; Murakami, M; Sakai, N; Hirabayashi, I; Sugimoto, H; Miki, M

    2008-01-01

    Gd123 bulk superconductor is one of the promising magnet materials. We studied the materials processing to grow high performance magnet with a doping of nano-sized metal oxides such as ZrO 2 as a candidature of pinning centre. The enhancement of the critical current density was obtained. Growth of nano-sized particles of Gd211 in addition to BaZrO 3 were observed by TEM. The formation of nano-sized particles appears a key to improve the integrated flux trapped inside the bulks and the TEM reveals an intriguing effect of the addition to the microstructure of bulk materials. Magnetization process is crucial especially for an extended machinery. Pulsed field magnetization was applied to the field-pole bulk on the rotor disk of the tested synchronous motor. The trapped flux density of 1.3 T for Gd123 bulk sample and of 60 mm diameter was reached in the limited dimension of the tested motor by a step cooling method down to 38 K with a closed-cycle condensed neon. The pulsed magnetic field was applied with a new type of split-armature coil. A large bulk of 140 mm diameter has also shown a potential flux trapping superior to other smaller specimens. The bulk magnet provides a strong magnetic field around the bulk body itself with high current density relative to a coil winding. A comparative drawing of a 'torque density' of a variety of motors which is defined as the torque divided by the volume of the motor indicates a potential advantage of bulk motor as a super permanent magnet motor

  10. Surface flux density distribution characteristics of bulk high-Tc superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Torii, S.; Yuasa, K.

    2004-01-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents

  11. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    Science.gov (United States)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  12. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  13. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    International Nuclear Information System (INIS)

    Araki, S.; Nagashima, K.; Seino, H.; Murakami, T.; Sawa, K.

    2009-01-01

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  14. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  15. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  16. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  17. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.com [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-09-15

    Four different performance multi-seeded YBCO bulks as representatives. A coupling ratio to reflect the coupling quality of GBs inside multi-seeded bulks. An averaged trapped magnetic flux density parameter was introduced. The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  18. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    Science.gov (United States)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  19. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2017-12-01

    Full Text Available Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM above a cylindrical high temperature superconductor (HTS moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC, however, the lateral stiffness in field cooling (FC and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  20. Magnetron sputtering of Fe-oxides on the top of HTS YBCO films

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Buchkov, K. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Gajda, G. [Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 10, 1113 Sofia (Bulgaria); Slavov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Starbova, I.; Starbov, N. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Nankovski, M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Sofia university “St. Kliment Ohridski”, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-01

    The possibilities for preparation of bilayers containing magnetic Fe-oxide (Fe-O) and high temperature superconducting (HTS) YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin films were investigated. For this purpose, Fe-O films were deposited using reactive magnetron sputtering at comparatively low temperatures T≤250 °C onto dielectric (for example, LaAlO{sub 3} (LAO)) substrates, covered with a HTS YBCO film. The sputtering of the Fe-O layer at such conditions did not lead to a crucial damage of the critical temperature T{sub C} of the YBCO film, but could affect the width of the superconducting transition. A decrease of the critical temperature of the (Fe-O)/YBCO/LAO bilayer kept at ambient conditions was observed, possibly due to the negative effects of the water vapour on the sample characteristics. The double peak structure of the imaginary component of the response signal to the AC harmonic magnetic field, observed in such a (Fe-O)/YBCO/LAO sample, was ascribed from two possible views: as a consequence of morphology determined inter- and intra-granular contributions and/or as transitions from dominant irreversible processes as Bean-Livingston barrier to vortex state chains formation. - Highlights: • Iron-oxide (Fe-O) film sputtered on the top of superconducting HTS YBCO film at not very high temperatures. • No crucially damaged superconducting properties of YBCO film during Fe-O sputtering process. • A negative effect of the ambient conditions on the critical temperature of the obtained samples. • A double peak structure of the response signal to the AC harmonic magnetic field in a (Fe-O)/YBCO/LAO is observed.

  1. Magnetron sputtering of Fe-oxides on the top of HTS YBCO films

    International Nuclear Information System (INIS)

    Nurgaliev, T.; Blagoev, B.; Buchkov, K.; Mateev, E.; Gajda, G.; Nedkov, I.; Kovacheva, D.; Slavov, L.; Starbova, I.; Starbov, N.; Nankovski, M.

    2017-01-01

    The possibilities for preparation of bilayers containing magnetic Fe-oxide (Fe-O) and high temperature superconducting (HTS) YBa 2 Cu 3 O 7−x (YBCO) thin films were investigated. For this purpose, Fe-O films were deposited using reactive magnetron sputtering at comparatively low temperatures T≤250 °C onto dielectric (for example, LaAlO 3 (LAO)) substrates, covered with a HTS YBCO film. The sputtering of the Fe-O layer at such conditions did not lead to a crucial damage of the critical temperature T C of the YBCO film, but could affect the width of the superconducting transition. A decrease of the critical temperature of the (Fe-O)/YBCO/LAO bilayer kept at ambient conditions was observed, possibly due to the negative effects of the water vapour on the sample characteristics. The double peak structure of the imaginary component of the response signal to the AC harmonic magnetic field, observed in such a (Fe-O)/YBCO/LAO sample, was ascribed from two possible views: as a consequence of morphology determined inter- and intra-granular contributions and/or as transitions from dominant irreversible processes as Bean-Livingston barrier to vortex state chains formation. - Highlights: • Iron-oxide (Fe-O) film sputtered on the top of superconducting HTS YBCO film at not very high temperatures. • No crucially damaged superconducting properties of YBCO film during Fe-O sputtering process. • A negative effect of the ambient conditions on the critical temperature of the obtained samples. • A double peak structure of the response signal to the AC harmonic magnetic field in a (Fe-O)/YBCO/LAO is observed.

  2. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    Science.gov (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  3. Effects on Jc of Pinning Center Morphology for Multiple-in-Line-Damage in Coated Conductor and Bulk, Melt-Textured HTS

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, R. [University of Houston, Houston; Parks, D. [University of Houston, Houston; Sawh, R.-P. [University of Houston, Houston; Mayes, B. [University of Houston, Houston; Gandini, A. [University of Houston, Houston; Goyal, Amit [ORNL; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2009-01-01

    The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase J{sub c} (pinning potential and entanglement), and negative properties which decrease J{sub c} (e.g., decreased T{sub c} and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in J{sub c} resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, J{sub c} increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U{sup 238} ions, successfully describe damage to 2.1 {micro}m thick coated conductor by 1 GeV Ru{sup 44} ions. Coated conductor at 77 K and self-field is generally known to have J{sub c} about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in J{sub c} is reduced to a factor of 1.3-2. Whereas J{sub c} for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, J{sub c} in coated conductor increased by a smaller factor of 2.5-3.0. Nevertheless, 2.1 {micro}m thick coated conductor, with near-optimum MILD PCs, exhibits J{sub c} = 543 kA/cm{sup 2} at 77 K and applied field of 1.0 T, and I{sub c} = 114 A/cm-width of conductor. This is the highest value we find in the literature. The

  4. EUCARD magnet development

    OpenAIRE

    de Rijk, Gijs

    2011-01-01

    The FP7-EuCARD work package 7 (WP7), "HFM: Superconducting High Field Magnets for higher luminosities and energies" is a collaboration between 12 European institutes and firms with the objective of developing high field magnet technology. WP7 foresees to construct a 13 T dipole with a 100 mm aperture, a B = 6 T high temperature superconductor (HTS) dipole insert, a superconducting HTS link and a superconducting helical undulator.

  5. Mechanical Effects of the Non-Uniform Current Distribution on HTS Coils for Accelerators Wound with REBCO Roebel Cable

    CERN Document Server

    Murtomaeki, Jaako; Kirby, Glen; Rossi, Lucio; Ruuskanen, Janne; Stenvall, Antti; Murtomaeki, Jaako

    2017-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 WP10 Future Magnets collaboration is aiming at testing HTS-based Roebel cables in an accelerator magnet. The demonstrator should produce around 17 T, when inserted into the 100 mm aperture of Feather-M2 13 T outsert magnet. HTS Roebel cables are assembled from meander shaped REBCO coated conductor tapes. In comparison with fair level of uniformity of current distribution in cables made out of round Nb-Ti or Nb$_{3}$Sn strands, current distribution within the coils wound from Roebel cables is highly non-homogeneous. It results in nonuniform electromagnetic force distribution over the cable that could damage the very thin REBCO superconducting layer. This paper focuses on the numerical models to describe the effect of the non-homogenous current distribution on stress distribution in the demonstrator magnet designed for the EuCARD-2 project. Preliminary results indicate that the impregnation bonding betweenthe...

  6. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  7. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  8. Dynamic response of HTS composite tapes to pulsed currents

    International Nuclear Information System (INIS)

    Meerovich, V; Sokolovsky, V; Prigozhin, L; Rozman, D

    2006-01-01

    Dynamic voltage-current characteristics of an HTS Ag/BiSCCO composite tape are studied both experimentally and theoretically. The tape is subjected to pulsed currents with different shapes and magnitudes and voltage traces are measured using the four-point method with different locations of potential taps on the sample surface. Clockwise and anticlockwise hysteresis loops are obtained for the same sample depending on the location of the potential taps. The dynamic characteristics deviate substantially from the DC characteristic, especially in the range of low voltages where a criterion for the critical current value is usually chosen (1-10 μV cm -1 ). The critical current determined from dynamic characteristics and its change with the pulse magnitude depend on the location of the potential taps and on the curve branch chosen for the critical current determination (ascending or descending). The theoretical analysis is based on a model of the magnetic flux diffusion into a composite tape for a superconductor described by the flux creep characteristic. Numerical simulation based on this model gives results in good agreement with the experimental ones and explains the observed peculiarities of the dynamic characteristics of HTS composite tapes. The difference between the magnetic diffusion into a tape and a slab is discussed

  9. Design prospect of remountable high-temperature superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  10. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  11. US effort on HTS power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S., E-mail: shirish.pmehta@spx.com [Waukesha Electric Systems, 400 S. Praire Avenue, Waukesha, WI 53186 (United States)

    2011-11-15

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  12. US effort on HTS power transformers

    International Nuclear Information System (INIS)

    Mehta, S.

    2011-01-01

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  13. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  14. Study of the thermo-electronic stability of LTS conductors and contribution to the study of the thermo-electric stability of HTS conductors. Novel techniques to simulate quench precursors in superconducting electro-magnets

    International Nuclear Information System (INIS)

    Trillaud, F.

    2005-09-01

    Most of this work deals with the development of new heater technology to simulate quench precursors in super-conducting electro-magnets. The carbon paste point heater and 2 alternative technologies have been used: induction coils and the diode laser. 2 main experimental setups with 2 different heaters have been used to study the stability of Cu/NbTi composite wires. The order of magnitude of the results obtained with the charged point heater and the diode laser is consistent. Our work covered both low critical temperature (LTS) conductors and high critical temperature (HTS) conductors. A large body of data has been gathered on quench energies and normal zone propagation velocities (NZPV). Concerning quench energy: LTS conductors appear largely more sensitive to heat disturbances than HTS conductors. NZPV enables one to define the criteria for which a magnet can be considered as self-protected. It is commonly assumed that, below 1 m/s, active protection is necessary to ensure safe quenches. This is the case for HTS conductors whose NZPV is of the order of a few centimeters per seconds, at most. However, the NZPVs of LTS conductors are above a few meters per seconds. While HTS conductors can suffer from local hot spots which diffuse slowly resulting in damaging overheating, LTS conductors spread the normal zone quickly enough owing to their good thermal conductivity to minimize local overheating. In addition, this gives enough time to dump the energy of the magnet. This work clears a new path to carry out accurate and reproducible experiment on superconductors. It demonstrates the powerfulness of diode laser technology for stability studies. Numerical simulations of the thermal behaviour of a Cu/NbTi multi-filament composite wire have been performed, they are based on a simplified transient liquid helium heat exchange model. This model appears to be not accurate enough to simulate the early time evolution of the voltage between the current sharing temperature and the

  15. A Simplified Model to Calculate AC Losses in Large 2G HTS Coils

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    . The model presented uses H formulation which directly solves magnetic fields, and the general partial differential equations (PDEs) module in Comsol Multiphysics is used to implement the model. Afterwards, the model is used to simulate the excitation stage of a racetrack HTS coil with 350 tapes. The AC...

  16. Fe-based bulk metallic glasses used for magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Va; Codrean, C; UTu, D [Politehnica University of Timisoara, Depart for Materials Science and Welding, 1, M. Viteazu Bvd., 300222, Timisoara (Romania); ErcuTa, A, E-mail: serban@mec.upt.r [West University of Timisoara, Faculty of Physics, 4, Vasile Parvan Bdv., Timisoara 300223 (Romania)

    2009-01-01

    The casting in complex shapes (tubular) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small addition of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  17. Development of high temperature superconductors for magnetic field applications

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1991-01-01

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbations to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development

  18. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  19. No-insulation multi-width winding technique for high temperature superconducting magnet.

    Science.gov (United States)

    Hahn, Seungyong; Kim, Youngjae; Keun Park, Dong; Kim, Kwangmin; Voccio, John P; Bascuñán, Juan; Iwasa, Yukikazu

    2013-10-21

    We present a No-Insulation ( NI ) Multi-Width ( MW ) winding technique for an HTS (high temperature superconductor) magnet consisting of double-pancake (DP) coils. The NI enables an HTS magnet self-protecting and the MW minimizes the detrimental anisotropy in current-carrying capacity of HTS tape by assigning tapes of multiple widths to DP coils within a stack, widest tape to the top and bottom sections and the narrowest in the midplane section. This paper presents fabrication and test results of an NI-MW HTS magnet and demonstrates the unique features of the NI-MW technique: self-protecting and enhanced field performance, unattainable with the conventional technique.

  20. Magnetic torque transferring study for bulk High-Tc superconductors and permanent magnets

    International Nuclear Information System (INIS)

    Wongsatanawarid, A; Suzuki, A; Seki, H; Murakami, M

    2009-01-01

    The torque transferring mechanism taking place in a superconducting mixer design has been studied. Several coupling magnetic arrangements were investigated for more details in the engineering design. A bulk superconductor sample was used to study the torque forces for various cooling gaps, and the twist angle dependence was also monitored for the rotational stiffness in stability. The experimental data with four permanent magnet configurations have been studied in the present work. The maximum torque forces are summarized for usage of engineering design with various gaps. The torque/gap characteristics for four configurations were also measured for the optimisation of the torque at a designed operating gap.

  1. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  2. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  3. Surface flux density distribution characteristics of bulk high-T{sub c} superconductor in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S.; Yuasa, K

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  4. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Dias, D H N; Sotelo, G G; Moysés, L A; Telles, L G T; Bernstein, P; Aburas, M; Noudem, J G; Kenfaui, D; Chaud, X

    2015-01-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa 2 Cu 3 O x (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors. (paper)

  5. High temperature superconductive flux gate magnetometer

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal

  6. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    International Nuclear Information System (INIS)

    Patel, A; Hopkins, S C; Baskys, A; Glowacki, B A; Kalitka, V; Molodyk, A

    2015-01-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications. (paper)

  7. Trapped magnetic field in a (NdFeB)–(MgB2) pair-type bulk magnet

    International Nuclear Information System (INIS)

    Aldica, Gheorghe; Burdusel, Mihail; Badica, Petre

    2014-01-01

    Highlights: • Dense MgB 2 discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB 2 pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB 2 . • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB 2 (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B tr , with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB 2 samples. The B tr of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  8. Using permanent magnets to boost the dipole field for the High-Energy LHC

    CERN Document Server

    Zimmermann, Frank

    2012-01-01

    The High-Energy LHC (HE-LHC) will be a new accelerator in the LHC tunnel based on novel dipole magnets, with a field up to 20 T, which are proposed to be realized by a hybrid-coil design, comprising blocks made from Nb- Ti, Nb$_{3}$Sn and HTS, respectively. Without the HTS the field would be only 15 T. In this note we propose and study the possibility of replacing the inner HTS layer by (weaker) permanent magnets that might contribute a field of 1-2 T, so that the final field would reach 16-17 T. Advantages would be the lower price of permanent magnets compared with HTS magnets and their availability in principle.

  9. Archives: HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    Items 1 - 50 of 120 ... Archives: HTS Teologiese Studies / Theological Studies. Journal Home > Archives: HTS Teologiese Studies / Theological Studies. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search ...

  10. Issues relating to airborne applications of HTS SQUIDs

    International Nuclear Information System (INIS)

    Foley, C P; Leslie, K E; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; Macfarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods

  11. Issues relating to airborne applications of HTS SQUIDs

    CERN Document Server

    Foley, C P; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; MacFarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods.

  12. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    Science.gov (United States)

    Li, Shanghua; Qin, Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun; Kim, Do Kyung

    2009-05-01

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  13. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites

    International Nuclear Information System (INIS)

    Li Shanghua; Qin Jian; Fornara, Andrea; Toprak, Muhammet; Muhammed, Mamoun; Kim, Do Kyung

    2009-01-01

    PMMA/Fe-oxide nanocomposites are fabricated by a chemical method. Monodispersed Fe-oxide nanoparticles are well dispersed in the PMMA matrix by in situ polymerization, resulting in a bulk transparent polymeric nanocomposite. The magnetic behavior of the PMMA/Fe-oxide nanocomposites is investigated. The transparent PMMA/Fe-oxide nanocomposite has potentially interesting magneto-optic applications without compromising the advantages of a lightweight, noncorrosive polymeric material with very high transparency even for bulk samples.

  14. Use of high-temperature superconducting films in superconducting bearings

    International Nuclear Information System (INIS)

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  15. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  16. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M.

    2011-09-01

    The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  17. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  18. Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y., E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Hayashi, K.; Shinyama, Y.; Kobayashi, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Adachi, S.; Tanabe, K. [International Superconductivity Technology Center/Superconductivity Research Laboratory, 10-13, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2011-11-15

    We investigated behavior of HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in ac and dc magnetic fields. In the both fields, the gradiometers show higher durability against entry of flux vortices than SQUIDs with bicrystal JJs. A robot-based SQUID NDE system utilizing the gradiometer was developed in an unshielded environment. Detectability of the system to detect non-through cracks in double-layer structures was demonstrated. A new excitation coil was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer. In this paper, we investigated detailed behavior of novel HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in both an ac magnetic field and a dc magnetic field. In the both fields, the novel gradiometers shows the superior performance to the conventional YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) HTS-dc-SQUID gradiometer and a bare HTS-dc-SQUID ring with bicrystal JJs concerning durability against entry and hopping of flux vortices, probably due to their differential pickup coils without a grain boundary and multilayer structure of the ramp-edge JJs. A robot-based compact HTS-SQUID NDE system utilizing the novel gradiometer was reviewed, and detectability of the system to detect non-through cracks in a carbon fiber reinforced plastic (CFRP)/Al double-layer structure was demonstrated. A new excitation coil in which the supplied currents flowed in the orthogonal directions was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer.

  19. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  20. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  1. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  2. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor.

    Science.gov (United States)

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-04-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.

  3. Investigation of DC current injection effect on the microwave characteristics of HTS YBCO microstrip resonators

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T., E-mail: timur@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B.; Mateev, E.; Neshkov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Strbik, V. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Uspenskaya, L. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow (Russian Federation); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Chromik, Š. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia)

    2014-03-15

    Highlights: • Current (spin) injection effect in LSMO/YBCO was studied by impedance measurements. • Complex impedance of YBCO increases at current injection from LSMO to YBCO at 77 K. • This increase is due to an increase of the quasiparticle conductivity of YBCO. • Injection does not significantly affect the relaxation time of the quasiparticles. - Abstract: The DC current injection effect from a ferromagnetic (FM) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) to a high temperature superconducting (HTS) Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film was investigated by the microwave surface impedance measurements in a FM/HTS structure, formed as a microstrip resonator for improving the sensitivity of the experiments. The quality factor and the resonance frequency of this structure were found to strongly depend on the current strength, injected from the LSMO electrode into the HTS microstrip electrode. The magnetic penetration depth and the quasiparticle conductivity of the HTS component were determined to increase under DC current injection process, which in all probability stimulated breaking of Cooper pairs and led to a decrease of the superfluid concentration and an increase of the normal fluid concentration without significantly affecting the relaxation time of the quasiparticles.

  4. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    Science.gov (United States)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  5. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  6. Trapped magnetic field in a (NdFeB)–(MgB{sub 2}) pair-type bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Aldica, Gheorghe [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Burdusel, Mihail [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania); Faculty of Materials Science and Engineering, ‘‘Politehnica’’ University of Bucharest, Splaiul Independentei 316, 060042 Bucharest (Romania); Badica, Petre, E-mail: badica2003@yahoo.com [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele, Ilfov (Romania)

    2014-10-15

    Highlights: • Dense MgB{sub 2} discs were obtained by ex-situ Spark Plasma Sintering. • A NdFeB–MgB{sub 2} pair-type bulk magnet was tested for different working conditions. • The polarity of the NdFeB permanent magnet influences macro flux jumps of MgB{sub 2}. • Trapped field of the pair was 2.45 T (20 K) and 3.3 T (12 K). - Abstract: Superconducting bulk discs, S, of 20 mm in diameter and 3.5 or 3.3 mm thickness of MgB{sub 2} (pristine or added with cubic BN, respectively) with density above 97% were prepared by Spark Plasma Sintering. Discs were combined in a pair-type sandwich-like arrangement with a permanent NdFeB axially magnetised magnet, PM (∼0.5 T). Measurement of the trapped field, B{sub tr}, with temperature, time, and the reduction rate of the applied magnetic field was performed using a Hall sensor positioned at the centre between the superconductor and the permanent magnet. It is shown that the permanent magnet with certain polarity favors higher trapped field of the superconductor owing to suppression of flux jumps specific for high density MgB{sub 2} samples. The B{sub tr} of the PM–S pair was 2.45 T (20 K) and 3.3 T (12 K)

  7. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  8. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  9. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  10. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  11. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  12. A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Jing, H.; Wang, J.; Wang, S.; Wang, L.; Liu, L.; Zheng, J.; Deng, Z.; Ma, G.; Zhang, Y.; Li, J.

    2007-01-01

    In order to improve the levitation performance of the high temperature superconducting (HTS) magnetic levitation (Maglev) vehicle, a two-pole Halbach array's permanent magnet guideway (PMG) is proposed, which is called as Halbach PMG. The finite element method (FEM) calculations indicate that Halbach PMG has a wider high-field region than the present PMG of equal PM's transverse section. The levitation force of bulk HTSCs with the present PMG and Halbach PMG are measured. The results show that at different levitation gaps, the force ratios based on the Halbach PMG are about 2.3 times larger than that on the present PMG, which greatly increases the load capability of the system. Therefore, both the numerical analysis and experimental results have confirmed that the Halbach PMG will further enhance the performance of the vehicle and it is possible to decrease the total numbers of onboard HTSCs, reducing overall costs. So based on the Halbach PMG, we further study the width ratios between HTSCs and PMG for making the better use of the onboard HTSCs. Some preliminary results are given. These results are important for further HTS Maglev vehicle system designs using Halbach PMG

  13. Magnetic resonance study of bulk and thin film EuTiO3

    International Nuclear Information System (INIS)

    Laguta, V V; Kamba, S; Maryško, M; Andrzejewski, B; Kachlík, M; Maca, K; Lee, J H; Schlom, D G

    2017-01-01

    Magnetic resonance spectra of EuTiO 3 in both bulk and thin film form were taken at temperatures from 3–350 K and microwave frequencies from 9.2–9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole and exchange interactions between Eu 2+ spins. In the film, a large contribution arises from the demagnetization field. From detailed analysis of the linewidth and its temperature dependence, the parameters of spin–spin interactions were determined: the exchange frequency is 10.5 GHz and the estimated critical exponent of the spin correlation length is  ≈0.4. In the bulk samples, the spectra exhibited a distinct minimum in the linewidth at the Néel temperature, T N   ≈  5.5 K, while the resonance field practically does not change even on cooling below T N . This is indicative of a small magnetic anisotropy ∼320 G in the antiferromagnetic phase. In the film, the magnetic resonance spectrum is split below T N into several components due to excitation of the magnetostatic modes, corresponding to a non-uniform precession of magnetization. Moreover, the film was observed to degrade over two years. This was manifested by an increase of defects and a change in the domain structure. The saturated magnetization in the film, estimated from the magnetic resonance spectrum, was about 900 emu cm −3 or 5.5 µ B /unit cell at T   =  3.5 K. (paper)

  14. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    International Nuclear Information System (INIS)

    Green, Michael A.

    2000-01-01

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given

  15. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  16. Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).

  17. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  18. Drug accumulation by means of noninvasive magnetic drug delivery system

    International Nuclear Information System (INIS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-01-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  19. Prospects for the use of high-Tc superconductors in fusion magnets and options for their test in SULTAN

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bruzzone, Pierluigi; March, Stephen; Marinucci, Claudio; Stepanov, Boris; Uglietti, Davide

    2013-01-01

    Highlights: ► RE-123 tapes j c ≥ 500 A/cm (77 K) would enable fusion magnets operating above 20 K. ► Quench studies indicate that the protection of RE-123 fusion magnets is a challenge. ► Possibilities to test 50 kA class HTS conductors in SULTAN have been identified. ► HTS bus bar of large thermal resistance needed to connect sample and NbTi flux pump. ► Tests in the 20–50 K range require additional changes in the SULTAN cryogenics. -- Abstract: In the last few years, the critical current densities of long commercially available REBa 2 Cu 3 O 7−x (RE-123, where RE represents Y or a rare earth element) coated conductors have reached values of 250 A/cm-width at 77 K and zero applied field. Even higher values of 600 A/cm-w (77 K, B = 0) have been demonstrated in shorter lengths. The attractive features of the use of these high-T c superconductors (HTS) are operation temperatures above 20 K and/or magnetic fields higher than those envisaged for the ITER TF coils. Possible operation conditions for HTS fusion magnets have been studied taking into consideration the possible further improvements of RE-123 coated conductors. Investigations of stability and quench behavior indicate that stability is not a problem, whereas quench detection and protection need attention. Because of the high currents necessary for fusion magnets, many tapes need to be assembled into a transposed conductor. The qualification of HTS conductors for fusion magnets would require their test at magnetic fields of 11 T and currents well above 10 kA. The possibilities to test straight HTS conductor samples in SULTAN have been considered. For a test at 4.5 K, only the development of a low resistance joint between the HTS conductor under test and the NbTi transformer of SULTAN would be necessary. Tests up to 20 K would require that the HTS sample is connected with the NbTi transformer by a conduction-cooled HTS bus bar of large thermal resistance similar to the HTS module of a current

  20. Efficient growth of HTS films with volatile elements

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  1. Possibility of a high-T{sub c} superconducting bulk magnet for maglev trains in the future; Koonchodendo baruku jishaku no jikifujoshiki tetudo heno oyo kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H. [Railway Technical Research Institute, Fundamental Research Division, Tokyo (Japan)

    1999-11-25

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77K and high magnetic fields. The materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger, J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting and mechanical properties. One of the applications is a superconducting bulk magnet for future magnetically levitated (Maglev) trains. (author)

  2. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  3. Magnetic levitation/suspension system by high-temperature superconducting materials

    International Nuclear Information System (INIS)

    Chen, I.; Hsu, J.; Jamn, G.; Lin, C.E.; Wu, M.K.

    1997-01-01

    Recently, with the advance of materials processing techniques, such as top-seeding and melt-texturing (TSMT) method, very large single-grained Y-Ba-Cu-O (YBCO) samples up to several centimeters in diameter can be produced. Each sample is capable of levitating over kilograms of weight. A HTS magnetic levitation (MagLev) transportation prototype has been constructed at National Cheng-Kung University (NCKU) to validate the concept of HTS-MagLev system based on Meissner effect. This HTS-MagLev is an inherent stable levitation system, unlike traditional MagLev system that requires sensors and feedback circuits to dynamically adjust its unstable levitation position. In this report, the results of various magnetic levitation parameters, such as different permanent magnet configurations, relative levitation stability, levitation force, etc., as well as magnetic field intensity and distribution will be discussed. copyright 1997 American Institute of Physics

  4. Fault Management of a Cold Dielectric HTS Power Transmission Cable

    International Nuclear Information System (INIS)

    Maguire, J; Allais, A; Yuan, J; Schmidt, F; Hamber, F; Welsh, Tom

    2006-01-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. As with conventional cables, HTS cables must be safe and reliable when abnormal conditions, such as local and through faults, occur in the power grid. Due to the unique characteristics of HTS power cables, the fault management of an HTS cable is different from that of a conventional cable. Issues, such as nitrogen bubble formation within lapped dielectric material, need to be addressed. This paper reviews the efforts that have been performed to study the fault conditions of a cold dielectric HTS power cable. As a result of the efforts, a fault management scheme has been developed, which provides both local and through faults system protection. Details of the fault management scheme with examples are presented

  5. Structural and magnetic studies on spark plasma sintered SmCo{sub 5}/Fe bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rama Rao, N.V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)]. E-mail: rg_gopy@yahoo.com; Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chakravarty, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Sundaresan, R. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305 0047 (Japan)

    2007-05-15

    SmCo{sub 5}+xwt% Fe (x=0, 5 and 10) nanocomposite powders were synthesized by mechanical milling and were consolidated into bulk shape by spark plasma sintering (SPS) technique. The evolution of structure and magnetic properties were systematically investigated in milled powders as well as in SPS samples. A maximum coercivity of 8.9kOe was achieved in spark plasma sintered SmCo{sub 5}+5wt% Fe sample. The exchange spring interaction between the hard and soft magnetic phases was evaluated using {delta}M-H measurements and the analysis revealed that the SPS sample containing 5wt% Fe had a stronger exchange coupling between the magnetic phases than that of the sample with10wt% Fe.

  6. Magnetism tuned by the charge states of defects in bulk C-doped SnO2 materials.

    Science.gov (United States)

    Lu, Ying-Bo; Ling, Z C; Cong, Wei-Yan; Zhang, Peng

    2015-10-21

    To analyze the controversial conclusions on the magnetism of C-doped SnO2 (SnO2:C) bulk materials between theoretical calculations and experimental observations, we propose the critical role of the charge states of defects in the geometric structures and magnetism, and carry out a series of first principle calculations. By changing the charge states, we can influence Bader charge distributions and atomic orbital occupancies in bulk SnO2:C systems, which consequently conduct magnetism. In all charged SnO2:C supercells, C-2px/py/pz electron occupancies are significantly changed by the charge self-regulation, and thus they make the C-2p orbitals spin polarized, which contribute to the dominant magnetic moment of the system. When the concentration of C dopant in the SnO2 supercell increases, the charge redistribution assigns extra electrons averagely to each dopant, and thus effectively modulates the magnetism. These findings provide an experimentally viable way for controlling the magnetism in these systems.

  7. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  8. Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging

    NARCIS (Netherlands)

    Stemkens, Bjorn; Benkert, Thomas; Chandarana, Hersh; Bittman, Mark E.; Van den Berg, Cornelis A.T.; Lagendijk, Jan J.W.; Sodickson, Daniel K.; Tijssen, Rob H.N.; Block, Kai Tobias

    2017-01-01

    Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the

  9. High coercivity in Fe-Nb-B-Dy bulk nanocrystalline magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, Grzegorz; Chrobak, Artur; Klimontko, Joanna [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007, Katowice (Poland); Chrobak, Dariusz; Rak, Jan [Institute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 41-500, Chorzow (Poland); Zivotsky, Ondrej; Hendrych, Ales [Department of Physics, VSB-TU Ostrava, Ostrava (Czech Republic)

    2016-11-15

    The paper refers to structural and magnetic properties of the (Fe{sub 80}Nb{sub 6}B{sub 14}){sub 1-x}Dy{sub x} (x = 0.08, 0.10, 0.12, 0.16) bulk nanocrystalline alloys prepared by making use of the vacuum suction casting technique. The samples are in a form of rods with different diameters d = 1.5, 1, and 0.5 mm. The phase structure was investigated by XRD technique and reveals an occurrence of magnetically hard Dy{sub 2}Fe{sub 14}B as well as other relatively soft Dy-Fe, Fe-B, and Fe phases dependently on the Dy content. The alloys show hard magnetic properties with high coercive field up to 5.5 T (for x = 0.12 and d = 0.5 mm). The observed magnetic hardening effect with the increase of cooling rate (decrease of sample diameter d) can be attributed to a formation of ultra-hard magnetic objects as well as increasing role of low dimensional microstructure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Current leads cooling for the series-connected hybrid magnets

    Science.gov (United States)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  11. Progress in melt-texturing of YBCO superconductors

    International Nuclear Information System (INIS)

    Salama, K.; Lee, D.F.; Selvamanickam, V.

    1993-01-01

    Since the discovery of high temperature superconductors (HTS), tremendous efforts have been expanded toward the improvement of these materials. Due to the weak-link problem associated with grain boundaries, sintered bulk HTS possess a transport critical current density (J c ) on the order of 10 2 -10 3 A/cm 2 at 77 K. While these sintered superconductors may be utilized in low current applications, novel processing methods have to be developed to obtain HTS that can sustain high currents. Melt-texturing of HTS was found to result in a high degree of grain orientation, and is presently the most prominent processing method used to manufacture bulk YBa 2 Cu 3 O x (123) with superior transport and magnetic properties. In this review paper, various melt-texturing methods will be discussed, and the variation in J c with processing will be presented. (orig.)

  12. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  13. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  14. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  15. Modeling and Dynamics of HTS Motors for Aircraft Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Ranjan Vepa

    2018-02-01

    Full Text Available In this paper, the methodology of how a dynamic model of a conventional permanent magnet synchronous motor (PMSM may be modified to model the dynamics of a high-temperature superconductor (HTS machine is illustrated. Simulations of a typical PMSM operating under room temperature conditions and also at temperatures when the stator windings are superconducting are compared. Given a matching set of values for the stator resistance at superconducting temperature and flux-trapped rotor field, it is shown that the performance of the HTS PMSM is quite comparable to a PMSM under normal room temperature operating conditions, provided the parameters of the motor are appropriately related to each other. From these simulations, a number of strategies for operating the motor so as to get the propeller to deliver thrust with maximum propulsive efficiency are discussed. It is concluded that the motor–propeller system must be operated so as to deliver thrust at the maximum propulsive efficiency point. This, in turn, necessitates continuous tracking of the maximum propulsive efficiency point and consequently it is essential that the controller requires a maximum propulsive efficiency point tracking (MPEPT outer loop.

  16. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  17. Tevatron HTS power lead test

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2004-01-01

    Two pairs of ASC 6 kA power leads developed for the Tevatron were successfully tested at Fermilab at over-current conditions. Stable operation was achieved while operating at a current of 9.56 kA for five hours and while continuously ramping between 0-9.56 kA at a ramp rate of 200 A/s for one hour. The minimum required liquid nitrogen flow rate was measured to be 1.5 g/s at 10 kA. After ramping up to 10 kA at 200A/s, it took only 15 minutes to stabilize the upper copper section of the lead with a flow of 1.8 g/s of liquid nitrogen vapor. Testing under extreme operating conditions--270-370 kPa liquid nitrogen vapor pressure and over 0.1 T external magnetic field--demonstrated that the HTS part of the lead can safely operate in the current sharing mode and that this design has large operating margin

  18. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  19. Magnet coils made from high-temperature superconductor

    International Nuclear Information System (INIS)

    Jenkins, R.G.; Yang, M.; Grovenor, C.R.M.; Goringe, M.J.

    1996-01-01

    We review the progress we have made in constructing HTS coils and report our latest results. Also we describe the cryogen-free operation of one of our HTS coils cooled to 55 K using a Stirling cycle cryocooler. Lastly, we describe how 4 Oxford coils are being used in a project to investigate the controllability of HTS magnets in applications such as ''maglev'' suspension systems. We briefly report the initial findings of this work and describe developments in progress. (orig.)

  20. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  1. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  2. Characterisation and Control of a Prototype HTS SMES Device

    International Nuclear Information System (INIS)

    Hawley, C J; Cuiuri, D; Cook, C D; Gower, S A; Beales, T P

    2006-01-01

    A 2.79 kJ prototype high transition temperature Superconducting Magnetic Energy Storage (SMES) device has been constructed. The coil for the prototype has been wound using High Temperature Superconducting (HTS) BSCCO-2223 tape. The refrigeration system is a gaseous helium cold head cryocooler used to maintain the SMES coil at a temperature of 30 K, improving the I c characteristic of the coil by a factor of 4.7 compared to that at 77 K. The SMES device is capable of supplying a 3-phase load during power interruptions, and has been constructed during a program to develop a larger 20 kJ system aimed at industrial applications

  3. DC magnetization of random Y1Ba2Cu3O8-δ/Ag bulk composites

    International Nuclear Information System (INIS)

    Ash, C.L.; Harris, D.C.; Calabrese, J.J.; Garland, J.C.

    1994-01-01

    It is commonly believed that high-field magnetization measurements of superconducting/normal metal bulk composites probe only the intragranular nature of the superconducting constituent. According to this view, the measured magnetic moment divided by the volume of superconducting material should be independent of the volume fraction of superconductor. We have tested this hypothesis by measuring the dc magnetization at 10K in magnetic fields to 5T of a series of YBCO/Ag bulk composites with 0 ≤ p ≤ 1.0, where p is the volume fraction of superconductor. We find that the magnetization hysteresis curves for p ≥ 0.70 are nearly identical, while those for the p < 0.70 samples fall inside the p ≥ 0.70 curves. Two possible interpretations are (i) that variations in Ag content alters the superconducting properties of individual YBCO grains, and (ii) that the p-dependent variations in the YBCO clusters affects the demagnetization factor for samples with p < 0.70. (orig.)

  4. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  5. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  6. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  7. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  8. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Science.gov (United States)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  9. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    International Nuclear Information System (INIS)

    Qin Yujie; Hou Xiaojing

    2011-01-01

    Research highlights: → The relaxation properties of maglev forces have been investigated simultaneously. → Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. → The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. → The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  10. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yujie, E-mail: qyjswjtu@vip.sohu.co [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Hou Xiaojing [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2011-02-15

    Research highlights: {yields} The relaxation properties of maglev forces have been investigated simultaneously. {yields} Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. {yields} The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. {yields} The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  11. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  12. Utilization of process TEG for fabrication of HTS circuits

    International Nuclear Information System (INIS)

    Hato, T.; Okada, Y.; Maruyama, M.; Suzuki, H.; Wakana, H.; Adachi, S.; Kawabe, U.; Tanabe, K.

    2006-01-01

    We improved the fabrication process of high-temperature superconducting (HTS) sampler circuits with multilayer structures by utilizing a test elements group (TEG). Among a lot of difficulties in the HTS circuit fabrication process, loss of oxygen is one of the most significant problems. Since the film transition temperature (T c ) has a strong relationship with the resistance at room temperature, we fabricated a test pattern on the same wafer of the circuits and measured the resistance at room temperature by using a prober to estimate the T c of each layer. By introducing the measurement of the normal resistance after each process, we found better process conditions without a T c drop. Moreover, we constructed a low-temperature probing system, in which we can measure the junction TEG. The system enabled feedback of the fabrication condition soon after the junction process. The utilization of the process TEG contributed to reproducible fabrication of HTS circuits and that is a promising advance of the HTS circuit technology

  13. Second-generation HTS conductors

    CERN Document Server

    2010-01-01

    The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties. The above problems led to the development of the Second-Generation of HTS wires. Three methods were invented to produce flexible metallic substrates, which were also crystallographically biaxially textured, and resembled a long, mosaic single crystal. The first method invented is the Ion-Beam-Assisted-Deposition (IBAD). The second method developed was the Inclined-Substrate-Deposition (ISD). The third method invented is calle...

  14. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  15. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  16. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  17. A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

  18. First Results from Tests of High Temperature Superconductor Magnets on Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gryaznevich, M.; Todd, T.T., E-mail: mikhail.gryaznevich@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Svoboda, V.; Markovic, T.; Ondrej, G. [Czech Technical University, Prague (Czech Republic); Stockel, J.; Duran, I.; Kovarik, K. [IPP Prague, Czech Technical University, Prague (Czech Republic); Sykes, A.; Kingham, D. [Tokamak Solutions, Culham Science Centre, Abingdon (United Kingdom); Melhem, Z.; Ball, S.; Chappell, S. [Oxford Instruments, Abingdon (United Kingdom); Lilley, M. K.; De Grouchy, P.; Kim, H. -T. [Imperial College, London (United Kingdom)

    2012-09-15

    Full text: It has long been known that high temperature superconductors (HTS) could have an important role to play in the future of tokamak fusion research. Here we report on first results of the use of HTS in a tokamak magnet and on the progress in design and construction of the first fully-HTS tokamak. In the experiment, the two copper vertical field coils of the small tokamak GOLEM were replaced by two coils each with 6 turns of HTS (Re)BCO tape. Liquid nitrogen was used to cool the coils to below the critical temperature at which HTS becomes superconducting. Little effect on the HTS critical current has been observed for perpendicular field up to 0.5 T and superconductivity has been achieved at {approx} 90.5K during bench tests. There had been concerns that the plasma pulses and pulsed magnetic fields might cause a 'quench' in the HTS, i.e., a sudden and potentially damaging transition from superconductor to normal conductor. However, many plasma pulses were fired without any quenches even when disruptions occurred with corresponding induced electrical fields. In addition, experiments without plasma have been performed to study properties of the HTS in a tokamak environment, i.e., critical current and its dependence on magnetic and electrical fields generated in a tokamak both in DC and pulsed operations, maximum current ramp-up speed, performance of the HTS tape after number of artificially induced quenches etc. No quench has been observed at DC currents up to 200 A (1.2 kA-turns through the coil). In short pulses, current up to 1 kA through the tape (6 kA-turns) has been achieved with no subsequent degradation of the HTS performance with a current ramp rate up to 0.6 MA/s. In future experiments, increases in both the plasma current and pulse duration are planned. Considerable experience has been gained during design and fabrication of the cryostat, coils, isolation and insulation, feeds and cryosystems, and GOLEM is now routinely operated with HTS coils. The

  19. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4

    Science.gov (United States)

    Zhuang, Houlong L.; Zhou, Jia

    2016-11-01

    Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.

  20. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  1. PREFACE PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010) PASREG: The 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials (Washington DC, 29-31 July 2010)

    Science.gov (United States)

    Freyhardt, Herbert; Cardwell, David; Strasik, Mike

    2010-12-01

    Large grain, (RE)BCO bulk superconductors fabricated by top seeded melt growth (TSMG) are able to generate large magnetic fields compared to conventional, iron-based permanent magnets. Following 20 years of development, these materials are now beginning to realize their considerable potential for a variety of engineering applications such as magnetic separators, flywheel energy storage and magnetic bearings. MgB2 has also continued to emerge as a potentially important bulk superconducting material for engineering applications below 20 K due to its lack of granularity and the ease with which complex shapes of this material can be fabricated. This issue of Superconductor Science and Technology contains a selection of papers presented at the 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials, including MgB2, held 29th-31sy July 2010 at the Omni Shoreham Hotel, Washington DC, USA, to report progress made in this field in the previous three year period. The workshop followed those held previously in Cambridge, UK (1997), Morioka, Japan (1999), Seattle, USA (2001), Jena, Germany (2003), Tokyo, Japan (2005) and again in Cambridge, UK (2007). The scope of the seventh PASREG workshop was extended to include processing and characterization aspects of the broader spectrum of bulk high temperature superconducting (HTS) materials, including melt-cast Bi-HTS and bulk MgB2, recent developments in the field and innovative applications of bulk HTS. A total of 38 papers were presented at this workshop, of which 30 were presented in oral form and 8 were presented as posters. The organizers wish to acknowledge the efforts of Sue Butler of the University of Houston for her local organization of the workshop. The eighth PASREG workshop will be held in Taiwan in the summer of 2012.

  2. Study of microstructure and correlative magnetic property in bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Man, H.; Xu, H. [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, H.W. [The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Tan, X.H., E-mail: tanxiaohua123@163.com [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Peng, J.C.; Bai, Q. [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China)

    2012-11-01

    Highlights: Black-Right-Pointing-Pointer A fully dense bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet was obtained by the simple process of copper mold casting and subsequent annealed at 943 K. Black-Right-Pointing-Pointer The relationship between microstructures and correlative magnetic property of Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy was investigated. Black-Right-Pointing-Pointer The high value of intrinsic coercivity of 1191 kA/m was obtained due to the existence of hard magnetic Nd{sub 2}Fe{sub 14}B phase. - Abstract: The correlation between microstructure and magnetic property of a bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy are investigated. The microstructure of the as-cast Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} alloy shows a small amount of NbFeB phase with a grain size of 500 nm embedded in an amorphous matrix. The as-cast sample shows soft magnetic behavior at room temperature, after a heat treatment the hard magnetic properties are observed. A fully dense bulk Fe{sub 61}Nd{sub 10}B{sub 25}Nb{sub 4} permanent magnet is obtained with an intrinsic coercivity ({sub i}H{sub c}) of 1191 kA/m and a maximum energy product ((BH){sub max}) of 31.7 kJ/m{sup 3} after annealing at 943 K for 20 min. The corresponding microstructure consists of Nd{sub 2}Fe{sub 14}B, NdFe{sub 4}B{sub 4} and NbFeB phases. The existence of the hard magnetic Nd{sub 2}Fe{sub 14}B phase is the reason resulting in a high value of {sub i}H{sub c}. On the other hand, the influences of NdFe{sub 4}B{sub 4} and NbFeB phases in the annealed specimen on the magnetic properties are also discussed.

  3. Study and operating conditions of HTS Josephson arrays for metrological application

    International Nuclear Information System (INIS)

    Sosso, A.; Lacquaniti, V.; Andreone, D.; Cerri, R.; Klushin, A.M.

    2006-01-01

    We report an experimental study of metrological properties of high-temperature superconductor arrays, made of shunted bicrystal YBCO Josephson junctions. The work is mainly based on a direct comparison against a low temperature array. Owing to the high sensitivity of the measurements, we observed at nanovolt level the changes in the HTS array voltage on a step. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results of low sensitivity techniques, confirming that our method is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was also applied in the derivation of the temperature dependence of the critical current, providing insights on the behavior of the HTS array

  4. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  5. Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwi Joo; Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of); Park, Soon Dong; Jun, Bung Hyack; Kim, Chan Joong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-09-15

    This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin 30mm x 30mm rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.

  6. A study on accumulation of magnetic drug in the capillary vessel of target organ using superconducting MDDS

    International Nuclear Information System (INIS)

    Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-01-01

    Magnetic Drug Delivery System (MDDS) is one of the drug therapy technologies to accumulate the drug at the targeted part efficiently. The ferromagnetic particle is attached to the medicine, antibody, hormones and so on. The magnetic seeded drug is injected into the blood vessel, and then is accumulated in capillary vessel of target organ by magnetic field generated by the superconducting magnet placed outside of the body. The technology is great prospective for not only human medical treatment but also stockbreeding field. Treatment for cow ovarian diseases (decay of ovarian hormone secretion) requires an improvement in suppression of the drug diffusion to non-diseased part by the blood flow. In order to solve the problem, the applicability of the MDDS was examined. The behavior of the magnetic drug under the magnetic field generated by high temperature superconducting (HTS) bulk magnet were studied by the model experiment and computer simulation with the capillary model of the corpus luteum. As a result, it was shown that MDDS is able to apply to the capillaries of the corpus luteum (yellow body).

  7. Texturing for bulk α-Fe/Nd2Fe14B nanocomposites with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Lou, L.; Hou, F.C.; Wang, Y.N.; Cheng, Y.; Li, H.L.; Li, W.; Guo, D.F.; Li, X.H.; Zhang, X.Y.

    2014-01-01

    In the present study, the texturing of bulk α-Fe/Nd 2 Fe 14 B nanocomposites produced from Nd-lean amorphous Nd x Fe 92.5−x Cu 1.5 B 6 (x=9 to 11.5 at%) via a hot deformation under a uniaxial stress of ∼350 MPa at 973 K has been studied. An enhanced (00l) texture of the hard phase is observed with increasing Nd content, which results in an increase in the magnetic anisotropy of the nanocomposite magnets. As a result, both the coercivity and the remanence of the magnets increase simultaneously with increasing Nd content from x=9–11.5 at%, yielding a significant enhancement of the maximum energy product from (BH) max =13.2 to 17.5 MGOe in the direction parallel to stress axis. - Highlights: • Textured bulk α-Fe/Nd 2 Fe 14 B nanocomposites have been produced from Nd-lean alloys. • Nd content has an effect on the texturing of α-Fe/Nd 2 Fe 14 B nanocomposite magnets. • An enhanced (00l) texture of hard phase is observed with increasing Nd content. • Both the coercivity and remanence increase simultaneously with Nd content

  8. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Akihiro [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)], E-mail: amakino@imr.tohoku.ac.jp; Kubota, Takeshi; Chang, Chuntao [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Makabe, Masahiro [Makabe R and D Co., Ltd., 3-1-25 Nagatake, Sendai 983-0036 (Japan); Inoue, Akihisa [Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2008-10-15

    Fe-based amorphous alloy ribbons are one of the major soft magnetic materials, because of their superior magnetic properties such as the relatively high saturation magnetization (J{sub s}) of 1.5-1.6 T and good magnetic softness. However, the preparation of the ordinary amorphous magnetic alloys requires cooling rates higher than 10{sup 4} K/s due to the low glass-forming ability (GFA) and thus restricts the material outer shape. Recently, Fe-metalloid-based bulk metallic glasses (BMGs) containing glass-forming elements such as Al, Ga, Nb, Mo, Y and so forth have been developed. These alloys have high GFA, leading to the formation of BMG rod with diameters of mm-order. However, the glass-forming metal elements in BMGs result in a remarkable decrease in magnetization. Basically, J{sub s} depends on Fe content; hence, high J{sub s} requires high Fe content in the Fe-based amorphous alloys or BMGs. On the other hand, high GFA requires a large amount of glass-forming elements in the alloys, which results in lower Fe content. Therefore, in substances, the coexistence of high J{sub s} and high GFA is difficult. Since this matter should be immensely important from academia to industry in the material field, a great deal of effort has been devoted; however, it has remained unsolved for many years. In this paper, we present a novel Fe-rich FeSiBP BMG with high J{sub s} of 1.51 T comparable to the ordinary Fe-Si-B amorphous alloy now in practical use as well as with high GFA leading to a rod-shaped specimen of 2.5 mm in diameter, obtained by Cu-mold casting in air.

  9. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  10. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  11. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  12. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope

    DEFF Research Database (Denmark)

    Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.

    1997-01-01

    We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in...

  13. Structure and properties of bulk amorphous magnetically soft coatings prepared by plasma spraying

    International Nuclear Information System (INIS)

    Kalita, V.I.; Kekalo, I.B.; Komlev, D.I.; Taranichev, V.E.

    1995-01-01

    Co-Ni-Fe-Si-B composition plasma coatings consisting of amorphous disk-shaped particles forming the bulk of a coating, of crystalline particles and of a threshold space, were studied. Iron and metalloid distribution heterogeneous by the thickness represents a peculiar feature for coating amorphous particles. Structure of coatings and their magnetic properties depend on some technological parameters. Conclusion is made that at annealing the variation of magnetic properties is determined by the processes of directed ordering and stratification of amorphous phase, while the low level of the initial magnetic properties of coatings is caused alongside with structure peculiarities, by occurrence of independent fine-dispersive domain structure in each disk-shaped amorphous phase. 14 refs., 8 figs., 6 tabs

  14. AC magnetization loss characteristics of HTS striated coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O; Alamgir, A K M; Sekizawa, S; Miyagi, D

    2008-01-01

    AC magnetization losses in subdivided CC (Coated Conductor) with magnetic substrate were experimentally investigated comparing with those in subdivided CC with non-magnetic substrate for an AC external magnetic field perpendicular to the wide face of the CC. It is well known that the subdivision is effective to reduce magnetization losses in CC with non-magnetic substrate. The experimental results show that the subdivision is also effective for the CC with magnetic substrate and that the level of reduction of the losses by the subdivisions is almost the same as that of non-magnetic substrate CCs. It is concluded from the experimental results that the magnetic property of the substrate does not affect the magnetization losses in the subdivided conductor in the range of the experiment where the amplitude of the AC external magnetic field is 0 ∼ 0.1 T and the frequency is 16 ∼ 86 Hz

  15. AC magnetization loss characteristics of HTS striated coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O; Alamgir, A K M; Sekizawa, S [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501 (Japan); Miyagi, D [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)], E-mail: Osami-t@ynu.ac.jp

    2008-02-01

    AC magnetization losses in subdivided CC (Coated Conductor) with magnetic substrate were experimentally investigated comparing with those in subdivided CC with non-magnetic substrate for an AC external magnetic field perpendicular to the wide face of the CC. It is well known that the subdivision is effective to reduce magnetization losses in CC with non-magnetic substrate. The experimental results show that the subdivision is also effective for the CC with magnetic substrate and that the level of reduction of the losses by the subdivisions is almost the same as that of non-magnetic substrate CCs. It is concluded from the experimental results that the magnetic property of the substrate does not affect the magnetization losses in the subdivided conductor in the range of the experiment where the amplitude of the AC external magnetic field is 0 {approx} 0.1 T and the frequency is 16 {approx} 86 Hz.

  16. Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

    International Nuclear Information System (INIS)

    Kang, Jong O; Lee, On You; Mo, Young Kyu; Kim, Jun Il; Bang, Seung Min; Lee, Hong Seok; Kang, Hyoung Ku; Lee, Jae Hun; Jang, Cheol Yeong

    2015-01-01

    The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers

  17. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  18. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly

  19. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  20. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    Science.gov (United States)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  1. Vertical, radial and drag force analysis of superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Cansiz, Ahmet

    2009-01-01

    The behavior of the force between a permanent magnet (PM) and a high temperature superconductor (HTS) was tested with the frozen-image model based on flux pinning. It was found that the associated dipole moment assumptions of the method of the frozen image underestimate the force somewhat; thus a quadrupole moment analysis is proposed. The radial and drag forces associated with the rotation of the PM levitated above the HTS were measured by using a force transducer and by means of a cantilevered beam technique. The radial force was found not to be dependent on the radial direction, and the least radial force was found to be periodic with an angular displacement during the slow rotation of the PM relative to the HTS. The periodicity behavior of the force is attributed to the geometric eccentricity from the magnetization distribution of the PM and HTS. The drag force associated with the torsional stiffness of the levitated PM during the low and high rotational speeds was incorporated with the data from the literature.

  2. Stoner vs. spin-mixing behavior in the bulk magnetism of Gd: A spin ...

    Indian Academy of Sciences (India)

    bulk magnetism of Gd: A spin-resolved photoemission study. K MAITI1,2,∗. , M C MALAGOLI2, A DALLMEYER2 and C CARBONE2,3. 1Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. 2Institut für Festkörperforschung, Forschungszentrum Jülich, D-52428 Jülich, Germany. 3Consiglio ...

  3. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Y., E-mail: nagasaki@rish.kyoto-u.ac.jp [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nakamura, T. [Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura, Nishikyo, Kyoto 615-8530 (Japan); Funaki, I. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Ashida, Y.; Yamakawa, H. [Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-09-15

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  4. Coupled-analysis of current transport performance and thermal behaviour of conduction-cooled Bi-2223/Ag double-pancake coil for magnetic sail spacecraft

    International Nuclear Information System (INIS)

    Nagasaki, Y.; Nakamura, T.; Funaki, I.; Ashida, Y.; Yamakawa, H.

    2013-01-01

    Highlights: • We model current transport and thermal performances of conduction-cooled HTS coil. • We investigate the effect of the longitudinal inhomogeneity of the HTS tape. • The analysis can precisely estimate performances of the conduction-cooled coil. • The longitudinal inhomogeneity of the HTS tape deteriorates coil performances. • Quench currents of the HTS coil are not consistent with the critical currents. -- Abstract: This paper investigated the quantitative current transport performance and thermal behaviour of a high temperature superconducting (HTS) coil, and the effect of the critical current inhomogeneity along the longitudinal direction of HTS tapes on the coil performances. We fabricated a double-pancake coil using a Bi-2223/Ag tape with a length of 200 m as a scale-down model for a magnetic sail spacecraft. We measured the current transport property and temperature rises during current applications of the HTS coil in a conduction-cooled system, and analytically reproduced the results on the basis of the percolation depinning model and three-dimensional heat balance equation. The percolation depinning model can describe the electric field versus current density of HTS tapes as a function of temperature and magnetic field vector, and we also introduced the longitudinal distribution of the local critical current of the HTS tape into this model. As a result, we can estimate the critical currents of the HTS coil within 10% error for a wide range of the operational temperatures from 45 to 80 K, and temperature rises on the coil during current applications. These results showed that our analysis and conduction-cooled system were successfully realized. The analysis also suggested that the critical current inhomogeneity along the length of the HTS tape deteriorated the current transport performance and thermal stability of the HTS coil. The present study contributes to the characterization of HTS coils and design of a coil system for the

  5. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  6. A comparative study of magnetic field induced meta-magnetic transition in nanocrystalline and bulk Pr0.65(Ca0.7Sr0.3)0.35MnO3 compound

    Science.gov (United States)

    Saha, Suvayan; Das, Kalipada; Bandyopadhyay, Sudipta; Das, I.

    2017-06-01

    In our present study we highlight the observations of external magnetic field induced sharp meta-magnetic transition in polycrystalline bulk as well as nanocrystalline form of Pr0.65(Ca0.7Sr0.7)0.35MnO3 compound. Interestingly, such behavior persists in the nanoparticles regardless of the disorder broadened transition. However, higher magnetic field is required for nanoparticles having average particle size ∼40 nm for such meta-magnetic transition, which differs from the general trends of the pure charge ordered nano materials. The interfacial strain between the different magnetic domains plays the important role in magnetic isothermal properties of nanoparticles, when the samples are cooled down in different cooling field. Additionally, both the bulk and nanoparticle compounds exhibit spontaneous phase separation and significantly large magnetoresistance at the low temperature region due to the melting of charge ordered fraction.

  7. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  8. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  9. Development and construction of an HTS rotor for ship propulsion application

    Energy Technology Data Exchange (ETDEWEB)

    Nick, W; Frank, M; Kummeth, P; Rabbers, J J; Wilke, M; Schleicher, K, E-mail: wolfgang.nick@siemens.co [Siemens AG, CT PS 3, Guenther-Scharowsky-Str. 1, D-91050 Erlangen (Germany)

    2010-06-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in 'clean' laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale 'industrial' manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  10. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  11. Side-suspended High- Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    International Nuclear Information System (INIS)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-01-01

    High- T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 10 3 Pa. (paper)

  12. Side-suspended High-Tc Superconducting Maglev Prototype Vehicle Running at a High Speed in an Evacuated Circular Test Track

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Cui, Chenyu; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    High-T c superconductor (HTS) and permanent magnetic guideway (PMG) based maglev train is intensively studied in China, Japan, Germany and Brazil, mainly through static or vibration test. Amongst these studies, only a few of reports are available for the direct and effective assessment on the dynamic performance of the HTS maglev vehicle by running on a straight or circular PMG track. The highest running speed of these experiments is lower than 50 km/h. In this paper, a side-suspended HTS permanent magnetic guideway maglev system was proposed and constructed in order to increase the running speed in a circular track. By optimizing the arrangement of YBCO bulks besides the PMG, the side-suspended HTS maglev prototype vehicle was successfully running stably at a speed as high as 150 km/h in a circular test track with 6.5 m in diameter, and in an evacuated tube environment, in which the pressure is 5 × 103 Pa.

  13. Superconducting magnetic Wollaston prism for neutron spin encoding

    Energy Technology Data Exchange (ETDEWEB)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  14. Superconducting magnetic Wollaston prism for neutron spin encoding

    Science.gov (United States)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  15. Surface barrier and bulk pinning in MgB$_2$ superconductor

    OpenAIRE

    Pissas, M.; Moraitakis, E.; Stamopoulos, D.; Papavassiliou, G.; Psycharis, V.; Koutandos, S.

    2001-01-01

    We present a modified method of preparation of the new superconductor MgB$_2$. The polycrystalline samples were characterized using x-ray and magnetic measurements. The surface barriers control the isothermal magnetization loops in powder samples. In bulk as prepared samples we always observed symmetric magnetization loops indicative of the presence of a bulk pinning mechanism. Magnetic relaxation measurements in the bulk sample reveal a crossover of surface barrier to bulk pinning.

  16. Study by Hall probe mapping of the trapped flux modification produced by local heating in YBCO HTS bulks for different surface/volume ratios

    International Nuclear Information System (INIS)

    Laurent, Ph; Mathieu, J-P; Mattivi, B; Fagnard, J-F; Meslin, S; Noudem, J G; Ausloos, M; Cloots, R; Vanderbemden, Ph

    2005-01-01

    The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size

  17. Numerical simulation of permanent magnet method: Influence of experimental conditions on accuracy of j{sub C}-distribution

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, T., E-mail: takayama@yz.yamagata-u.ac.j [Faculty of Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Kamitani, A.; Tanaka, A. [Graduate School of Science and Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan)

    2010-11-01

    Influence of the magnet position on the determination of the distribution of the critical current density in a high-temperature superconducting (HTS) thin film has been investigated numerically. For this purpose, a numerical code has been developed for analyzing the shielding current density in a HTS sample. By using the code, the permanent magnet method is reproduced. The results of computations show that, even if the center of the permanent magnet is located near the film edge, the maximum repulsive force is roughly proportional to the critical current density. This means that the distribution of the critical current density in the HTS film can be estimated from the proportionality constants determined by using the relations between the maximum repulsive force and the critical current density.

  18. HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    HTS Teologiese Studies/Theological Studies is an acclaimed Open Access journal with broad coverage that promotes multidisciplinary, religious, and biblical aspects of studies in the international theological arena. The journal's publication criteria are based on high ethical standards and the rigor of the methodology and ...

  19. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  20. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    Science.gov (United States)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  1. Modelling, Construction, and Testing of a Simple HTS Machine Demonstrator

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper describes the construction, modeling and experimental testing of a high temperature superconducting (HTS) machine prototype employing second generation (2G) coated conductors in the field winding. The prototype is constructed in a simple way, with the purpose of having an inexpensive way...... of validating finite element (FE) simulations and gaining a better understanding of HTS machines. 3D FE simulations of the machine are compared to measured current vs. voltage (IV) curves for the tape on its own. It is validated that this method can be used to predict the critical current of the HTS tape...... installed in the machine. The measured torque as a function of rotor position is also reproduced by the 3D FE model....

  2. Flux motion in Y-Ba-Cu-O bulk superconductors during pulse field magnetization

    International Nuclear Information System (INIS)

    Yoshizawa, K; Nariki, S; Sakai, N; Murakami, M; Hirabayasi, I; Takizawa, T

    2004-01-01

    We have studied the relationship between the magnetization and temperature change in Y-Ba-Cu-O bulk superconductor during pulse field magnetization (PFM). The flux motion was monitored using both Hall sensors and pick-up coils that are placed on a surface of a Y-Ba-Cu-O disc having dimensions of 15 mm in diameter and 0.95 mm in thickness. The peak value of the field was varied from 0.2 to 0.8 T. The effect of the static bias field was also studied in the range of 0-3 T. The temperature of the sample surface was measured using a resistance temperature sensor. The temperature increased with the magnitude of the applied pulsed magnetic field, and the amount of temperature rise decreased with increasing static bias field

  3. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  4. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  5. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  6. A novel HTS magnetometer, exploiting the low jc of bulk YBCO

    International Nuclear Information System (INIS)

    Gallop, J.C.; Lilleyman, S.; Langham, C.D.; Radcliffe, W.J.; Stewart, M.

    1989-01-01

    The authors report here a novel of magnetometer which is based on the low critical magnetic field H/sub cl/ of sintered samples of the high temperature ceramic superconductor YBa/sub 2/Cu/sub 3/O/sub y/. By driving a sample of the superconductor around a magnetization hysteresis loop, at a frequency of --100 kHz, and detecting the induced voltage in a coil coupled to the sample, at the second harmonic of the drive frequency, the authors find that this voltage is linearly dependent on the aplied d.c. magnetic field in which the sample is situated. They present a model which explains the operation of this magnetometer. This device, while not as sensitive as a SQUID, has the advantage of a wider dynamic range and direct measurement of flux density, unlike a SQUID which is only capable of sensing flux density changes. When operated at 77K the prototype magnetometer has already demonstrated a sensitivity at least 10 times better than that of a commercial fluxgate magnetometer. The system also appears to provide a simple method for investigation of flux flow in these materials

  7. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  8. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  9. On the adsorption properties of magnetic fluids: Impact of bulk structure

    Energy Technology Data Exchange (ETDEWEB)

    Kubovcikova, Martina [Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Gapon, Igor V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, Kyiv Taras Shevchenko National University, Kyiv (Ukraine); Zavisova, Vlasta [Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Koneracka, Martina, E-mail: konerack@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Petrenko, Viktor I. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, Kyiv Taras Shevchenko National University, Kyiv (Ukraine); Soltwedel, Olaf [Max-Planck-Institut for Solid State Research, Outstation at MLZ, Garching (Germany); Almasy, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest (Hungary); Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Physical Faculty, St. Petersburg State University, Saint Petersburg (Russian Federation); Kopcansky, Peter [Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)

    2017-04-01

    Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size~30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon. - Highlights: • Different bulk structure of initial MF and PEG modified MF was confirmed. • PEG modification of MF transforms small MNPs aggregates to large and developed. • Individual non-aggregated nanoparticles are preferably adsorbed on oxidized silicon. • Nanoparticles from MF form a single adsorption layer on the silicon surface. • PEG modified MF compose large developed aggregates that are not adsorbed by surface.

  10. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  11. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  12. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water

    International Nuclear Information System (INIS)

    Dalvit, Claudio; Pevarello, Paolo; Tato, Marco; Veronesi, Marina; Vulpetti, Anna; Sundstroem, Michael

    2000-01-01

    A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H 2 O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented

  13. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  14. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    International Nuclear Information System (INIS)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-01-01

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T c bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one

  15. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  16. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  17. HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable

    CERN Document Server

    Himbele, John J.; Tixador, Pascal

    2016-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  18. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  19. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  20. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.