WorldWideScience

Sample records for htr-pm demonstration plant

  1. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wu Zongxin; Wang Dazhong; Xu Yuanhui; Sun Yuliang; Li Fu; Dong Yujie

    2009-01-01

    After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MW th high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10. Due to intensive engineering and R and D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled. The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MW th pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW. A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line. The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures. According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started. After the successful operation of the demonstration plant

  2. The HTR-PM Plant Full Scope Training Simulator

    International Nuclear Information System (INIS)

    Wang Junsan; Wang Yuding; Zhou Shuyong; Cai Ruizhong; Cao Jianting

    2014-01-01

    This paper describes the technical aspects of the Full Scope Training Simulator developed for HTR-PM Plant in Shidao Bay, Shandong Province, China. An overview of the HTR-PM plant and simulator structure is presented. The models developed for the simulator are discussed in detail. Some important verification tests have been conducted on the HTR-PM Plant Training Simulator. (author)

  3. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  4. Future Development of Modular HTGR in China after HTR-PM

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wang, Haitao; Dong Yujie; Li Fu

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is an inherently safe nuclear energy technology for efficient electricity generation and process heat applications. The MHTGR is promising in China as it may replace fossil fuels in broader energy markets. In line with China’s long-term development plan of nuclear power, the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University developed and designed a MHTGR demonstration plant, named high-temperature gas-cooled reactor-pebble bed module (HTR-PM). The HTR-PM came into the construction phase at the end of 2012. The HTR-PM aims to demonstrate safety, economic potential and modularization technologies towards future commercial applications. Based on experiences obtained from the HTR-PM project with respect to design, manufacture, construction, licensing and project management, a further step aiming to promote commercialization and market applications of the MHTGR is expected. To this purpose, INET is developing a commercialized MHTGR named HTR-PM600 and a conceptual design is under way accordingly. HTR-PM600 is a pebble-bed MHTGR power generation unit with a six-pack of 250MWth reactor modules. The objective is to cogenerate electricity and process heat flexibly and economically in order to meet a variety of market needs. The design of HTR-PM600 closely follows HTR-PM with respect to safety features, system configuration and plant layout. HTR-PM600 has the six modules feeding one steam turbine to generate electricity with capacity to extract high temperature steam from various interfaces of the turbine for further process heat applications. A standard plant consists of two HTR-PM600 units. Based on the economic information of HTR-PM, a preliminary study is carried out on the economic prospect of HTR-PM600. (author)

  5. On Power Refueling Management of HTR-PM

    International Nuclear Information System (INIS)

    Sun Furui; Luo Yong; Gao Qiang

    2014-01-01

    The refueling management is an important work of nuclear power plant , directly affecting its safety and economy. At present, the ordinary commercial pressurized water reactor (PWR) nuclear power plant has developed more mature in the refueling management, and formed a set of relatively complete system and methods.The High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) has significant differences with the ordinary PWR nuclear power plant in the fuel morphology and the refueling mode. It adopts the spherical fuel element and the on-power refueling. Therefore, the HTR-PM refueling management has its own unique characteristics, but currently there is no mature experience to use for reference across the world. This paper gives a brief introduction to the HTR-PM on power refueling management, including the refueling management system construction, the refueling strategy, the fuel element internal transportation,charging and discharging, etc. It aims at finding the befitting HTR-PM refueling management methods in view of its own unique characteristics in order to ensure the orderly development of the refueling management and the refueling safety. (author)

  6. Plant Operation Station for HTR-PM Low Power and Shutdown operation Probabilistic safety analysis

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan

    2014-01-01

    Full range Probabilistic safety analysis (PSA) is one of key conditions for nuclear power plant (NPP) licensing according to the requirement of nuclear safety regulatory authority. High Temperature Gas Cooled Reactor Pebble-bed Module (HTR-PM) has developed construction design and prepared for the charging license application. So after the normal power operation PSA submitted for review, the Low power and Shutdown operation Probabilistic safety analysis (LSPSA) also begin. The results of LSPSA will together with prior normal power PSA results to demonstrate the safety level of HTR-PM NPP Plant Operation Station (POS) is one of important terms in LSPSA. The definition of POS lays the foundation for LSPSA modeling. POS provides initial and boundary conditions for the following event tree and fault tree model development. The aim of this paper is to describe the state-of-the-art of POS definition for HTR-PM LSPSA. As for the first attempt to the high temperature gas cooled reactor module plant, the methodology and procedure of POS definition refers to the LWR LSPSA guidance, and adds to plant initial status analysis due to the HTR-PM characteristics. A specific set of POS grouping vectors is investigate and suggested for HTR-PM NPP, which reflects the characteristics of plant modularization and on-line refueling. As a result, seven POSs are given according to the grouping vectors at the end of the paper. They will be used to the LSPSA modelling and adjusted if necessary. The papers ’work may provide reference to the analogous NPP LSPSA. (author)

  7. Introduction of HTR-PM Operation and Fuel Management System

    International Nuclear Information System (INIS)

    Liu Fucheng; Luo Yong; Gao Qiang

    2014-01-01

    There is a big difference between High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) and PWR in operation mode. HTR-PM is a continually refuelled reactor, and the operation and fuel management of it, which affect each other, are inseparable. Therefore, the analysis of HTR-PM fuel management needs to be carried out “in real time”. HTR-PM operation and fuel management system is developed for on-power refuelling mode of HTR-PM. The system, which calculates the core neutron flux and power distribution, taking high-temperature reactor physics analysis software-VSOP as a basic tool, can track and predict the core state online, and it has the ability to restructure core power distribution online, making use of ex-core detectors to correct and check tracking calculation. Based on the ability to track and predict, it can compute the core parameters to provide support for the operation of the reactor. It can also predict the operation parameters of the reactor to provide reference information for the fuel management.The contents of this paper include the development purposes, architecture, the main function modules, running process, and the idea of how to use the system to carry out HTR-PM fuel management. (author)

  8. Coordinated Control Design for the HTR-PM Plant: From Theoretic Analysis to Simulation Verification

    International Nuclear Information System (INIS)

    Dong Zhe; Huang Xiaojin

    2014-01-01

    HTR-PM plant is a two-modular nuclear power plant based on pebble bed modular high temperature gas-cooled reactor (MHTGR), and adopts operation scheme of two nuclear steam supplying systems (NSSSs) driving one turbine. Here, an NSSS is composed of an MHTGR, a once-through steam generator (OTSG) and some connecting pipes. Due to the coupling effect induced by two NSSSs driving one common turbine and that between the MHTGR and OTSG given by common helium flow, it is necessary to design a coordinated control for the safe, stable and efficient operation of the HTR-PM plant. In this paper, the design of the feedback loops and control algorithms of the coordinated plant control law is firstly given. Then, the hardware-in-loop (HIL) system for verifying the feasibility and performance of this control strategy is introduced. Finally, some HIL simulation results are given, which preliminarily show that this coordinated control law can be implemented practically. (author)

  9. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2017-01-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  10. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail: thiagodbtr@gmail.com, E-mail: lapa@ien.gov.br, E-mail: alvim@nuclear.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  11. Analysis of aging mechanism and management for HTR-PM reactor pressure vessel

    International Nuclear Information System (INIS)

    Sun Yunxue; Shao Jin

    2015-01-01

    Reactor pressure vessel is an important part of the reactor pressure boundary, its important degree ranks high in ageing management and life assessment of nuclear power plant. Carrying out systematic aging management to ensure reactor pressure vessel keeping enough safety margins and executing design functions is one of the key factors to guarantee security and stability operation for nuclear power plant during the whole lifetime and prolong life. This paper briefly introduces the structure and aging mechanism of reactor pressure vessel in pressurized water reactor nuclear power plant, and introduces the design principle and structure characteristics of HTR-PM. At the same time, this paper carries out preliminary analysis and exploration. and discusses aging management of HTR-PM reactor pressure vessel. Finally, the advice of carring out aging management for HTR-PM reactor pressure vessel is proposed. (authors)

  12. Flood control construction of Shidao Bay nuclear power plant and safety analysis for hypothetical accident of HTR-PM

    International Nuclear Information System (INIS)

    Chen Yongrong; Zhang Keke; Zhu Li

    2014-01-01

    A series of events triggered by tsunami eventually led to the Fukushima nuclear accident. For drawing lessons from the nuclear accident and applying to Shidao Bay nuclear power plant flood control construction, we compare with the state laws and regulations, and prove the design of Shidao Bay nuclear power plant flood construction. Through introducing the history of domestic tsunamis and the national researches before and after the Fukushima nuclear accident, we expound the tsunami hazards of Shidao Bay nuclear power plant. In addition, in order to verify the safety of HTR-PM, we anticipate the contingent accidents after ''superposition event of earthquake and extreme flood'', and analyse the abilities and measures of HTR-PM to deal with these beyond design basis accidents (BDBA). (author)

  13. The Research Status for Decommissioning and Radioactive Waste Minimization of HTR-PM

    International Nuclear Information System (INIS)

    Li Wenqian; Li Hong; Cao Jianzhu; Tong Jiejuan

    2014-01-01

    Decommissioning of the high-temperature gas-cooled reactor-pebble bed module (HTR-PM) as a part of the nuclear power plant, is very important during the early design stage of the construction, and it is under study and research currently. This article gives a thorough description of the current decommissioning study status of HTR-PM. Since HTR-PM has its features such as adopting a large amount of graphite, the waste inventory and characterization will be quite different from other type of reactors, new researches should be carried out and good lessons of practices and experiences should be learned from international other reactors, especially the AVR. Based on the new international regulations and Chinese laws, a comprehensive decommissioning program should be proposed to guarantee the HTR-PM will succeed in every stage of the decommissioning, such as defueling, decontamination, dismantling, demolition, waste classification and disposal, etc. In the meantime, the minimization of the radioactive waste should be taken into account during the whole process - before construction, during operation and after shut down. In this article, the decommissioning strategy and program conception of HTR-PM will be introduced, the radiation protection consideration during the decommissioning activities will be discussed, and the research on the activation problem of the decommissioning graphite will be introduced. (author)

  14. Digital Distributed Control System Design: Control Policy for Shared Objects in HTR-PM

    International Nuclear Information System (INIS)

    Zhou Shuqiao; Huang Xiaojin

    2014-01-01

    HTR-PM is an HTR demonstration plant with a structure of two modules feeding one steam turbine. Compared with the structure of one single reactor feeding one turbine, there are more devices shared between these two modules. When they are operated, the shared components are prone to introduce collisions or even logical deadlocks for different technical processes. The future commercial HTR-PM plants are supposed to comprise more modules for a larger turbine, thus the collision problem introduced by the shared components may become severer. Therefore, how to design suitable policies in the distributed control system (DCS) to relieve the collisions during using these shared devices is a new and also a very important problem. In this paper, the classifications of the shared devices are first addressed, and then how to identify the shared objects of an NPP is proposed. Furthermore, a general model for the control logic design is proposed, taking into consideration the collision avoidance, time delay and fairness. The example of how to apply the schemes to relieve the conflicts and deadlocks in the processes of using the shared devices in fuel element cycling system is illustrated. (author)

  15. Development status of the HTGR in the world. Outline and construction status of the demonstration HTGR program (HTR-PM) of China

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Okamoto, Futoshi; Mouri, Tomoaki; Saito, Masanao; Nishio, Hiroki; Ohashi, Junpei

    2014-01-01

    Based on successful construction and operation experiences of HTR-10 reactor with pebble bed fuel and helium coolant, HTR-PM (HTR Pebble-bed Modular) reactor program was under way with 200 MWe of twin reactors with the same core configuration as HTR-10 reactor, which, each with a single steam generator, would drive a single steam turbine. Core height was 11 meters, and main steam temperature would be at 566 C. Although HTR-PM reactor program was interrupted by effects of the Fukushima accident, first concrete basement construction was started in December 2012 with aiming at connecting the Grid in 2017. This article reviewed outline and construction status of HTR-PM reactor in China. (T. Tanaka)

  16. Development of digital I&C system in HTR-PM

    International Nuclear Information System (INIS)

    Shi Guilian

    2014-01-01

    Conclusions: HTR-PM DCS has been under execution for 5 years( 2009-2014) . It has taken CTEC 150 man/year so far. With close cooperation with INET, Chinergyand Shanghai Electric, CTEC overcame difficulties, like iterative design, voluminous customization work, new technology, and lacking of drawings. However, the accomplishment of the planned milestones prepared CTEC for the following work in HTR-PM DCS. 1. The 1ST integrated DCS, including safety DCS, non-safety DCS, DEH supplied by Chinese supplier. Rod control system and DEH are integrated in non-safety DCS. Simplified interface, integrated platform, and easy to use and maintenance. 2. CTEC obtained knowledge of 4th generation HTR-PM digital I&C, key design technology, and riched its DCS products by participation in HTRPM. HTR-PM Safety DCS project provided valuable experience for CTEC’s development and application of FIRMSYS, a safety protection control system platform. 3. The qualification solution by customized HTR-PM safety DCS prototype helps simply safety DCS design, V&V, qualification and safety review of the actual system, but results in some problems in system upgrade and maintenance. With the satisfactory application of FIRMSYS in 1000mw PWR and platform qualification , the future HTR-PM safety DCS could be provided based on a qualified safety DCS platform.

  17. Research on Fault Diagnosis of HTR-PM Based on Multilevel Flow Model

    International Nuclear Information System (INIS)

    Zhang Yong; Zhou Yangping

    2014-01-01

    In this paper, we focus on the application of Multilevel Flow Model (MFM) in the automatic real-time fault diagnosis of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) accidents. In the MFM, the plant process is described abstractly in function level by mass, energy and information flows, which reveal the interaction between different components and capacitate the causal reasoning between functions according to the flow properties. Thus, in the abnormal status, a goal-function-component oriented fault diagnosis can be performed with the model at a very quick speed and abnormal alarms can be also precisely explained by the reasoning relationship of the model. By using MFM, a fault diagnosis model of HTR-PM plant is built, and the detailed process of fault diagnosis is also shown by the flowcharts. Due to lack of simulation data about HTR-PM, experiments are not conducted to evaluate the fault diagnosis performance, but analysis of algorithm feasibility and complexity shows that the diagnosis system will have a good ability to detect and diagnosis accidents timely. (author)

  18. Development and Reliability Analysis of HTR-PM Reactor Protection System

    International Nuclear Information System (INIS)

    Li Duo; Guo Chao; Xiong Huasheng

    2014-01-01

    High Temperature Gas-Cooled Reactor-Pebble bed Module (HTR-PM) digital Reactor Protection System (RPS) is a dedicated system, which is designed and developed according to HTR-PM NPP protection specifications. To decrease the probability of accident trips and increase the system reliability, HTR-PM RPS has such features as a framework of four redundant channels, two diverse sub-systems in each channel, and two level two-out-of-four logic voters. Reliability analysis of HTR-PM RPS is based on fault tree model. A fault tree is built based on HTR-PM RPS Failure Modes and Effects Analysis (FMEA), and special analysis is focused on the sub-tree of redundant channel ''2-out-of-4'' logic and the fault tree under one channel is bypassed. The qualitative analysis of fault tree, such as RPS weakness according to minimal cut sets, is summarized in the paper. (author)

  19. Preparation of spherical fuel elements for HTR-PM in INET

    International Nuclear Information System (INIS)

    Xiangwen, Zhou; Zhenming, Lu; Jie, Zhang; Bing, Liu; Yanwen, Zou; Chunhe, Tang; Yaping, Tang

    2013-01-01

    Highlights: • Modifications and optimizations in the manufacture of spherical fuel elements (SFE) for HTR-PM are presented. • A newly developed overcoater exhibits good stability and high efficiency in the preparation of overcoated particles. • The optimized carbonization process reduces the process time from 70 h in the period of HTR-10 to 20 h. • Properties of the prepared SFE and matrix graphite balls meet the design specifications for HTR-PM. • In particular the mean free uranium fraction of 5 consecutive batches is only 8.7 × 10 −6 . -- Abstract: The spherical fuel elements were successfully manufactured in the period of HTR-10. In order to satisfy the mass production of fuel elements for HTR-PM, several measures have been taken in modifying and optimizing the manufacture process of fuel elements. The newly developed overcoater system and its corresponding parameters exhibited good stability and high efficiency in the preparation of overcoated particles. The optimized carbonization process could reduce the carbonization time from more than 70 h to 20 h and improve the manufacturing efficiency. Properties of the manufactured spherical fuel elements and matrix graphite balls met the design specifications for HTR-PM. The mean free uranium fraction of 5 consecutive batches was 8.7 × 10 −6 . The optimized fuel elements manufacturing process could meet the requirements of design specifications of spherical fuel elements for HTR-PM

  20. Simulation of Thermal-hydraulic Process in Reactor of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2014-01-01

    This paper provides the physical process in the reactor of High Temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM) and introduces the standard operation conditions. The FORTRAN code developed for the thermal hydraulic module of Full-Scale Simulator (FSS) of HTR-PM is used to simulate two typical operation transients including cold startup process and cold shutdown process. And the results were compared to the safety analysis code, namely TINTE. The good agreement indicates that the code is applicable for simulating the thermal-hydraulic process in reactor of HTR-PM. And for long time transient process, the code shows good stability and convergence. (author)

  1. Experiment study on thermal mixing performance of HTR-PM reactor outlet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yangping, E-mail: zhouyp@mail.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); Hao, Pengfei [School of Aerospace, Tsinghua University, Beijing 100084 (China); Li, Fu; Shi, Lei [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); He, Feng [School of Aerospace, Tsinghua University, Beijing 100084 (China); Dong, Yujie; Zhang, Zuoyi [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    A model experiment is proposed to investigate the thermal mixing performance of HTR-PM reactor outlet. The design of the test facility is introduced, which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main mixing structure, hot gas duct, exhaust pipe system and I&C system. Experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed, which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis results show the mixing efficiency of the test facility is higher than that required by the steam generator of HTR-PM, which indicates that the thermal mixing structure of HTR-PM fulfills its design requirement.

  2. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  3. The R&D of HTGR high temperature helium sampling loop: From HTR-10 to HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chao, E-mail: fangchao@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084 (China); The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Bao, Xuyin; Yang, Chen; Yang, Yanran; Cao, Jianzhu [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084 (China); The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China)

    2016-09-15

    A High Temperature Helium Sampling Loop (HTHSL) for studying the transportation (deposition) behavior and total amount of solid fission products in high-temperature helium coming from the steam generator (SG) in the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) and High Temperature Reactor-Pebble bed Modules (HTR-PM) are researched and designed, respectively. Through the optimal design and simulation based on thermohydraulics analysis, the three-sleeve structure of deposition sampling device (DSD) could realize full-length temperature control evenly so that it could be used to study fission products in the primary circuit of HTR-10. On the other hand, an improved DSD is also designed for HTR-PM based on corresponding simulations, which could be used to sample the important nuclei in the high temperature helium from SG. These schemes offer two different methods to obtain the original source term in the high temperature helium, which will provide deeper understanding for the analysis of source terms of HTGR.

  4. Numerical Simulation of Two-branch Hot Gas Mixing at Reactor Outlet of HTR-PM

    International Nuclear Information System (INIS)

    Hao Pengefei; Zhou Yangping; Li Fu; Shi Lei; He Heng

    2014-01-01

    A series of two-branch model experiment has been finished to investigate the thermal mixing efficiency of the HTR-PM reactor outlet. This paper introduces the numerical simulation on the design of thermal mixing structure of HTR-PM and the test facility with Fluent software. The profiles of temperature, pressure and velocity in the mixing structure design and the test facility are discussed by comparing with the model experiment results. The numerical simulation results of the test facility have good agreement to the experiment results. In addition, the thermal-fluid characters obtained by numerical simulation show the thermal mixing structure of HTR-PM has similarity with the test facility. Finally, it is concluded that the thermal mixing design at HTR-PM reactor outlet can fulfilled the requirements for high thermal mixing efficiency and appropriate pressure drop. (author)

  5. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin

    2015-09-15

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.

  6. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  7. Design and Experiment of Auxiliary Bearing for Helium Blower of HTR-PM

    International Nuclear Information System (INIS)

    Yang Guojun; Shi Zhengang; Liu Xingnan; Zhao Jingjing

    2014-01-01

    The helium blower is the important equipment for HTR-PM. Active magnetic bearing (AMB) instead of mechanical bearing is selected to support the rotor of the helium blower. However, one implication of AMB is the requirement to provide the auxiliary bearing to mitigate the effects of failures or overload conditions. The auxiliary bearing is used to support the rotor when the AMB fails to work. It must support the dropping rotor and bear the great impact force and friction heat. The design of the auxiliary bearing is one of the challenging problems in the whole system. It is very important for the helium blower with AMB of HTR-PM to make success. The rotor’s length of helium blower of HTR-PM is about 3.3 m, its weight is about 4000 kg and the rotating speed is 4000 r/min. The axial load is 4500kg, and the radial load is 1950kg. The angular contact ball bearing was selected as the auxiliary bearing. The test rig has been finished. It is difficult to analyze the falling course of the rotor. The preliminary analysis of the dropping rotor was done in the special condition. The impact force of auxiliary bearing was computed for the axial and radial load. And the dropping test of the blower rotor for HTR-10 will be introduced also in this paper. Results offer the important theoretical base for the protector design of the helium blower with AMB for HTR-PM. (author)

  8. Two-branch Gas Experiments for Hot Gas Mixing of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Yangping; Hao Pengefei; He Heng; Li Fu; Shi Lei

    2014-01-01

    A model experiment is proposed to investigate the hot gas mixing efficiency of HTR-PM reactor outlet. The test facility is introduced which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main body of test facility, hot gas duct, exhaust pipe system and I&C system. Two-branch gas experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis result shows the mixing efficiency is higher than the requirement of thermal mixing by steam generator even with conservative assumption which indicates that the design of hog gas mixing structure of HTR-PM fulfills the requirement for thermal mixing at two-branch working conditions. (author)

  9. Software Unit Testing during the Development of Digital Reactor Protection System of HTR-PM

    International Nuclear Information System (INIS)

    Guo Chao; Xiong Huasheng; Li Duo; Zhou Shuqiao; Li Jianghai

    2014-01-01

    Reactor Protection System (RPS) of High Temperature Gas-Cooled Reactor - Pebble bed Module (HTR-PM) is the first digital RPS designed and to be operated in the Nuclear Power Plant (NPP) of China, and its development process has receives a lot of concerns around the world. As a 1E-level safety system, the RPS has to be designed and developed following a series of nuclear laws and technical disciplines including software verification and validation (software V&V). Software V&V process demonstrates whether all stages during the software development are performed correctly, completely, accurately, and consistently, and the results of each stage are testable. Software testing is one of the most significant and time-consuming effort during software V&V. In this paper, we give a comprehensive introduction to the software unit testing during the development of RPS in HTR-PM. We first introduce the objective of the testing for our project in the aspects of static testing, black-box testing, and white-box testing. Then the testing techniques, including static testing and dynamic testing, are explained, and the testing strategy we employed is also introduced. We then introduce the principles of three kinds of coverage criteria we used including statement coverage, branch coverage, and the modified condition/decision coverage. As a 1E-level safety software, testing coverage needs to be up to 100% mandatorily. Then we talk the details of safety software testing during software development in HTR-PM, including the organization, methods and tools, testing stages, and testing report. The test result and experiences are shared and finally we draw a conclusion for the unit testing process. The introduction of this paper can contribute to improve the process of unit testing and software development for other digital instrumentation and control systems in NPPs. (author)

  10. HTR-PM Progress and Further Commercial Deployment

    International Nuclear Information System (INIS)

    Wu, Frank

    2017-01-01

    Project Milestones: • 2004: industry investment agreement was signed • 2006: decided to use 2×250 MWt reactor modules with a 200 MWe steam turbine, became a key government R&D project • 2008: ATP was issued • 2012.12.9: FCD the first concrete poured. Chinese HTR development: HTR Roles in China - Power generation: supplement to LWR; repowering coal fired plants - Co-generation to supply steam - Hydrogen production

  11. Experimental Study of Fuel Element Motion in HTR-PM Conveying Pipelines

    International Nuclear Information System (INIS)

    Wang Xin; Zhang Haiquan; Nie Junfeng; Li Hongke; Liu Jiguo; He Ayada

    2014-01-01

    The motion action of sphere fuel element (FE) inside fuel pipelines in HTR-PM is indeterminate. Fuel motion is closely connected with the interaction of FE and inner surface of fuel conveying pipe. In this paper, motion method of fuel elements in its conveying pipe is Experimental studied. Combined with the measurement of the fuel passing speed in stainless steel pipe and the track left by sphere ball for experiment, interaction modes of fuel and inner-surface of pipe, which is sliding friction, rolling friction and Collision, has been found. The modes of interaction can affect the speed of fuel conveying, amount of sphere waste and operation stability of fuel handling of high temperature reactor-pebble bed modules (HTR-PM). Furthermore, the motion process of fuel passing a big-elbow which is lying on the top of fuel pneumatic hoisting pipe were experimented. The result shows that the speed before and the speed after the elbow is positive correlation. But with the increase of speed before the elbow, the speed after the elbow increase less. Meanwhile the fuel conveying mode changes from friction to collision. And the conveying process is still steady. The effect can be used to controlling the speed of fuel conveying in fuel handling process of HTR-PM. (author)

  12. Study on the Break Accidents of the HTR-PM Primary Loop

    International Nuclear Information System (INIS)

    Lang Minggang; Sun Ximing; Zheng Yanhua

    2014-01-01

    In thermal hydraulics design and safety analysis of the HTR-PM, the THERMIX code was used to study the behavior of the helium in the primary system. Once the helium leaks from the primary loop through a break or a relief valve, it is hard to simulate the states of the leakage room with THERMIX. In this paper, the latest version of RELAP5/MOD4, was used to simulate the behavior of the helium released to the containment rooms. A RELAP5/MOD4 model of the HTR-PM, including the core, the primary system, the secondary loop and the containment, were developed and evaluated in this paper. Based on the model, this paper studied the accidents consequences of a large break in the pressure relief room and a small break in the instrument room of the HTR-PM reactor building. The simulating results illustrate that the temperature in the pressure relief room was no more than 200℃ after a un-isolating large break, and the temperature in the instrument room is less than 130 ℃ after a small un-isolating break. The analysis shows that the scram function and the ability to monitor the reactor temperature and pressure after accidents would not be affected by the break. (author)

  13. Predictions of the Bypass Flows in the HTR-PM Reactor Core

    International Nuclear Information System (INIS)

    Sun Jun; Chen Zhipeng; Zheng Yanhua; Shi Lei; Li Fu

    2014-01-01

    In the HTR-PM reactor core, the basic structure materials are large amount of graphite reflectors and carbon bricks. Small gaps among those graphite and carbon bricks are widespread in the reactor core so that the cold helium flow may be bypassed and not completely heated. The bypass flows in relative lower temperature would change the flow and temperature distributions in the reactor core, therefore, the accurate prediction of bypass flows need to be carried out carefully to evaluate the influence to the reactor safety. Based on the characteristics of the bypass flow problem, hybrid method of the flow network and the CFD tools was employed to represent the connections and calculate flow distributions of all the main flow and bypass flow paths. In this paper, the hybrid method was described and applied to specific bypass flow problem in the HTR-PM. Various bypass flow paths in the HTR-PM were reviewed, figured out, and modeled by the flow network and the CFD methods, including the axial vertical gaps in the side reflectors, control rod channels, absorber sphere channels and radial gap flow through keys around the hot helium plenum. The bypass flow distributions and its flow rate ratio to the total flow rate in the primary loop were also calculated, discussed and evaluated. (author)

  14. Process heat applications of HTR-PM600 in Chinese petrochemical industry: Preliminary study of adaptability and economy

    International Nuclear Information System (INIS)

    Fang, Chao; Min, Qi; Yang, Yanran; Sun, Yuliang

    2017-01-01

    Highlights: •High Temperature Gas Cooled Reactor (HTGR) could work as heat source for petrochemical industry. •The joint of a 600 MW modular HTGR (HTR-PM600) and petrochemical industry is achievable. •The mature technology of turbine in thermal power station could be readily adopted. •The economy of this scheme is also acceptable. -- Abstract: High Temperature Gas Cooled Reactor (HTGR) could work as heat source for petrochemical industry. In this article, the preliminary feasibility of a 600 MW modular HTGR (HTR-PM600) working as heat source for a typical hypothetical Chinese petrochemical factory is discussed and it is found that the joint of HTR-PM600 and petrochemical industry is achievable. In detail, the heat and water balance analysis of the petrochemical factory is given. Furthermore, the direct cost of heat supplied by HTR-PM600 is calculated and corresponding economy is estimated. The results show that though there are several challenges, the application of process heat of HTGR to petrochemical industry is practical in sense of both technology and economy.

  15. The challenge of introducing HTR plants on to the international power plant market

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1987-01-01

    The international power plant market today is characterized by high increase in energy consumption for developing countries with limitations of investment capital and low increase in energy consumption for industrialized countries with limitations of additional power plant capacities. As a consequence there is a low demand for large new power stations. This leads to a tendency for small and medium sized power plant units - meeting high environmental standards - for which the total investment volume is low and full load operation of a plant can be realized earlier due to the small block capacity. - For nuclear power plants the High-Temperature-Reactor (HTR)-line with spherical fuel elements and a core structure of graphite is specially suited for this small and medium sized nuclear reactor (SMSNR) capacity. The excellent safety characteristics, the high availability, the low radiation doses for the operation personnel and the environment of the HTR line has been demonstrated by 20 years of operation of the AVR-15 MWe experimental power plant in Juelich F.R.G. and since 1985 by operation of the THTR-300 MWe prototype plant at Hamm-Uentrop F.R.G. Up-dated concepts of the HTR-line are under design for electricity generation (HTR-500), for co-generation of power and heat (HTR-100) and for district heating purposes only (GHR-10). By implementing two HTR projects the Brown Boveri Group is in the position to realize the collected experiences from design, licensing, erection, commissioning and operation for the follow-on projects. This leads to practical and sound technical solutions convenient for existing manufacturing processes, well known materials, standardized components and usual manufacturing tolerances. Specific plant characteristics can be used for advantages in the competition. (author)

  16. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  17. Financing models for HTR plants: Co-financing, counter trade, joint ventures

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1987-01-01

    Structure and volume of investment cost for HTR nuclear power plants are different in comparison to other types of nuclear power plants. Even if the share of local participation is in comparable order of magnitude to other nuclear power plants, the required technical infrastructure for HTR plants is more suitable for existing and still practised technologies in countries which are in development processes. These HTR specific features offer special possibilities in HTR project financing. Various models are discussed in respect of the special HTR situation. Even if it is not possible to point out in a general manner the best solution - due to national, local and time dependant situations - this paper discusses the HTR specific impacts to buyer's credit financing, supplier's credit financing, barter trades or joint ventures and combined financing. (author). 4 refs, 9 figs

  18. Relationship between the Toyo Tanso Group and HTR-PM

    International Nuclear Information System (INIS)

    Zhan Guobin; Konishi, Takashi

    2014-01-01

    IG-110 that is Isotropic graphite for nuclear applications, is the only product that is used for two types of High Temperature Gas-cooled Reactors, prismatic type HTTR and pebble-bed type HTR-10, that are currently in operation in the world. IG-110 is highly evaluated in the global market for its track record and physical stability. The Toyo Tanso Group won the contract to build graphite core internals for HTR-PM that is a world’s first modular pebble-bed high temperature gas-cooled demonstration reactor. A decision was made to manufacture IG-110 graphite materials at Toyo Tanso Japan called TTJ and to process products and undertake temporary assembly at Shanghai Toyo Tanso called STT. Manufacture of graphite materials for which TTJ is responsible has been completed. As the next step, processing of products is scheduled to commence at STT from this autumn. Our graphite materials were required to be 2,000 mm or more in maximum length. The number of graphite blocks required exceeded 3,500. Although the graphite structure requirements including configuration were highly challenging, we were able to meet all the requirements with our engineering capabilities, i.e. decades of track record in manufacture and stability in characteristics. STT that will start the machining process this autumn is equipped with state-of-the-art processing machines and three-dimensional measuring machines. Notably, STT has high levels of engineering capabilities to process and inspect tens of thousands of internal components for reactors in accordance with drawings and to temporarily assemble these components. (author)

  19. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  20. Automatic X-ray inspection for the HTR-PM spherical fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Yi, DU, E-mail: duyi11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building A309, Haidian District, Beijing 100084 (China); Xiangang, WANG, E-mail: wangxiangang@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building A309, Haidian District, Beijing 100084 (China); Xincheng, XIANG, E-mail: inetxxc@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building, Haidian District, Beijing 100084 (China); Bing, LIU, E-mail: bingliu@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Energy Science Building, Haidian District, Beijing 100084 (China)

    2014-12-15

    Highlights: • An automatic X-ray inspection method is established to characterize HTR pebbles. • The method provides physical characterization and the inner structure of pebbles. • The method can be conducted non-destructively, quickly and automatically. • Sample pebbles were measured with this AXI method for validation. • The method shows the potential to be applied in situ. - Abstract: Inefficient quality assessment and control (QA and C) of spherical fuel elements for high temperature reactor-pebblebed modules (HTR-PM) has been a long-term problem, since conventional methods are labor intensive and cannot reveal the inside information nondestructively. Herein, we proposed a nondestructive, automated X-ray inspection (AXI) method to characterize spherical fuel elements including their inner structures based on X-ray digital radiography (DR). Briefly, DR images at different angles are first obtained and then the chosen important parameters such as spherical diameters, geometric and mass centers, can be automatically extracted and calculated via image processing techniques. Via evaluating sample spherical fuel elements, we proved that this AXI method can be conducted non-destructively, quickly and automatically. This method not only provides accurate physical characterization of spherical fuel elements but also reveals their inner structure with good resolution, showing great potentials to facilitate fast QA and C in HTM-PM spherical fuel element development and production.

  1. Automatic X-ray inspection for the HTR-PM spherical fuel elements

    International Nuclear Information System (INIS)

    Yi, DU; Xiangang, WANG; Xincheng, XIANG; Bing, LIU

    2014-01-01

    Highlights: • An automatic X-ray inspection method is established to characterize HTR pebbles. • The method provides physical characterization and the inner structure of pebbles. • The method can be conducted non-destructively, quickly and automatically. • Sample pebbles were measured with this AXI method for validation. • The method shows the potential to be applied in situ. - Abstract: Inefficient quality assessment and control (QA and C) of spherical fuel elements for high temperature reactor-pebblebed modules (HTR-PM) has been a long-term problem, since conventional methods are labor intensive and cannot reveal the inside information nondestructively. Herein, we proposed a nondestructive, automated X-ray inspection (AXI) method to characterize spherical fuel elements including their inner structures based on X-ray digital radiography (DR). Briefly, DR images at different angles are first obtained and then the chosen important parameters such as spherical diameters, geometric and mass centers, can be automatically extracted and calculated via image processing techniques. Via evaluating sample spherical fuel elements, we proved that this AXI method can be conducted non-destructively, quickly and automatically. This method not only provides accurate physical characterization of spherical fuel elements but also reveals their inner structure with good resolution, showing great potentials to facilitate fast QA and C in HTM-PM spherical fuel element development and production

  2. Initial Startup and Testing of the Fort St. Vrain HTGR - Lessons Learned which May Be Useful to the HTR-PM

    International Nuclear Information System (INIS)

    Brey, Larry H.

    2014-01-01

    Lessons Learned: Although the HTR-PM and FSV incorporate significant differences in their designs, there are lessons to be learned that are applicable to both plants. This is especially important for key systems that incorporate first-of-a-kind equipment. Basically, these lessons are just an application of common sense. • Complexity Breeds Unavailability. Incorporate system/components that are ruggedly simple in design with a history of reliable operation and minimal maintenance. • Assure Strong Expertise and Funding for this First HTR-PM. Quite likely, the successful startup and operation of this plant will require a level of support considerably greater than a typical nuclear plant. • Be Very Attentive to the Design Aspects of first-of-a-kind Components in the Class 1, Safety-Related Portions of the Plant. For example; a generic metallurgical failure could easily lead to a very long plant shutdown in order to redesign the failed component, re-license, manufacture, install and test prior to plant resuming plant operation. • Where Possible, Test all Key Systems/Components Prior to Installation using Actual Plant Configuration & Operating Characteristics This will help assure operational capability prior to application of nuclear heat. • Never Attempt to Start an Innovative Nuclear Power Plant Without First Having the Proper Regulatory Guides and Criteria in Place. FSV was licensed as a Research Facility. There was no Standard Review Plan or Regulatory Guides in place for the NRC (or PSC) to utilize in regulating this HTGR. • Do Not Be Reluctant to Incorporate a Generous Over-Build Capability into Systems/Components. It is significantly easier to design extra margin into the original compressors, pumps and motors than to be required to backfit into larger units after plant start-up. • Assure All Safety Documents Reflect the Actual Capability of the Plant to Respond to Accidents Described in the Safety Analysis. FSV was limited to 82% power during the

  3. Initial Start-Up and Testing of the Fort St. Vrain HTGR – Lessons Learned which May Be Useful for the HTR-PM

    International Nuclear Information System (INIS)

    Brey, H.L.

    2014-01-01

    Although the activities presented in this paper occurred 40 years ago, there are many observations and lessons associated with Fort St. Vrain (FSV) which may be beneficial in support of the start-up, testing and licensing of the HTR-PM. This report includes a review of the FSV NPP design including an overview of the requirements and testing program utilized to bring the plant from initial start-up to full power. A sampling of the test results as well as a comparison of the plant design characteristics to actual values achieved at 100% power along with selected overall experiences gained through operation of this plant is also included. (author)

  4. Design and application of the HTR-100 industrial nuclear power plant

    International Nuclear Information System (INIS)

    Brandes, S.; Kohl, W.

    1988-01-01

    The small HTR-100 high temperature reactor combines the reactor concept of the AVR reactor, which has been proven for 20 years, with the latest component technology of the THTR power plant which has been in operation since 1985. The nuclear heat supply system is conceived so as to be applicable for the generation of electric power, district heat and process steam according to the customer's demand. The HTR-100 reactor has a thermal power of 258 MW and offers steam parameters of 190 bar/530 0 C. To cover a higher power demand HTR-100 reactors can be combined forming a larger power plant. Economic analyses have shown competitiveness with fossil power plants. (orig.)

  5. Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network

    International Nuclear Information System (INIS)

    Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle

    2012-01-01

    The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)

  6. Experimental and numerical investigation of the flow measurement method utilized in the steam generator of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiming; Ren, Cheng; Sun, Yangfei [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne, VIC 3083 (Australia); Yang, Xingtuan, E-mail: yangxt107@sina.com [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China)

    2016-08-15

    Highlights: • The flow confluence process in the steam generator is very important for HTR-PM. • The complicated flow in the unique pipeline configuration is studied by both of experimental and numerical method. • The pressure uniformity at the bottom of the model was tested to evaluate the accuracy of the experimental results. • Flow separation and the secondary flow is described for explaining the nonuniformity of the flow distribution. - Abstract: The helium flow measurement method is very important for the design of HTR-PM. Water experiments and numerical simulation with a 1/5 scaled model are conducted to investigate the flow measurement method utilized in the steam generator of HTR-PM. Pressure information at specific location of the 90° elbows with the diameter of 46.75 mm and radius ratio of 1.5 is measured to evaluate the flow rate in the riser-pipes. Pressure uniformity at the bottom of the experimental apparatus is tested to evaluate the influence of the equipment error on the final experimental results. Numerical results obtained by using the realizable k–ε model are compared with the experimental data. The results reveal that flow oscillation does not occur in the confluence system. For every single riser-pipe, the flow is stable despite the nonuniformity of the flow distribution. The average flow rates of the two pipe series show good repeatability regardless of the increases and decreases of the average velocity. In the header box, the flows out of the riser-pipes encounter with each other and finally distort the pressure distribution and the nonuniformity of the flow distribution becomes more significant along with the increasing Reynolds number.

  7. Concept of a HTR modular plant for generation of process heat in a chemical plant

    International Nuclear Information System (INIS)

    1991-07-01

    This final report summarizes the results of a preliminary study on behalf of Buna AG and Leunawerke AG. With regard to the individual situations the study investigated the conditions for modular HTR-2 reactors to cover on-site process heat and electric power demands. HTR-2 reactor erection and operation were analyzed for their economic efficiency compared with fossil-fuel power plants. Considering the prospective product lines, the technical and economic conditions were developed in close cooperation with Buna AG and Leunawerke AG. The study focused on the technical integration of modular HTR reactors into plants with regard to safety concepts, on planning, acceptance and erection concepts which largely exclude uncalculable scheduling and financial risks, and on comparative economic analyses with regard to fossil-fuel power plants. (orig.) [de

  8. State of the Art of helium heat exchanger development for future HTR-projects - HTR2008-58146

    International Nuclear Information System (INIS)

    Esch, M.; Juergens, B.; Hurtado, A.; Knoche, D.; Tietsch, W.

    2008-01-01

    In Germany two HTR nuclear power plants had been built and operated, the AVR-15 and the THTR-300. Also various projects for different purposes in a large power range had been developed, The AVR-15, an experimental reactor with a power output of 15 MWel was operated for more than 20 years with excellent results. The THTR-300 was designed as a prototype demonstration plant with 300 MWel and should be the technological basis for the entire future reactor line. The THTR-300 was prematurely shut down and decommissioned because of political reasons. But because of the accompanying comprehensive R and D program and the operation time of about 5 years, the technology was proved and essential operational results were gained. The AVR steam generator was installed above the reactor core. The six THTR heat exchangers were arranged circularly around the reactor core, Both heat exchanger systems have been operated successfully and furthermore acted as a residual heat removal system. The technology knowledge and experience gained on these existing HTR plants is still available at Westinghouse Electric Germany GmbH since Westinghouse is one of the legal successors of the former German HTR companies. As a follow-up project of THTR, the HTR-500 was developed and designed up to the manufacturing stage. For this plant additionally to the 8 steam generators, two residual heat removal heat exchangers were foreseen. These were to be installed in a ring around the reactor core. All these HTRs were designed for the generation of electricity using a steam cycle. Extensive research work has also been done for advanced applications of HTR technology e.g. using a direct cycle within the HHT project or generating process heat within the framework of the PNP project, Because of the critical attitude of the German government to the nuclear power in the past 20 years in Germany there was only a very limited interest in the further development of the HTR technology. As a consequence of the German

  9. The HTR safety concept demonstrated by selected examples

    International Nuclear Information System (INIS)

    Sommer, H.; Stoelzl, D.

    1981-01-01

    The licensing experience gained in the Federal Republic of Germany is based on the licensing procedures for the THTR-300 and the HTR-1160. In the course of the licensing procedures for these reactors a safety concept for an HTR has been developed. This experience constitutes the basis for the design of future HTR's. (author)

  10. Temperature Analysis and Failure Probability of the Fuel Element in HTR-PM

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Tang Chunhe

    2014-01-01

    Spherical fuel element is applied in the 200-MW High Temperature Reactor-Pebble-bed Modular (HTR-PM). Each spherical fuel element contains approximately 12,000 coated fuel particles in the inner graphite matrix with a diameter of 50mm to form the fuel zone, while the outer shell with a thickness of 5mm is a fuel-free zone made up of the same graphite material. Under high burnup irradiation, the temperature of fuel element rises and the stress will result in the damage of fuel element. The purpose of this study is to analyze the temperature of fuel element and to discuss the stress and failure probability. (author)

  11. Burnup measurement study and prototype development in HTR-PM

    International Nuclear Information System (INIS)

    Yan Weihua; Zhang Zhao; Xiao Zhigang; Zhang Liguo

    2014-01-01

    In a pebble-bed core which employs the multi-pass scheme, it is mandatory to determine the burnup of each pebble after the pebble has been extracted from the core in order to determine whether its design burnup has been reached or whether it has to be reinserted into the core again. The burnup of the fuel pebbles can be determined by measuring the activity of 137 Cs with an HPGe detector because of their good correspondence, which is independent of the irradiation history in the core. Based on experiments and Geant4 simulation, the correction factor between the fuel and calibration source was derived by using the efficiency transfer method. By optimizing spectrum analysis algorithm and parameters, the relative standard deviation of the 137 Cs activity can be still controlled below 3.0% despite of the presence of interfering peaks. On the foundation of the simulation and experiment research, a complete solution for burnup measurement system in HTR-PM is provided. (authors)

  12. Reactivity control in HTR power plants with respect to passive safety system. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-12-01

    The R and D and Demonstration of the High Temperature Reactor (HTR) is described in overview. The HTR-MODULE power plant, as the most advanced concept, is taken for the description of the reactivity control in general. The idea of the ``modularization of the core`` of the HTR has been developed as the answer on the experiences of the core melt accident at Three Miles Island. The HTR module has two shutdown systems: The ``6 rods``-system for hot shutdown at the ``18 small absorber pebbles units`` - system for cold shutdown. With respect to the definition of ``Passive Systems`` of IAEA-TECDOC-626 the total reactivity control system of the HTR-MODULE is a passive system of category D, because it is an emergency reactor shutdown system based on gravity driven rods, and devices, activated by fail-safe trip logic. But reactivity control of the HTR does not only consist of these engineered safety system but does have a self-acting stabilization by the negative temperature coefficient of the reactivity, being rather effective in reactivity control. Examples from computer calculations are presented, and, in addition, experimental results from the ``Stuck Rod Experiment`` at the AVR reactor in Juelich. On the basis of this the proposal is made that ``self-acting stabilization as a quality of the function`` should be discussed as a new category in addition to the active and passive engineered safety systems, structures and components of IAEA-TECDOC-626. The requirements for a future ``catastrophe-free`` nuclear technology are presented. In the appendix the 7th amendment of the atomic energy act of the Federal Republic of Germany, effective 28 July 94, is given. (author).

  13. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Yanhua, Zheng, E-mail: zhengyh@mail.tsinghua.edu.cn; Fubing, Chen; Lei, Shi

    2014-05-01

    Air ingress, one of the beyond design basis accidents for high temperature gas-cooled reactors, receives high attention during the design of the 250 MW pebble-bed modular high temperature gas-cooled reactor (HTR-PM), because it may result in severe consequence including the corrosion of the fuel element and graphite reflector. The diffusion process and the set-up time of the stable natural convection after the double-ended guillotine break of the hot-gas duct are studied in the paper. On the basis of the preliminary design of the HTR-PM and its DLOCA analysis results, the diffusion process, as well as the influence of the core temperature distribution and the length of the hot-gas duct, is studied with the DIFFLOW code, which adopts a one-dimension variable cross-section diffusion model with fixed wall temperature. To preliminarily estimate the influence of chemical reaction between oxygen and graphite, which will change the gas component of the mixture, the diffusion processes between the He/N{sub 2}, He/O{sub 2}, He/CO and He/CO{sub 2} are calculated, respectively. Furthermore, the code has been improved and the varying wall temperature can be simulated. The more accurate analysis is carried out with the changing temperature distribution from the DLOCA calculation. The analysis shows that there is enough time to adopt appropriate mitigation measures to stop the air ingress and the severe consequence of fuel element damage and large release of fission product can be avoided.

  14. Studi Awal Desain Pebble Bed Reactor Berbasis Htr-pm Dengan Skema Resirkulasi Bahan Bakar Once-through-then-out

    OpenAIRE

    Setiadipura, Topan; Pane, Jupiter Sitorus; Zuhair, Zuhair

    2016-01-01

    STUDI AWAL DESAIN PEBBLE BED REACTOR BERBASIS HTR-PM DENGAN RESIRKULASI BAHAN BAKAR ONCE-THROUGH-THEN-OUT. Reaktor nuklir tipe pebble bed reactor (PBR) adalah salah satu reaktor canggih dengan fitur keselamatan pasif yang kuat. Pada desain tipe ini berpotensi untuk dilakukan kogenerasi yang bermanfaat untuk pengolahan berbagai mineral di berbagai pulau di Indonesia. Operasi PBR dapat lebih disederhanakan dengan menerapkan skema pengisian bahan bakar once-through-then-out (OTTO) dimana bahan b...

  15. Development of Probabilistic Safety Assessment with respect to the first demonstration nuclear power plant of high temperature gas cooled reactor in China

    International Nuclear Information System (INIS)

    Tong Jiejuan; Zhao Jun; Liu Tao; Xue Dazhi

    2012-01-01

    Due to the unique concept of HTR-PM (High Temperature Gas Cooled Reactor-Pebble Bed Module) design, Chinese nuclear authority has anticipated that HTR-PM will bring challenge to the present regulation. The pilot use of PSA (Probabilistic Safety Assessment) during HTR-PM design and safety review is deemed to be the necessary and efficient tool to tackle the problem, and is actively encouraged as indicated in the authority's specific policy statement on HTR-PM project. The paper summarizes the policy statement to set up the base of PSA development and application activities. The up-to-date status of HTR-PM PSA development and the risk-informed application activities are introduced in this paper as the follow-up response to the policy statement. For open discussion, the paper hereafter puts forward several technical issues which have been encountered during HTR-PM PSA development. Since HTR-PM PSA development experience has the general conclusion that many of the PSA elements can be and have been implemented successfully by the traditional PSA techniques, only the issues which extra innovative efforts may be needed are highlighted in this paper. They are safety goal and risk metrics, PSA modeling framework for the non-water reactors, passive system reliability evaluation, initiating events frequencies and component reliability data estimation techniques for the new reactors and so on. The paper presents the way in which the encountered technical issues were or will be solved, although the proposed way may not be the ultimate best solution. The paper intends to express the standpoint that although the PSA of new reactor has the inherent weakness due to the insufficient information and larger data uncertainty, the problem of component reliability data is much less severe than people have conceived. The unique design conception and functional features of the reactors can influence the results more significantly than the component reliability data. What we are benefited

  16. Applications and Prospects of Modularization Technology in HTR Project Starting from Primary Loop Cavity Construction

    International Nuclear Information System (INIS)

    Yang Guokang; Chen Jing; Huang Wen; Lin Lizhi; Sun Yunlun; Chen Yan; Mao Jiaxin; Wang Yougang; Wang Jinwen; Lin Mingfeng; Yang Mingshan

    2014-01-01

    Primary loop cavity is one of the key areas and major difficulties in HTR-PM project construction. In order to shorten the construction schedule and improve the construction quality, researches on modular design and construction of primary loop cavity has been carried out and the results have been applied in HTR-PM project construction, and got significant application benefit. This paper summarizes the modularization technology application research and project implementation results of primary loop cavity, and analyzes the application and prospects of modularization technology in the HTR project construction. (author)

  17. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  18. C.A.S.H. - a transient integrated plant model for a HTR-module power plant. User manual

    International Nuclear Information System (INIS)

    Biesenbach, R.; Lauer, A.; Struth, S.

    1997-07-01

    The computer code C.A.S.H. has been developed as an integrated plant model for the HTR-Module reactor, in order to treat safety related questions about this type of power plant which require a detailed numeric simulation of the transient behaviour of the integrated plant. The present report contains the user manual for this plant model. It consists of three parts: In the first part, the code structure and functions, the course of the simulation calculations, and important code parts are described. The second part is devoted to the practical application and explains extensively the handling of the complex code system with several sample calculations. These computing cases comprise load-follow transients and the shutdown procedure of the HTR-Module and are presented and discussed with the full input data, job patterns, and numerous computer graphics. The third part contains the input manual of C.A.S.H. and is rather extensive as it includes the complete inputs of several reactor component computer codes along with the control program of the integrated plant model. (orig./DG) [de

  19. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  20. Gamma dose rate estimation and operation management suggestions for decommissioning the reactor pressure vessel of HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Fang; Hong Li; Jianzhu Cao; Wenqian Li; Feng Xie; Jiejuan Tong [Institute of Nuclear and New Energy Technology, Tsinghua, University, Beijing (China)

    2013-07-01

    China is now designing and constructing a high temperature gas cooled reactor-pebble bed module (HTR-PM). In order to investigate the future decommissioning approach and evaluate possible radiation dose, gamma dose rate near the reactor pressure vessel was calculated for different cooling durations using QAD-CGA program. The source term of this calculation was provided by KORIGEN program. Based on the calculated results, the spatial distribution and temporal changes of gamma dose rate near reactor pressure vessel was systematically analyzed. A suggestion on planning decommissioning operation of reactor pressure vessel of HTRPM was given based on calculated dose rate and the Chinese Standard GB18871-2002. (authors)

  1. Evaluation of the Control Rod Super Alloy Material of HTR-PM

    International Nuclear Information System (INIS)

    Li Pengjun; Yan He; Diao Xingzhong

    2014-01-01

    The control rod drive mechanism (CRDM) system is served as the first reactivity control and shutdown system for the high temperature reactor pebble-bed module (HTR-PM) in Shandong, China. And the control rod, which is pulled up and down by a chain sprocket mechanism of CRDM to realize reactivity control, compensation and shutdown, has to be durable under temperature as high as 550℃ for a long time. Thus the material persistent strength under high temperature is quite important for the reliability of the CRDM. In this paper, a review on material selection of control rod of high temperature gas cooled reactors, including AVR and THTR-300 in Germany, HTTR in Japan, PBMR in South Africa and Dragon in Britain, was summarized. The major parameters of two kinds of high temperature alloy, incoloy 800H and alloy 625, were compared and discussed. According to the ASME NH volume, a design criterion for the control rod was established and applied in the analysis of the chain by using finite element method. The numerical simulations showed that the chain made of alloy 625 could meet the condition and work for a long time under high temperature. (author)

  2. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  3. Tritium in HTR systems

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-07-01

    Starting from the basis of the radiological properties of tritium, the provisions of present-day radiation protection legislation are discussed in the context of the handling of this radionuclide in HTR plants. Tritium transportation is then followed through from the place of its creation up until the sink, i.e. disposal and/or environmental route, and empirical values obtained in experiments and in plant operation translated into guidelines for plant design and planning. The use of the example of modular HTR plants permits indication that environmental contamination via the 'classical' routes of air and water emissions, and contamination of products, and resulting consumer exposure, are extremely low even on the assumption of extreme conditions. This leads finally to a requirement that the expenditure for implementation of measures for further reduction of tritium activity rates be measured against low radiological effect. (orig.) [de

  4. State of the art in HTR engineering and design

    International Nuclear Information System (INIS)

    Baust, E.

    1984-11-01

    The high-temperature reactor is an universally applicable energy source on the electricity and heat market, providing energy safely, compatible with the environment, and economically. The startup of the THTR-300, which will commence power generation in spring 1985, and the good results of the preparatory tests and studies for the subsequent plant, the HTR-500, created the required preconditions for the placing of an order to commence work to realize the first planning stage of the HTR-500. The order is expected to be placed within short. BBC/HRB has gained a reputation worldwide as the leading manufacturer of HTR plants. BBC/HRB has the know-how to offer HTR plants of various size over the entire capacity range between 100 and 600 MWe, or as twin-type plants up to 1200 MWe, their design being based on the THTR-300 reference plant. The HTR is an uncomplicated reactor system offering many advantages in terms of operation and safety. This reactor type therefore is the system of choice for energy generation for short-range energy supply. The system also is of interest as an export item, and hence is of significance to the economy and to employment policy. (orig.) [de

  5. HTR process heat applications, status of technology and economical potential

    International Nuclear Information System (INIS)

    Barnet, H.

    1997-01-01

    The technical and industrial feasibility of the production of high temperature heat from nuclear fuel is presented. The technical feasibility of high temperature heat consuming processes is reviewed and assessed. The conclusion is drawn that the next technological step for pilot plant scale demonstration is the nuclear heated steam reforming process. The economical potential of HTR process heat applications is reviewed: It is directly coupled to the economical competitiveness of HTR electricity production. Recently made statements and pre-conditions on the economic competitiveness in comparison to world market coal are reported. (author). 8 figs

  6. HTR-10 severe accident management

    International Nuclear Information System (INIS)

    Xu Yuanhui; Sun Yuliang

    1997-01-01

    The High Temperature Gas-cooled Reactor (HTR-10) is under construction at the Institute of Nuclear Energy Technology site northwest of Beijing. This 10 MW thermal plant utilizes a pebble bed high temperature gas cooled reactor for a large range of applications such as electricity generation, steam and district heat generation, gas turbine and steam turbine combined cycle and process heat for methane reforming. The HTR-10 is the first high temperature gas cooled reactor to be licensed in China. This paper describes the safety characteristics and design criteria for the HTR-10 as well as the accident management and analysis required for the licensing process. (author)

  7. Procedures and results of the probabilistic safety study of the HTR-1160 plant

    International Nuclear Information System (INIS)

    Kroeger, W.; Bongartz, R.

    1981-01-01

    A research team of the Institute for Nuclear Safety Research of the Juelich Nuclear Research Center (KFA) and staff members of the Gesellschaft fuer Reaktorsicherheit, sponsored by the Federal Ministry of the Interior, carried out a safety and risk analysis of high temperature reactors. The studies, which included the transfer to German conditions and the modification in some points of methodology of the American AIPA Study, were performed on the German concept of an 1160 MWe HTR with block-type fuel elements. They referred to accidents and possible impacts on the environment, residual risks and measures to reduce them. The study covered a total of approx. 15 groups of initiating events, including potential external impacts. The dominating initiating events are transients in a pressurized reactor. Differences relative to the light water reactor concept arise with respect to releases as a result of accidents and, above all, release times; they are due to different physical characteristics. HTR'S are characterized by thermal inertia and resistance to temperatures. If the results of the study are extended to the HTR line with a pebble bed core currently in the planning phase, the power densities alone, which are considerably lower in some designs, are indicative of an even more effective fission product retention than is already found in the HTR-1160 plant analyzed here. (orig.) [de

  8. Radiation Protection Practices during the Helium Circulator Maintenance of the 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10

    Directory of Open Access Journals (Sweden)

    Chengxiang Guo

    2016-01-01

    Full Text Available Current radiation protection methodology offers abundant experiences on light-water reactors, but very few studies on high temperature gas-cooled reactor (HTR. To fill this gap, a comprehensive investigation was performed to the radiation protection practices in the helium circulator maintenance of the Chinese 10 MW HTR test module (HTR-10 in this paper. The investigation reveals the unique behaviour of HTR-10’s radiation sources in the maintenance as well as its radionuclide species and presents the radiation protection methods that were tailored to these features. Owing to these practices, the radioactivity level was kept low throughout the maintenance and only low-level radioactive waste was generated. The quantitative analysis further demonstrates that the decontamination efficiency was over 89% for surface contamination and over 34% for γ dose rate and the occupational exposure was much lower than both the limits of regulatory and the exposure levels in comparable literature. These results demonstrate the effectiveness of the reported radiation protection practices, which directly provides hands-on experience for the future HTR-PM reactor and adds to the completeness of the radiation protection methodology.

  9. The strategic study of pebble model high temperature gas-cooled reactor plant with power generation feature and industrial application prospect

    International Nuclear Information System (INIS)

    Zhao Mu; Ma Bo; Dong Yujie

    2010-01-01

    On the basis of the technical feature of pebble model high temperature gas-cooled reactor (HTR-PM) plant, its developmental advantage and future are deeply investigated from inherent safety and economics. It is explored about the business opportunity and future financing mode of HTR-PM plant. Industrial distribution and potential user are studied. It is resulted that the technical potential can be developed fully using Gas turbine power generation technology. It has wide market and great significance to build more group modules at home and developing countries. (authors)

  10. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  11. Status of the HTR 500 design program

    International Nuclear Information System (INIS)

    Baust, E.; Arndt, E.

    1987-01-01

    Since 1982 BBC/HRB have offered the HTR 500 as the follow-on project of the THTR 300, the first large pebble bed reactor. The technical concept of the HTR-500 largely corresponds to the THTR 300 which has been in operation for almost 2 years now. In developing the design concept of the HTR 500 the ideas and demands of the reactor users in the FRG interested in the HTR have been taken into consideration to a large extent. In 1982 these potential users formed a working group 'Arbeitsgemeinschaft Hochtemperaturreaktor' (AHR), representing 16 power indusry companies and in early 1983, awarded a contract to HRB to perform a conceptual design study on the HTR 500. Within this conceptual design study BBC/HRB developed the safety concept of the HTR 500, prepared a detailed description of the overall power plant, and performed a cost calculation. These activities were completed in 1984. Based on the positive results of this conceptual design study, BBC/HRB are expecting to be granted a design contract by the users company Hochtemperaturreaktor GmbH (HRG) to establish the final complete design plans and documents for the HTR 500. (author)

  12. Concept licensing procedure for an HTR-module nuclear power plant

    International Nuclear Information System (INIS)

    Brinkmann, G.; Will, M.

    1990-01-01

    In April 1987 the companies Siemens and Interatom applied in the West German state of Lower Saxony for a concept licensing procedure to be initiated for an HTR-Module nuclear power plant. In addition to a safety analysis report, numerous additional papers were submitted to the authorized experts. In April 1989 proceedings were suspended for political and legal reasons. By this time both the fire protection report and the plant security concept report had been completed. The safety concept review was continued by order of the Federal Minister for Research and Technology. The draft safety concept report was completed in July 1989. The final version was completed at the end of 1989. (orig.)

  13. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  14. The HTR 500 concept based on pratical THTR and AVR experience

    International Nuclear Information System (INIS)

    Wachholz, W.; Weicht, U.

    1988-01-01

    This paper discusses progress during the past ten years in the development of a specific HTR safety concept. This has been mainly characterized by the abandonment of the LWR specific safety principles and making use of the safety characteristics typical of the high-temperature reactor (HTR). In the design, construction and operation of high-temperature reactors - especially AVR (15 MWe plant in Juelich, FRG) and THTR (300 MWe plant in Hamm-Uentrop, FRG) - experience has been gained in the field of accident topology and plant risk of HTRs in recent years. This experience, based on detailed accident analyses performed by manufacturers and experts, is relevant for the entire HTR line independent of specific projects. The authors focus on the HTR 500, the first commercial high temperature reactor with a pebble bed core. Its design principles and the design of its systems are based on the earlier AVR and THTR projects

  15. Analysis of hypothetical incidents in nuclear power plants with PWR and HTR

    International Nuclear Information System (INIS)

    Geiser, H.

    1977-01-01

    Several accident analyses are reviewed with a view to fission product release, and the findings are transferred to German reactor plants with LWR and HTR and compared. First of all, hypothetical accidents are compared for both of these lines; after this, the history of accidents is briefly described, and the fission product release during these accidents is investigated. For both reactor lines, there is a different but sufficiently high potential for safety improvements. (orig.) [de

  16. HTR plus modern turbine technology for higher efficiencies

    International Nuclear Information System (INIS)

    Barnert, H.; Kugeler, K.

    1996-01-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question 'can the HTR compete with high efficiencies?' is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab

  17. HTR plus modern turbine technology for higher efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-08-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question `can the HTR compete with high efficiencies?` is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab.

  18. Why HTR/VHTR? A European point of view

    International Nuclear Information System (INIS)

    Basini, V.; Bogusch, E.; Breuil, E.; Buckthorpe, D.; Chauvet, V.; Ftitterer, M.; Van Heek, A.; Hittner, D.; Von Lensa, W.; Pirson, J.; Verrier, D.

    2008-01-01

    The (European) High Temperature Reactor Technology Network (HTR-TN) was created in 2000 by the main industrial and Research actors of nuclear energy in Europe for elaborating a strategy for developing advanced HTR technology towards industrial application and for taking initiatives for implementing this strategy, most particularly through the Euratom funded R and D programmes. HTR-TN members are convinced that the main market push for industrial deployment of a new generation of HTR will not come from utility needs for electricity generation, but from industrial process heat needs: even if HTR can be considered for satisfying particular niches of the electricity market, there will not be any incentive for utilities already experienced in the exploitation of large LWR to take the risk of a significant technology change, when no evident competitive edge would result from it. On the contrary, HTR is the sole nuclear system that can address heat needs of a large number of industrial processes that require a higher temperature than the temperature provided by all other types of industrial reactors. The possibility for HTR to address the industrial process heat market is a strong asset, as it opens to HTR a large market which is presently looking for solutions to reduce drastically CO 2 emissions, but at the same time it is a huge challenge: industrial exploitation of nuclear energy has been for the time being focused on electricity generation for which user requirements are relatively uniform. The versatility of process heat needs in terms of power, temperature, reliability, etc. will require a much larger flexibility of the nuclear heat source, which is not usual for nuclear industry, looking for competitiveness through standardisation. Therefore HTR-TN considers that the top priority innovation for HTR present development should not be missed: it is to demonstrate at an industrial scale the technical, industrial and economical feasibility of the coupling of a HTR with

  19. A synthesis on the HTR scenario studies at CEA - HTR2008-58059

    International Nuclear Information System (INIS)

    Boucher, L.; Greneche, D.

    2008-01-01

    fuel. With the most promising concepts, several scenario studies have also been performed to assess the impact of the deployment of HTR in the French nuclear park. The results demonstrate the capabilities of HTRs to replace one part of the present PWR fleet in France, should this type of reactors be required for national needs. For the Plutonium management, the high transmutation rates obtained in the coated particles allows to stabilize the Plutonium inventory, if the HTR spent fuel is reprocessed. For the minor actinides management, the recycling in the HTR allows to transmute the minor actinides produced by the EPR. However, the reprocessing of HTR spent fuel is necessary to stabilize the minor actinides inventories and to reduce significantly the amount of minor actinides in the HLW. At last, some preliminary core physic studies have also been performed on the Thorium - Pu cycle with HTRs. The results indicate that it should possible to reach significant conversion ratio (close to 0, 9) by reducing the moderation ratio of the HTR fuel. If this result is confirmed by the core study, the HTR could offer the technical possibility to develop a sustainable fuel cycle by using Thorium resources if this is needed

  20. The HTR-10 project and its further development

    International Nuclear Information System (INIS)

    Xu Yuanhui

    2002-01-01

    The 10 MW High Temperature Gas-cooled Reactor-Test Module (termed as HTR-10) is one of key project in the National High Technology Research and Development Program (1986-2000). Main objectives for the HTR-10 are: (1). To acquire know-how to design, construct and operate the HTGRs, (2). To establish an experimental facility, (3). To demonstrate the inherent safety features of the Modular HTGR, (4). To test electricity and heat co-generation and closed cycle gas turbine technology and (5). To do research and development work for high temperature process heat application. The Institute of Nuclear Energy Technology (INET) of Tsinghua University was appointed as the leading institute to be responsible for design, license applications, construction and operation of the HTR-10. The HTR-10 technical design represents the features of HTR-Module design. After five years construction, installation and pre-operation the HTR-10 reached the criticality in December 2000. Up to now all of results on zero point experiments and fuel elements irradiation test are fine. China will continue to develop the high temperature gas-cooled reactor in the future using the HTR-10 base

  1. For a Global HTR Marketing Initiative

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Venneri, Francesco; Richards, Matthew

    2014-01-01

    HTRs are at a crossroads in their history. The technology is proven and the current technical developments relatively mastered but the marketing track record is disappointing. This paper comes to the conclusion that an international, collaborative marketing and communication plan must be implemented in order to address the marketing bottleneck of HTRs. The paper reflects about the HTR product specificities, its unique selling points and its positioning against other nuclear designs and gas cogeneration. It summarises the global market status and demonstrates that the global market for HTRs is there, for electricity generation, industrial cogeneration and polygeneration. The paper finally argues that HTR vendors have a shared interest to unite in order to succeed in activating the market demand for HTR, and suggests an action plan for an international collaboration among HTR vendors to market and communicate globally on HTRs and reach together a critical mass of business leads worldwide, a mutually beneficial outcome. (author)

  2. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1978-07-01

    In order to obtain the license for construction and operation of HTR developed and introduced into Japan, it is necessary to assure integrity of reactor structures and the capability of reactor shutdown and maintain safety shutdown for the seismic design condition. Because Japanese land is located in relatively high seismacity zone, when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. For the above reason, many efforts of seismic research and development for HTR have been made at institutes and companies in Japan. In the paper, descriptions are: (1) Present status of development and construction plans of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, (5) future plan. (auth.)

  3. The safety characteristics of the HTR 500 reactor plant

    International Nuclear Information System (INIS)

    Wachholz, W.

    1987-01-01

    The HTR is a reactor having a passive safety. It is equipped with the usual active engineered safety systems in simplified form. Due to its inherent safety characteristics and the burst-safe prestressed concrete reactor vessel activity containment is ensured even without the effect of active safety systems. Even in the event of extremely hypothetical accidents the effect on the environment is low enough so that evacuation or relocation of the population is not required. Therefore large-scale damage of agricultural land and industrially used areas is safely ruled out. Thus the site selection for this type of reactor is not restricted i.e. an HTR can be constructed near industrial and urban center. (author)

  4. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  5. The present state of the HTR concept based on experience gained from AVR and THTR

    International Nuclear Information System (INIS)

    Wachholz, W.

    1989-01-01

    During the past ten years the development of a specific HTR concept has made remarkable progress. This has been mainly characterized by making use of the safety characteristics typical of the High-Temperature Reactor (HTR). In the design, construction and operation of High-Temperature Reactors - especially AVR (15 MWe plant in Juelich, FRG) and THTR (300 MWe plant in Hamm-Uentrop, FRG) - comprehensive experience has been gained in the field of operational availability and safety, accident topology and plant risk of HTRs in recent years. This experience is relevant for the entire HTR line independent of specific projects. (author). 3 refs, 5 figs, 1 tab

  6. Coal conversion and the HTR - basic elements of novel power supply concepts

    International Nuclear Information System (INIS)

    Buerger, F.H.

    1985-01-01

    A meeting under this title was held in Dortmund on 16 to 19 September, 1985, jointly by the VGB Technische Vereinigung der Grosskraftwerksbetreiber e.V., Essen, and the Vereinigte Elektrizitaetswerke Westfalen AG (VEW), Dortmund. The meeting was held in two sections: 'Gersteinwerk power plant - the combination unit K and the KUV coal conversion system' and '7th International conference on HTR technology'. Three technologies were discussed that will have a significant role on the future energy market, i.e., the HTR reactor line (first applied in the Hamm-Uentrop THTR reactor), the new generation of coal-fired power plants with combined gas/steam turbines, and the coal gasification technology. All three systems will make more efficient and less-polluting use of domestic coal by using HTR process heat, by converting coal to widen its range of applications, and by providing more efficient combination units for power plants. (orig./UA) [de

  7. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  8. EC-funded project (HTR-L) for the definition of a European safety approach for HTR's

    International Nuclear Information System (INIS)

    Ehster, S.; Dominguez, M.T.; Coe, I.; Brinkmann, G.; Lensa, W. von; Mheen, W. van der; Alessandroni, C.; Pirson, J.

    2002-01-01

    The inherent safety features of the HTRs make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. While a known and stable regulatory environment has long been established for Light Water Reactors, a different approach is necessary for the licensing of HTR based power plants. Among the R and D projects funded by the European Commission for HTR reactors, the HTR-L project is dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the Modular HTRs. Other specific objectives of this project are : To develop a methodology to classify the accidental conditions; To define the preliminary requirements for the confinement of radioactive products and to assess the need for a 'conventional' containment structure; To establish a SSC (2) classification and to define the rules for equipment qualification; To identify the key issues that need to be addressed in the licensing process of the HTRs; To organize a workshop with the concerned Safety Authorities at the end of the project. This paper will explain the project objectives and its final expected outcomes. (author)

  9. Studies for the layout and technical conception of a two-circuit HTR power plant of 600 MWsub(el) under public utilizer aspects

    International Nuclear Information System (INIS)

    Schuetten, R.

    1981-01-01

    In this study concerning conceptions for a nuclear power plant of 600 MWsub(el) with high-temperature reactor a conception for a HTR-nuclear power plant of 600 MWsub(el) to be built in the Federal Republic of Germany in future is developed on the basis of operating experience with the 15-MW-AVR-experimental nuclear power plant, the construction of the THTR-300 nuclear power plant and the gas-cooled reactors of English, French and American origin. This report gives a survey of the most important findings and the requirements on behalf of the public utilities for a nuclear power plant with high-temperature reactor with the dimensions of 600 MWsub(el). The examination of the utilities basic requirements for a power plant and the experience made during the licensing procedure led to this technical and safety conception for a HTR nuclear power plant with spherical fuel elements. In addition, the questions of the possibility of recurrent tests and of repairing safety components and also the future shut-down of the power plant, which are important for the public utilities, are examined. (orig./GL) [de

  10. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  11. Instrumentation of steam cycle HTR's up to 900 MWe

    International Nuclear Information System (INIS)

    Leithner, D.E.; Winkenbach, B.

    1982-06-01

    Due to basic design features and inherent safety qualities in-core instrumentation is not needed in an HTR. Reactor safety requirements can be met by integral measurements. A modest spatial resolving power of the out-of-core instrumentation is sufficient for all operational purposes in small and medium sized steam cycle HTR's. Thus, the instrumentation concept of the THTR 300 MWe prototype reactor can be adopted without major changes for the HTR 450 MWe reactor project, as is demonstrated here for the neutron flux and temperature measurements. (author)

  12. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    Science.gov (United States)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  13. Microscopic thermal characterization of HTR particle layers

    International Nuclear Information System (INIS)

    Rochais, D.; Le Meur, G.; Basini, V.; Domingues, G.

    2008-01-01

    This paper presents thermal diffusivity measurements of HTR fuel particle pyrolytic carbon layers at room temperature. The photoreflectance microscopy (PM) technique is used to characterize particle layers at a microscopic scale. Nevertheless, buffer layer needs a particular analysis due to its porous structure. Indeed, measurements by PM on this material only permit to obtain the thermal diffusivity of the solid skeleton, whose homogeneous zones surface does not exceed 100 μm 2 . These characteristics make, on the one hand, delicate the use of PM, and on the other hand, require the use of a numerical homogenization technique. This model takes into account the properties of gas confined in the pores, to simulate the conduction heat flux traveling through the layer in relation with its microstructure and to estimate an effective thermal conductivity of the entire layer. This approach is validated by infrared microscopy measurement of the effective thermal diffusivity of the especially elaborated thicker buffer layer. Last, the first tests to characterize the silicon carbide layer are presented

  14. Management system and potential markets for a HTR-GT plant

    International Nuclear Information System (INIS)

    Crommelin, G.A.K.

    1997-01-01

    This article will discuss some aspects which could be helpful to execute a HTR-GT study successfully: 1. The preferred type of organisation for such a study; in order to achieve a maximum of support in society and industry, a minimum of through life costing and a maximum of through life support. 2. The lead time needed for such studies i.e. the design, component testing, prototype testing, the required efficiency, the type of energy in quantity and quality, financial targets, controllability, maintainability and reliability. 3. The potential markets for the nuclear gasturbine driven energy plants in the low power range. Analyses of the markets will be explained from the user's point of view on why, when and how, for what purpose, in which power range, as well as how many units per application would be required. (author)

  15. Analysis of Seismic Soil-Structure Interaction for a Nuclear Power Plant (HTR-10

    Directory of Open Access Journals (Sweden)

    Xiaoxin Wang

    2017-01-01

    Full Text Available The response of nuclear power plants (NPPs to seismic events is affected by soil-structure interactions (SSI. In the present paper, a finite element (FE model with transmitting boundaries is used to analyse the SSI effect on the response of NPP buildings subjected to vertically incident seismic excitation. Analysis parameters that affect the accuracy of the calculations, including the dimension of the domain and artificial boundary types, are investigated through a set of models. A numerical SSI analysis for the 10 MW High Temperature Gas Cooled Test Reactor (HTR-10 under seismic excitation was carried out using the developed model. The floor response spectra (FRS produced by the SSI analysis are compared with a fixed-base model to investigate the SSI effect on the dynamic response of the reactor building. The results show that the FRS at foundation level are reduced and those at higher floor levels are altered significantly when taking SSI into account. The peak frequencies of the FRS are reduced due to the SSI, whereas the acceleration at high floor levels is increased at a certain frequency range. The seismic response of the primary system components, however, is reduced by the analysed SSI for the HTR-10 on the current soil site.

  16. HTR-TN a European network for the development of HTR technology

    International Nuclear Information System (INIS)

    Von Lensa, W.

    2001-01-01

    A network called High-temperature reactor technology network (HTR-TN) has been created at a European level to coordinate works and knowledge on the subject with a long-term perspective and to serve as a channel for international collaboration. An analysis confirmed that the obvious economic penalty of HTR due to its low density power could be compensated by the combination of recent advances that may completely change the positioning of HTR on the energy market: -) the modular concept allowed to get a reactor free from core melt risk without intervention of any active safety system, implying a drastic simplification of the design of the reactor and the safety systems as well as a standardisation and potential for shop fabrication in series; -) the development of gas turbines, the efficiency of which increased, in 10 years, from 35% till 50% and more, enabling to consider suppression of the secondary system; -) the ultra high burn-up potential of HTR fuel and the possibility for direct disposal of spent HTR fuel elements that may reduce cost of the fuel cycle and contribute to the reduction of civil and military plutonium stockpiles. (A.C.)

  17. Nonlinear finite element analysis of a test on the mechanical mechanism of the half-steel-concrete composite beam in HTR-PM

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong

    2014-01-01

    According to a large-span half-steel-concrete (HSC) composited beam in the composited roof in the HTR-PM, a 1:3 scale specimen is investigated by the static load test. By analyzing the loading, deflection, strain and fracture development of the specimen in the process, studying the mechanical characteristics and failure pattern of such components. The ANSYS finite element software is utilized in this paper to analyze the nonlinearity behavior of the HSC beam specimen, and through comparing the experimental results and the numerical simulation, it can be illustrated that the finite element model can simulate the HSC beam accurately. From the test results, it can be concluded that by means of appropriate shear connection and anchorage length, steel plate and concrete can work together very well and the HSC beam has good load carrying capacity and ductility. These conclusions can serve as a preliminary design reference for the large span half-steel-concrete composite beam in NPP. (author)

  18. The influence of PM2.5 coal power plant emissions on environment PM2.5 in Jilin Province, China

    Science.gov (United States)

    Sun, Ye; Li, Zhi; Zhang, Dan; Zhang, He; Zhang, Huafei

    2018-02-01

    In recent years, in the Northeast of China, the heating period comes with large range of haze weather. All the units of coal power plants in Jilin Province have completed the cogeneration reformation; they provide local city heat energy. Many people believe that coal power plants heating caused the heavy haze. In is paper, by compared concentration of PM2.5 in environment in heating period and non heating period, meanwhile the capacity of local coal power plants, conclude that the PM2.5 emission of coal power plants not directly cause the heavy haze in Changchun and Jilin in the end of October and early November. In addition, the water-soluble iron composition of PM2.5 coal power plant emissions is compared with environment, which further proves that the heating supply in coal power plants is not the cause of high concentration of PM2.5 in Jilin province.

  19. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  20. HTR fuel research in the HTR-TN network on the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M. [HFR Unit, Institute for Advanced Materials, European Commission, Joint Research Centre, Petten (Netherlands); Languille, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Guillermier, P. [FRAMATOME ANP, 69 - Lyon (France); Bakker, K. [Nuclear Research and Consultancy Group, Petten (Netherlands); Nabielek, H. [Forschungszentrum Juelich (Germany)

    2001-07-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  1. HTR fuel research in the HTR-TN network on the high flux reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M.; Languille, A.; Guillermier, P.; Bakker, K.; Nabielek, H.

    2001-01-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  2. The application of HTR type modular plants in refinieries and for aluminium oxide production

    International Nuclear Information System (INIS)

    Schad, M.; Clausen, E.; Funke, A.; Heng, R.; Poesche, W.; Simon, P.; Schwarz, T.; Feltes, W.; Hague, H.; Heidkamp, H.; Hesse, K.; Kohtz, N.; Mendte, K.; Ullrich, M.; Wild, W.; Zipper, E.

    1991-02-01

    The aim of the second study of coupling the HTR module to process plants consistsed in developing concepts for potential plants and analysing them again for their technical and economic feasibility. At each of the three process plants, heat is coupled in by a He/He intermediate heat exchanger. This principle of heat coupling was consistently aimed at - in order to keep the expensive nuclear part of plant coupling as small as possible, and - in order to avoid that primary helium can get into the process plants, just as vice versa process media into the HTRM-helium circuit. For refineries this principle is easy to comply with because of the low process temperatures of below 600deg C. For aluminium oxide production which conventionally requires a temperature of about 950deg C, calcination tests were made at lower process temperatures, and parallely the feed-in of heat to reach the highest process temperature through electric heating was studied. For petrochemistry, heat transfer during naptha cracking was closely analysed. (orig./GL) [de

  3. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, T.

    1978-01-01

    In order to obtain the license for construction and operation of HTR developed in and/or introduced into Japan, it is necessary to insure the integrity of reactor structures and the capability of reactor shutdown and the maintenance of safety shutdown for the seismic design condition. Because Japan is located in relatively high seismicity zone, even when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. The report describes the following: (1) present status of development and construction plan of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, and (5) future plans

  4. A new impetus for developing industrial process heat applications of HTR in europe - HTR2008-58259

    International Nuclear Information System (INIS)

    Hittner, D.; De Groot, S.; Griffay, G.; Yvon, P.; Pienkowski, L.; Ruer, J.; Angulo, C.; Laquaniello, G.

    2008-01-01

    discrepancies and issues, to assess the feasibility of different coupling schemes and to identify development needs. Partners from nuclear regulatory organisations will also address the feasibility of licensing such coupling schemes. The issues they will raise will be taken into consideration for defining coupling design bases and identifying R and D needs. A detailed road-map for designing an industrial demonstrator of a HTR coupled with process heat applications will be inferred from this analysis, as well as R and D actions required for supporting the development of the reactor, of the coupling system and of possible adaptations or innovations in industrial processes. (authors)

  5. Thermodynamic correlations for the accident analysis of HTR's

    International Nuclear Information System (INIS)

    Rehm, W.; Jahn, W.; Finken, R.

    1976-12-01

    The thermal properties of Helium and for the case of a depressurized primary circuit, various mixtures of primary cooling gas were taken into consideration. The temperature dependence of the correlations for the thermal properties of the graphite components in the core and for the structural materials in the primary circuit are extrapolated about normal operation conditions. Furthermore the correlations for the effective thermal conductivity, the heat transfer and pressure drop are described for pebble bed HTR's. In addition some important heat transfer data of the steam generator are included. With these correlations, for example accident sequences with failure of the afterheat removal systems are discussed for pebble bed HTR's. It is concluded that the transient temperature behaviour demonstrates the inherent safety features of the HTR in extreme accidents. (orig.) [de

  6. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    Crambes, M.

    1980-01-01

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  7. Serotonergic gene polymorphisms (5-HTTLPR, 5HTR1A, 5HTR2A), and population differences in aggression: traditional (Hadza and Datoga) and industrial (Russians) populations compared.

    Science.gov (United States)

    Butovskaya, Marina L; Butovskaya, Polina R; Vasilyev, Vasiliy A; Sukhodolskaya, Jane M; Fekhredtinova, Dania I; Karelin, Dmitri V; Fedenok, Julia N; Mabulla, Audax Z P; Ryskov, Alexey P; Lazebny, Oleg E

    2018-04-16

    searching for associations between genes and behavior, and demonstrated the role of cultural attitudes towards the use of in-group aggression. Our data partly explained the reasons for disagreement in results of different teams, searching for candidate-gene associations with behavior without considerations of culturally desirable norms. Previous studies suggested that the 5HTR2A gene polymorphism associates with aggression and criminality. Our data extended these findings, demonstrating the role of rs6311 (5HTR2A gene) in aggression in adult healthy men and women from our samples. We found that G-allele carriers were rated higher on total aggression.

  8. Actinide production in different HTR-fuel cycle concepts

    International Nuclear Information System (INIS)

    Filges, D.; Hecker, R.; Mirza, N.; Rueckert, M.

    1978-01-01

    At the 'Institut fuer Reaktorentwicklung der Kernforschungsanlage Juelich' the production of α-activities in the following HTR-OTTO cycle concepts were studied: 1. standard HTR cycle (U-Th); 2. low enriched HTR cycle (U-Pu); 3. near breeder HTR cycle (U-Th); 4. combined system (conventional and near breeder HTR). The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The calculations were performed by the short depletion code KASCO and the well-known ORIGEN program

  9. HTR-TN achievements and prospects for future developments

    International Nuclear Information System (INIS)

    Hittner, D.; Angulo, C.; Basini, V.; Bogusch, E.; Breuil, E.; Buckthorpe, D.; Chauvet, V.; Futterer, M.A.; Van Heek, A.; Von Lensa, W.; Yvon, P.

    2011-01-01

    It is already 10 years since the (European) High Temperature Reactor Technology Network (HTR-TN) launched a program for development of HTR technology, which expanded through three successive Euratom framework programs, with many projects in line with the network strategy. Widely relying in the beginning on the legacy of the former European HTR developments (DRAGON, AVR, THTR, etc.) that it contributed to safeguard, this program led to advances in HTR/VHTR technologies and produced significant results, which can contribute to the international cooperation through Euratom involvement in the Generation IV International Forum (GIF). the main achievements of the European program, performed in complement to efforts made in several European countries and other GIF partners, are presented: they concern the validation of computer codes (reactor physics, as well as system transient analysis from normal operation to air ingress accident and fuel performance in normal and accident conditions), materials (metallic materials for vessel, direct cycle turbines and intermediate heat exchanger, graphite, etc.), component development, fuel manufacturing and irradiation behavior, and specific HTR waste management (fuel and graphite). Key experiments have been performed or are still ongoing, like irradiation of graphite and of fuel material (PYCASSO experiment), high burn-up fuel PIE, safety test and isotopic analysis, IHX mock-up thermohydraulic test in helium atmosphere, air ingress experiment for a block type core, etc. Now HTR-TN partners consider that it is time for Europe to go a step forward toward industrial demonstration. In line with the orientations of the 'Strategic Energy Technology Plan (SET-Plan)' recently issued by the European Commission that promotes a strategy for development of low-carbon energy technologies and mentions Generation IV nuclear systems as part of key technologies, HTR-TN proposes to launch a program for extending the contribution of nuclear energy to

  10. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    International Nuclear Information System (INIS)

    1986-06-01

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant

  11. High temperature reactor module power plant. Plant and safety concept June 1986 - 38.07126.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-15

    The modular HTR power plant is a universally applicable energy source for the co-generation of electricity, process steam or district heating. The modular HTR concept is characterized by the fact that standardized reactor units with power ratings of 200 MJ/s (so-called modules) can be combined to form power plants with a higher power rating. Consequently the special safety features of small high-temperature reactors (HTR) are also available at higher power plant ratings. The safety features, the technical design and the mode of operation are briefly described in the following, taking a power plant with two HTR-Modules for the co-generation of electricity and process steam as an example. Due to its universal applicability and excellent safety features, the modular HTR power plant is suitable for erection on any site, but particularly on sites near other industrial plants or in densely populated areas. The co-generation of electricity and process steam or district heating with a modular HTR power plant as described here is primarily tailored to the requirements of industrial and communal consumers. The site for such a plant is a typical industrial one. The anticipated features of such sites were taken into consideration in the design of the modular HTR power plant.

  12. Testing of HTR UO{sub 2} TRISO fuels in AVR and in material test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kania, Michael J., E-mail: MichaelJKania@googlemail.com [Retired from Lockheed Martin Corp, 20 Beach Road, Averill Park, NY 12018 (United States); Nabielek, Heinz, E-mail: heinznabielek@me.com [Retired from Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Verfondern, Karl [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Allelein, Hans-Josef [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, 52072 Aachen (Germany)

    2013-10-15

    The German High Temperature Reactor Fuel Development Program successfully developed, licensed and manufactured many thousands of spherical fuel elements that were used to power the experimental AVR reactor and the commercial THTR reactor. In the 1970s, this program extended the performance envelope of HTR fuels by developing and qualifying the TRISO-coated particle system. Irradiation testing in real-time AVR tests and accelerated MTR tests demonstrated the superior manufacturing process of this fuel and its irradiation performance. In the 1980s, another program direction change was made to a low enriched UO{sub 2} TRISO-coated particle system coupled with high-quality manufacturing specifications designed to meet new HTR plant design needs. These needs included requirements for inherent safety under normal operation and accident conditions. Again, the German fuel development program met and exceeded these challenges by manufacturing and qualifying the low-enriched UO{sub 2} TRISO-fuel system for HTR systems with steam generation, gas-turbine systems and very high temperature process heat applications. Fuel elements were manufactured in production scale facilities that contained near defect free UO{sub 2} TRISO coated particles, homogeneously distributed within a graphite matrix with very low levels of uranium contamination. Good irradiation performance for these elements was demonstrated under normal operating conditions to 12% FIMA and under accident conditions not exceeding 1600 °C.

  13. MCNP qualification on the HTR critical configurations: HTTR, HTR10 and PROTEUS results

    Energy Technology Data Exchange (ETDEWEB)

    TRAKAS, Christos; STOVEN, Gilles [AREVA NP, Tour Areva, 92084 Paris La Defence Cedex (France)

    2008-07-01

    Recent critical experiments, including PROTEUS, HTTR and HTR-10 provide a reliable qualification base for HTR criticality predictions. The fuel tested in these experiments, be it hexagonal block or pebble type, is irradiated in a spectrum comparable to that of the HTR planned by AREVA NP. The neutron spectrum is comparable in all three cases; the mean C/M value for all critical cases is less than +350 pcm (JEF2.2), +250 pcm (JEFF3.1) and +60 pcm (ENDF BVI). The C/M obtained for the rods worth, the reaction rates and the isothermal coefficient are very satisfactory. (authors)

  14. Licensing experience of the HTR-10 test reactor

    International Nuclear Information System (INIS)

    Sun, Y.; Xu, Y.

    1996-01-01

    A 10MW high temperature gas-cooled test reactor (HTR-10) is now being projected by the Institute of Nuclear Energy Technology within China's National High Technology Programme. The Construction Permit of HTR-10 was issued by the Chinese nuclear licensing authority around the end of 1994 after a period of about one year of safety review of the reactor design. HTR-10 is the first high temperature gas-cooled reactor (HTGR) to be constructed in China. The purpose of this test reactor project is to test and demonstrate the technology and safety features of the advanced modular high temperature reactor design. The reactor uses spherical fuel elements with coated fuel particles. The reactor unit and the steam generator unit are arranged in a ''side-by-side'' way. Maximum fuel temperature under the accident condition of a complete loss of coolant is limited to values much lower than the safety limit set for the fuel element. Since the philosophy of the technical and safety design of HTR-10 comes from the high temperature modular reactor design, the reactor is also called the Test Module. HTR-10 represents among others also a licensing challenge. On the one side, it is the first helium reactor in China, and there are less licensing experiences both for the regulator and for the designer. On the other side, the reactor design incorporates many advanced design features in the direction of passive or inherent safety, and it is presently a world-wide issue how to treat properly the passive or inherent safety design features in the licensing safety review. In this presentation, the licensing criteria of HTR-10 are discussed. The organization and activities of the safety review for the construction permit licensing are described. Some of the main safety issues in the licensing procedure are addressed. Among these are, for example, fuel element behaviour, source term, safety classification of systems and components, containment design. The licensing experiences of HTR-10 are of

  15. HTR-10GT AMBs displacement sensor design

    International Nuclear Information System (INIS)

    Shi Zhengang; Zha Meisheng; Zhao Lei; Sun Zhuo

    2005-01-01

    The 10 MW high temperature gas-cooled test module reactor (HTR-10GT) with the core made of spherical fuel elements was designed and constructed by the Institute of Nuclear and New Energy Technology of Tsinghua University in China. In the HTR-10GT, turbo-compressor and generator rotors are connected by a flexible coupling. The rotors, restricted by actual instruments and working environment, must be supported without any contact and lubrication. Active magnetic bearing (AMB), known as its advantages over the conventional bearings., such as contact-free, no-lubricating and active damping vibration, is the best way to suspend and stabilize the position of rotors of HTR-10GT. Each rotor is suspended by two radial and one axial AMBs. The radial AMB's radial gap is 0.15 mm considering the gap of 0.4 mm between the compressor stator and blades in order to protect the compressor. The control system controls the rotor position to meet the required gaps between rotor and stator through windings current. All the position information concerning radial and axial AMB is generated by sensors for measuring the displacement of the levitated body. Some typical sensors, i.e. eddy current displacement sensor, capacitive displacement sensor, can provide position information, but, quite often, unsatisfactory anti-jamming, which is a key issue for AMB systems near generator and other electric devices in HTR-10GT. Therefore, a kind of new type sensor is designed to measure the radial and axial displacements and the vibration of the rotors. This paper focuses on the design characteristics of the HTR-10GT AMBs displacement sensors and introduction of the related experiments to demonstrate its performance. (authors)

  16. Determination of safety margins for creep loaded primary circuit components in case of loss of pressure accidents of a HTR plant (SR 383)

    International Nuclear Information System (INIS)

    Breitbach, G.; Ahmed, K.; Over, H.; Schubert, F.; Nickel, H.

    1991-10-01

    The wall thickness of tubes in high temperature plants must be limited in such a way that pressure differences can not produce unadmissible deformations. For HTR (PNP-Plant) the postulated loss of secondary pressure is one of the considered accidents. In that case the tubes of the heat exchangers are loaded by the outher pressure of the primary coolant. So the risk of a creep collapse is given. The report is related to experimental and theoretical work for the creep collapse phenomena. HTR relevant tube geometries of the high temperature alloys NiCr22Co12Mo (INCONEL 617) and X10NiCrAlTi 32 20 (INCOLOY 800) were tested at temperatures of 900 and 950deg C and outer pressure loads in the range 40 bars. The experimental results are compared with theoretically computed values and discussed. The problem of safety margin is treated. Further, simplified procedures are developed for the estimation of the collapse time. (orig.) [de

  17. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  18. Study on the production mechanism of Co-60 in the primary loop of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Xie Feng; Li Hong; Cao Jianzhu; Li Fu; Wei Liqiang

    2015-01-01

    Co-60 is an activated metallic erosion product, which is very important for waste management and decommissioning work of pressurized water reactor (PWR) power plants. Recent measurement on the samples from the primary loop of HTR-10 indicates the existence of Co-60. In current paper, the preliminary experimental results in HTR-10 will be introduced, and the production mechanism of Co-60 in the pebble bed high temperature gas-cooled reactors will be summarized and compared with that in PWRs and Germany High Temperature Nuclear Reactor (AVR). The further experiments with decomposing the post-irradiation graphite spheres of HTR-10 are put forward, which will promote the further study to testify the production sources of Co-60 and be of great significance in the waste minimization and the decommissioning work of HTR-10. (author)

  19. Operating experiences with heat-exchanging components of a semi-technical pilot plant for steam gasification of coal using heat from HTR

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van

    1984-01-01

    within the framework of the PNP- Project, a semi-technical plant for the development of a process of coal gasification by means of nuclear heat was operated. Here gasification is for the first time implemented in a fluidized bed using heat of an electrically heated helium cycle at pressure up to 40 bar and temperatures normal for HTR. The plant serves for testing and developing various components as immersion heater, insulations, dosing devices, and for compiling sound data for further planning

  20. The challenge of introducing high-temperature reactor plants onto the international power plant market

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1987-01-01

    Growth of world population increases energy demand until the year 2000 and afterwards. Electricity growth rates in industrialized nations are lower after the oil price escalation in 1973 and 1979, and in developing countries grid sizes are often too small for the operation of large LWR plants. This indicates a potential for small and medium-sized power reactors such as the HTR-100 and the HTR-500. These plants can compete with coal fired plants of comparable size. An HTR-500 is even competitive, considering the electricity generating cost of large LWR plants. The special advantages of HTR plants in the small and medium-capacity range are discussed. (orig.)

  1. The challenge of introducing high-temperature-reactor plants onto the international power plant market

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1988-01-01

    Growth of world population increases energy demand until the year 2000 and afterwards. Electricity growth rates in industrialized nations are lower after the oil price escalation in 1973 and 1979, and in developing countries grid sizes are often too small for the operation of large LWR plants. This indicates a potential for small and medium-sized power reactors such as the HTR-100 and the HTR-500. These plants can compete with coal fired plants of comparable size. An HTR-500 is even competitive, considering the electricity generating cost of large LWR plants. The special advantages of HTR plants in the small and medium-capacity range are discussed. (orig.)

  2. French programme for HTR fuel

    International Nuclear Information System (INIS)

    Gillet, R.M.

    1991-01-01

    It is reported that in the frameworks of the French HTR research program, stopped in 1979 the HTR coated particle fuel, fuel rod and prismatic fuel element design have been successfully developed and irradiation tested in France and specific examination methods for irradiated fuel particles, rods and graphite blocks have been developed. Currently CEA is involved in fission product transport experiments sponsored by the US Department of Energy and performed in the COMEDIE loop. Finally the CEA follows progress and developments in HTR fuel research and development throughout the world. 1 tab

  3. The Renewal of HTR Development in Europe

    International Nuclear Information System (INIS)

    Hittner, Dominique

    2002-01-01

    The European HTR-Technology Network (HTR-TN), created in 2000, presently groups 20 organisations from European nuclear research and industry for developing the technologies of direct-cycle modular HTRs, which presently raise a large world-wide interest, because of their high potential for economic competitiveness, natural resource sparing, safety and minimisation of the waste impacts, in line with the goals of sustainable development of Generation IV. All aspects of HTR technologies are addressed by HTR-TN, from the reactor physics to the development of materials, fuel and components. Most of this activity is supported by the European Commission in the frame of its 5. EURATOM Framework Programme. The first results of HTR-TN programme are given: the analysis of the reactor physics international benchmark on the commissioning tests of HTTR (Japan), the long term behaviour of spent HTR fuel in geologic disposal conditions, the preparation of a very high burnup fuel irradiation and the development of fabrication processes for producing high performance coated particles, etc. (authors)

  4. Turbo-machine deployment of HTR-10 GT

    International Nuclear Information System (INIS)

    Zhu Shutang; Wang Jie; Zhang Zhengming; Yu Suyuan

    2005-01-01

    As a testing project of gas turbine modular High Temperature Gas-cooled Reactor (HTGR), HTR-10GT has been studied and developed by Institute of Nuclear and New Energy Technology (INET) of Tsinghua University after the success of HTR-10 with steam turbine cycle. The main purposes of this project are to demonstrate the gas turbine modular HTGR, to optimize the deployment of Power Conversion Unit (PCU) and to verify the techniques of turbo-machine, operating modes and controlling measures. HTR-10GT is concentrated on the PCU design and the turbo-machine deployment. Possible turbo-machine deployments have been investigated and two of them are introduced in this paper. The preliminary design for the turbo-machine of HTR-10GT is single-shaft of vertical layout, arranged by the side of the reactor and the turbo-compressor rotary speed was selected to be 250 s -1 (15000 r/min) by considering the efficiency of turbo-compressor blade systems, the strength conditions and the mass and size characteristics of the turbo-compressor. The rotor system will be supported by electromagnetic bearings (EMBs) to curb the possible pollutions of the primary loop. Of all the components in this design, the high speed turbo-generator seems to be a world-wide technical nut. As an alternative design, a gearbox complex is used to reduce the rotary speed from the turbo-compressor 250 s -1 to 50 s -1 so that the ordinary generator can be used. (authors)

  5. A Small Modular Reactor Design for Multiple Energy Applications: HTR50S

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X.; Tachibana, Y.; Ohashi, H.; Sato, H.; Tazawa, Y.; Kunitomi, K. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2013-06-15

    HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's 950 .deg. C, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to 750 .deg. C for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to 900 .deg. C for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

  6. HTR-10 management information system

    International Nuclear Information System (INIS)

    Liu Ruoxiao; Wu Zhongwang; Xi Shuren

    2000-01-01

    The HTR-10 Management information system (REMIS) strengthens the managerial level and usage of the information of HTR-10, thereby enhances the ability and efficiency of the design and management work. REMIS is designed based on the Client/Server framework. Database management system is SQL Server 6.5 for NT, While the client side is developed by Borland C ++ Builder, and it is based on Windows 95/98. The network protocol is TCP/IP. REMIS collects date of the HTR-10 at four parameters: Reactor properties, Design parameters, Equipment properties Reactor system flow charts. Final discussing extended prospect of REMIS

  7. HTR characteristics affecting reactor physics

    International Nuclear Information System (INIS)

    Ehlers, K.

    1980-01-01

    A physical description of high-temperature has-cooled reactors is given, followed by an overview of HTR characteristics. The emphasis is placed on the HTR fuel cycle alternatives and thermohydraulics of pebble bed core. Some prospects of HTRs in the Federal Republic of Germany are also presented

  8. HTR Development in China

    International Nuclear Information System (INIS)

    Wang Dazhong

    2014-01-01

    The roles of HTRs in China: 1. Due to the inherent safety features, high efficiency of electricity generation, site flexibility, the modular HTR can act as a supplement to LWR for small and medium size power generation. 2. Co-generation to supply steam up to 600℃, for petroleum refinery, oil sand and oil shale processing, sea water desalination and district heating, etc. 3. Hydrogen production at 900~1000 ℃ by V/HTR. Conclusions and prospects: • China’s energy system will experience transition and reform in the future; • Nuclear energy will play an irreplaceable role in China’s energy development; • Due to the excellent features of inherent safety, the HTR is a promising technology for electricity generation and process heat utilization; • Further international cooperation and exchanges need to be enhanced

  9. Maternal HtrA3 optimizes placental development to influence offspring birth weight and subsequent white fat gain in adulthood.

    Science.gov (United States)

    Li, Ying; Salamonsen, Lois A; Hyett, Jonathan; Costa, Fabricio da Silva; Nie, Guiying

    2017-07-04

    High temperature requirement factor A3 (HtrA3), a member of the HtrA protease family, is highly expressed in the developing placenta, including the maternal decidual cells in both mice and humans. In this study we deleted the HtrA3 gene in the mouse and crossed females carrying zero, one, or two HtrA3-expressing alleles with HtrA3 +/- males to investigate the role of maternal vs fetal HtrA3 in placentation. Although HtrA3 -/- mice were phenotypically normal and fertile, HtrA3 deletion in the mother resulted in intra-uterine growth restriction (IUGR). Disorganization of labyrinthine fetal capillaries was the major placental defect when HtrA3 was absent. The IUGR caused by maternal HtrA3 deletion, albeit being mild, significantly altered offspring growth trajectory long after birth. By 8 months of age, mice born to HtrA3-deficient mothers, independent of their own genotype, were significantly heavier and contained a larger mass of white fat. We further demonstrated that in women serum levels of HtrA3 during early pregnancy were significantly lower in IUGR pregnancies, establishing an association between lower HtrA3 levels and placental insufficiency in the human. This study thus revealed the importance of maternal HtrA3 in optimizing placental development and its long-term impact on the offspring well beyond in utero growth.

  10. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  11. Research status on hydrodynamics and particle motion behavior of absorber sphere pneumatic conveying system in HTR-PM

    International Nuclear Information System (INIS)

    Li Tianjin; Zhang He; Huang Zhiyong; Q, Weiwei; Bo Hanliang

    2014-01-01

    The absorber sphere pneumatic conveying system in pebble-bed high temperature gas-cooled reactor was a special application of pneumatic conveying technique. The whole conveying process was an intermittent circulation of absorber spheres between the side reflector boring and the sphere storage vessel in the reactor. The absorber spheres were designed to drop into the reflector borings by its own gravity when the sphere discharge valve was opened by the driving mechanism. The absorber spheres in the reflector boring were transported back to the sphere storage vessel when the reactor needs to be started up. The hydrodynamics and particle motion behavior characteristics of the absorber spheres were very important for the design and operation of this special pneumatic conveying system. The whole conveying process of absorber spheres was consisted of four subprocesses, i.e. the spheres discharge from the sphere storage vessel and the side reflector boring, entrainment of spheres in the feeder, conveying of spheres in the transport pipe, gas-solid separation and pile of spheres in the sphere storage vessel. The research status on hydrodynamics and particle motion behavior of the absorber spheres in the pneumatic conveying system of HTR-PM were introduced mainly from the viewpoint of granular flow and gas-solid flow. The experimental systems and apparatus constructed and numerical simulation work conducted for absorber sphere pneumatic conveying process investigation were introduced. Some typical experimental and numerical simulation results of the hydrodynamics and particle motion behavior characteristics of the absorber spheres conveying were briefly reported. (author)

  12. Pre-economic analysis of HTR in preparation for a comprehensive economic assessment of HTRs in the world

    Energy Technology Data Exchange (ETDEWEB)

    Bredimas, Alexandre, E-mail: alexandre.bredimas@strane-innovation.com

    2014-05-01

    High temperature nuclear reactors will address mainly the industrial cogeneration market and compete with gas cogeneration, the current reference technology. The key question for HTR is therefore: how far are HTRs competitive against gas technologies? This simple question demands a complex response. First, the cogeneration scheme has to be discussed according the specificities in heat usage of every industry as they will impact the design. Second, the costs, revenues and risks of the different lifecycle phases for both a HTR and gas cogeneration plant have to be assessed and compared. These parameters will greatly depend on each location (personnel costs, gas local prices, CO{sub 2} pricing, etc.). A particular attention has to be given to the risk interactions between the cogeneration plant and the industrial facility it is supplying with heat and electricity (e.g. tritium contamination in industrial processes, explosion of flammable products in industrial site). This paper aims mainly at starting exchanges at international level with other equivalent initiatives in order to assess in general terms the economic viability of HTR worldwide, in relation to the evaluation of the HTR global market.

  13. Pre-economic analysis of HTR in preparation for a comprehensive economic assessment of HTRs in the world

    International Nuclear Information System (INIS)

    Bredimas, Alexandre

    2014-01-01

    High temperature nuclear reactors will address mainly the industrial cogeneration market and compete with gas cogeneration, the current reference technology. The key question for HTR is therefore: how far are HTRs competitive against gas technologies? This simple question demands a complex response. First, the cogeneration scheme has to be discussed according the specificities in heat usage of every industry as they will impact the design. Second, the costs, revenues and risks of the different lifecycle phases for both a HTR and gas cogeneration plant have to be assessed and compared. These parameters will greatly depend on each location (personnel costs, gas local prices, CO 2 pricing, etc.). A particular attention has to be given to the risk interactions between the cogeneration plant and the industrial facility it is supplying with heat and electricity (e.g. tritium contamination in industrial processes, explosion of flammable products in industrial site). This paper aims mainly at starting exchanges at international level with other equivalent initiatives in order to assess in general terms the economic viability of HTR worldwide, in relation to the evaluation of the HTR global market

  14. Conceptual design of small-sized HTGR system (4). Plant design and technical feasibility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing L.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

    2013-09-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2020s. HTR50S was designed for steam supply and electricity generation by the steam turbine with the reactor outlet temperature of 750degC as a reference plant configuration. On the other hand, the intermediate heat exchanger (IHX) will be installed in the primary loop to demonstrate the electricity generation by the helium gas turbine and hydrogen production by thermochemical water splitting by utilizing the secondary helium loop with the reactor outlet temperature of 900degC as a future plant configuration. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750degC to 900degC and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems (i.e., reactor internal components, reactor pressure vessel, vessel cooling system, shutdown cooling system, steam generator (SG), gas circulator, SG isolation and drainage system, reactor containment vessel, steam turbine and heat supply system) satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S. (author)

  15. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  16. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  17. Present status of research and development for HTR in China

    Energy Technology Data Exchange (ETDEWEB)

    Dazhong, Wang; Daxin, Zhong; Yuanhul, Xu [Institute of Nuclear Energy Technology, Tsinghua University, Beijing (China)

    1990-07-01

    The HTR R and D Project is being carried out in the relevant institutions in China. Some topics are covered such as, fuel element technology, graphite development, fuel element handling system, helium technology, fuel reprocessing technology as well as HTR design study. Some results of HTR research work are described. In addition, to provide a test facility for investigation of HTR Module reactor safety and process heat application of HTR, a joint project on building a 10 MW test HTR with Siemens-Interatom, KFA Juelich and INET is going on. The conceptual design of 10 MW test HTR has been completed by the joint group. In parallel the application study of HTR Module is being carried out for the oil industry, petrochemical industry as well as power generation. Some preliminary results of the application study, for example, for heavy oil recovery on Shengli oil field and process heat application in Yan shan petroleum company, are described. (author)

  18. The future of HTR development and market chances

    International Nuclear Information System (INIS)

    Baust, E.; Weisbrodt, I.

    1989-01-01

    In more than thirty years of development, the pebble bed high-temperature reactor has been brought to the threshold of commercial maturity. On the basis of the experience accumulated with the 15 MW AVR reactor and the THTR-300, unit sizes tailored to demand (HTR-500, modular HTR, GHR-10) will be developed for the electricity and heat markets of the future. The high-temperature reactor is a meaningful supplement to the proven line of light-water reactors and is particularly suitable for being exported to developing countries and industrial threshold countries because of its special technical and inherent safeguards properties. There is broad worldwide interest in the HTR, as is evidenced by several existing agreements on cooperation. It is for this reason that market chances are believed to exist for the HTR after the expected revival of the nuclear power market. ABB and Siemens therefore have decided to develop and market the HTR jointly in the future as a matter of long term strategy by working through a joint subsidiary, HTR-GmbH. (orig.) [de

  19. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    Science.gov (United States)

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-03-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.

  20. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  1. Strengths, weaknesses, opportunities and threats for HTR deployment in Europe

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Kugeler, Kurt; Fütterer, Michael A.

    2014-01-01

    High temperature nuclear reactors are a technology, of which early versions were demonstrated in the 1960s–1980s in Germany (AVR, THTR) and the United States (Peach Bottom, Fort St. Vrain). HTRs were initially designed for high temperature, high efficiency electricity generation but the technology, the market and the targeted applications have evolved since then to address industrial cogeneration and new operational conditions (in particular new safety regulations). This paper intends to analyse the latest status of HTR today, as regards their intrinsic strengths and weaknesses and their external context, whether positive (opportunities) or negative (threats). Different dimensions are covered by the analysis: technology status, results from R and D programmes (especially in Europe), competences and skills, licensing aspects, experience feedback from demonstrator operation (in particular in Germany), economic conditions and other non-technical aspects. Europe has a comprehensive experience in the field of HTR with capabilities in both pebble bed and prismatic designs (R and D, engineering, manufacturing, operation, dismantling, and the full fuel cycle). Europe is also a promising market for HTR as the process heat market is large with good industrial and cogeneration infrastructures. The analysis of the European situation is to a good deal indicative for the global potential of this technology

  2. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains.

    Directory of Open Access Journals (Sweden)

    Przemyslaw Glaza

    Full Text Available Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3, showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ and an N-terminally truncated HtrA3S (ΔN-HtrA3S were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

  3. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains.

    Science.gov (United States)

    Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara

    2015-01-01

    Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

  4. Analysis of the link between the redox state and enzymatic activity of the HtrA (DegP protein from Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tomasz Koper

    Full Text Available Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.

  5. Progress of the HTR-10 project

    International Nuclear Information System (INIS)

    Zhong, D.; Xu, Y.

    1996-01-01

    This paper briefly introduces the main technical features and the design specifications of the HTR-10. Present status and main progress of the license applications, the design and manufacture of the main components and the engineering experiments as well as the construction of the HTR-10 are summarized. (author). 3 tabs

  6. International HTR activities

    International Nuclear Information System (INIS)

    Baust, E.; Weisbrodt, I.

    1989-01-01

    Asea Brown Boveri AG (ABB) and their subsidiary High Temperature Reactor Construction GmbH (HRB) have brought the pebble bed high temperature reactor to the edge of being ready for the market with the construction and operation of the AVR reactor at Juelich and the THTR 300 at Hamm-Uentrop. Siemens/Interatom have developed the HTR modular concept and, together with their partners HRB, KFA, Rheinbraun Bergbauforschung have taken the nuclear process heat project to its present advanced state of development. The further introduction of the HTR to the market is a long-term objective, due to the present market situation. ABB and Siemens AG have therefore agreed to collaborate by forming a joint company. (orig.)

  7. Worldwide status of HTR development

    International Nuclear Information System (INIS)

    1978-06-01

    The International Atomic Energy Agency convened a technical committee meeting on high temperature reactors (HTRs) from 12-14 Dec. 1977 at Agency Headquarters to provide a forum for the exchange of information on the status of HTR development programmes and to receive advice on the Agency programme in this field. The continuing high level of international interest in HTRs was evidenced by the participation from 11 countries and 2 organizations: Austria, Belgium, France, Federal Republic of Germany, Japan, Netherlands, Poland, Switzerland, Union of Soviet Socialist Republics, United Kingdom of Great Britain, United States of America, Commission of the European Communities, and the OECD Nuclear Energy Agency. In order to promote the continuing exchange of technical information through the offices of the IAEA, a recommendation was made that the Agency establish a standing International Working Group on High Temperature Reactors (IWGHTR). This recommendation is being implemented in 1978. Considerable information on recent progress in HTR development was present at the technical committee meeting in technical reports and in progress reports on HTR development programmes. Since this material will not be published, this summary report on the worldwide status of HTR development at the beginning of 1978 has been prepared, based primarily on information presented at the December 1977 meeting

  8. AREVA HTR concept for near-term deployment

    Energy Technology Data Exchange (ETDEWEB)

    Lommers, L.J., E-mail: lewis.lommers@areva.com [AREVA Inc., 2101 Horn Rapids Road, Richland, WA 99354 (United States); Shahrokhi, F. [AREVA Inc., Lynchburg, VA (United States); Mayer, J.A. [AREVA Inc., Marlborough, MA (United States); Southworth, F.H. [AREVA Inc., Lynchburg, VA (United States)

    2012-10-15

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  9. AREVA HTR concept for near-term deployment

    International Nuclear Information System (INIS)

    Lommers, L.J.; Shahrokhi, F.; Mayer, J.A.; Southworth, F.H.

    2012-01-01

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  10. European energy policy and the potential impact of HTR and nuclear cogeneration

    International Nuclear Information System (INIS)

    Fütterer, Michael A.; Carlsson, Johan; Groot, Sander de; Deffrennes, Marc; Bredimas, Alexandre

    2014-01-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically

  11. European energy policy and the potential impact of HTR and nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fütterer, Michael A., E-mail: michael.fuetterer@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Carlsson, Johan [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Groot, Sander de [Nuclear Research and consultancy Group, NL-1755ZG Petten (Netherlands); Deffrennes, Marc [European Commission, DG ENER, L-2530 Luxembourg (Luxembourg); Bredimas, Alexandre [LGI Consulting, 13 rue Marivaux, F-75002 Paris (France)

    2014-05-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically.

  12. Risk assessment of small-sized HTR with pebble-bed core

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.; Wolters, J.

    1987-01-01

    Two recent concepts of small-sized HTR's (HTR-Modul and HTR-100) were analysed regarding their safety concepts and risk protection. In neither case do core cooling accidents contribute to the risk because of the low induced core temperatures. Water ingress accidents dominate the risk in both cases by detaching deposited fission products which can be released into the environment. For these accident sequences no early fatalities and practically no lethal case of cancer were computed. Both HTR concepts include adequate precautionary measures and an infinitely small risk according to the usual standards. The safety concepts make express use of the specific inherent safety features of pebble-bed HTR's. (orig.)

  13. Progress and problems in modelling HTR core dynamics

    International Nuclear Information System (INIS)

    Scherer, W.; Gerwin, H.

    1991-01-01

    In recent years greater effort has been made to establish theoretical models for HTR core dynamics. At KFA Juelich the TINTE (TIme dependent Neutronics and TEmperatures) code system has been developed, which is able to model the primary circuit of an HTR plant using modern numerical techniques and taking into account the mutual interference of the relevant physical variables. The HTR core is treated in 2-D R-Z geometry for both nucleonics and thermo-fluid-dynamics. 2-energy-group diffusion theory is used in the nuclear part including 6 groups of delayed neutron precursors and 14 groups of decay heat producers. Local and non-local heat sources are incorporated, thus simulating gamma ray transport. The thermo-fluid-dynamics module accounts for heterogeneity effects due to the pebble bed structure. Pipes and other components of the primary loop are modelled in 1-D geometry. Forced convection may be treated as well as natural convection in case of blower breakdown accidents. Validation of TINTE has started using the results of a comprehensive experimental program that has been performed at the Arbeitsgemeinschaft Versuchsreaktor GmbH (AVR) high temperature pebble bed reactor at Juelich. In the frame of this program power transients were initiated by varying the helium blower rotational speed or by moving the control rods. In most cases a good accordance between experiment and calculation was found. Problems in modelling the special AVR reactor geometry in two dimensions are described and suggestions for overcoming the uncertainties of experimentally determined control rod reactivities are given. The influence of different polynomial expansions of xenon cross sections to long term transients is discussed together with effects of burnup during that time. Up to now the TINTE code has proven its general applicability to operational core transients of HTR. The effects of water ingress on reactivity, fuel element corrosion and cooling gas properties are now being

  14. First Results for Fluid Dynamics, Neutronics and Fission Product Behaviour in HTR applying the HTR Code Package (HCP) Prototype

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Kasselmann, S.; Xhonneux, A.; Lambertz, D.

    2014-01-01

    To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT are fed back into a new spectrum code of the HCP. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT–3D. Comparisons will be shown against data generated by the legacy codes VSOP99/11, NAKURE and FRESCO-II. (author)

  15. First results for fluid dynamics, neutronics and fission product behavior in HTR applying the HTR code package (HCP) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J., E-mail: h.j.allelein@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH Aachen University, 52064 Aachen (Germany); Kasselmann, S.; Xhonneux, A.; Tantillo, F.; Trabadela, A.; Lambertz, D. [Forschungszentrum Jülich, 52425 Jülich (Germany)

    2016-09-15

    To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT lead to new cross sections, which are fed back into MGT-3D. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT-3D. Comparisons will be shown against data generated by SERPENT and the legacy codes VSOP99/11, NAKURE and FRESCO-II.

  16. Safety related studies on the accident behaviour of the HTR-100

    International Nuclear Information System (INIS)

    Wolters, J.; Mertens, J.; Altes, J.; Bongartz, R.; Breitbach, G.; David, P.H.; Degen, G.; Ehrlich, H.G.; Escherich, K.H.; Frank, E.; Hennings, W.; Jahn, W.; Koschmieder, R.; Marx, J.; Meister, G.; Moormann, R.; Rehm, W.; Verfondern, K.

    1991-10-01

    The aim of investigations was to verify the safety concept of the plant for balance and to quantify the radiological risk to be expected in operating an HTR-100 double unit system. Moreover, aspects of the investment risk were considered. The spectrum of initiating events ranged from so-called transients to leaks in the primary circuit and steam generator and even included earthquakes. Some of the event trees derived were highly complex and extensive due to the situation of the steam generator above the core and with regard to the double unit plant concept with increased possibilities of accident control, but also with respect to potential accident propagation. Correspondingly sophisticated analyses were required to identify risk-relevant event sequences. Environmental exposure for all risk-relevant accidents is so low that accident consequence calculations do not reveal any lethal radiation doses and practically no stochastic fatal injuries. These calculations neither assumed acute protective measures nor long-term resettlement or decontamination. The radiological risk caused by an HTR-100 plant is therefore to be classified as very low. The initiating events selected as representative and the event sequences studied in detail cover the risk-relevant event spectrum well into the hypothetical range. (orig./HP) [de

  17. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  18. Verification test of control rod system for HTR-10

    International Nuclear Information System (INIS)

    Zhou Huizhong; Diao Xingzhong; Huang Zhiyong; Cao Li; Yang Nianzu

    2002-01-01

    There are 10 sets of control rods and driving devices in 10 MW High Temperature Gas-cooled Test Reactor (HTR-10). The control rod system is the controlling and shutdown system of HTR-10, which is designed for reactor criticality, operation, and shutdown. In order to guarantee technical feasibility, a series of verification tests were performed, including room temperature test, thermal test, test after control rod system installed in HTR-10, and test of control rod system before HTR-10 first criticality. All the tests data showed that driving devices working well, control rods running smoothly up and down, random position settling well, and exactly position indicating

  19. Capital costs of modular HTR reactors

    International Nuclear Information System (INIS)

    Kugeler, K.; Froehling, W.

    1993-01-01

    A decisive factor in the introduction of a reactor line, in addition of its safety, which should exclude releases of radioactivity into the environment, is its economic development and, consequently, its competitiveness. The costs of the pressurized water reactor are used for comparison with the modular HTR reactor. If the measures proposed for evolutionary increases in safety of the PWR are taken, cost increases will have to be expected for that line. The modular HTR can now attain specific construction costs of 3000 deutschmarks per electric kilowatt. Mass production and the introduction of cost-reducing innovations can improve the economy of this line even further. In this way, the modular HTR concept offers the possibility to vendors and operators to set up new economic yardsticks in safety technology. (orig.) [de

  20. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  1. HTR-500 - a technical and engineered safeguards concept

    International Nuclear Information System (INIS)

    Schoening, J.; Wachholz, W.; Stoelzl, D.

    1985-01-01

    The plant succeeding the THTR-300 nuclear power plant, which has just started its trial phase of power operation, is the HTR-500. On behalf of the Arbeitsgemeinschaft Hochtemperaturreaktor (AHR), the BBC/HRB Group completed a preliminary project study of a nuclear power plant equipped with a high temperature reactor in the 500 MW power range, in which the changed requirements in the nuclear power market are taken into account and electricity generating costs are to be achieved which are competitive with those of a 1230 MW convoy pressurized water reactor of the present design. On this basis, construction documents are to be drafted, and the licensing procedure under the Atomic Energy Act is to be carried out, within a planning phase of roughly four years. (orig.) [de

  2. Dual regulatory switch confers tighter control on HtrA2 proteolytic activity.

    Science.gov (United States)

    Singh, Nitu; D'Souza, Areetha; Cholleti, Anuradha; Sastry, G Madhavi; Bose, Kakoli

    2014-05-01

    High-temperature requirement protease A2 (HtrA2), a multitasking serine protease that is involved in critical biological functions and pathogenicity, such as apoptosis and cancer, is a potent therapeutic target. It is established that the C-terminal post-synaptic density protein, Drosophila disc large tumor suppressor, zonula occludens-1 protein (PDZ) domain of HtrA2 plays pivotal role in allosteric modulation, substrate binding and activation, as commonly reported in other members of this family. Interestingly, HtrA2 exhibits an additional level of functional modulation through its unique N-terminus, as is evident from 'inhibitor of apoptosis proteins' binding and cleavage. This phenomenon emphasizes multiple activation mechanisms, which so far remain elusive. Using conformational dynamics, binding kinetics and enzymology studies, we addressed this complex behavior with respect to defining its global mode of regulation and activity. Our findings distinctly demonstrate a novel N-terminal ligand-mediated triggering of an allosteric switch essential for transforming HtrA2 to a proteolytically competent state in a PDZ-independent yet synergistic activation process. Dynamic analyses suggested that it occurs through a series of coordinated structural reorganizations at distal regulatory loops (L3, LD, L1), leading to a population shift towards the relaxed conformer. This precise synergistic coordination among different domains might be physiologically relevant to enable tighter control upon HtrA2 activation for fostering its diverse cellular functions. Understanding this complex rheostatic dual switch mechanism offers an opportunity for targeting various disease conditions with tailored site-specific effector molecules. © 2014 FEBS.

  3. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  4. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-01-01

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  5. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia

    NARCIS (Netherlands)

    Al Hadithy, A. F. Y.; Ivanova, S. A.; Pechlivanoglou, P.; Semke, A.; Fedorenko, O.; Kornetova, E.; Ryadovaya, L.; Brouwers, J. R. B. J.; Wilffert, B.; Bruggeman, R.; Loonen, A. J. M.

    2009-01-01

    Background: Pharmacogenetics of tardive dyskinesia and dopamine D3 (DRD3), serotonin 2A (HTR2A), and 2C (HTR2C) receptors has been examined in various populations, but not in Russians. Purpose: To investigate the association between orofaciolingual (TDof) and limb-truncal dyskinesias (TDlt) and

  6. Viability of HTR-10 as a Primary Driver of an Energy Complex for Remote Settlement

    International Nuclear Information System (INIS)

    Choong, Philip T.

    2014-01-01

    HTR-10, a proven 10 MWt prototype pebble bed reactor, is capable of generating 4 MWe to the power grid. However; with evolutional power upgrades, its output performance can be substantially enhanced to drive an energy complex to co-generate electricity, hydrogen, desalinated water and process heat for a remote island or settlement of several thousand people. Unlike the much publicized SMR power concepts in the literature, HTR-10 is the only full-blown stand-alone power system that has been demonstrated to be inherently safe and capable of high temperature output. Furthermore, this particular HTR family of reactors is proliferation-resistant and possesses many desirable market-competitive advantages such as high thermal efficiency, low thermal pollution, zero carbon footprints and minimal exclusion zones. An innovative classroom project course is structured to stimulate science and engineering students to explore novel use of HTR-10 as a high temperature heat source to be the core of an intelligent zero emission energy (Smart-ZEE) module capable of providing all energy needs of a remote community or island. (author)

  7. HTR System Integration in Europe and South Africa

    International Nuclear Information System (INIS)

    Roelofs, Ferry; Ruer, J.; Cuadrado Garcia, P.; Cetnar, J.; Knoche, D.; Lapins, J.; Kasselman, S.; Stoker, P.; Fütterer, M.

    2014-01-01

    An HTR can be used for production of electricity and process heat. When these two applications are combined, a multitude of systems and components are needed. Whilst meeting the end user needs, this multitude of systems and components has to operate safely and economically. Therefore, within the framework of the European 7th framework program ARCHER project, a design schematic of a nuclear cogeneration system connected to a European and a South African industrial process is established and assessed. In order to provide an objective overview of the different indicators important for decision makers, the main characteristics with respect to the HTR system, the environment, safety, and economics are identified and compared to the characteristics of a modern gas turbine plant. In addition, a gap and SWOT analysis of a nuclear cogeneration system in Europe and South Africa are presented. In order to enable technical analysis of such a nuclear cogeneration system, a multitude of computer codes will be needed. Therefore, a code inventory is established of codes being used in Europe and South Africa for which the requirements for integration, development and qualification are assessed. (author)

  8. Development of high temperature gas cooled reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wentao [Paul Scherrer Institute, Villigen (Switzerland). Dept. of Nuclear Energy and Safety; Schorer, Michael [Swiss Nuclear Forum, Olten (Switzerland)

    2018-02-15

    High temperature gas cooled reactor (HTGR) is one of the six Generation IV reactor types put forward by Generation IV International Forum (GIF) in 2002. This type of reactor has high outlet temperature. It uses Helium as coolant and graphite as moderator. Pebble fuel and ceramic reactor core are adopted. Inherit safety, good economy, high generating efficiency are the advantages of HTGR. According to the comprehensive evaluation from the international nuclear community, HTGR has already been given the priority to the research and development for commercial use. A demonstration project of the High Temperature Reactor-Pebble-�bed Modules (HTR-PM) in Shidao Bay nuclear power plant in China is under construction. In this paper, the development history of HTGR in China and the current situation of HTR-PM will be introduced. The experiences from China may be taken as a reference by the international nuclear community.

  9. Maw and spent HTR Fuel Element Test storage in Boreholes in rock salt

    International Nuclear Information System (INIS)

    Barnert, E.; Brucher, P.H.; Kroth, K.; Merz, E.; Niephaus, D.

    1986-01-01

    The Budesminister fur Forschung und Technolgie (BMFT, Federal Ministry for Research and Technology) is sponsoring a project at the Kernforschungsanlage Julich (KFA, Juelich Nuclear Research Centre) entitled ''MAW and HTR Fuel Element Test disposal in Boreholes.'' The aim of this project is to develop a technique for the final disposal of (1) dissolver sludge, (2) cladding hulls/structural components and (3) spent HTR fuels elements in salt, and to test this technique in the abandoned Asse salt mine, including safety calculations and safety engineering demonstrations. The project is divided into the sub-projects I ''Disposal/sealing technique'' and II ''Retrievable disposal test.''

  10. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    Yang Guojun; Xu Yang; Shi Zhengang; Gu Huidong

    2005-01-01

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  11. PM 10, PM 2.5 and PM 1.0—Emissions from industrial plants—Results from measurement programmes in Germany

    Science.gov (United States)

    Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A.

    Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM 10, PM 2.5 and PM 1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood. In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM 10 portion amounted to more than 90% and the PM 2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM 1.0 portion constituted between 20% and 60% of the total PM emission. Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.

  12. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Klippel, H.T.; Hogenbirk, A.; Oppe, J.; Sciolla, C.M.; Stad, R.C.L. van der; Zhang, B.C.

    1997-06-01

    As part of the activities within the framework of the development of INCOGEN, a 'Dutch' conceptual design of a smaller HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRs, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (orig.)

  13. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Hass, J.B.M. De; Klippel, H.Th.; Hogenbirk, A.; Oppe, J.; Sciolla, C.; Stad, R.C.L. Van Der; Zhang, B.C.

    1997-01-01

    As part of the activities within the framework of the development of INCOGEN, a ''Dutch'' conceptual design of a small HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRS, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (author)

  14. Distribution of tritium in a nuclear process heat plant with HTR

    International Nuclear Information System (INIS)

    Steinwarz, W.; Stoever, D.; Hecker, R.; Thiele, W.

    1984-01-01

    The application of HTR-process heat in chemical processes involves low contamination of the product by tritium permeation through the heat exchanger walls. According to conservative assumptions for the tritium release rate and based on experimental permeation data of the German R und D-program a tritium concentration in the PNP-product gas of about 10 pCi/g was calculated. The domestic use of the product gas in unvented kitchen ranges as the most important direct radiation exposure pathway then leads to an effective equivalent radiation dose of only 20 μrem/a. (orig.)

  15. Notes on HTR applications in methanol production

    International Nuclear Information System (INIS)

    Santoso, B.; Barnert, H.

    1997-01-01

    Notes on the study of HTR applications are presented. The study in particular should be directed toward the most feasible applications of HTR for process heat generation. A prospective study is the conversion of CO 2 gas from Natuna to methanol or formic acid. Further studies needs to be deepened under the auspices of IAEA and countries that have similar interest. (author). 3 refs, 3 figs

  16. Status of development of the HTR module

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1989-01-01

    Growing concern about the rising global temperature of the earth due to the ''Greenhouse Effect'' is increasingly focussing worldwide interest on passively safe reactors for heat and power production. In this context the development status of the HTR-Module designed by the Siemens-Group merits strong interest. The HTR-Module has a high degree of passive safety features. Even in case of hypothetical accidents the decay heat is dissipated from the primary system to the environment by passive measures alone i.e. by heat conduction, convection and radiation. The detailed engineering for the HTR-Module continues to progress. In addition to the engineering for the layout considerable progress has been made in the detailed engineering for specific components - e.g. pressure vessel, steam generator, hot gas duct, blower etc. - and specific systems - e.g. first core, helium purification system, reactor safety system, reactor control etc. The procedure for the conceptual licence has been continued. A large number of supplementary analyses and reports have been elaborated and submitted for this procedure. Many workshop meetings have been held with the nominated experts. The hypothetical accidents have been analysed and a special report on these accidents has been submitted. The safety analyses report has been revised, taking into account the results and achievements reached during the ongoing licensing procedure. Parallel to these engineering activities outstanding in R and D work for the HTR-Module, e.g. in the field of fuel elements etc. has been continued. The HTR-Module has found worldwide interest. Respective activities are going on in Bangladesh, PR China, USSR, Indonesia etc. Relevant application studies have been carried out and/or initiated. (author). 15 refs, 16 figs

  17. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  18. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  19. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    International Nuclear Information System (INIS)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  20. Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA.

    Directory of Open Access Journals (Sweden)

    Martin Löwer

    Full Text Available Exported proteases of Helicobacter pylori (H. pylori are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI. Among these, we found the predicted serine protease HtrA (Hp1019, which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies.

  1. The nucleus accumbens 5-HTR4-CART pathway ties anorexia to hyperactivity

    Science.gov (United States)

    Jean, A; Laurent, L; Bockaert, J; Charnay, Y; Dusticier, N; Nieoullon, A; Barrot, M; Neve, R; Compan, V

    2012-01-01

    In mental diseases, the brain does not systematically adjust motor activity to feeding. Probably, the most outlined example is the association between hyperactivity and anorexia in Anorexia nervosa. The neural underpinnings of this ‘paradox', however, are poorly elucidated. Although anorexia and hyperactivity prevail over self-preservation, both symptoms rarely exist independently, suggesting commonalities in neural pathways, most likely in the reward system. We previously discovered an addictive molecular facet of anorexia, involving production, in the nucleus accumbens (NAc), of the same transcripts stimulated in response to cocaine and amphetamine (CART) upon stimulation of the 5-HT4 receptors (5-HTR4) or MDMA (ecstasy). Here, we tested whether this pathway predisposes not only to anorexia but also to hyperactivity. Following food restriction, mice are expected to overeat. However, selecting hyperactive and addiction-related animal models, we observed that mice lacking 5-HTR1B self-imposed food restriction after deprivation and still displayed anorexia and hyperactivity after ecstasy. Decryption of the mechanisms showed a gain-of-function of 5-HTR4 in the absence of 5-HTR1B, associated with CART surplus in the NAc and not in other brain areas. NAc-5-HTR4 overexpression upregulated NAc-CART, provoked anorexia and hyperactivity. NAc-5-HTR4 knockdown or blockade reduced ecstasy-induced hyperactivity. Finally, NAc-CART knockdown suppressed hyperactivity upon stimulation of the NAc-5-HTR4. Additionally, inactivating NAc-5-HTR4 suppressed ecstasy's preference, strengthening the rewarding facet of anorexia. In conclusion, the NAc-5-HTR4/CART pathway establishes a ‘tight-junction' between anorexia and hyperactivity, suggesting the existence of a primary functional unit susceptible to limit overeating associated with resting following homeostasis rules. PMID:23233022

  2. Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi Protease and Its Mutated Variants.

    Directory of Open Access Journals (Sweden)

    Artur Gieldon

    Full Text Available HtrA2(Omi protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation is a homotrimer whose subunits contain the serine protease domain (PD and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD. V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2, were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D

  3. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  4. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  5. HTR fuel development for advanced application

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.; Graham, L.W.; Hick, H.

    1975-01-01

    The advantages of the HTR for nuclear steam supply systems are briefly outlined. Due to its great design flexibility a number of different designs have evolved and the main characteristics of existing experimental prototype and power reactor HTR designs are summarized. The present state of coated particle fuel, particularly with regard to performance, is considered. Some implications of producing higher temperatures are discussed. Finally some of the developments in progress such as minimising the temperature drop between fuel and coolant, and of improving fuel performance by better fission product retention, better chemical stability, and the use of alternative coated materials, are discussed. (U.K.)

  6. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation

    Directory of Open Access Journals (Sweden)

    Maynard Robert L

    2005-05-01

    Full Text Available Abstract Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6. Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p 10 collected during the reopened period, as well as significant increases in albumin (p 10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p 10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.

  7. A 350 MW HTR with an annular pebble bed core

    International Nuclear Information System (INIS)

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  8. Genetic variation in HTR4 and lung function: GWAS follow-up in mouse.

    Science.gov (United States)

    House, John S; Li, Huiling; DeGraff, Laura M; Flake, Gordon; Zeldin, Darryl C; London, Stephanie J

    2015-01-01

    Human genome-wide association studies (GWASs) have identified numerous associations between single nucleotide polymorphisms (SNPs) and pulmonary function. Proving that there is a causal relationship between GWAS SNPs, many of which are noncoding and without known functional impact, and these traits has been elusive. Furthermore, noncoding GWAS-identified SNPs may exert trans-regulatory effects rather than impact the proximal gene. Noncoding variants in 5-hydroxytryptamine (serotonin) receptor 4 (HTR4) are associated with pulmonary function in human GWASs. To gain insight into whether this association is causal, we tested whether Htr4-null mice have altered pulmonary function. We found that HTR4-deficient mice have 12% higher baseline lung resistance and also increased methacholine-induced airway hyperresponsiveness (AHR) as measured by lung resistance (27%), tissue resistance (48%), and tissue elastance (30%). Furthermore, Htr4-null mice were more sensitive to serotonin-induced AHR. In models of exposure to bacterial lipopolysaccharide, bleomycin, and allergic airway inflammation induced by house dust mites, pulmonary function and cytokine profiles in Htr4-null mice differed little from their wild-type controls. The findings of altered baseline lung function and increased AHR in Htr4-null mice support a causal relationship between genetic variation in HTR4 and pulmonary function identified in human GWAS. © FASEB.

  9. Two Phase Flow Stability in the HTR-10 Steam Generator

    Institute of Scientific and Technical Information of China (English)

    居怀明; 左开芬; 刘志勇; 徐元辉

    2001-01-01

    A 10 MW High Temperature Gas Cooled Reactor (HTR-10) designed bythe Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.

  10. Survey of HTR related research at IRI, Delft, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Wallerbos, E.J.M.; Van der Hagen, T.H.J.J.; Van Dam, H. [Interfaculty Reactor Institute IRI, Delft University of Technology, Delft (Netherlands); Tuerkcan, E. [ECN Nuclear Research, Petten (Netherlands)

    1998-09-01

    High temperature helium-cooled reactors have a large potential for inherent safety. Therefore, several projects on HTR research are being carried out or were carried out at the Interfaculty Reactor Institute (IRI) of the Delft University of Technology in Delft, Netherlands. As part of a larger research programme measurements of core reactivity, reactivity worth of safety rods and of small samples being oscillated in the reactor core were carried out at the PROTEUS facility of the Paul Scherrer Institute at Villigen, Switzerland. Together with other partners in the Netherlands a small inherently safe co-generation plant with a pebble-bed HTR core was designed and analysed. It was verified that such a reactor can operate continuously for 10 years by adding continuously fuel pebbles until the maximum available core height is reached. As a new, innovative, inherently safe reactor type the design of a fluidized-bed reactor with coated fuel particles on a helium gas stream is discussed and results are shown for the analysis of inherent criticality safety under varying coolant flow rates. IRI is also taking part in the new IAEA Co-ordinated Research Programme, which involves participation in the start-up experiments of the Japanese HTTR and carrying out calculations for the core physics benchmark test. 11 refs.

  11. Potential of thorium use in the HTR reactor

    International Nuclear Information System (INIS)

    Engelmann, P.; Hansen, U.; Kolb, G.; Leushacke, D.; Teuchert, E.; Werner, H.

    1979-08-01

    In this investigation, several types of reactors and fuel circulations are dealt with as they refer to the region of the Federal Republic of Germany and are compared with each other as to their need for uranium and their costs until 2100. This includes also an investigation covering the effects of a postponed application of uranium-saving reactors, a delayed reprocessing and two variants of the nuclear energy's contribution to electricity generation. After today's light water reactor (LWR) of the pressure water reactor type (DWR) and the sodium-cooled fast breeder (SBR) which is being developed, the technically rather developed helium-cooled high temperature reactor (HTR) is dealt with as another system. The high temperature reactor is, because of its high coolant temperatures, not only suitable as a nuclear power plant, but can also be used to substitute fossile energy sources on the heat market and is being developed in Germany also for use as process heat reactor for nuclear coal gasification. Here the application of nuclear energy is only considered with regard to the region of power generation. Besides the case of the LWR and HTR-operation without reprocessing and fuel recycling for all reactor systems, the calculations also take into consideration the case of the closed fuel recycling. While LWR and SBR are based on the uranium-plutonium-fuel recycling, the thorium-uranium fuel circulation is considered for the HTR with globular fuel elements. As investigations made until today are generally restricted to the system LWR/SBR and the uranium-plutonium circulation, a main concern of the investigations presented here is to show the potential of the Thorium-utilization in high-temperature reactors and to determine how this system can also be applied during the time period concerned to set up a nuclear energy strategy which is safe and profitable as far as the uranium supply is concerned. (orig./UA) 891 UA/orig.- 892 HIS [de

  12. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    International Nuclear Information System (INIS)

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke; Miura, Masayuki

    2007-01-01

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution

  13. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    International Nuclear Information System (INIS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria; Collazuol, Gianmaria; Ambrosi, Giovanni; Santoni, Cristiano; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2013-01-01

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence

  14. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Morrocchi, Matteo, E-mail: matteo.morrocchi@pi.infn.it [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Collazuol, Gianmaria [INFN Sezione di Pisa, Pisa 56127 (Italy); Ambrosi, Giovanni; Santoni, Cristiano [INFN Sezione di Perugia, Perugia 06100 (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari and INFN Sezione di Bari, Bari 70100 (Italy); Sportelli, Giancarlo [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Del Guerra, Alberto [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy)

    2013-08-21

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.

  15. Calculation of the Fission Product Release for the HTR-10 based on its Operation History

    International Nuclear Information System (INIS)

    Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.-J.

    2014-01-01

    Since the first criticality of the HTR-10 test reactor in 2000, a rather complex operation history was performed. As the HTR-10 is the only pebble bed reactor in operation today delivering experimental data for HTR simulation codes, an attempt was made to simulate the whole reactor operation up to the presence. Special emphasis was put on the fission product release behaviour as it is an important safety aspect of such a reactor. The operation history has to be simulated with respect to the neutronics, fluid mechanics and depletion to get a detailed knowledge about the time-dependent nuclide inventory. In this paper we report about such a simulation with VSOP 99/11 and our new fission product release code STACY. While STACY (Source Term Analysis Code System) so far was able to calculate the fission product release rates in case of an equilibrium core and during transients, it now can also be applied to running-in-phases. This coupling demonstrates a first step towards an HCP Prototype. Based on the published power histogram of the HTR-10 and additional information about the fuel loading and shuffling, a coupled neutronics, fluid dynamics and depletion calculation was performed. Special emphasis was put on the complex fuel-shuffling scheme within both VSOP and STACY. The simulations have shown that the HTR-10 up to now generated about 2580 MWd while reshuffling the core about 2.3 times. Within this paper, STACY results for the equilibrium core will be compared with FRESCO-II results being published by INET. Compared to these release rates, which are based on a few user defined life histories, in this new approach the fission product release rates of Ag-110m, Cs-137, Sr-90 and I-131 have been simulated for about 4000 tracer pebbles with STACY. For the calculation of the HTR-10 operation history time-dependent release rates are being presented as well. (author)

  16. Factors influencing selection of a HTR for a developing country

    International Nuclear Information System (INIS)

    Karim, C.S.

    1989-01-01

    Consumption of commercial energy and electricity in Bangladesh has to grow rapidly in order to attain socio-economic development of the country. Nuclear power is considered to be an appropriate proposition due to the inadequacy of indigenous primary energy resources. A technical, economic and financial feasibility study of a 300-500 MWe nuclear power plant is underway now. Responses from different suppliers in SMPR range were enumerated jointly by the Consultants and BAEC under the feasibility study. Criteria for selection of technology and the factor influencing the selection of Modular HTR for Bangladesh are described in the paper. Some indicative results of cost economic calculations are included to help form an idea about various limiting conditions, under which a SMPR with the selected technology could become competitive with the other conventional alternatives. Problems in decision making associated with the uncertainties in estimating plant and fuel cycle costs are enumerated. The implications of not having a reference plant vis-a-vis the advantageous safety features are described to show how these aspects can influence the selection of a new technology like HTR for a developing country. Financing is identifiable as the major problem in implementing a nuclear power project in a developing country like Bangladesh. The entire scope of supplies and services may be broken down into components, so that the burden of financing could be shared by more than one exporting country. Some indicative ideas about the packaging of supplies and services are presented in the paper in order to identify different types of financing sources that could be explored for implementation of the project. Some salient features of the effect of joint-venture on the project financing and implementation are described in the paper. (author). 3 refs, 1 fig

  17. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2015-12-30

    emissions demonstration . 46 6 Figure 24. T63 engine with extension pipe to direct exhaust outside of the test cell for exhaust sampling with tip...to assess their effectiveness in conditioning turbine engine exhaust for total PM emissions measurements. Both were designed to promote the... effectively control and mitigate PM emissions. Aircraft PM is formed in the engine combustor due to incomplete combustion of fuel, and in the

  18. Engineering and licensing progress of the HTR-Module

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrodt, I A

    1988-07-01

    This report deals not only with the latest status of Siemens/Interatom's HTR-Module but also reflects the latest engineering and licensing progress of the HTR-Module against the background of the specified design requirements and of the discussions on passively safe reactors. Therefore, I intend to report also about two examples of the accident analysis - one design basis accident, i.e. the leak-before-break of the reactor pressure vessel and one beyond design accident, i. e. massive water ingress.

  19. Engineering and licensing progress of the HTR-Module

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1988-01-01

    This report deals not only with the latest status of Siemens/Interatom's HTR-Module but also reflects the latest engineering and licensing progress of the HTR-Module against the background of the specified design requirements and of the discussions on passively safe reactors. Therefore, I intend to report also about two examples of the accident analysis - one design basis accident, i.e. the leak-before-break of the reactor pressure vessel and one beyond design accident, i. e. massive water ingress

  20. Airborne fungal and bacterial components in PM1 dust from biofuel plants.

    Science.gov (United States)

    Madsen, Anne Mette; Schlünssen, Vivi; Olsen, Tina; Sigsgaard, Torben; Avci, Hediye

    2009-10-01

    Fungi grown in pure cultures produce DNA- or RNA-containing particles smaller than spore size ( 3)-beta-D-glucans. In the 29 PM(1) samples, cultivable fungi were found in six samples and with a median concentration below detection level. Using microscopy, fungal spores were identified in 22 samples. The components NAGase and (1 --> 3)-beta-D-glucans, which are mainly associated with fungi, were present in all PM(1) samples. Thermophilic actinomycetes were present in 23 of the 29 PM(1) samples [average = 739 colony-forming units (CFU) m(-3)]. Cultivable and 'total bacteria' were found in average concentrations of, respectively, 249 CFU m(-3) and 1.8 x 10(5) m(-3). DNA- and RNA-containing particles of different lengths were counted by microscopy and revealed a high concentration of particles with a length of 0.5-1.5 microm and only few particles >1.5 microm. The number of cultivable fungi and beta-glucan in the total dust correlated significantly with the number of DNA/RNA-containing particles with lengths of between 1.0 and 1.5 microm, with DNA/RNA-containing particles >1.5 microm, and with other fungal components in PM(1) dust. Airborne beta-glucan and NAGase were found in PM(1) samples where no cultivable fungi were present, and beta-glucan and NAGase were found in higher concentrations per fungal spore in PM(1) dust than in total dust. This indicates that fungal particles smaller than fungal spore size are present in the air at the plants. Furthermore, many bacteria, including actinomycetes, were present in PM(1) dust. Only 0.2% of the bacteria in PM(1) dust were cultivable.

  1. HTR-E project. High-temperature components and systems

    International Nuclear Information System (INIS)

    Breuil, E.; Exner, R.

    2002-01-01

    The HTR-E European project (four years project) is proposed for the 5th Framework Programme and concerns the technical developments needed for the innovative components of a modern HTR with a direct cycle. These components have been selected with reference to the present projects (GT-MHR, PBMR): (1) the helium turbine, the recuperator heat exchanger, the electro-magnetic bearings and the helium rotating seal; (2) the tribology. Sliding innovative components in helium environment are particularly concerned. (3) the helium purification system. Recommendations on impurities contents have to be provided in accordance with the materials proposed for the innovative components. The main outcomes expected from the HTR-E project are the design recommendations and identification of further R and D needs for these components. This will be based: (1) on experience feedback from European past helium test loops and reactors; (2) on design studies, thermal-hydraulic and structural analyses; (3) and on experimental tests

  2. DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects.

    Science.gov (United States)

    Hranilovic, Dubravka; Blazevic, Sofia; Stefulj, Jasminka; Zill, Peter

    2016-02-01

    Disturbed brain and peripheral serotonin homeostasis is often found in subjects with autism spectrum disorder (ASD). The role of the serotonin receptor 2A (HTR2A) in the regulation of central and peripheral serotonin homeostasis, as well as its altered expression in autistic subjects, have implicated the HTR2A gene as a major candidate for the serotonin disturbance seen in autism. Several studies, yielding so far inconclusive results, have attempted to associate autism with a functional SNP -1438 G/A (rs6311) in the HTR2A promoter region, while possible contribution of epigenetic mechanisms, such as DNA methylation, to HTR2A dysregulation in autism has not yet been investigated. In this study, we compared the mean DNA methylation within the regulatory region of the HTR2A gene between autistic and control subjects. DNA methylation was analysed in peripheral blood leukocytes using bisulfite conversion and sequencing of the HTR2A region containing rs6311 polymorphism. Autistic subjects of rs6311 AG genotype displayed higher mean methylation levels within the analysed region than the corresponding controls (P epigenetic mechanisms might contribute to HTR2A dysregulation observed in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Concept of safety related I and C and power supply systems in the passive safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Juengst, U.

    1990-01-01

    The main motivation for the passive safety concepts is to gain a better quality of safety or at least to achieve higher public acceptance for nuclear power plants. This strategy has been introduced into the European Fast Reactor (EER), a common project of France, UK and Germany is applied stringently to the German high-temperature gas-cooled reactor ''HTR - Module''. The following fields are briefly described in the paper: Safety design features of the HTR - Module, overview of I and C concept, reactor protection system, emergency control room, power supply concept, system arrangement and protection against external hazards, accidents sequence of station black-out. (author). 3 figs

  4. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  5. The market potential of HTR modular reactors as a heat source for high - temperature processes in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1988-01-01

    The HTR is the only reactor system which can provide process heat in a wide temperature range up to 950 0 C. The HTR module is designed as an unsophisticated, safe and universal heat source with a large field of applications. The following applications have been considered: the steam reforming of natural gas and coal conversion processes for the production of methanol, hydrogen and SNG. They are investigated in many different modifications and nuclear and autothermal processes are compared. Other applications of nuclear process heat in the chemical and petrochemical industry seem to be appropriate and promising, but could not be analysed because of lack of data. The economic results show that for today's coal and gas processing the HTR can only compete against conventional conversion processes for specific premises. Especially, those processses in which valuable fossil fuels such as natural gas are substituted by nuclear process heat promise an economic bebefit. Looking to the market of the year 2030 and the need for process heat in the chemical and steel industries (including the demand for synthesis gas), cement and refinery industries, for the production of aluminium oxide and for tertiary oil recovery, a total theoretical market in the Federal Republic of Germany of up to 60 HTR-2 module plants is estimated

  6. HTR's role in process heat applications

    International Nuclear Information System (INIS)

    Kuhr, Reiner

    2008-01-01

    Advanced high-temperature nuclear reactors create a number of new opportunities for nuclear process heat applications. These opportunities are based on the high-temperature heat available, smaller reactor sizes, and enhanced safety features that allow siting close to process plants. Major sources of value include the displacement of premium fuels and the elimination of CO 2 emissions from combustion of conventional fuels and their use to produce hydrogen. High value applications include steam production and cogeneration, steam methane reforming, and water splitting. Market entry by advanced high-temperature reactor technology is challenged by the evolution of nuclear licensing requirements in countries targeted for early applications, by the development of a customer base not familiar with nuclear technology and related issues, by convergence of oil industry and nuclear industry risk management, by development of public and government policy support, by resolution of nuclear waste and proliferation concerns, and by the development of new business entities and business models to support commercialization. New HTR designs may see a larger opportunity in process heat niche applications than in power given competition from larger advanced light water reactors. Technology development is required in many areas to enable these new applications, including the commercialization of new heat exchangers capable of operating at high temperatures and pressures, convective process reactors and suitable catalysts, water splitting system and component designs, and other process-side requirements. Key forces that will shape these markets include future fuel availability and pricing, implementation and monetization of CO 2 emission limits, and the formation of international energy and environmental policy that will support initiatives to provide the nuclear licensing frameworks and risk distribution needed to support private investment. This paper was developed based on a plenary

  7. Fuel management of HTR-10

    International Nuclear Information System (INIS)

    Wu Zongxin; Jing Xingqing

    2001-01-01

    The 10 MW high temperature cooled reactor (HTR-10) built in Tsinghua University is a pebble bed type of HTGR. The continuous recharge and multiple-pass of spherical fuel elements are used for fuel management. The initiative stage of core is composed of the mix of spherical fuel elements and graphite elements. The equilibrium stage of core is composed of identical spherical fuel elements. The fuel management during the transition from the initiative stage to the equilibrium stage is a key issue for HTR-10 physical design. A fuel management strategy is proposed based on self-adjustment of core reactivity. The neutron physical code is used to simulate the process of fuel management. The results show that the graphite elements, the recharging fuel elements below the burn-up allowance, and the discharging fuel elements over the burn-up allowance could be identified by burn-up measurement. The maximum of burn-up fuel elements could be controlled below the burn-up limit

  8. Gas reactor international cooperative program. HTR-synfuel application assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H/sub 2/ +CO/sub 2/) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000/sup 0/F steam is generated at the industrial user sites. The products of methanation (CH/sub 4/ + H/sub 2/O) are piped back to the reformer at the central station HTR.

  9. Gas reactor international cooperative program. HTR-synfuel application assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H 2 +CO 2 ) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000 0 F steam is generated at the industrial user sites. The products of methanation (CH 4 + H 2 O) are piped back to the reformer at the central station HTR

  10. Market potential of heat utilization of modular HTR in Japan

    International Nuclear Information System (INIS)

    Ide, Akira; Tasaka, Kanji.

    1993-01-01

    HTR is considered to be the most suitable reactor type to use in the field other than power generation. So it is useful to know market potential of this type of reactor in Japan to justify its development. This potential was estimated to be about 400 200MWt modular HTR reactors. This number will be double if the market of hydrogen is developed. (J.P.N.)

  11. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna

    2011-01-01

    activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal......The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...

  12. Plant concept of heat utilization of high temperature gas-cooled reactors. Co-generation and coal-gasification

    International Nuclear Information System (INIS)

    Tonogouchi, M.; Maeda, S.; Ide, A.

    1996-01-01

    In Japan, JAERI is now constructing the High temperature Engineering Test Reactor (HTTR) and the new era is coming for the development and utilization of HTR. Recognizing that the heat utilization of HTR would mitigate problems of environment and resources and contribute the effective use and steady supply of the energy, FAPIG organized a working group named 'HTR-HUC' to study the heat utilization of HTR in the field other than electric power generation. We chose three kinds of plants to study, 1) a co-generation plant in which the existing power units supplying steam and electricity can be replaced by a nuclear plant, 2) Coal gasification plant which can accelerate the clean use of coal and contribute stable supply of the energy and preservation of the environment in the world and 3) Hydrogen production plant which can help to break off the use of the new energy carrier HYDROGEN and will release people from the dependence of fossil energy. In this paper the former two plants, Co-generation chemical plant and Coal-gasification plant are focussed on. The main features, process flow and safety assessment of these plants are discussed. (J.P.N.)

  13. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  14. It is now time to proceed with a gas-cooled breeder reactor (GBR) demonstration plant

    International Nuclear Information System (INIS)

    Chermanne, J.

    1976-01-01

    Since 1969, the GBRA has been making studies to provide evidence on questions which were not clear regarding the Gas-cooled Breeder Reactor: design feasibility and performance, safety, strategy and economics, and R and D necessary for a demonstration plant. Studies were carried out on a 1200-MW(e) commercial reference design with pin fuel, which was also used as a basis for a definition of the GBR demonstration plant. During the six years, a great deal of information has been generated at GBRA and it confirms the forecasts of the promoters of the Gas-cooled Breeder Reactor that the GBR is an excellent reactor from all points of view: design - the reactor can be engineered without major difficulty, using present techniques. As far as fuel is concerned, LMFBR fuel technology is applicable plus limited specific development effort. Performance - the GBR is the best breeder with oxide fuel and using conventional techniques. The strategy studies carried out at GBRA have clearly shown that a high performance breeder such as the GBR is absolutely required in large quantities by the turn of the century in order to avoid dependence on natural uranium resources. Regarding safety, a major step forward has been made when an ad hoc group on GBR safety, sponsored by the EEC, concluded that no major difficulties were anticipated which would prevent the GBR reaching adequate safety standards. Detailed economic assessments performed on an item-to-item basis have shown that the cost of a GBR with its high safety standard is about the same as that of an HTR. One can therefore conclude that, with the present cost of natural uranium, the GBR is competitive with the LWRs. Owing to the very limited R and D effort necessary and the obvious safety, economic and strategic advantages of the concept, it is concluded that the development and construction of a GBR demonstration plant must be started now if one wants to secure an adequate energy supply past the turn of the century. (author)

  15. The role of Omi/HtrA2 protease in neonatal postasphyxial serum-induced apoptosis in human kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2012-01-01

    Full Text Available Omi/HtrA2, a proapoptotic mitochondrial serine protease, is involved in both caspase-dependent and caspaseindependent apoptosis. A growing body of evidence indicates that Omi/HtrA2 plays an important role in the pathogenesis of a variety of ischemia-reperfusion (I/R injuries. However, the role of Omi/HtrA2 in renal injuries that occur in neonates with asphyxia remains unknown. The present study was designed to investigate whether Omi/HtrA2 plays an important role in the types of renal injuries that are induced by neonatal postasphyxial serum. Human renal proximal tubular cell line (HK-2 cells were used as targets. A 20% serum taken from neonates one day after asphyxia was applied to target cells as an attacking factor. We initially included control and postasphyxial serum-attacked groups and later included a ucf-101 group in the study. In the postasphyxial serum-treated group, cytosolic Omi/HtrA2 and caspase-3 expression in HK-2 cells was significantly higher than in the control group. Moreover, the concentration of cytosolic caspase-3 was found to be markedly decreased in HK-2 cells in the ucf-101 group. Our results suggest both that postasphyxial serum has a potent apoptosis-inducing effect on HK-2 cells and that this effect can be partially blocked by ucf-101. Taken together, our results demonstrate for the first time that postasphyxial serum from neonates results in Omi/HtrA2 translocation from the mitochondria to the cytosol, where it promotes HK-2 cell apoptosis via a protease activity-dependent, caspase-mediated pathway.

  16. Increased expression of Apo-J and Omi/HtrA2 after Intracerebral Hemorrage in rats.

    Science.gov (United States)

    Li, Feng; Yang, Jing; Guo, Xiaoyan; Zheng, Xiaomei; Lv, Zhiyu; Shi, Chang Qing; Li, Xiaogang

    2018-03-23

    To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrage. 150 SD adult rats were randomly divided into 3 groups: (1) Normal Control (NC) group, (2) Sham group, (3) Intracerebral Hemorrage (ICH) group. The data were collected at 6h, 12h, 1d, 2d, 3d, 5d and 7d. Apoptosis was measured by Tunel staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by RT-PCR. Apoptosis in ICH group was higher than Sham and NC groups (p<0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3d. The Apo-J mRNA level positively correlated with HtrA2 mRNA level in ICH group (r=0.883, p<0.001). The expressions of Apo-J and Omi/HtrA2 paralelly increased in peripheral region of rat cerebral hemorrhage. Local high expressed Apo-J in the peripheral regions might play a neuroprotective role by inhibiting apoptosis via Omi/HtrA2 pathway after hemorrhage. Copyright © 2018. Published by Elsevier Inc.

  17. Different Roles of COMT and HTR2A Genotypes in Working Memory Subprocesses.

    Directory of Open Access Journals (Sweden)

    Hirohito M Kondo

    Full Text Available Working memory is linked to the functions of the frontal areas, in which neural activity is mediated by dopaminergic and serotonergic tones. However, there is no consensus regarding how the dopaminergic and serotonergic systems influence working memory subprocesses. The present study used an imaging genetics approach to examine the interaction between neurochemical functions and working memory performance. We focused on functional polymorphisms of the catechol-O-methyltransferase (COMT Val(158Met and serotonin 2A receptor (HTR2A -1438G/A genes, and devised a delayed recognition task to isolate the encoding, retention, and retrieval processes for visual information. The COMT genotypes affected recognition accuracy, whereas the HTR2A genotypes were associated with recognition response times. Activations specifically related to working memory were found in the right frontal and parietal areas, such as the middle frontal gyrus (MFG, inferior frontal gyrus (IFG, anterior cingulate cortex (ACC, and inferior parietal lobule (IPL. MFG and ACC/IPL activations were sensitive to differences between the COMT genotypes and between the HTR2A genotypes, respectively. Structural equation modeling demonstrated that stronger connectivity in the ACC-MFG and ACC-IFG networks is related to better task performance. The behavioral and fMRI results suggest that the dopaminergic and serotonergic systems play different roles in the working memory subprocesses and modulate closer cooperation between lateral and medial frontal activations.

  18. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  19. A study of a high temperature nuclear power plant incorporating a non-integrated indirect cycle gas turbine

    International Nuclear Information System (INIS)

    Sarlos, G.; Helbling, W.; Zollinger, E.; Gregory, N.; Luchsinger, H.

    1982-04-01

    In connection with the HHT-project, the Swiss Federal Institute for Reactor Research has performed a study of a 1640-MWth HTR-plant incorporating a non-integrated indirect cycle gas turbine with two-stage intercooling, as a possibility of simplifying and reducing the cost of the HHT-demonstration plant. In this paper, the plant design is described and compared with the HHT-demonstration plant (a CCGT integrated plant with single stage intercooling). Also included is an evaluation of the various advantages and disadvantages of this design together with the presentation of some of the sensitivity results. (Auth.)

  20. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  1. Preliminary ripple effect analysis for HTR 350MWt 4 modules construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. H.; Lee, K. Y.; Shin, Y. J. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    We propose quantitative analysis techniques for ripple effects such as the production inducement effect and employment inducement effect for HTR 350MWt x 4 module construction and operation ripple effect based on NOAK. It is known that APR1400 reactors export ripple effect is about 8,500 billion KRW. As a result, HTR construction has more effective effect than that of APR1400.

  2. Influence of Polymorphisms in the HTR3A and HTR3B Genes on Experimental Pain and the Effect of the 5-HT3 Antagonist Granisetron.

    Science.gov (United States)

    Louca Jounger, Sofia; Christidis, Nikolaos; Hedenberg-Magnusson, Britt; List, Thomas; Svensson, Peter; Schalling, Martin; Ernberg, Malin

    2016-01-01

    The aim of this study was to investigate experimentally if 5-HT3 single nucleotide polymorphisms (SNP) contribute to pain perception and efficacy of the 5-HT3-antagonist granisetron and sex differences. Sixty healthy participants were genotyped regarding HTR3A (rs1062613) and HTR3B (rs1176744). First, pain was induced by bilateral hypertonic saline injections (HS, 5.5%, 0.2 mL) into the masseter muscles. Thirty min later the masseter muscle on one side was pretreated with 0.5 mL granisetron (1 mg/mL) and on the other side with 0.5 mL placebo (isotonic saline) followed by another HS injection (0.2 mL). Pain intensity, pain duration, pain area and pressure pain thresholds (PPTs) were assessed after each injection. HS evoked moderate pain, with higher intensity in the women (P = 0.023), but had no effect on PPTs. None of the SNPs influenced any pain variable in general, but compared to men, the pain area was larger in women carrying the C/C (HTR3A) (P = 0.015) and pain intensity higher in women with the A/C alleles (HTR3B) (P = 0.019). Pre-treatment with granisetron reduced pain intensity, duration and area to a lesser degree in women (P granisetron. Women carrying the C/T & T/T (HTR3A) genotype had less reduction of pain intensity (P = 0.041) and area (P = 0.005), and women with the C/C genotype (HTR3B) had less reduction of pain intensity (P = 0.030), duration (P = 0.030) and area compared to men (P = 0.017). In conclusion, SNPs did not influence experimental muscle pain or the effect of granisetron on pain variables in general, but there were some sex differences in pain variables that seem to be influenced by genotypes. However, due to the small sample size further research is needed before any firm conclusions can be drawn.

  3. Influence of Polymorphisms in the HTR3A and HTR3B Genes on Experimental Pain and the Effect of the 5-HT3 Antagonist Granisetron.

    Directory of Open Access Journals (Sweden)

    Sofia Louca Jounger

    Full Text Available The aim of this study was to investigate experimentally if 5-HT3 single nucleotide polymorphisms (SNP contribute to pain perception and efficacy of the 5-HT3-antagonist granisetron and sex differences. Sixty healthy participants were genotyped regarding HTR3A (rs1062613 and HTR3B (rs1176744. First, pain was induced by bilateral hypertonic saline injections (HS, 5.5%, 0.2 mL into the masseter muscles. Thirty min later the masseter muscle on one side was pretreated with 0.5 mL granisetron (1 mg/mL and on the other side with 0.5 mL placebo (isotonic saline followed by another HS injection (0.2 mL. Pain intensity, pain duration, pain area and pressure pain thresholds (PPTs were assessed after each injection. HS evoked moderate pain, with higher intensity in the women (P = 0.023, but had no effect on PPTs. None of the SNPs influenced any pain variable in general, but compared to men, the pain area was larger in women carrying the C/C (HTR3A (P = 0.015 and pain intensity higher in women with the A/C alleles (HTR3B (P = 0.019. Pre-treatment with granisetron reduced pain intensity, duration and area to a lesser degree in women (P < 0.05, but the SNPs did not in general influence the efficacy of granisetron. Women carrying the C/T & T/T (HTR3A genotype had less reduction of pain intensity (P = 0.041 and area (P = 0.005, and women with the C/C genotype (HTR3B had less reduction of pain intensity (P = 0.030, duration (P = 0.030 and area compared to men (P = 0.017. In conclusion, SNPs did not influence experimental muscle pain or the effect of granisetron on pain variables in general, but there were some sex differences in pain variables that seem to be influenced by genotypes. However, due to the small sample size further research is needed before any firm conclusions can be drawn.

  4. Relevant safety issues in designing the HTR-10 reactor

    International Nuclear Information System (INIS)

    Sun Yuliang; Xu Yuanghui

    2001-01-01

    The HTR-10 is a 10 MWth pebble bed high temperature gas cooled reactor being constructed as a research facility at the Institute of Nuclear Energy Technology. This paper discusses design issues of the HTR-10 which are related to safety. It addresses the safety criteria used in the development and assessment of the design, the safety important systems, and the safety classification of components. It also summarises the results of safety analysis, including the approach used for the radioactive source term, as well as the approach to containment design. (author)

  5. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  6. Objectives for an HTR R and D physics programme

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, I; Scott, J A

    1973-10-15

    The paper reviews important objectives for an HTR R and D programme and the importance of particular characteristics for safety and reactor performance is discussed. Uncertainties in the physics characteristics influence reactor design through the inclusion of design margins and contingency allowances and may even eliminate certain design variants. The paper discusses quantitatively the relationship between some important uncertainties and reactor design and operating costs and derives targets for the precision with which it should be possible to compute the corresponding physics characteristics. To extrapolate to power reactor conditions, the need for a comprehensive computational scheme validated by an adequate experimental programme is emphasised. The reduction in uncertainty as the theoretical and experimental reactor physics development proceeds in order to meet the desired target uncertainty is illustrated with respect to the UK's programme in support of the low enriched HTR concept. The current situation for this concept is discussed and compared briefly with that for the Th cycle HTR for which somewhat less zero energy experimental data are available. (auth)

  7. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  8. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  9. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  10. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  11. HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory.

    Science.gov (United States)

    Drago, Antonio; Alboni, Silvia; Brunello, Nicoletta; Nicoletta, Brunello; De Ronchi, Diana; Serretti, Alessandro

    2010-01-01

    Serotonin receptor 1B (HTR1B) is involved in the regulation of the serotonin system, playing different roles in specific areas of the brain. We review the characteristics of the gene coding for HTR1B, its product and the functional role of HTR1B in the neural networks involved in motivation and memory; the central role played by HTR1B in these functions is thoroughly depicted and show HTR1B to be a candidate modulator of the mnemonic and motivationally related symptoms in psychiatric illnesses. In order to challenge this assessment, we analyze how and how much the genetic variations located in the gene that codes for HTR1B impacts on the psychiatric phenotypes by reviewing the literature on this topic. We gathered partial evidence arising from genetic association studies, which suggests that HTR1B plays a relevant role in substance-related and obsessive compulsive disorders. On the other hand, no solid evidence for other psychiatric disorders was found. This finding is quite striking because of the heavy impairment of motivation and of mnemonic-related functions (for example, recall bias) that characterize major psychiatric disorders. The possible reasons for the contrast between the prime relevance of HTR1B in regulating memory and motivation and the limited evidence brought by genetic association studies in humans are discussed, and some suggestions for possible future directions are provided.

  12. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  13. PEMODELAN TERAS UNTUK ANALISIS PERHITUNGAN KONSTANTA MULTIPLIKASI REAKTOR HTR-PROTEUS

    Directory of Open Access Journals (Sweden)

    Zuhair Zuhair

    2015-04-01

    Full Text Available PTRKN sebagai salah satu unit kerja di BATAN dengan tugas pokok dan fungsi yang berkaitan erat dengan teknologi reaktor dan keselamatan nuklir, menaruh perhatian khusus pada konsep reaktor pebble bed. Dalam makalah ini pemodelan reaktor pebble bed HTR-PROTEUS dilakukan dengan program transport Monte Carlo MCNP5. Partikel bahan bakar berlapis TRISO dimodelkan secara detail dan eksak dimana distribusi acak partikel ini dalam bola bahan bakar didekati menggunakan array teratur kisi SC dengan fraksi packing 5,76% tanpa zona eksklusif. Model teras pebble bed didekati dengan memanfaatkan kisi teratur dari bola yang disusun sebagai kisi BCC berdasarkan sel berulang yang digenerasi dari sejumlah sel satuan. Hasil perhitungan MCNP5 memperlihatkan kesesuaian yang sangat baik dengan eksperimen, walaupun teras HTR-PROTEUS diprediksi lebih reaktif daripada pengukuran, khususnya di teras 4.2 dan 4.3. Pustaka ENDF/B-VI menunjukkan konsistensi dengan estimasi keff paling akurat dibandingkan pustaka ENDF/B-V, terutama ENDF/B-VI (66c. Deviasi estimasi keff yang dihitung dengan eksperimen dikaitkan sebagai konsekuensi dari komposisi reflektor grafit yang dispesifikasikan. Komparasi yang dibuat memperlihatkan bahwa MCNP5 menghasilkan keff teras HTR-PROTEUS lebih presisi daripada hasil dari MCNP4B dan MCNPBALL. Hasil ini menyimpulkan bahwa, sukses metodologi pemodelan ini menjustifikasi aplikasi MCNP5 untuk analisis reaktor pebble bed lainnya. Kata kunci: pemodelan teras HTR-PROTEUS, konstanta multiplikasi, MCNP5   PTRKN as a working unit in BATAN whose main duties and functions are related to reactor technology and nuclear safety, consern attention to pebble bed reactor concept. In this paper modeling of HTR-PROTEUS pebble bed reactor was done using Monte Carlo transport code MCNP5. The TRISO coated fuel particle is modeled in detailed and exact manner where random distributions of these particles in fuel pebble is approximated by using regular array of SC lattice

  14. The HTR, applications, economics and environmental aspects

    International Nuclear Information System (INIS)

    Barnert, H.; Schad, M.; Candeli, H.

    1990-01-01

    The High Temperature Reactor (HTR), as the only nuclear system producing high temperature heat up to 1000 deg. C, offers a wide variety of applications. Besides electricity production, via steam turbines and in future via gas turbines, there is: District heat with high efficiency, long distance energy for urban energy supply, high pressure injection steam production for enhanced oil recovery, medium range temperature heat direct application in chemical and related industry and last not least, high temperature application for the refinement of fossil energy carriers. Recent results of studies and programmes will be presented: Near term applications are identified, e.g. refineries and alumina industry with smaller HTR units. Another large market is the production of hydrogen, methanol and ammonia on the basis of natural gas, the relevant technology has been developed up to the pilot scale. The refinement of fossil energy carriers, in particular of coal, is subject of the R+D programme in the cooperation between German industrial companies and the Nuclear Research Center. The results are very promising and will be explained in detail. This programme will be continued. Objectives are: improvement of the technology and of the economics as well as environmental aspects, e.g. the reduction of emissions of carbon-dioxid. The topics of the programme deal with the different apparatus, e.g. steam methane reformer, steam coal gasifier, intermediate heat exchanger and last not least, the process heat HTR. (author)

  15. Studi Model Benchmark Mcnp6 Dalam Perhitungan Reaktivitas Batang Kendali Htr-10

    OpenAIRE

    Jupiter S.Pane, Zuhair, Suwoto, Putranto Ilham Yazid

    2016-01-01

    STUDI MODEL BENCHMARK MCNP6 DALAM PERHITUNGAN REAKTIVITAS BATANG KENDALI HTR-10. Dalam operasi reaktor nuklir, sistem batang kendali memainkan peranan yang sangat penting karena didesain untuk mengendalikan reaktivitas teras dan memadamkan reaktor. Nilai reaktivitas batang kendali harus diprediksi secara akurat melalui eksperimen dan perhitungan. Makalah ini mendiskusikan model Benchmark dalam perhitungan reaktivitas batang kendali reaktor HTR-10. Perhitungan dikerjakan dengan program transpo...

  16. Possibility of using gamma radiation from HTR reactors for the processing of food and medical products

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2004-01-01

    During the fission process in most of the presently operating nuclear reactors nuclear energy is converted into thermal energy and transferred to common steam cycles for power generation. As part of the fission process also α, β and neutrons particles are released from the nucleus; the release of gamma-rays is also a part of the fission process. In present nuclear reactors α, β, neutrons particles and particularly gamma-rays are not gainfully used as a result of the reactor design and of the containment. These plants are built as required by regulations and international standards for safety. The inherently safe HTR reactor, by its physics and design, does not need a special reinforced containment and it is worth looking into the possibilities of this design feature to use the by-products, such as Gamma-rays, from nuclear fission. In the HTR Pebble Bed Reactors the α, and β particles will remain in the kernels of the pebbles. This means that only the neutron particles and gamma-rays will be available outside the reactor pressure vessel. In this report a proposal is presented to use the gamma-rays of the HTR reactor for irradiation of food and agricultural produce. For neutron shielding a reflector is placed inside the reactor while outside the reactor neutron- and thermal-shielding will be accomplished with water. The high energy gamma-rays will pass through the water-shield and could be harnessed for radiation processing of food and medical products. (author)

  17. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  18. Computational fluid dynamic model for thermohydraulic calculation for the steady-state of the real scale HTR-1

    Energy Technology Data Exchange (ETDEWEB)

    Gamez, Abel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy Y.; Gonzalez, Daniel; Garcia, Carlos, E-mail: agamezgmf@gmail.com, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Oliveira, Carlos B. de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    The high temperature gas cooled reactor (HTGR) is one of candidates of next generation of nuclear reactor according to IAEA report 2013. Evaluation of thermohydraulic performance and an experimental comparison results were proposed to the international research community. In this article, the tree dimensional CFD thermohydraulic modelation of steady state of HTR-10 modular reactor, using ANSYS CFX v14.0, has been done. Code-to-code and Code-to-experiment benchmark analyses, related to the testing program of the HTR-10 plant including steady state temperature distribution with the reactor at full power, were developed. The 3D real scale representation of reflector zone and fluid path flow inner and outer reflector blocks and cold helium cavity were carried out. The porous medium model was used to simulate the core zone in the reactor. The power distribution of the initial core published by IAEA-TECDOC-1694 obtained by Chief Scientific Investigators (CSIs) from China was used as heat sources in the core zone. (author)

  19. Burner and dissolver off-gas treatment in HTR fuel reprocessing

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Heidendael, M.; Kirchner, H.; Merz, E.; Schroeder, G.; Vygen, H.

    1979-01-01

    In the reprocessing of HTR fuel, essentially all of the gaseous fission products are released during the heat-end tratment, which includes burning of the graphite matrix and dissolving of the heavy metallic residues in THOREX reagent. Three facilities for off-gas cleaning are described, the status of the facility development and test results are reported. Hot tests with a continuous dissolver for HTR-type fuel (throughput 2 kg HM/d) with a closed helium purge loop have been carried out. Preliminary results of these experiments are reported

  20. Source apportionment of PM10 and PM2.5 in a desert region in northern Chile

    International Nuclear Information System (INIS)

    Jorquera, Héctor; Barraza, Francisco

    2013-01-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM 10 and PM 2.5 measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM 10 and PM 2.5 were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO 3 − and SO 4 = ), atomic absorption (Na + , K + ) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM 2.5 fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM 10 fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM 10 is 50 μg/m 3 and the peak daily value is 104 μg/m 3 . For the PM 2.5 fraction, suspended soil dust contributes with an average of 9.3

  1. Design of the steam reformer for the HTR-10 high temperature process heat application

    International Nuclear Information System (INIS)

    Ju Huaiming; Xu Yuanhui; Jia Haijun

    2000-01-01

    The 10 MW High Temperature Reactor Test Module (HTR-10) is being constructed now and planned to be operational in 2000. One of the objectives is to develop the high temperature process heat application. The methane steam reformer is one of the key-facilities for the nuclear process heat application system. The paper describes the conceptual design of the HTR-10 Steam Reformer with He heating, and the design optimization computer code. It can be used to perform sensitivity analysis for parameters, and to improve the design. Principal parameters and construction features of the HTR-10 reformer heated by He are introduced. (author)

  2. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  3. Survey of appropriate endothermic processes for association with the HTR

    International Nuclear Information System (INIS)

    Brown, G.; Harrison, G.E.; Gent, C.W.; Plummer, J.

    1975-01-01

    Emphasis is placed on association of the HTR system as a heat source with chemical processes requiring temperatures up to 850 to 900 0 C, corresponding to a reactor coolant temperature of 950 0 C, though processes requiring temperatures up to 1100 0 C and above are reviewed. Particular attention is given to processes for the production of hydrogen-containing gases, including coal/lignite gasification which has been the subject of a recent study. Rising fuel prices make the HTR an attractive proposition if design concepts and materials can be developed to match the requirements. Other appropriate endothermic processes considered are oil processing, including tar sands and shales, and also energy production. Since the full temperature range of the reactor system must be utilised mention is made of low grade heat uses. Even very large chemical works have relatively small energy requirement by nuclear heat standards and adoption of the HTR as a heat source is likely only if it is associated with a large chemical/metallurgical complex or with the processing of a natural resource. (author)

  4. Analysis on First Criticality Benchmark Calculation of HTR-10 Core

    International Nuclear Information System (INIS)

    Zuhair; Ferhat-Aziz; As-Natio-Lasman

    2000-01-01

    HTR-10 is a graphite-moderated and helium-gas cooled pebble bed reactor with an average helium outlet temperature of 700 o C and thermal power of 10 MW. The first criticality benchmark problem of HTR-10 in this paper includes the loading number calculation of nuclear fuel in the form of UO 2 ball with U-235 enrichment of 17% for the first criticality under the helium atmosphere and core temperature of 20 o C, and the effective multiplication factor (k eff ) calculation of full core (5 m 3 ) under the helium atmosphere and various core temperatures. The group constants of fuel mixture, moderator and reflector materials were generated with WlMS/D4 using spherical model and 4 neutron energy group. The critical core height of 150.1 cm obtained from CITATION in 2-D R-Z reactor geometry exists in the calculation range of INET China, JAERI Japan and BATAN Indonesia, and OKBM Russia. The k eff calculation result of full core at various temperatures shows that the HTR-10 has negative temperature coefficient of reactivity. (author)

  5. Proceedings of the workshop on structural design criteria for HTR

    International Nuclear Information System (INIS)

    Breitbach, G.; Schubert, F.; Nickel, H.

    1989-04-01

    The papers demonstrate the status of high temperature reactor technology with regard to its realization in the nuclear power industry of various countries (FRG, USA, Japan) as well as to the development of safety rules in Germany. The design criteria for HTR could be presented. The criteria already determine definitely and almost completely the relevant requirements of the component rules. The informations include the technical boundary conditions with regard to safety, the metallic high temperature components, a particular section dealing with the reactor pressure vessel, especially with the prestressed concrete vessel, and the structural graphite components. (DG)

  6. Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane

    Science.gov (United States)

    Jastrząb, Krzysztof

    2018-01-01

    One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.

  7. Fuel cycle studies for the Dragon HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A; Nunn, R M; Twitchin, A E

    1971-02-15

    This note reports the progress made at B.N.L. in the study of the fuel cycle for the HTR design described by Daub (1970). The primary purpose of the study is to examine the special problems of the approach to equilibrium fuel cycle.

  8. The physics design of the HTR-1160

    International Nuclear Information System (INIS)

    Huebner, A.; Brandes, S.

    1975-01-01

    This paper describes the physica design of the reactor core of the helium cooled, graphite moderated high-temperature reactor HTR-1160. A discussion is given of the design criteria, the calculational methods, the burnup cycle, the power distribution and the reactivity control. (orig.) [de

  9. Reactor physics calculations on HTR type configurations

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.).

  10. Reactor physics calculations on HTR type configurations

    International Nuclear Information System (INIS)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.)

  11. Calculation of HTR-10 first criticality with MVP

    International Nuclear Information System (INIS)

    Xie Jiachun; Yao Lianying

    2015-01-01

    The first criticality of 10 MW pebble-bed high temperature gas-cooled reactor-test module (HTR-10) was calculated with MVP. According to the characteristics of HTR-10, the Statistical Geometry Model of MVP was employed to describe the random arrangement of coated fuel particles in the fuel pebbles and the random distribution of the fuel and dummy pebbles in the core. Compared with previous results from VSOP and MCNP, the MVP results with JENDL-3.3 library were little more different, but the results with ENDF/B-Ⅵ.8 library were very close. The relative errors were less than 0.7%, compared with the first criticality experimental results. The study shows that MVP could be used in the physics calculations for pebble bed high temperature gas-cooled reactors. (authors)

  12. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  13. Review on characterization methods applied to HTR-fuel element components

    International Nuclear Information System (INIS)

    Koizlik, K.

    1976-02-01

    One of the difficulties which on the whole are of no special scientific interest, but which bear a lot of technical problems for the development and production of HTR fuel elements is the proper characterization of the element and its components. Consequently a lot of work has been done during the past years to develop characterization procedures for the fuel, the fuel kernel, the pyrocarbon for the coatings, the matrix and graphite and their components binder and filler. This paper tries to give a status report on characterization procedures which are applied to HTR fuel in KFA and cooperating institutions. (orig.) [de

  14. In-situ hybridization based quantification of hTR: a possible biomarker in malignant melanoma

    DEFF Research Database (Denmark)

    Vagner, Josephine; Steiniche, Torben; Stougaard, Magnus

    2015-01-01

    thickness suggesting that hTR might be a valuable biomarker in MM. Furthermore, as ISH-based detection requires presence of both hTR and the reverse transcriptase (hTERT) it might be an indicator of active telomerase and thus have future relevance as a predictive biomarker for anti-telomerase treatment....

  15. The use and development of the high-temperature reactor (HTR) in China. A conference report

    International Nuclear Information System (INIS)

    Marnet, C.

    2001-01-01

    Gas-cooled graphite-moderated reactors have been under development since the early days of nuclear technology. Starting with plants in Britain and France, reactors employing this combination of coolant and moderator were used in commercial nuclear power plants in the second half of the fifties. At the same time, efforts seeking to use inert helium gas as a coolant resulted in the construction in several countries, the United States and Germany in particular, of larger nuclear power plants with higher coolant temperatures and the resultant thermodynamic advantages of high efficiencies and the option of process heat generation. Economic and political considerations led to the decommissioning of these plants. Today, research and development of high-temperature reactors are concentrated on smaller units. Work is carried out in close international cooperation, especially on project designs and newly commissioned plants in China (HTR-10), Japan (HTTR, Oarai), And South Africa (ESKOM project), but also in the USA and in Russia. (orig.) [de

  16. Actual characteristics study on HTR-10GT coupling with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Peng Xuechuang; Zhu Shutang; Wang Jie

    2005-01-01

    HTR-10GT is a testing project coupling the reactor HTR-10 with direct gas turbine cycle. Its thermal cycle can be taken as a closed, recuperated and inter-cooled Brayton cycle. The present study is focused on the thermal cycle performance of HTR-10GT under practical conditions of leakage, pressure losses, etc.. Through thermodynamic analysis, the expression of cycle efficiency for actual thermal cycle is derived. By establishing a physical model with friction loss and leakage, a set of governing equation are constructed based on some reasonable assumptions. The results of actual cycle efficiency have been calculated for different leakage amount at different locations while the effects of leakage under different power level have also been calculated and analyzed. (authors)

  17. A preliminary neutronic evaluation of the high temperature gas-cooled test reactor HTR-10 using the scale 6.0 code

    International Nuclear Information System (INIS)

    Sousa, Romulo V.; Fortini, Angela; Pereira, Claubia; Carvalho, Fernando R. de; Oliveira, Arno H.

    2013-01-01

    The High Temperature Gas-cooled Test Reactor HTR-10 is a 10 MW modular pebble bed type reactor, which core is filled with 27,000 spherical fuel elements, e.g. TRISO coated particles. This reactor was built by the Institute of Nuclear Energy Technology (INET), Tsinghua University, China, and its first criticality was attained on December 1, 2000. The main objectives of the HTR-10 are to verify and demonstrate the technical and safety features of the modular HTGR (High Temperature Gas-cooled Reactor) and to establish an experimental base for developing nuclear process heat applications. In this work, using the Standardized Computer Analysis for Licensing Evaluation (SCALE) 6.0, a nuclear code developed by Oak Ridge National Laboratory (ORNL), the HTR-10 first critical core is modeled by the DEN/UFMG. The K eff was obtained and compared with the reference value obtained by the Idaho National Laboratory. The result presents good agreement with experimental value. The goal is to validate the DEN/UFMG model to be applied in transmutation studies changing the fuel. (author)

  18. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  19. HTR Plans in Poland

    International Nuclear Information System (INIS)

    Sobolewski, Józef

    2017-01-01

    Target for HTR: Polish Heat Market: Today 100% heat market is dominated by fossil fuels; mostly coal in district heating and coal and gas in industry heat generation. Huge potential for nuclear reactors Currently can be addressed only in terms of LWR, i.e. T <250 ° C, useful in district heating, but not in industry. Need for new technologies •HTGR (High Temperature Gas Reactor) ~600°C, e.g. for industry steam generation. •VHTR (Very High Temperature Reactor), ... ~1000°C, e.g. for hydrogen production

  20. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    Science.gov (United States)

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  1. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. ARCHER HTR Technology in support of a Coal to Liquid Process – An Economic Feasibility View

    International Nuclear Information System (INIS)

    Stoker, P.W.; Fick, J.I.J.; Conradie, F.H.

    2014-01-01

    The paper considers the economics of coupling a European developed HTR (as conceptualized by project ARCHER) to a Coal-to-Liquid (CTL) process as typically used by Sasol, the biggest Coal-to-Liquid (CTL) producer in the world. The approach followed was to create a techno-economic baseline for an existing CTL process using mass and energy balances determined with Aspen Plus chemical modelling software. The economic performance of a typical 80,000 barrels per day synthetic crude oil plant was determined from first principles. The techno-economic baseline model was validated with reference to published product output data and audited financial results of a Sasol CTL plant located at Secunda, South Africa, as reported for the 2011 financial year. A number of schemes were identified to couple the European HTR plant to the CTL case study. Two schemes were studied in detail, while the remaining coupling schemes will be studied as part of the follow-on project NC2I-R (Nuclear Cogeneration Industrial Initiative – Research). Two Key Performance Indices were of interest, namely the Internal Rate of Return of a Nuclear supported CTL plant and the reduction of CO_2 emissions. The case where nuclear co-generation replaced electrical power bought from the grid, and also replaced all the steam currently produced by the burning coal with nuclear steam, yielded interesting conclusions: • The case study plant would need a total of 16 HTRs, each with a capacity of 265 MWth. • The coupling scheme would reduce CO_2 emissions by approximately 14.5 million ton/annum or 51 % of the current emissions of a 80,000 bbl/d plant. • The economic feasibility challenge for large scale deployment of nuclear energy in a Coal-to-Liquid application - where steam and electricity are to be generated from Nuclear energy, is to construct such a facility at an all -inclusive overnight cost not exceeding $3400/kWe. (author)

  3. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  4. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  5. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  6. Energy analysis of control rod drive mechanism in HTR-10

    International Nuclear Information System (INIS)

    Bo Hanliang; Wu Yuanqiang

    2000-01-01

    This paper presents a theoretical model for the control rod drive mechanism for the 10 MW High Temperature Gas Cooled Reactor (HTR-10) and analyzes accidents which may occur in the drive mechanism, for example, chain break, coupling damage and other damage scenarios. The results show that the matching problem between buffer capability and coupling strength is the main reason for coupling damage; increased temperatures would reduce eddy damping and cause a mismatch between buffer capability and coupling strength; and the displacement of the buffer spring will affect the coupling force. The results provide a theoretical basis for the design of the control rod drive mechanism for HTR-10

  7. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA

    Directory of Open Access Journals (Sweden)

    Mathews Sarah A

    2008-11-01

    Full Text Available Abstract Background Chlamydia trachomatis, an obligate intracellular human pathogen, is the most prevalent bacterial sexually transmitted infection worldwide and a leading cause of preventable blindness. HtrA is a virulence and stress response periplasmic serine protease and molecular chaperone found in many bacteria. Recombinant purified C. trachomatis HtrA has been previously shown to have both activities. This investigation examined the physiological role of Chlamydia trachomatis HtrA. Results The Chlamydia trachomatis htrA gene complemented the lethal high temperature phenotype of Escherichia coli htrA- (>42°C. HtrA levels were detected to increase by western blot and immunofluorescence during Chlamydia heat shock experiments. Confocal laser scanning microscopy revealed a likely periplasmic localisation of HtrA. During penicillin induced persistence of Chlamydia trachomatis, HtrA levels (as a ratio of LPS were initially less than control acute cultures (20 h post infection but increased to more than acute cultures at 44 h post infection. This was unlike IFN-γ persistence where lower levels of HtrA were observed, suggesting Chlamydia trachomatis IFN-γ persistence does not involve a broad stress response. Conclusion The heterologous heat shock protection for Escherichia coli, and increased HtrA during cell wall disruption via penicillin and heat shock, indicates an important role for HtrA during high protein stress conditions for Chlamydia trachomatis.

  8. Value-creating investment strategies to manage risk from structural market uncertainties: Switching and compound options in (V)HTR technologies - HTR2008-58157

    International Nuclear Information System (INIS)

    Lauferts, U.; Halbe, C.; Van Heek, A.

    2008-01-01

    To measure the value of a technology investment under uncertainty with standard techniques like net present value (NPV) or return on investment (ROI) will often uncover the difficulty to present convincing business case. Projected cash flows are inefficient or the discount rate chosen to compensate for the risk is so high, that it is disagreeable to the investor s requirements. Decision making and feasibility studies have to look beyond traditional analysis to reveal the strategic value of a technology investment. Here, a Real Option Analysis (ROA) offers a powerful alternative to standard discounted cash-flow (DCF) methodology by risk-adjusting the cash flow along the decision path rather than risk adjusting the discount rate. Within the GEN IV initiative attention is brought not only towards better sustainability, but also to broader industrial application and improved financing. Especially the HTR design is full of strategic optionalities: The high temperature output facilitates penetration into other non-electricity energy markets like industrial process heat applications and the hydrogen market. The flexibility to switch output in markets with multi-source uncertainties reduces downside risk and creates an additional value of over 50% with regard to the Net Present Value without flexibility. The supplement value of deploying a modular (V)HTR design adds over 100% to the project value using real option evaluation tools. Focus of this paper was to quantify the strategic value that comes along a) with the modular design; a design that offers managerial flexibility adapting a step-by-step investment strategy to the actual market demand and b) with the option to switch between two modes of operation, namely electricity and hydrogen production. We will demonstrate that the effect of uncertain electricity prices can be dampened down with a modular HTR design. By using a real option approach, we view the project as a series of compound options - each option depending

  9. The HTR modular power reactor system. Qualification of fuel elements and materials

    International Nuclear Information System (INIS)

    Heidenreich, U.; Breitling, H.; Nieder, R.; Ohly, W.; Mittenkuehler, A.; Ragoss, H.; Seehafer, H.J.; Wirtz, K.; Serafin, N.

    1989-01-01

    For further development of the HTR modular power reactor system (HTR-M-KW), the project activities for 'Qualification of fuel elements and materials' reported here cover the work for specifying the qualifications to be met by metallic and ceramic materials, taking into account the design-based requirements and the engineered safety requirements. The fission product retention data determined for the HTR modular reactor fuel elements could be better confirmed by evaluation of the experiments, and have been verified by various calculation methods for different operating conditions. The qualification of components was verified by strength analyses including a benchmark calculation for specified normal operation and emergencies; the results show a convenient behaviour of the components and their materials. In addition, a fuel element burnup measuring system was designed that applies Cs-137 gamma spectroscopy; its feasibility was checked by appropriate analyses, and qualification work is in progress. The installation of a prototype measurement system is the task for project No. 03 IAT 211. (orig.) [de

  10. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  11. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  12. Crosstalk of PmCBFs and PmDAMs Based on the Changes of Phytohormones under Seasonal Cold Stress in the Stem of Prunus mume

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2018-01-01

    Full Text Available Plants facing the seasonal variations always need a growth restraining mechanism when temperatures turn down. C-repeat binding factor (CBF genes work essentially in the cold perception. Despite lots of researches on CBFs, the multiple crosstalk is still interesting on their interaction with hormones and dormancy-associated MADS (DAM genes in the growth and dormancy control. Therefore, this study highlights roles of PmCBFs in cold-induced dormancy from different orgens. And a sense-response relationship between PmCBFs and PmDAMs is exhibited in this process, jointly regulated by six PmCBFs and PmDAM4–6. Meantime, GA3 and ABA showed negative and positive correlation with PmCBFs expression levels, respectively. We also find a high correlation between IAA and PmDAM1–3. Finally, we display the interaction mode of PmCBFs and PmDAMs, especially PmCBF1-PmDAM1. These results can disclose another view of molecular mechanism in plant growth between cold-response pathway and dormancy regulation together with genes and hormones.

  13. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  14. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field.

    Science.gov (United States)

    Brunner, Susanne; Stirnweis, Daniel; Diaz Quijano, Carolina; Buesing, Gabriele; Herren, Gerhard; Parlange, Francis; Barret, Pierre; Tassy, Caroline; Sautter, Christof; Winzeler, Michael; Keller, Beat

    2012-05-01

    Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  16. Biomagnetic monitoring of particulate matter (PM through leaves of an invasive alien plant Lantana camara in an Indo-Burma hot spot region

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2016-03-01

    Full Text Available Present study was performed in urban forests of Aizawl, Mizoram, North East India falling under an Indo-Burma hot spot region of existing ecological relevance and pristine environment. Phyto-sociolology of invasive weeds has been performed and results revealed that Lantana camara was the most dominant invasive weed. Further, the air quality studies revealed high suspended particulate matter (SPM as well as respirable suspended particulate matter (RSPM in ambient air of Aizawl, Mizoram, North East India. Bio-magnetic monitoring through plant leaves has been recognised as recent thrust area in the field of particulate matter (PM science. We aimed to investigate that whether magnetic properties of Lantana camara leaves may act as proxy of PM pollution and hence an attempt towards it's sustainable management. Magnetic susceptibility (χ, Anhyste reticremanent magnetization (ARM and Saturation isothermal remanent magnetization (SIRM of Lantana camara plant leaves were assessed and concomitantly correlated these magnetic properties with ambient PM in order to screen this invasive plant which may act as proxy for ambient PM concentrations. Results revealed high χ, ARM, SIRM of Lantana camara leaves and moreover, these parameters were having significant and positive correlation with ambient SPM as well as RSPM. Therefore, present study recommended the use of Lantana camara as bio-magnetic monitor which may further have sustainable management implications of an invasive plant.

  17. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  18. Proceedings of the Fifth Seminar of High Temperature Reactor: The Role and Challenge with HTR Opportunity in the Twenty-first Century

    International Nuclear Information System (INIS)

    As-Natio-Lasman; Zaki-Su'ud; Bambang-Sugiono

    2000-11-01

    The Seminar in HTR Reactor has become routine activities held in BATAN since 1994. This Seminar is a continuation of the Seminar on Technology and HTR Application held by Centre for Development of Advanced Reactor System. The theme of the seminar is Role, Challenge, Opportunity of HTR in the Twenty-first Century. Thirteen papers presented in the seminar were collected into proceedings. The aims of the proceedings is to provide information and references on nuclear technology, mainly on HTR technology. (DII)

  19. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  20. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  1. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  2. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  3. A dynamic processes study of PM retention by trees under different wind conditions.

    Science.gov (United States)

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On the correctness of the thermoluminescent high-temperature ratio (HTR) method for estimating ionization density effects in mixed radiation fields

    International Nuclear Information System (INIS)

    Bilski, Pawel

    2010-01-01

    The high-temperature ratio (HTR) method which exploits changes in the LiF:Mg,Ti glow-curve due to high-LET radiation, has been used for several years to estimate LET in an unknown radiation field. As TL efficiency is known to decrease after doses of densely ionizing radiation, a LET estimate is used to correct the TLD-measured values of dose. The HTR method is purely empirical and its general correctness is questionable. The validity of the HTR method was investigated by theoretical simulation of various mixed radiation fields. The LET eff values estimated with the HTR method for mixed radiation fields were found in general to be incorrect, in some cases underestimating the true values of dose-averaged LET by an order of magnitude. The method produced correct estimates of average LET only in cases of almost mono-energetic fields (i.e. in non-mixed radiation conditions). The value of LET eff found by the HTR method may therefore be treated as a qualitative indicator of increased LET, but not as a quantitative estimator of average LET. However, HTR-based correction of the TLD-measured dose value (HTR-B method) was found to be quite reliable. In all cases studied, application of this technique improved the result. Most of the measured doses fell within 10% of the true values. A further empirical improvement to the method is proposed. One may therefore recommend the HTR-B method to correct for decreased TL efficiency in mixed high-LET fields.

  5. Oxidation of carbon based material for innovative energy systems (HTR, fusion reactor): status and further needs

    International Nuclear Information System (INIS)

    Moormann, R.; Hinssen, H.K.; Latge, Ch.; Dumesnil, J.; Veltkamp, A.C.; Grabon, V.; Beech, D.; Buckthorpe, D.; Dominguez, T.; Krussenberg, A.K.; Wu, C.H.

    2000-01-01

    Following an overview on kinetics of carbon/gas reactions, status and further needs in selected safety relevant fields of graphite oxidation in high temperature reactors (HTRs) and fusion reactors are outlined. Kinetics was detected due to the presence of such elements as severe air ingress, lack of experimental data on Boudouard reaction and a similar lack of data in the field of advanced oxidation. The development of coatings which protect against oxidation should focus on stability under neutron irradiation and on the general feasibility of coatings on HTR pebble fuel graphite. Oxidation under normal operation of direct cycle HTR requires examinations of gas atmospheres and of catalytic effects. Advanced carbon materials like CFCs and mixed materials should be developed and tested with respect to their oxidation resistance in a common HTR/fusion task. In an interim HTR, fuel storage radiolytic oxidation under normal operation and thermal oxidation in accidents have to be considered. Plans for future work in these fields are described. (authors)

  6. Technology assessment HTR. Part 4. Power upscaling of High Temperature Reactors

    International Nuclear Information System (INIS)

    Van Heek, A.I.

    1996-06-01

    Designs of nuclear reactors can be classified in evolutionary, revolutionary and innovative designs. An innovative design is the High Temperature Reactor (HTR). Introduction of innovative reactors has not been successful until now. Globally, three requirements for this reactors for successful market introduction can be identified: (1) Societal support for nuclear energy, or if separable, for this reactor type, should be repaired; (2) After market introduction the innovative plant must be able to operate economically competitive; and (3) The costs of market introduction of an innovative reactor design must be limited. Until now all reactor designs classified as innovative have not yet been realized. High temperature reactors exist in many different designs. Common features are: helium coolant, graphite moderator and coated particle fuel. The combination of these creates the potential to fulfill the first requirement (public support), and similarly a hurdle to the second requirement (economical operation). All three problems existing in the eyes of the public are addressed, while a high degree of transparency is reached, making the design understandable also by others than nuclear experts. A consequence of designing according to the social support requirement is a limitation of the unit power level. The usual method to make nuclear power plants economically competitive, i.e. just raising the power level (economy of scale) could not be applied anymore. Therefore other means of cost decreasing had to be used: modularization and simplification. These ideas are explained. Since all existing HTRs are currently out of operation, additional experience from two small HTRs under construction at this moment in the Far East will be essential. In the history of HTR designs, an evolutionary path can be identified. The early designs had a philosophy of safety and economics very similar to those of LWR. Modularization was introduced to attain economic viability and the design was

  7. Actual characteristics study on HTR-10GT coupling with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Peng Xuechuang; Zhu Shutang; Wang Jie

    2005-01-01

    Compared with a plant of steam turbine cycle, a HTGR plant with direct gas turbine cycle has a higher thermal efficiency. A lot of investigations on the characteristics of HTR-10GT, which is the reactor studying project of Tsinghua University, have been carried out, however, all of them are based on the theoretical Brayton Cycle which neglects many actual conditions, such as leakage, pressure loss and so on. For engineering practices, leakage is an unavoidable problem. The difference of the location and capacity of leakage will directly influence the working medium's thermoparameters and lead to fall of the cycle efficiency. The present study is focused on the performance of an actual Brayton cycle with practical conditions of leakage. The present study which based on building the physical and mathematical model of the leakage, aims to study the actual characteristics of the direct gas turbine circle. (authors)

  8. The Application of Integrated Design System for HTR-PM Design

    International Nuclear Information System (INIS)

    Qi Shi; Xiaojing Kang

    2014-01-01

    SmartPlant Enterprise(SPE) developed by Intergraph from America is a new generation integrated solution for engineering design. Combined with the application in a nuclear engineering, this paper introduced the composition and the data flow of Integrated Design System established by SPE, analyzed the advantages and the insufficiency, and provided the direction of continuous improvement. (author)

  9. Technology Assessment HTR. Part 7. Social support for the introduction of the High Temperature Reactor

    International Nuclear Information System (INIS)

    De Ruiter, W.

    1996-06-01

    The safety of nuclear power plants is the main subject in risk analysis and risk perception of nuclear energy. The question is if a substantial increase in safety according to the classic risk analysis will lead to a decrease in the percepted risks of nuclear energy. In this report the uncertainties in existing risk analysis are dealt with. The results of public risk perception studies of nuclear power are then analysed and possible changes in the public risk perception in the case of the introduction of the HTR is dealt with. Results and conclusions are presented. 4 tabs., 71 refs

  10. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.).

    Science.gov (United States)

    Elkot, Ahmed Fawzy Abdelnaby; Chhuneja, Parveen; Kaur, Satinder; Saluja, Manny; Keller, Beat; Singh, Kuldeep

    2015-01-01

    Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA)-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS), the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection) and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in several BC2F1 plants

  11. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss. to Triticum aestivum (L..

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy Abdelnaby Elkot

    Full Text Available Powdery mildew (PM, caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS, the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in

  12. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  14. HTR combustion head end comparison of the shaft furnace and fluidized bed processes

    Energy Technology Data Exchange (ETDEWEB)

    Boehnert, R.; Kaiser, G.; Pirk, H.; Tillessen, U.

    1975-01-15

    Two methods are described for the combustion of the graphite of HTR fuel elements, a sufficient description of the principles being given to permit an understanding of the processes. The present state of the technology of the two processes is then compared on the basis of the results obtained at Gulf General Atomic. Finally, the possibilities of further development are examined using a pilot plant designed to deliver a reactor power of 7000 MWe as the basis. The present report is a collection of facts. It contains neither an evaluation nor a recommendation. A summarized comparison of the state of the technology and the possibilities of development is given in tabular form.

  15. Introduction of leadership training based on PM theory at a nuclear power plant. An analysis of leadership, morale and self-efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Michio [Kumamoto Univ. (Japan). Dept. of Physics; Yoshiyama, Naohiro; Misumi, Emiko; Matsuda, Ryosuke; Misumi, Jyuji; Hiraki, Tadao; Sakurai, Yukihiro

    1997-09-01

    PM leadership training(PMT) course was introduced into three nuclear power plants for the purpose of accident prevention. PMT is a six-month training course consisting of three parts, i.e., lecture, PM survey, and participants` practice at their workplace. The major aim of PMT is to change participants` leadership behavior into PM-type that is the most desirable for group effectiveness. In this study, we examined the effects of PMT on participants` leadership, subordinates` morale and participants` self-efficacy. Participants were fifty-six supervisors working in operation or maintenance in each nuclear power plant. The supervisors have eight hundred forty five subordinates in all. The major results were as follows: (1) Not only participants` leadership Performance(P) and Maintenance(M) behavior was strengthened, but also their subordinates` morale increased during PMT`s 6-month course. (2) Strengthening both P and M behavior was the most effective in building up subordinates` morale, especially in teamwork, meeting satisfaction, and communication. (3) Participants` self-efficacy was related with the strength of their P behavior and subordinates` group morale. These results show that PMT course is effective in accident prevention in nuclear power plants. Finally, we discuss some future problems of the development of PMT in nuclear power plants. (author)

  16. Introduction of leadership training based on PM theory at a nuclear power plant. An analysis of leadership, morale and self-efficacy

    International Nuclear Information System (INIS)

    Yoshida, Michio; Yoshiyama, Naohiro; Misumi, Emiko; Matsuda, Ryosuke; Misumi, Jyuji; Hiraki, Tadao; Sakurai, Yukihiro.

    1997-01-01

    PM leadership training(PMT) course was introduced into three nuclear power plants for the purpose of accident prevention. PMT is a six-month training course consisting of three parts, i.e., lecture, PM survey, and participants' practice at their workplace. The major aim of PMT is to change participants' leadership behavior into PM-type that is the most desirable for group effectiveness. In this study, we examined the effects of PMT on participants' leadership, subordinates' morale and participants' self-efficacy. Participants were fifty-six supervisors working in operation or maintenance in each nuclear power plant. The supervisors have eight hundred forty five subordinates in all. The major results were as follows: (1) Not only participants' leadership Performance(P) and Maintenance(M) behavior was strengthened, but also their subordinates' morale increased during PMT's 6-month course. (2) Strengthening both P and M behavior was the most effective in building up subordinates' morale, especially in teamwork, meeting satisfaction, and communication. (3) Participants' self-efficacy was related with the strength of their P behavior and subordinates' group morale. These results show that PMT course is effective in accident prevention in nuclear power plants. Finally, we discuss some future problems of the development of PMT in nuclear power plants. (author)

  17. Neutronic feasibility design of a small long-life HTR

    International Nuclear Information System (INIS)

    Ding Ming; Kloosterman, Jan Leen

    2011-01-01

    Highlights: ► We propose the neutronic feasibility design of a small, long lifetime and transportable HTR. ► Comparison of cylindrical, annular and scatter cores of the small block-type HTR. ► The design of the scatter core effectively reduces the number of the fuel block and increases the lifetime and burnup of the reactor. - Abstract: Small high temperature gas-cooled reactors (HTRs) have the advantages of transportability, modular construction and flexible site selection. This paper presents the neutronic feasibility design of a 20 MWth U-Battery, which is a long-life block-type HTR. Key design parameters and possible reactor core configurations of the U-Battery were investigated by SCALE 5.1. The design parameters analyzed include fuel enrichment, the packing fraction of TRISO particles, the radii of fuel compacts and kernels, and the thicknesses of top and bottom reflectors. Possible reactor core configurations investigated include five cylindrical, two annular and four scatter reactor cores for the U-Battery. The neutronic design shows that the 20 MWth U-Battery with a 10-year lifetime is feasible using less than 20% enriched uranium, while the negative values of the temperature coefficients of reactivity partly ensure the inherent safety of the U-Battery. The higher the fuel enrichment and the packing fraction of TRISO particles are, the lower the reactivity swing during 10 years will be. There is an optimum radius of fuel kernels for each value of the fuel compact design parameter (i.e., radius) and a specific fuel lifetime. Moreover, the radius of fuel kernels has a small influence on the infinite multiplication factor of a typical fuel block in the range of 0.2–0.25 mm, when the radius of fuel compacts is 0.6225 cm and the lifetime of the fuel block is 10 years. The comparison of the cylindrical reactor cores with the non-cylindrical ones shows that neutron under-moderation is a basic neutronic characteristic of the reactor core of the U

  18. Status of the HTR programme in France

    International Nuclear Information System (INIS)

    Ballot, B.; Gauthier, J.C.; Hittner, D.; Lebrun, J.Ph.; Lecomte, M.; Carre, F.; Delbecq, J.M.

    2007-01-01

    AREVA is convinced that HTR (High Temperature Reactor) is not in competition with large LWRs for electricity generation, and that its actual added value is its potential for addressing cogeneration and industrial process heat production. Therefore AREVA launched in 2004 the ANTARES programme for a pre-conceptual design study, with the support of EDF and together with a large research and development programme needed for the design in close collaboration with Cea. The pre-conceptual phase was finalized end of 2006. The specific feature of AREVA's concept, which distinguishes it from other ones, is its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important being the design flexibility to adapt readily to combined heat and power applications, with a standardised nuclear heat source as independent as possible of the versatile process heat applications with which it is coupled. Standardisation should expedite licensing. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The reactor module produces 600 MWth which can be split into the required process heat, the remaining power driving an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful energy

  19. Plutonium re-cycle in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J. A.

    1974-03-15

    The study of plutonium cycles in HTRs using reprocessed plutonium from Magnox and AGR fuel cycles has shown that full core plutonium/uranium loadings are in general not feasible, burn-up is limited due the need for lower loadings of plutonium to meet reload core reactivity limits, on-line refueling is not practicable due to the need for higher burnable poison loadings, and low conversion rates in the plutonium-uranium cycles cannot be mitigated by axial loading schemes so that fissile make-up is needed if HTR plutonium recycle is desired.

  20. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  1. Prospective studies of HTR fuel cycles involving plutonium

    International Nuclear Information System (INIS)

    Bonin, B.; Greneche, D.; Carre, F.; Damian, F.; Doriath, J.Y.

    2002-01-01

    High Temperature Gas Cooled reactors (HTRs) are able to accommodate a wide variety of mixtures of fissile and fertile materials without any significant modification of the core design. This flexibility is due to an uncoupling between the parameters of cooling geometry, and the parameters which characterize neutronic optimisation (moderation ratio or heavy nuclide concentration and distribution). Among other advantageous features, an HTR core has a better neutron economy than a LWR because there is much less parasitic capture in the moderator (capture cross section of graphite is 100 times less than the one of water) and in internal structures. Moreover, thanks to the high resistance of the coated particles, HTR fuels are able to reach very high burn-ups, far beyond the possibilities offered by other fuels (except the special case of molten salt reactors). These features make HTRs especially interesting for closing the nuclear fuel cycle and stabilizing the plutonium inventory. A large number of fuel cycle studies are already available today, on 3 main categories of fuel cycles involving HTRs : i) High enriched uranium cycle, based on thorium utilization as a fertile material and HEU as a fissile material; ii) Low enriched uranium cycle, where only LEU is used (from 5% to 12%); iii) Plutonium cycle based on the utilization of plutonium only as a fissile material, with (or without) fertile materials. Plutonium consumption at high burnups in HTRs has already been tested with encouraging results under the DRAGON project and at Peach Bottom. To maximize plutonium consumption, recent core studies have also been performed on plutonium HTR cores, with special emphasis on weapon-grade plutonium consumption. In the following, we complete the picture by a core study for a HTR burning reactor-grade plutonium. Limits in burnup due to core neutronics are investigated for this type of fuel. With these limits in mind, we study in some detail the Pu cycle in the special case of a

  2. Behavior of the P1.HTR mastocytoma cell line implanted in the chorioallantoic membrane of chick embryos

    Directory of Open Access Journals (Sweden)

    S.F. Avram

    2013-01-01

    Full Text Available The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.

  3. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  4. Demonstration of reliability centered maintenance

    International Nuclear Information System (INIS)

    Schwan, C.A.; Morgan, T.A.

    1991-04-01

    Reliability centered maintenance (RCM) is an approach to preventive maintenance planning and evaluation that has been used successfully by other industries, most notably the airlines and military. Now EPRI is demonstrating RCM in the commercial nuclear power industry. Just completed are large-scale, two-year demonstrations at Rochester Gas ampersand Electric (Ginna Nuclear Power Station) and Southern California Edison (San Onofre Nuclear Generating Station). Both demonstrations were begun in the spring of 1988. At each plant, RCM was performed on 12 to 21 major systems. Both demonstrations determined that RCM is an appropriate means to optimize a PM program and improve nuclear plant preventive maintenance on a large scale. Such favorable results had been suggested by three earlier EPRI pilot studies at Florida Power ampersand Light, Duke Power, and Southern California Edison. EPRI selected the Ginna and San Onofre sites because, together, they represent a broad range of utility and plant size, plant organization, plant age, and histories of availability and reliability. Significant steps in each demonstration included: selecting and prioritizing plant systems for RCM evaluation; performing the RCM evaluation steps on selected systems; evaluating the RCM recommendations by a multi-disciplinary task force; implementing the RCM recommendations; establishing a system to track and verify the RCM benefits; and establishing procedures to update the RCM bases and recommendations with time (a living program). 7 refs., 1 tab

  5. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-09-01

    Full Text Available Hourly average monitoring data for mass concentrations of PM1, PM2.5, PM10, and black carbon (BC were measured in Wuhan from December 2013 to December 2014, which has a flourishing steel industry, to analyze the characteristics of PM and their relation to BC, using statistical methods. The results indicate that variations in the monthly average mass concentrations of PM have similar concave parabolic shapes, with the highest values occurring in January and the lowest values appearing in August or September. The correlation coefficient of the linear regression model between PM1 and PM2.5 is quite high, reaching 0.99. Furthermore, the proportion of PM1 contained within PM2.5 is roughly 90%, directly proving that ultrafine particles whose diameter less than 1 μm may be a primary component of PM2.5 in Wuhan. Additionally, better seasonal correlation between PM and BC occurs only in summer and autumn, due to multiple factors such as topography, temperature, and the atmosphere in winter and spring. Finally, analysis of the diurnal variation of PM and BC demonstrates that the traffic emissions during rush hour, exogenous pollutants, and the shallow PBLH with stagnant atmosphere, all contribute to the severe pollution of Wuhan in winter.

  6. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  7. Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants.

    Science.gov (United States)

    Buonocore, Jonathan J; Dong, Xinyi; Spengler, John D; Fu, Joshua S; Levy, Jonathan I

    2014-07-01

    We estimated PM2.5-related public health impacts/ton emitted of primary PM2.5, SO2, and NOx for a set of power plants in the Mid-Atlantic and Lower Great Lakes regions of the United States, selected to include varying emission profiles and broad geographic representation. We then developed a regression model explaining variability in impacts per ton emitted using the population distributions around each plant. We linked outputs from the Community Multiscale Air Quality (CMAQ) model v 4.7.1 with census data and concentration-response functions for PM2.5-related mortality, and monetized health estimates using the value-of-statistical-life. The median impacts for the final set of plants were $130,000/ton for primary PM2.5 (range: $22,000-230,000), $28,000/ton for SO2 (range: $19,000-33,000), and $16,000/ton for NOx (range: $7100-26,000). Impacts of NOx were a median of 34% (range: 20%-75%) from ammonium nitrate and 66% (range: 25%-79%) from ammonium sulfate. The latter pathway is likely from NOx enhancing atmospheric oxidative capacity and amplifying sulfate formation, and is often excluded. Our regression models explained most of the variation in impact/ton estimates using basic population covariates, and can aid in estimating impacts averted from interventions such as pollution controls, alternative energy installations, or demand-side management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The conceptual flowsheet of effluent treatment during preparing spherical fuel elements of HTR

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Quan, E-mail: quanying@tsinghua.edu.cn; Xiao-tong, Chen; Bing, Liu; Gen-na, Fu; Yang, Wang; You-lin, Shao; Zhen-ming, Lu; Ya-ping, Tang; Chun-he, Tang

    2014-05-01

    High temperature gas-cooled reactor (HTR) is one of the advanced nuclear reactors owing to its inherent safety and broad applications. For HTR, one of the key components is the ceramic fuel element. During the preparation of spherical fuel elements, the radioactive effluent treatment is necessary. Referring to the current treatment technologies and methods, the conceptual flowsheet of low-level radioactive effluent treatment during preparing spherical fuel elements was established. According to the above treatment process, the uranium concentration was decreased from 200 mg/l to the level of discharged standard.

  9. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    1980-05-01

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  10. Would HTR be suitable for application in the Netherlands?

    International Nuclear Information System (INIS)

    Heek, A.I. van.

    1994-08-01

    The modular HTR may be a reactor type, which would have sufficient societal support to be constructed in the Netherlands. The economic approach would be fundamentally different from that applied in present nuclear technology. In a national research program this is being investigated. (orig.)

  11. KüFA safety testing of HTR fuel pebbles irradiated in the High Flux Reactor in Petten

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O., E-mail: oliver.seeger@rwth-aachen.de [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Laurie, M., E-mail: mathias.laurie@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Abjani, A. El; Ejton, J.; Boudaud, D.; Freis, D.; Carbol, P.; Rondinella, V.V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Safety of Irradiated Nuclear Materials Unit, Postfach 2340, 76125 Karlsruhe (Germany); Fütterer, M. [European Commission, Joint Research Centre (JRC), Institute for Energy and Transport (IET), Nuclear Reactor Integrity Assessment and Knowledge Management Unit, PO Box 2, 1755 ZG Petten (Netherlands); Allelein, H.-J. [Lehrstuhl für Reaktorsicherheit und -technik an der RWTH Aachen, Kackertstraße 9, 52072 Aachen (Germany)

    2016-09-15

    The Cold Finger Apparatus (KühlFinger-Apparatur—KüFA) in operation at JRC-ITU is designed to experimentally scrutinize the effects of Depressurization LOss of Forced Circulation (D-LOFC) accident scenarios on irradiated High Temperature Reactor (HTR) fuel pebbles. Up to 1600 °C, the reference maximum temperature for these accidents, high-quality German HTR fuel pebbles have already demonstrated a small fission product release. This paper discusses and compares the releases obtained from KüFA-testing the pebbles HFR-K5/3 and HFR-EU1/3, which were both irradiated in the High Flux Reactor (HFR) in Petten. We present the time-dependent fractional release of the volatile fission product {sup 137}Cs as well as the fission gas {sup 85}Kr for both pebbles. For HFR-EU1/3 the isotopes {sup 134}Cs and {sup 154}Eu as well as the shorter-lived {sup 110m}Ag have also been measured. A detailed description of the experimental setup and its accuracy is given. The data for the recently tested pebbles is discussed in the context of previous results.

  12. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  13. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings

    International Nuclear Information System (INIS)

    Zhao Jingxiong; Yang Guojun; Li Yue; Yu Suyuan

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved. (authors)

  14. Multicavity PCPVs for HTR and GCFR systems

    International Nuclear Information System (INIS)

    Eadie, D.Mc.D.

    1979-01-01

    There is little extra to report since the presentation of the paper 180/75 Multicavity PCPVs for HTR and GCFR Systems by P.L.T. Morgan and J.N. Bradbury at the International Conference on Experience in the Design, Construction and Operation of Prestressed Concrete Pressure Vessels and Containments for Nuclear Reactors at York, England, in September 1975. The paper presented at the York Conference demonstrated how a particular mode of behaviour could develop in a very local region between the pods and the external wall of a multicavity pressure vessel. Two main points emerge from the paper presented at York - 1. Local analysis for equilibrium of parts of the structure are as important as analysis of the general structural behaviour. With modern computer techniques, in which crack propagation and plasticity may be included, the development of local critical areas can be observed, but the idealisation of the structure has to be sufficiently refined and the cost will be high; 2. Criteria for acceptance of a design must be realistic and must be continually reviewed in the light of the trends of design philosophy. In conclusion, some pictures of model tests demonstrate the physical reality of the mode of failure described in the paper

  15. Application of the ASME-code-case N 47 to a typical thickwalled HTR-component made of Incoloy 800

    International Nuclear Information System (INIS)

    Kemter, F.; Schmidt, A.

    Several components of the HTR-plant are exposed to temperatures beyond 500 0 C, i.e. within the high-temperature range. The service life of those components is not only limited by fatigue damage but also mainly by creep damage and accumulated inelastic strain. These can be conservatively estimated according to the ASME-Code (high temperature part CC N47) by means of the results of elastic calculations, yet this simplified method to provide evidence often leads to calculated overloads such as the present case of the live steam collector of the steam generator of a HTR. For providing the evidence that the actual loads of the component are within permissible limits, comprehensive inelastic analyses have to be referred to in such a case. The two-dimensional inelastic analysis which is reported here in detail shows that the creep and fatigue failure as well as the inelastic extensions of the live steam collectors accumulated during the service time are below the permissible limit stated in the ASME-Code and failure of those components while used in the reactor can this be excluded. (orig.) [de

  16. Characterization of PM2.5 particles originating from a modern waste incineration plant by factor analysis of chemical data, mass and black carbon in ambient aerosol

    DEFF Research Database (Denmark)

    Aboh, J. K.; Henriksson, Dag; Laursen, Jens

    2006-01-01

    are subject to restrictions are well below the allowed limits as stated by Swedish and European standards. The aim of the present work is to study the particle pollutants with emphasis on PM2.5 in the ambient air and to identify the specific contribution from the new incineration plant. Many different sources...... contribute to PM2.5 in urban air. Thus, the general problem is to characterise and identify the particle pollution, which can be attributed to gases and/or particles emitted by the waste incineration plant. For this reason aerosol samples, PM2.5, were collected and analyzed for concentrations of twenty...

  17. Long-term testing of HTR fuel elements in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Nickel, H.

    1986-12-01

    The extensive results from irradiation experiments carried out on coated particles, on graphitic matrices of different composition and on integral fuel elements have shown that the spherical fuel elements with high-enriched uranium/thorium mixed-oxide particles and optimized graphitic matrix are available for use in the planned HTR facilities. A concentrated qualification programme is on the way in order to bring the fuel elements with particles from low-enriched uranium dioxide (LEU) and TRISO coating to a comparable level of experience and knowledge, i.e. to make them licensable for the planned HTR facilities. (orig.) [de

  18. Elemental characterization and source apportionment of PM{sub 10} and PM{sub 2.5} in the western coastal area of central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chin-Yu; Chiang, Hung-Che [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Lin, Sheng-Lun [Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengcing Rd., Kaohsiung 83347, Taiwan (China); Chen, Mu-Jean; Lin, Tzu-Yu [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Chen, Yu-Cheng, E-mail: yucheng@nhri.org.tw [National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan (China); Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2016-01-15

    ABSTRACT: This study investigated seasonal variations in PM{sub 10} and PM{sub 2.5} mass and associated trace metal concentrations in a residential area in proximity to the crude oil refinery plants and industrial parks of central Taiwan. Particle measurements were conducted during winter, spring and summer in 2013 and 2014. Twenty-six trace metals in PM{sub 10} and PM{sub 2.5} were analyzed using ICP-MS. Multiple approaches of the backward trajectory model, enrichment factor (EF), Lanthanum enrichment and positive matrix fraction (PMF) were used to identify potential sources of particulate metals. Mean concentrations of PM{sub 10} in winter, spring and summer were 76.4 ± 22.6, 33.2 ± 9.9 and 37.4 ± 17.0 μg m{sup −3}, respectively, while mean levels of PM{sub 2.5} in winter, spring and summer were 47.8 ± 20.0, 23.9 ± 11.2 and 16.3 ± 8.2 μg m{sup −3}, respectively. The concentrations of carcinogenic metals (Ni, As and adjusted Cr(VI)) in PM{sub 10} and PM{sub 2.5} exceeded the guideline limits published by WHO. The result of EF analysis confirmed that Mo, Sb, Cd, Zn, Mg, Cr, As, Pb, Cu, Ni and V were attributable to anthropogenic emission. PMF analysis demonstrated that trace metals in PM{sub 10} and PM{sub 2.5} were from the similar sources, such as coal combustion, oil combustion and traffic-related emission, except for soil dust and crustal element emissions only observed in PM{sub 10} and secondary aluminum smelter only observed in PM{sub 2.5}. Considering health-related particulate metals, the traffic-related emission and coal combustion for PM{sub 10} and PM{sub 2.5}, respectively, are important to control for reducing potential carcinogenic risk. The results could aid efforts to clarify the impact of source-specific origins on human health. - Highlights: • Multiple approaches to identify sources of PM{sub 10} and PM{sub 2.5} metals were used. • Four similar sources contributed to metals in PM{sub 10} and PM{sub 2.5} in the study area. • Six

  19. 7th International Topical Meeting on High Temperature Reactor Technology: The modular HTR is advancing towards reality. Papers and Presentations

    International Nuclear Information System (INIS)

    2014-01-01

    HTR2014 aimed at providing an international platform for researchers, engineers and industrial professionals to share their innovative ideas, valuable experience and recent progresses on high temperature gas-cooled reactor (HTR) and its application technologies.

  20. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  1. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  2. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy.

    Science.gov (United States)

    Marcon, Alessandro; Pesce, Giancarlo; Girardi, Paolo; Marchetti, Pierpaolo; Blengio, Gianstefano; de Zolt Sappadina, Simona; Falcone, Salvatore; Frapporti, Guglielmo; Predicatori, Francesca; de Marco, Roberto

    2014-03-01

    Dusts are one of the main air pollutants emitted during cement manufacturing. A substantial part of these are breathable particles that are less than 10 μm in diameter (PM10), which represent a potential threat for the health of the exposed population. This study aimed at evaluating the short-term effects of PM10 concentrations on the health of children, aged 6-14 years, who attended the schools in Fumane (Italy), in proximity (1.2 km) to a large cement plant. School absenteeism was used as a proxy indicator of child morbidity. Time series of daily school absences and PM10 concentrations were collected for 3 school-years from 2007 to 2010 (541 school-days, 462 children on average). The associations between PM10 concentrations and school absence rates in the same day (lag0) and in the following 4 days (lag1 to lag4) were evaluated using generalised additive models, smoothed for medium/long term trends and adjusted for day of the week, influenza outbreaks, daily temperature and rain precipitations. The average concentration of PM10 in the period was 34 (range: 4-183) μg/m(3). An average 10 μg/m(3) increase of PM10 concentration in the previous days (lag0-4) was associated with a statistically significant 2.5% (95%CI: 1.1-4.0%) increase in the rate of school absences. The highest increase in the absence rates (2.4%; 95%CI: 1.2-3.5%) was found 2 days after exposure (lag2). These findings provide epidemiological evidence of the acute health effects of PM10 in areas with annual concentrations that are lower than the legal European Union limit of 40 μg/m(3), and support the need to establish more restrictive legislative standards. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. LEU-HTR critical experiment program for the PROTEUS facility in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Bucher, K.H.; Chawla, R.; Foskolos, K.; Luchsinger, H.; Mathews, D.; Sarlos, G.; Seiler, R.

    1990-01-01

    New critical experiments in the framework of an IAEA Coordinated Research Program on 'Validation of Safety Related Reactor Physics Calculations for Low Enriched HTRs' are planned at the PSI PROTEUS facility. The experiments are designed to supplement the experimental data base and reduce the design and licensing uncertainties for small- and medium-sized helium-cooled reactors using low-enriched uranium (LEU) and graphite high temperature fuel. The main objectives of the new experiments are to provide first-of-a-kind high quality experimental data on: 1) The criticality of simple, easy to interpret, single core region LEU HTR systems for several moderator-to-fuel ratios and several lattice geometries; 2) the changes in reactivity, neutron balance components and control rod effectiveness caused by water ingress into this type of reactor, and 3) the effects of the boron and/or hafnium absorbers that are used to modify the reactivity and the power distributions in typical HTR systems. Work on the design and licensing of the modified PROTEUS critical facility is now in progress with the HTR experiments scheduled to begin early in 1991. Several international partners will be involved in the planning, execution and analysis of these experiments in order to insure that they are relevant and cost effective with respect to the various gas cooled reactor national programs. (author)

  4. LEU-HTR critical experiment program for the PROTEUS facility in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R; Bucher, K H; Chawla, R; Foskolos, K; Luchsinger, H; Mathews, D; Sarlos, G; Seiler, R [Paul Scherrer Institute, Laboratory for Reactor Physics and System Technology Wuerenlingen and Villigen, Villigen PSI (Switzerland)

    1990-07-01

    New critical experiments in the framework of an IAEA Coordinated Research Program on 'Validation of Safety Related Reactor Physics Calculations for Low Enriched HTRs' are planned at the PSI PROTEUS facility. The experiments are designed to supplement the experimental data base and reduce the design and licensing uncertainties for small- and medium-sized helium-cooled reactors using low-enriched uranium (LEU) and graphite high temperature fuel. The main objectives of the new experiments are to provide first-of-a-kind high quality experimental data on: 1) The criticality of simple, easy to interpret, single core region LEU HTR systems for several moderator-to-fuel ratios and several lattice geometries; 2) the changes in reactivity, neutron balance components and control rod effectiveness caused by water ingress into this type of reactor, and 3) the effects of the boron and/or hafnium absorbers that are used to modify the reactivity and the power distributions in typical HTR systems. Work on the design and licensing of the modified PROTEUS critical facility is now in progress with the HTR experiments scheduled to begin early in 1991. Several international partners will be involved in the planning, execution and analysis of these experiments in order to insure that they are relevant and cost effective with respect to the various gas cooled reactor national programs. (author)

  5. LHCb: Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

    CERN Multimedia

    Lopes, J H

    2013-01-01

    Evidence of CP violation in charmless three-body decays $B^\\pm\\rightarrow K^\\pm\\pi^+\\pi^-$, $B^\\pm\\rightarrow K^\\pm K^+K^-$, $B^\\pm\\rightarrow K^+ K^-\\pi^\\pm$ and $B^\\pm\\rightarrow \\pi^\\pm\\pi^+\\pi^-$

  6. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  7. PCTR experiments with HTR lattice in MARIUS

    Energy Technology Data Exchange (ETDEWEB)

    Gambier, G; Estiot, J C; de Lapperent, D; Laponche, B; Luffin, J; Morier, F

    1972-06-15

    PCTR experiments have been carried out in Marius III with HTR tubular fuel, enriched to around 1% in order to reach K{sub infinity} = 1 and to reduce the mass of poison. Three poisons were used - Aluminium, Copper and Vanadium. The effect of air was measured and corrections were made to the results to allow the effect of delayed neutrons and the effect of axial heterogeneities. Interpretation was made with APOLLO. (auth)

  8. Market prospects of modular HTR in EEC countries

    International Nuclear Information System (INIS)

    Albisu, F.; Garribba, S.F.; Lefevre, J.C.; Leuchs, D.; Vivante, C.

    1991-01-01

    The energy outlook for the early 21st century is very uncertain. Low-cost oil and natural gas reserves will become seriously depleted and nonfossil energy resources may be urgently required because of environmental reasons. In this framework, small- and medium-size nuclear reactors (SMSNRs), particularly the Modular High-Temperature Reactor (HTR) would allow extension of uses of nuclear energy while being adopted to produce power and/or steam or heat, where heat can be at low or high temperature. For policy making and planning purposes it is meaningful to appraise the market potential of Modular HTR during the next 20 or 30 years. The paper presents the outcomes of country studies on the subject conducted for a sample of EC Member nations, including France, Federal Republic of Germany, Italy, and Spain. Among the goals of the studies are the definition of market segments, and identification of the principal obstacles which will affect future adoption of SMSNRs. Opportunities offered by the different contexts and energy end-uses seem promising. Numerous difficulties and constraints emerge, however, some of which might be eased by actions that national governments or more often the European Community may wish to take. (author)

  9. Approach to equilibrium calculations for the dragon HTR design

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-06-10

    The calculational methods and the model used in representing the core and the fuel management operations are described. Different layouts of the first core and approach to equilibrium schemes for the Dragon HTR design are investigated. A simple fuelling modus is found and the tchnological and economical implications are discussed in detail.

  10. Elemental composition of PM 10 and PM 2.5 in urban environment in South Brazil

    Science.gov (United States)

    Braga, C. F.; Teixeira, E. C.; Meira, L.; Wiegand, F.; Yoneama, M. L.; Dias, J. F.

    The purpose of the present study is to analyze the elemental composition and the concentrations of PM 10 and PM 2.5 in the Guaíba Hydrographic Basin with HV PM 10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m -3, respectively) set by the Brazilian legislation were not observed.

  11. The properties of spherical fuel elements and its behavior in the modular HTR

    International Nuclear Information System (INIS)

    Lohnert, G.H.; Ragoss, H.

    1985-01-01

    The reference fuel element for all future HTR applications in the Federal Republic of Germany as developed by NUKEM/HOBEG in the framework of the 'High temperature Fuel-Cycle Project' had to be scrutinised for its compatibility with all the other design principles of the modular HTR, or possibly for restrictions forced upon reactor layout. This reference fuel element can be characterized by the following features: moulded spherical fuel element of 60 mm in diameter with fuel free shell of 5 mm thickness, based on carbon matrix; low enriched uranium (U/Pu fuel cycle); UO 2 fuel kernels; TRISO coating (pyrocarbon and additional SiC layers)

  12. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  13. The Dragon project and high temperature reactor (HTR position)

    International Nuclear Information System (INIS)

    Shepherd, L.

    1981-01-01

    After introduction describing the initiation of HTR work at AERE and in West Germany and the USA, the subject is discussed in detail under the headings: the Dragon Reactor Experiment (design and objectives); fuel elements and graphite (description of cooperative research programmes; development of coated fuel particles); helium technology; other Dragon activities. (U.K.)

  14. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  15. Reactive Oxygen Stimulation of Interleukin-6 Release in the Human Trophoblast Cell Line HTR-8/SVneo by the Trichlorethylene Metabolite S-(1,2-Dichloro)-l-Cysteine.

    Science.gov (United States)

    Hassan, Iman; Kumar, Anjana M; Park, Hae-Ryung; Lash, Lawrence H; Loch-Caruso, Rita

    2016-09-01

    Trichloroethylene (TCE) is a common environmental pollutant associated with adverse reproductive outcomes in humans. TCE intoxication occurs primarily through its biotransformation to bioactive metabolites, including S-(1,2-dichlorovinyl)-l-cysteine (DCVC). TCE induces oxidative stress and inflammation in the liver and kidney. Although the placenta is capable of xenobiotic metabolism and oxidative stress and inflammation in placenta have been associated with adverse pregnancy outcomes, TCE toxicity in the placenta remains poorly understood. We determined the effects of DCVC by using the human extravillous trophoblast cell line HTR-8/SVneo. Exposure to 10 and 20 μM DCVC for 10 h increased reactive oxygen species (ROS) as measured by carboxydichlorofluorescein fluorescence. Moreover, 10 and 20 μM DCVC increased mRNA expression and release of interleukin-6 (IL-6) after 24-h exposure, and these responses were inhibited by the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid and by treatments with antioxidants (alpha-tocopherol and deferoxamine), suggesting that DCVC-stimulated IL-6 release in HTR-8/SVneo cells is dependent on beta-lyase metabolic activation and increased generation of ROS. HTR-8/SVneo cells exhibited decreased mitochondrial membrane potential at 5, 10, and 20 μM DCVC at 5, 10, and 24 h, showing that DCVC induces mitochondrial dysfunction in HTR-8/Svneo cells. The present study demonstrates that DCVC stimulated ROS generation in the human placental cell line HTR-8/SVneo and provides new evidence of mechanistic linkage between DCVC-stimulated ROS and increase in proinflammatory cytokine IL-6. Because abnormal activation of cytokines can disrupt trophoblast functions necessary for placental development and successful pregnancy, follow-up investigations relating these findings to physiologic outcomes are warranted. © 2016 by the Society for the Study of Reproduction, Inc.

  16. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  17. Steroid hormones modulate galectin-1 in the trophoblast HTR-8/SVneocell line

    Directory of Open Access Journals (Sweden)

    Bojić-Trbojević Žanka

    2008-01-01

    Full Text Available The effects of steroids on galectin-1 (gal-1 were studied in HTR-8/SVneo cells by immunocytochemistry, cell-based ELISA, the MTT proliferation test and the Matrigel TM invasion test. Dexamethasone (DEX, progesterone (PRG, and mifepristone (RU486 were used. Gal-1 was modulated in a steroid- and dose-dependent manner by DEX, which mildly but significantly stimulated production at low concentrations (0.1-10 nM, and inhibited it at 100 nM, while the effects of PRG and RU486 were opposite. HTR-8/SVneo cell invasion of Matrigel was significantly decreased in the presence of DEX and lactose. The obtained data support the proposed regulatory role of steroids in trophoblast gal-1 production.

  18. Stress analysis of HTR-10 steam generator heat exchanging tubes

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Xiaohang; Yin Dejian; Fu Jiyang

    2001-01-01

    Steam Generator (SG) heat exchanging tubes of 10 MW High Temperature Gas Cooled Reactor (HTR-10) are protective screens between the primary loop of helium with radioactivity and the secondary loop of feeding water and steam without radioactivity. Water and steam will enter into the primary loop when rupture of the heat exchanging tubes occurs, which lead to increase of the primary loop pressure and discharge of radioactive materials. Therefore it is important to guarantee the integrity of the tubes. The tube structure is spiral tube with small bending radius, which make it impossible to test with volumetric in-service detection. For such kind of spiral tube, using LBB concept to guarantee the integrity of the tubes is an important option. The author conducts stress analysis and calculation of HTR-10 SG heat exchanging tubes using the FEM code of piping stress analysis, PIPESTRESS. The maximum stress and the dangerous positions are obtained

  19. Association of serotonin transporter (SLC6A4 & receptor (5HTR1A, 5HTR2A polymorphisms with response to treatment with escitalopram in patients with major depressive disorder : A preliminary study

    Directory of Open Access Journals (Sweden)

    Aniruddha Basu

    2015-01-01

    Full Text Available Background & objectives: Genetic factors have potential of predicting response to antidepressants in patients with major depressive disorder (MDD. In this study, an attempt was made to find an association between response to escitalopram in patients with MDD, and serotonin transporter (SLC6A4 and receptor (5HTR1A, 5HTR2A polymorphisms. Methods: Fifty five patients diagnosed as suffering from MDD, were selected for the study. The patients were treated with escitalopram over a period of 6-8 wk. Severity of depression, response to treatment and side effects were assessed using standardised instruments. Genetic variations from HTR1A (rs6295, HTR2A (rs6311 and rs6313 and SLC6A4 (44 base-pair insertion/deletion at 5-HTTLPR were genotyped. The genetic data of the responders and non-responders were compared to assess the role of genetic variants in therapeutic outcome. Results: Thirty six (65.5% patients responded to treatment, and 19 (34.5% had complete remission. No association was observed for genotype and allelic frequencies of single nucleotide polymorphisms (SNPs among remitter/non-remitter and responder/non-responder groups, and six most common side-effects, except memory loss which was significantly associated with rs6311 ( p0 =0.03. Interpretation & conclusions: No significant association was found between the SNPs analysed and response to escitalopram in patients with MDD though a significant association was seen between the side effect of memory loss and rs6311. Studies with larger sample are required to find out genetic basis of antidepressant response in Indian patients.

  20. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gelernter, J.; Rao, P.A.; Pauls, D.L. [Yale Univ. School of Medicine, West Haven, CT (United States)] [and others

    1995-03-20

    A novel serotonin receptor designated 5HT7 (genetic locus HTR7) was cloned in 1993. This receptor has interesting properties related to ligand affinity and CNS distribution that render HTR7 a very interesting candidate gene for neuropsychiatric disorders. We mapped this gene, first by physical methods and then by genetic linkage. First, we made a tentative assignment to chromosome 10, based on hybridization of an HTR7 probe to a Southern blot of DNA from somatic cell hybrids. We then identified a genetic polymorphism at the HTR7 locus. We identified one extended pedigree where the polymorphism segregated. Using the LEPED computer program for pairwise linkage analysis, we confirmed the assignment of the gene to chromosome 10, specifically 10q21-q24, based on a lod score of 5.37 at 0% recombination between HTR7 and D10S20 (a chromosome 10 reference marker). Finally, we excluded genetic linkage between this locus and Tourette syndrome under a reasonable set of assumptions. 15 refs., 1 fig., 1 tab.

  1. Investigations to the potential of the high temperature reactor for steam power processes with highest steam conditions and comparison with according conventional power plants

    International Nuclear Information System (INIS)

    Mondry, M.

    1988-04-01

    Already in the fifties conventional power plants with high parameters of the live steam were built to improve the total efficiency. The power plant with the highest steam conditions in the Federal Republic of Germany has 300 bar pressure and 600deg C temperature. Because of high material costs and other problems power plants with such high conditions were not continued to be built. Standard conditions of today's power plants are in the order of 180-250 bar pressure and 535deg C temperature. As the high temperature reactor is partly built up in another way than a conventional power plant, the results regarding the high steam parameters are not transferable. Possibilities for the technical realization of determined HTR-specific components are introduced and discussed. Then different HTR-power plants with steam conditions up to 350 bar pressure and 650deg C temperature are projected. Economical considerations show that an HTR with higher steam parameters brings financial profits. Further efficiency increase, which is possible by the high steam conditions, is shortly presented. The work ends with a technical and economical comparison of corresponding conventional power plants. (orig./UA) [de

  2. Water-ingress analysis for the 200 MWe pebble-bed modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Zheng Yanhua; Shi Lei; Wang Yan

    2010-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor adopting steam-turbine cycle, which will cause a positive reactivity introduction, as well as the chemical corrosion of graphite fuel elements and reflector structure material. Besides, increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The analysis of such a kind of important and particular accident is significant to verify the inherent safety characteristics of the modular HTR plants. Based on the preliminary design of the 200 MWe high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the design basis accident of a double-ended guillotine break of one heating tube and the beyond design basis accident of a large break of the main steam collection plate have been analyzed by using TINTE code, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature, the primary loop pressure, the graphite corrosion, the water gas releasing amount, as well as the natural convection influence on the condition of failing to close the blower flaps, have been studied in detail. The calculation results indicate that even under some severe hypothetical postulates, the HTR-PM is able to keep the inherent safeties of the modular high temperature gas-cooled reactor and has a relatively good natural plant response, which will not result in environmental radiation hazard.

  3. IRPhE-HTR-ARCH-01, Archive of HTR Primary Documents

    International Nuclear Information System (INIS)

    2004-01-01

    Description: High Temperature Reactor Studies, including experiments in critical facilities or in prototypes have been carried out in the past. Information gathered, experience gained and experimental data produced are of value for the development of future advanced HTRs. For the purpose of knowledge, competence, information preservation and management, computer readable archives have been established. The present archive includes several relevant documents relative to the following: - Graphite Moderated Critical Facility, CESAR at Cadarache. Dragon Countries Physics Meetings (DCPM); - OTTO Pebble Bed Reactors; - Gulf - HTGR Experiments; - Zero Power MARIUS Reactor; - Pebble-bed KAHTER Critical Facility; - Helium Cooled Fast Reactor Assessment Studies; - Gas Cooled Reactor Technology Safety and Siting; - Initial Evaluation of the Gas-Turbine Modules HTGCR; - A report on Nuclear Graphite; - AVR Reactor Juelich (new in version 02); - HTR IAEA proceedings (new in version 02); - Studies at IRI Delft(new in version 02); - Studies and experiments at PSI Villigen (new in version 02); 2 - Related or auxiliary information: IRPHE-DRAGON-DPR, high Temperature Reactor Dragon Project, Primary Documents NEA-1726/01. 3 - Software requirements: Acrobat Reader, Microsoft Word, HTML Browser required

  4. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  5. Probabilistic safety assessment framework of pebble-bed modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan; Zhao Jun; Cao Jianzhu; Zhang Liguo

    2009-01-01

    After an investigation of similar reactor type probabilistic safety assessment (PSA) framework, Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) PSA framework was presented in correlate with its own design characteristics. That is an integral framework which spreads through event sequence structure with initiating events at the beginning and source term categories in the end. The analysis shows that it is HTR-PM design feature that determines its PSA framework. (authors)

  6. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K.; Cho, M. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW{sub th} block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW{sub th} block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared.

  7. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Cho, M. S.

    2016-01-01

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW_t_h block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW_t_h block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared

  8. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    International Nuclear Information System (INIS)

    Bomboni, Eleonora

    2008-01-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  9. Expression and biological-clinical significance of hTR, hTERT and CKS2 in washing fluids of patients with bladder cancer

    Directory of Open Access Journals (Sweden)

    Talesa Vincenzo N

    2010-10-01

    Full Text Available Abstract Background at present, pathogenesis of bladder cancer (BC has not been fully elucidated. Aim of this study is to investigate the role of human telomerase RNA (hTR, human telomerase reverse transcriptase (hTERT and CDC28 protein kinase regulatory subunit 2 (CKS2 in bladder carcinogenesis and their possible clinical significance; Methods the transcript levels of hTR, hTERT and CKS2 were quantified by Real time reverse transcriptase chain reaction in exfoliated cells from bladder washings of 36 patients with BC and 58 controls. The statistical significance of differences between BC bearing patients and control groups, in the general as well as in the stratified analysis (superficial or invasive BC, was assessed by Student's t test. Non parametric Receiver Operating Characteristics analysis (ROC was performed to ascertain the accuracy of study variables to discriminate between BC and controls. The clinical value of concomitant examination of hTR, hTERT and CKS2 was evaluated by logistic regression analysis; Results a significant decrease in hTR and a significant increase in hTERT or CKS2 gene expression were found between BC bearing patients and controls, as well as in the subgroups analysis. The area under the curve (AUC indicated an average discrimination power for the three genes, both in the general and subgroups analysis, when singularly considered. The ability to significantly discriminate between superficial and invasive BC was observed only for hTR transcript levels. A combined model including hTR and CKS2 was the best one in BC diagnosis; Conclusions our results, obtained from a sample set particularly rich of exfoliated cells, provide further molecular evidence on the involvement of hTR, hTERT and CKS2 gene expression in BC carcinogenesis. In particular, while hTERT and CKS2 gene expression seems to have a major involvement in the early stages of the disease, hTR gene expression, seems to be more involved in progression. In

  10. Design investigation of the HTR for the opening of very heavy oil deposits

    International Nuclear Information System (INIS)

    Gao, Z.

    1985-02-01

    In the north-east of China there are rich deposits of very heavy oil, which are to be found in a depth of 1500-1700 m. For opening an interaction of 370-390 0 Celsius steam is necessary. The HTR is well suited to produce the steam. A nuclear heat source of 1000 MWsub(th) makes possible the production of 1.5 million tons oil per year. This is a 30-40 per cent higher production of oil compared to the oil-fired steam production. Two concepts of smaller pebble bed reactors are suited as heat sources: the HTR-MEDUL-334 with a thermal power of the 334 MW and fuelled in the multiple run-through scheme and the HTR-OTTO-200 with 200 MW and once-through fuelling. Three or five reactors can be combined in the modular way to provide the power of 1000 MW. For both reactors the design, the neutron-physical and thermohydraulic behaviour are followed in the computer simulation. A central zone of the pebble bed reactor is fuelled with elements of strongly reduced fissile content. Due to the reduced power density the maximum fuel temperature appearing in extreme accidents is limited and accordingly the release of the fission products is avoided. (orig.) [de

  11. Source Term Analysis of the Irradiated Graphite in the Core of HTR-10

    Directory of Open Access Journals (Sweden)

    Xuegang Liu

    2017-01-01

    Full Text Available The high temperature gas-cooled reactor (HTGR has potential utilization due to its featured characteristics such as inherent safety and wide diversity of utilization. One distinct difference between HTGR and traditional pressurized water reactor (PWR is the large inventory of graphite in the core acting as reflector, moderator, or structure materials. Some radionuclides will be generated in graphite during the period of irradiation, which play significant roles in reactor safety, environmental release, waste disposal, and so forth. Based on the actual operation of the 10 MW pebble bed high temperature gas-cooled reactor (HTR-10 in Tsinghua University, China, an experimental study on source term analysis of the irradiated graphite has been done. An irradiated graphite sphere was randomly collected from the core of HTR-10 as sample in this study. This paper focuses on the analytical procedure and the establishment of the analytical methodology, including the sample collection, graphite sample preparation, and analytical parameters. The results reveal that the Co-60, Cs-137, Eu-152, and Eu-154 are the major γ contributors, while H-3 and C-14 are the dominating β emitting nuclides in postirradiation graphite material of HTR-10. The distribution profiles of the above four nuclides are also presented.

  12. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  13. Observation of the suppressed ADS modes $B^\\pm \\to [\\pi^\\pm K^\\mp \\pi^+\\pi^-]_D K^\\pm$ and $B^\\pm \\to [\\pi^\\pm K^\\mp \\pi^+\\pi^-]_D \\pi^\\pm$

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Oyanguren Campos, M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    An analysis of $B^{\\pm}\\to DK^{\\pm}$ and $B^{\\pm}\\to D\\pi^{\\pm}$ decays is presented where the $D$ meson is reconstructed in the four-body final state $K^{\\pm}\\pi^{\\mp} \\pi^+ \\pi^-$. Using LHCb data corresponding to an integrated luminosity of $1.0{\\rm \\,fb}^{-1}$, first observations are made of the suppressed ADS modes $B^{\\pm}\\to [\\pi^{\\pm} K^{\\mp}\\pi^+\\pi^-]_D K^{\\pm}$ and $B^{\\pm}\\to [\\pi^{\\pm} K^{\\mp} \\pi^+\\pi^- ]_D\\pi^{\\pm}$ with a significance of $5.1\\sigma$ and greater than $10\\sigma$, respectively. Measurements of $CP$ asymmetries and $CP$-conserving ratios of partial widths from this family of decays are also performed. The magnitude of the ratio between the suppressed and favoured $B^{\\pm}\\to DK^{\\pm}$ amplitudes is determined to be $r^K_B = 0.097 \\pm{0.011}$.

  14. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  15. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  16. The HTR-10 test reactor project and potential use of HTGR for non-electric application in China

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Xu Yuanhui; Wu Zhongxin

    1997-01-01

    Coal is the dominant source of energy in China. This use of coal results in two significant problems for China; it is a major burden on the train, road and waterway transportation infrastructures and it is a significant source of environmental pollution. In order to ease the problems caused by the burning of coal and to help reduce the energy supply shortage in China, national policy has directed the development of nuclear power. This includes the erection of nuclear power plants with water cooled reactors and the development of advanced nuclear reactor types, specifically, the high temperature gas cooled reactor (HTGR). The HTGR was chosen for its favorable safety features and its ability to provide high reactor outlet coolant temperatures for efficient power generation and high quality process heat for industrial applications. As the initial modular HTGR development activity within the Chinese High Technology Programme, a 10MW helium cooled test reactor is currently under construction on the site of the Institute of Nuclear Energy Technology northwest of Beijing. This plant features a pebble-bed helium cooled reactor with initial criticality anticipated in 1999. There will be two phases of high temperature heat utilization from the HTR-10. The first phase will utilize a reactor outlet temperature of 700 deg. C with a steam generator providing steam for a steam turbine cycle which works on an electrical/heat co-generation basis. The second phase is planned for a core outlet temperature of 900 deg. C to investigate a steam cycle/gas turbine combined cycle system with the gas turbine and the steam cycle being independently parallel in the secondary side of the plant. This paper provides a review of the technical design, licensing, safety and construction schedule for the HTR-10. It also addresses the potential uses of the HTGR for non-electric applications in China including process steam for the petrochemical industry, heavy oil recovery, coal conversion and

  17. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  18. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  19. Studies on the effects of the hypothetic accidents in HTR reactors. (phase 1). HSK 1. Pt. 1

    International Nuclear Information System (INIS)

    Gabriel, H.W.; Redondo, J.A.

    1977-09-01

    The report is an attempt to outline the possibilities of a quantitative, i.e. objective safety assessment. The basic problem here are the controversial opinions an the term of 'risk'. As long as there is no technically and legally acceptable compromise between the opinion 'risk equals extent of damage' and the probabilistic concept, systems in development must follow both approaches. Using the HTR-1160 as an example, studies on the determination of the maximum possible extent of damage in nuclear power plants have been carried out with a special view to determining the rate of the course of extreme accident combinations. Knowledge on this point helps to quantify the chances to prevent the accident itself as well as the chances to protect the population. One basic assumption is that there are no active safety measures to ameliorate the course of the accident (hypothetic accident chains). Consequence analysis is based on nothing but analytically and experimentally validable data, i.e. 'natural law data' on the failure of passive reactor components. Present findings show that HTR reactors can be designed in such manner that accidents with vicinity dose development velocities above 100 rem/5 h are practically impossible. The time history of dose development velocities in the vicinity can be superposed by the course of possible administrative measures. Risk values can then be assessed with sufficient accuracy. (orig./HP) [de

  20. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  1. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

    Science.gov (United States)

    Rovira, Joaquim; Sierra, Jordi; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-05-01

    Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM 10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM 10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl - , SO 4 2- , NO 3 - , and NH 4 + ), and carbonaceous content (total carbon, organic plus elemental carbon, and CO 3 2- ), were analysed. These data were used to identify the PM 10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Costs of head-end incineration with respect to Kr separation in the reprocessing of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Barnert-Wiemer, H.; Boehnert, R.

    1976-07-15

    The C-incinerations and the Kr-separations during head-end incineration in the reprocessing of HTR fuel elements are described. The costs for constructing an operating a head-end incineration of reprocessing capacities with 5,000 to 50,000 MW(e)-HTR power have been determined. The cost estimates are divided into investment and operating costs, further after the fraction of the N/sub 2/-content in the incineration exhaust gas, which strongly affects costs. It appears that, in the case of Kr-separation from the incineration exhaust gas, the investment costs as well as the operating costs of the head-end for N/sub 2/-containing exhaust gas are considerably greater than those for gas without N/sub 2/. The C-incineration of the graphite of the HTR fuel elements should therefore only be performed with influx gas that is free of N/sub 2/.

  3. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  4. Indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations in primary schools in Sari, Iran.

    Science.gov (United States)

    Mohammadyan, Mahmoud; Shabankhani, Bijan

    2013-09-01

    This study was carried out to determine the distribution of particles in classrooms in primary schools located in the centre of the city of Sari, Iran and identify the relationship between indoor classroom particle levels and outdoor PM2.5 concentrations. Outdoor PM2.5 and indoor PM1, PM2.5, and PM10 were monitored using a real-time Micro Dust Pro monitor and a GRIMM monitor, respectively. Both monitors were calibrated by gravimetric method using filters. The Kolmogorov-Smirnov test showed that all indoor and outdoor data fitted normal distribution. Mean indoor PM1, PM2.5, PM10 and outdoor PM2.5 concentrations for all of the classrooms were 17.6 μg m(-3), 46.6 μg m(-3), 400.9 μg m(-3), and 36.9 μg m(-3), respectively. The highest levels of indoor and outdoor PM2.5 concentrations were measured at the Shahed Boys School (69.1 μg m(-3) and 115.8 μg m(-3), respectively). The Kazemi school had the lowest levels of indoor and outdoor PM2.5 (29.1 μg m(-3) and 15.5 μg m(-3), respectively). In schools located near both main and small roads, the association between indoor fine particle (PM2.5 and PM1) and outdoor PM2.5 levels was stronger than that between indoor PM10 and outdoor PM2.5 levels. Mean indoor PM2.5 and PM10 and outdoor PM2.5 were higher than the standards for PM2.5 and PM10, and there was a good correlation between indoor and outdoor fine particle concentrations.

  5. Postirradiation examination of HTR fuel

    International Nuclear Information System (INIS)

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances

  6. Gadd45 α expression in preeclampsia placenta and the effect of Gadd45 α on trophoblast HTR8/Svneo

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Objective: To study the expression of Gadd45 α in preeclampsia placenta and the regulating effect of Gadd45 α knockdown on trophoblast HTR8/Svneo. Methods: Preeclampsia placenta tissue and normal placenta tissue were collected, and mRNA contents and protein contents of Gadd45 α were detected by fluorescent quantitative PCR and Western blotting respectively; trophoblast cells HTR8/Svneo were cultured and after transfection of Gadd45 α siRNA, cell invasion ability and expression of invasion-assiotiated molecules were detected. Results: mRNA content and protein content of Gadd45 α in preeclampsia placenta tissue were higher than those in normal placenta tissue; after transfection of Gadd45 α siRNA, mRNA content and protein content of Gadd45 α in HTR8/Svneo cells significantly decreased, and the number of invasive cells as well as expression of MMP1, MMP2, MMP3 and MMP9 significantly increased. Conclusion: The expression of Gadd45 α in preeclampsia placenta abnormally increases; inhibting the expression of Gadd45 α in trophoblasts HTR8/Svneo can promote invasion and increase the expression of MMPs molecules.

  7. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  8. Market prospects of modular HTR in EEC countries

    International Nuclear Information System (INIS)

    Albisu, F.; Garribba, S.F.; Lefevre, J.C.; Leuchs, D.; Vivante, C.

    1992-01-01

    The energy outlook for the early 21st century is very uncertain. Low-cost oil and natural gas reserves will become seriously depleted and non-fossil energy resources may be urgently required because of environmental reasons. In this framework, the European Economic Community should be able to rely upon nuclear energy as an economic, safe and readily deployable resource for its future. Small and medium-size nuclear reactors (SMSNRs), particularly modular high-temperature reactor (HTR) would allow extension of uses of nuclear energy while being adopted to produce power and/or steam or heat, where heat can be at low or high temperature. For policy making and planning purposes it appears meaningful to appraise the market potential of modular HTR during the next twenty or thirty years. Thus the paper presents the outcomes of country studies on the subject conducted for a sample of Member nations to the European Economic Community including France, Federal Republic of Germany, Italy and Spain. Amongst the goals of the studies are definition of market segments, identification of the principal obstacles which would affect future adoption of SMSNRs. Opportunities offered by the different contexts and energy end-uses seem promising. Numerous difficulties and constraints emerge however, some of which might be eased by actions that national governments or more often the European Economic Community, may wish to take. (orig.)

  9. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette C. Rohr; Petros Koutrakis; John Godleski

    2011-03-31

    Determining the health impacts of different sources and components of fine particulate matter (PM2.5) is an important scientific goal, because PM is a complex mixture of both inorganic and organic constituents that likely differ in their potential to cause adverse health outcomes. The TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) study focused on two PM sources - coal-fired power plants and mobile sources - and sought to investigate the toxicological effects of exposure to realistic emissions from these sources. The DOE-EPRI Cooperative Agreement covered the performance and analysis of field experiments at three power plants. The mobile source component consisted of experiments conducted at a traffic tunnel in Boston; these activities were funded through the Harvard-EPA Particulate Matter Research Center and will be reported separately in the peer-reviewed literature. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. The study involved withdrawal of emissions directly from power plant stacks, followed by aging and atmospheric transformation of emissions in a mobile laboratory in a manner that simulated downwind power plant plume processing. Secondary organic aerosol (SOA) derived from the biogenic volatile organic compound {alpha}-pinene was added in some experiments, and in others ammonia was added to neutralize strong acidity. Specifically, four scenarios were studied at each plant: primary particles (P); secondary (oxidized) particles (PO); oxidized particles + secondary organic aerosol (SOA) (POS); and oxidized and neutralized particles + SOA (PONS). Extensive exposure characterization was carried out, including gas-phase and particulate species. Male Sprague Dawley rats were exposed for 6 hours to filtered air or different atmospheric mixtures. Toxicological endpoints included (1) breathing pattern; (2) bronchoalveolar lavage

  10. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the

  11. Pu and MA Management in Thermal HTR, QUO VADIS? Insights from the Euratom PUMA project

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    2013-01-01

    The results of this study demonstrate the excellent plutonium and minor actinide burning capabilities of the high temperature reactor. The largest degree of incineration is attained in the case of an HTR fuelled by pure plutonium fuel as it remains critical at very deep burn-up of the discharged pebbles. Addition of minor actinides to the fuel leads to decrease of the achievable discharge burn-up and therefore smaller fraction of actinides incinerated during reactor operation. The inert-matrix fuel design improves the transmutation performance of the reactor, while the “wallpaper” fuel does not have advantage over the standard fuel design in this respect

  12. HTR-2002: Proceedings of the conference on high temperature reactors

    International Nuclear Information System (INIS)

    2002-01-01

    High temperature reactors are considered as future inherently safe and efficient energy sources. The presentations covered all the relevant aspects of the existing HTGRs and/or helium cooled pebble bed reactors. They were sorted into 7 sessions: HTR Projects and Programmes; Fuel and Fuel Cycle; Physics and Neutronics; Thermohydraulic Calculation; Engineering, Design and Applications; Materials and Components; Safety and Licensing

  13. Experiments in MARIUS on HTR tubular fuel with loose particles

    Energy Technology Data Exchange (ETDEWEB)

    Bosser, R; Langlet, G

    1972-06-15

    The work described on HTR tubular fuel with loose particles is the first part of a program in three points. The cell is the same in the three experiments, only particles in the fuel container are changed. The aim of the experiment is to achieve the buckling in a critical facility. A description of the techniques of measurements, calculations, and results are presented.

  14. Core dynamics of HTR under ATWS and accident conditions

    International Nuclear Information System (INIS)

    Nabbi, R.

    1988-05-01

    The systematic classification of the ATWS has been undertaken by analogy to the considerations made for LWR. The initiating events of ATWS and protection actions of safety systems resulting from monitoring of the system variables have been described. The main emphasis of this work is the analysis of the core dynamic consequences of scram failure during the anticipated transients. The investigation has shown that because of the temperature feedback mechanisms a temperature rise during the ATWS results in a self-shutdown of the reactor. Further inherent safety features of the HTR - conditioned by the high heat capacity of the core and by the compressibility of the coolant - do effectively counteract an undesirable increase of temperature and pressure in the primary circuit. In case of the long-term failure of the forced cooling and following core heatup, neutron physical phenomena appear which determine the reactivity behaviour of the HTR. They are, for instance, the decay of Xenon 135, release of the fission products and subsiding of the top reflector. The results of the computer simulations show that a recriticality has to be excluded during the first 2 days if the reactor is shutdown by the reflector rods at the beginning of the accident. (orig./HP) [de

  15. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  16. Details of modelling HTR core physics: the use of pseudo nuclide traces

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Oppe, J.; Haas, J.B.M. de; Da Cruz, D.F.

    2003-01-01

    At present most combined neutronic and thermal hydraulic analyses of reactors, and the HTR is no exception, are being performed by codes employing few-group (typically 2-group) neutronics on the basis of parametrized few-group macroscopic (and microscopic) cross sections for homogenized areas, depending on quantities like irradiation (fuel only), 135 Xe concentration, temperature, etc. The irradiation parameter (time-integrated power per unit initial heavy metal mass) is sufficient for keeping track of the evolution of areas containing fuel. However, the use of the same parameter in areas without fuel, e.g. containing burnable poison, requires some special provisions. This can be met by the introduction of pseudo nuclides, with very specific cross sections and reaction chains, in the procedure to generate the parametrized few-group cross sections. It is shown that the time-evolution of a non-fuelled burnable poison area, as calculated by the 2-group (HTR) reactor code PANTHERMIX employing pseudo nuclides, compares well to the time-evolution obtained from an explicit burnup calculation by the WIMS8A/SNAP code. Examples are also shown using the pseudo nuclide method to keep track of the fast fluence (time-integrated flux above 0.1 MeV) in a continuous reload pebble-bed HTR reactor calculation by PANTHERMIX. Although the present implementation of the pseudo nuclide method exhibits some peculiarities connected to the specific codes in use (WIMS8A and PANTHERMIX) it is considered to be sufficiently general to be applicable in other code suites, requiring only limited modifications. (authors)

  17. Details of modelling HTR core physics: the use of pseudo nuclide traces

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Oppe, J.; Haas, J.B.M. de; Da Cruz, D.F. [Nuclear Research and consultancy Group (NRG), Petten (Netherlands)

    2003-07-01

    At present most combined neutronic and thermal hydraulic analyses of reactors, and the HTR is no exception, are being performed by codes employing few-group (typically 2-group) neutronics on the basis of parametrized few-group macroscopic (and microscopic) cross sections for homogenized areas, depending on quantities like irradiation (fuel only), {sup 135}Xe concentration, temperature, etc. The irradiation parameter (time-integrated power per unit initial heavy metal mass) is sufficient for keeping track of the evolution of areas containing fuel. However, the use of the same parameter in areas without fuel, e.g. containing burnable poison, requires some special provisions. This can be met by the introduction of pseudo nuclides, with very specific cross sections and reaction chains, in the procedure to generate the parametrized few-group cross sections. It is shown that the time-evolution of a non-fuelled burnable poison area, as calculated by the 2-group (HTR) reactor code PANTHERMIX employing pseudo nuclides, compares well to the time-evolution obtained from an explicit burnup calculation by the WIMS8A/SNAP code. Examples are also shown using the pseudo nuclide method to keep track of the fast fluence (time-integrated flux above 0.1 MeV) in a continuous reload pebble-bed HTR reactor calculation by PANTHERMIX. Although the present implementation of the pseudo nuclide method exhibits some peculiarities connected to the specific codes in use (WIMS8A and PANTHERMIX) it is considered to be sufficiently general to be applicable in other code suites, requiring only limited modifications. (authors)

  18. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  19. A Differential-Algebraic Model for the Once-Through Steam Generator of MHTGR-Based Multimodular Nuclear Plants

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2015-01-01

    Full Text Available Small modular reactors (SMRs are those fission reactors whose electrical output power is no more than 300 MWe. SMRs usually have the inherent safety feature that can be applicable to power plants of any desired power rating by applying the multimodular operation scheme. Due to its strong inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR, which uses helium as coolant and graphite as moderator and structural material, is a typical SMR for building the next generation of nuclear plants (NGNPs. The once-through steam generator (OTSG is the basis of realizing the multimodular scheme, and modeling of the OTSG is meaningful to study the dynamic behavior of the multimodular plants and to design the operation and control strategy. In this paper, based upon the conservation laws of mass, energy, and momentum, a new differential-algebraic model for the OTSGs of the MHTGR-based multimodular nuclear plants is given. This newly-built model can describe the dynamic behavior of the OTSG in both the cases of providing superheated steam and generating saturated steam. Numerical simulation results show the feasibility and satisfactory performance of this model. Moreover, this model has been applied to develop the real-time simulation software for the operation and regulation features of the world first underconstructed MHTGR-based commercial nuclear plant—HTR-PM.

  20. HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of "stemness-" associated transcription factors.

    Science.gov (United States)

    Weber, Maja; Knoefler, Ilka; Schleussner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2013-01-01

    JEG3 is a choriocarcinoma--and HTR8/SVneo a transformed extravillous trophoblast--cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor) cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT-) is distinct from JEG3 (CDX2+ and NOTCH1+) as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo's self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of "stemness-" associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  1. Measurement of the charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ and search for $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-01-01

    The CP-violating charge asymmetry in $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decays is measured in a sample of $pp$ collisions at 7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected by the LHCb experiment. The result is $\\mathcal{A}_{CP}(B^{\\pm}\\rightarrow \\phi K^{\\pm}) = \\rm 0.022\\pm 0.021 \\pm 0.009$, where the first uncertainty is statistical and the second systematic. In addition, a search for the $B^{\\pm}\\rightarrow \\phi \\pi^{\\pm}$ decay mode is performed, using the $B^{\\pm}\\rightarrow \\phi K^{\\pm}$ decay rate for normalization. An upper limit on the branching fraction $\\mathcal{B}(B^{\\pm}\\rightarrow \\phi \\pi^{\\pm})< 1.5\\times 10^{-7}$ is set at 90% confidence level.

  2. Criticality calculations of the HTR-10 pebble-bed reactor with SCALE6/CSAS6 and MCNP5

    International Nuclear Information System (INIS)

    Wang, Meng-Jen; Sheu, Rong-Jiun; Peir, Jinn-Jer; Liang, Jenq-Horng

    2014-01-01

    Highlights: • Comparisons of the HTR-10 criticality calculations with SCALE6/CSAS6 and MCNP5 were performed. • The DOUBLEHET unit-cell treatment provides the best k eff estimation among PBR criticality calculations using SCALE6. • The continuous-energy SCALE6 calculations present a non-negligible discrepancy with MCNP5 in three PBR cases. - Abstract: HTR-10 is a 10 MWt prototype pebble-bed reactor (PBR) that presents a doubly heterogeneous geometry for neutronics calculations. An appropriate unit-cell treatment for the associated fuel elements is vital for creating problem-dependent multigroup cross sections. Considering four unit-cell options for resonance self-shielding correction in SCALE6, a series of HTR-10 core models were established using the CSAS6 sequence to systematically investigate how they affected the computational accuracy and efficiency of PBR criticality calculations. Three core configurations, which ranged from simplified infinite lattices to a detailed geometry, were examined. Based on the same ENDF/B-VII.0 cross-section library, multigroup results were evaluated by comparing with continuous-energy SCALE6/CSAS6 and MCNP5 calculations. The comparison indicated that the INFHOMMEDIUM results overestimated the effective multiplication factor (k eff ) by about 2800 pcm, whereas the LATTICECELL and MULTIREGION treatments overestimated k eff values with similar biases at approximately 470–680 pcm. The DOUBLEHET results attained further improvement, reducing the k eff overestimation to approximately 280 pcm. The comparison yielded two unexpected problems from using SCALE6/CSAS6 in HTR-10 criticality calculations. In particular, the continuous-energy CSAS6 calculations in this study present a non-negligible discrepancy with MCNP5, potentially causing a k eff value overestimate of approximately 680 pcm. Notably, using a cell-weighted mixture instead of an explicit model of individual TRISO particles in the pebble fuel zone does not shorten the

  3. Search for $CP$ violation in $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J.E.; Appleby, R.B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J.J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P.M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T.J.V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N.H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L.Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chen, S.; Cheung, S.F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G.A.; Craik, D.C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P.N.Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J.M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, T.; Falabella, A.; Farber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V.V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gandara, M.; Graciani Diaz, R.; Granado Cardoso, L.A.; Grauges, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grunberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S.C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S.T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J.A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C.R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T.M.; Karodia, S.; Kelsey, M.; Kenyon, I.R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R.F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V.N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R.W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J.H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I.V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J.F.; Marconi, U.; Benito, C.Marin; Marino, P.; Marki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin Sanchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D.A.; Minard, M.N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M.J.; Moron, J.; Morris, A.B.; Mountain, R.; Muheim, F.; Muller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A.D.; Nguyen, T.D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D.P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J.M.; Owen, P.; Oyanguren, A.; Pal, B.K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C.J.; Passaleva, G.; Patel, G.D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J.H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M.S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M.M.; dos Reis, A.C.; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D.A.; Robbe, P.; Rodrigues, A.B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Vidal, A.Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Valls, P.Ruiz; Sabatino, G.; Saborido Silva, J.J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R.Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N.A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M.D.; Soler, F.J.P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V.K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M.T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M.Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Voss, H.; de Vries, J.A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D.R.; Watson, N.K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, F.F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S.A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W.C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-10-03

    A search for $CP$ violation in Cabibbo-suppressed $D^{\\pm}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{s}\\rightarrow K^0_S \\pi^{\\pm}$ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of 3~fb$^{-1}$, recorded by the LHCb experiment. The individual $CP$-violating asymmetries are measured to be \\begin{eqnarray*} \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}} & = & (+0.03 \\pm 0.17 \\pm 0.14) \\% \\\\ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} & = & (+0.38 \\pm 0.46 \\pm 0.17) \\%, \\end{eqnarray*} assuming that $CP$ violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes $D^{\\pm}_{(s)}\\rightarrow K^0_S K^{\\pm}$ and $D^{\\pm}_{(s)}\\rightarrow K^0_S \\pi^{\\pm}$ gives the sum \\[ \\mathcal{A}_{CP}^{D^{\\pm}\\rightarrow K^0_S K^{\\pm}}+ \\mathcal{A}_{CP}^{D^{\\pm}_s\\rightarrow K^0_S \\pi^{\\pm}} = (+0.41 \\pm 0.49 \\pm 0.26) \\%. \\] In all cases, the first uncertainties are statistical and the second sys...

  4. Intercomparison of rod-worth measurement techniques in a LEU-HTR assembly

    International Nuclear Information System (INIS)

    Williams, T.; Chawla, R.

    1994-01-01

    The measurement of absorber-rod worths in the radial reflector of a LEU-HTR pebble bed system is described. Particular emphasis is placed on the choice of complementary measurement techniques to ensure that sensitivities to systematic errors in the calculated parameters used in the analysis are minimised. (author) 3 figs., 3 tabs., 8 refs

  5. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  6. The improvement of the method of equivalent cross section in HTR

    International Nuclear Information System (INIS)

    Guo, J.; Li, F.

    2012-01-01

    The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system which have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)

  7. Prediction calculation of HTR-10 fuel loading for the first criticality

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Gu Yuxiang; Shan Wenzhi

    2001-01-01

    The 10 MW high temperature gas cooled reactor (HTR-10) was built at Institute of Nuclear Energy Technology, Tsinghua University, and the first criticality was attained in Dec. 2000. The high temperature gas cooled reactor physics simulation code VSOP was used for the prediction of the fuel loading for HTR-10 first criticality. The number of fuel element and graphite element was predicted to provide reference for the first criticality experiment. The prediction calculations toke into account the factors including the double heterogeneity of the fuel element, buckling feedback for the spectrum calculation, the effect of the mixture of the graphite and the fuel element, and the correction of the diffusion coefficients near the upper cavity based on the transport theory. The effects of impurities in the fuel and the graphite element in the core and those in the reflector graphite on the reactivity of the reactor were considered in detail. The first criticality experiment showed that the predicted values and the experiment results were in good agreement with little relative error less than 1%, which means the prediction was successful

  8. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China

    International Nuclear Information System (INIS)

    Wang Xinhua; Bi Xinhui; Sheng Guoying; Fu Jiamo

    2006-01-01

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 μg m -3 were significantly higher than outdoor PM2.5 standard of 65 μg m -3 recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R 2 of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R 2 of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and

  9. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    Science.gov (United States)

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  10. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  11. Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark

    International Nuclear Information System (INIS)

    Liu, Shichang; Li, Zeguang; Wang, Kan; Cheng, Quan; She, Ding

    2018-01-01

    Highlights: •A new random geometry was developed in RMC for mixed and polytype particle/pebble. •This capability was applied to the full core calculations of HTR-10 benchmark. •Reactivity, temperature coefficient and control rod worth of HTR-10 were compared. •This method can explicitly model different packing fraction of different pebbles. •Monte Carlo code with this method can simulate polytype particle/pebble type reactor. -- Abstract: With the increasing demands of high fidelity neutronics analysis and the development of computer technology, Monte Carlo method is becoming more and more attractive in accurate simulation of pebble bed High Temperature gas-cooled Reactor (HTR), owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. For the double-heterogeneous geometry of pebble bed, traditional Monte Carlo codes can treat it by explicit geometry description. However, packing methods such as Random Sequential Addition (RSA) can only produce a sphere packing up to 38% volume packing fraction, while Discrete Element Method (DEM) is troublesome and also time consuming. Moreover, traditional Monte Carlo codes are difficult and inconvenient to simulate the mixed and polytype particles or pebbles. A new random geometry method was developed in Monte Carlo code RMC to simulate the particle transport in polytype particle/pebble in double heterogeneous geometry systems. This method was verified by some test cases, and applied to the full core calculations of HTR-10 benchmark. The reactivity, temperature coefficient and control rod worth of HTR-10 were compared for full core and initial core in helium and air atmosphere respectively, and the results agree well with the benchmark results and experimental results. This work would provide an efficient tool for the innovative design of pebble bed, prism HTRs and molten salt reactors with polytype particles or pebbles using Monte Carlo method.

  12. A subroutine for the calculation of resonance cross sections of U-238 in HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Marullo, G C

    1971-02-15

    In this paper, a survey of the codes used at Ispra for the calculations of resonance absorption in HTR fuel elements is presented and a subroutine for the calculation of resonance cross-sections, in a seven groups energy structure, for a HTR lattice of annular type is described. A library of homogeneous resonance integrals and a wide tabulation of lump and kernel Bell factors, and moderators efficiency is given. This paper deals mainly with the problem of taking into account the correct slowing down of neutrons in the graphite and with the derivation of Bell factors to be used in a multigroup calculation scheme.

  13. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  14. Measurement of CP violation in the phase space of $B^{\\pm} \\rightarrow K^{+} K^{-} \\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+} \\pi^{-} \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Adrover, Cosme; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Mar-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Dogaru, Marius; Donleavy, Stephanie; Dordei, Francesca; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorbounov, Petr; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hicks, Emma; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Li Gioi, Luigi; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Martynov, Aleksandr; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurice, Emilie; Mazurov, Alexander; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nomerotski, Andrey; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrick, Glenn; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Pérez-Calero Yzquierdo, Antonio; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Phan, Anna; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Straticiuc, Mihai; Straumann, Ulrich; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The charmless decays $B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}$ are reconstructed in a data set, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ of pp collisions at a center-of-mass energy of 7 TeV, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured to be $A_{CP}(B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}) =-0.141 \\pm 0.040 (stat) \\pm 0.018 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{CP}(B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}) = 0.117 \\pm 0.021 (stat) \\pm 0.009 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the CP asymmetry of the $B^{\\pm} \\rightarrow J/\\psi K^{\\pm}$ reference mode. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

  15. Studies on equilibrium fuel management schemes on the Dragon HTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Daub, J; Pedersen, J

    1971-02-03

    The Dragon Project has recently started investigations on fuel management in HTR's with the assumed Dragon design. The study covers the results of investigations into a number of equilibrium fuel management schemes with the 1-dimensional FLATTER code and calculations of the corresponding total power generating costs with the programme TECO.

  16. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    International Nuclear Information System (INIS)

    Reitsamer, G.; Proksch, E.; Stolba, G.; Strigl, A.; Falta, G.; Zeger, J.

    1985-01-01

    Austrian R and D activities in the HTR-field reach back almost to the beginning of this advanced reactor line. For more than 20 years post-irradiation examination (PIE) of HTR-fuel has been performed at the laboratories of the Austrian Research Centre Seibersdorf Ltd. (OEFZS) (formerly OESGAE) and a high degree of qualification has been achieved in the course of that time. Most of the PIE-work has been carried out by international cooperation on contract basis with the OECD-DRAGON-project and with KFA-Juelich (FRG). There has also been some collaboration with GA (USA), Belgonucleaire and others in the past. HTR-fuel elements contain the fissile and fertile materials in form of coated particles (CPs) which are embedded in a graphite matrix. Because of this special design it has been necessary from the very beginning of the PIE work up to now to develop new methods (i.e. fuel element disintegration methods, chlorine gas leach, single particle examination techniques...) as well as to adapt and improve already existing methods (i.e. gamma spectrometry, mass-spectrometry, optical methods...). The main interests on PIE-work at Seibersdorf are concentrated on particle performance, fission product distribution and the 'free' Uranium content (contamination and broken particles) of the fuel elements (fuel spheres or cylindrical compacts). A short compilation of the applied methods and of available instrumental facilities is given as follows: deconsolidation of fuel elements; equipment for electrochemical deconsolidation; examinations and measurements of graphite and electrolyte samples; examination of coated particles; single particle examinations

  17. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Reitsamer, G; Proksch, E; Stolba, G; Strigl, A; Falta, G; Zeger, J [Department of Chemistry, Austrian Research Centre Seibersdorf Ltd., Seibersdorf (Austria)

    1985-07-01

    Austrian R and D activities in the HTR-field reach back almost to the beginning of this advanced reactor line. For more than 20 years post-irradiation examination (PIE) of HTR-fuel has been performed at the laboratories of the Austrian Research Centre Seibersdorf Ltd. (OEFZS) (formerly OESGAE) and a high degree of qualification has been achieved in the course of that time. Most of the PIE-work has been carried out by international cooperation on contract basis with the OECD-DRAGON-project and with KFA-Juelich (FRG). There has also been some collaboration with GA (USA), Belgonucleaire and others in the past. HTR-fuel elements contain the fissile and fertile materials in form of coated particles (CPs) which are embedded in a graphite matrix. Because of this special design it has been necessary from the very beginning of the PIE work up to now to develop new methods (i.e., fuel element disintegration methods, chlorine gas leach, single particle examination techniques...) as well as to adapt and improve already existing methods (i.e. gamma spectrometry, mass-spectrometry, optical methods...). The main interests on PIE-work at Seibersdorf are concentrated on particle performance, fission product distribution and the 'free' Uranium content (contamination and broken particles) of the fuel elements (fuel spheres or cylindrical compacts). A short compilation of the applied methods and of available instrumental facilities is given as follows: deconsolidation of fuel elements; equipment for electrochemical deconsolidation; examinations and measurements of graphite and electrolyte samples; examination of coated particles; single particle examinations.

  18. HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power--an intermediate phenotype for alcoholism and co-morbid behaviors.

    Science.gov (United States)

    Ducci, Francesca; Enoch, Mary-Anne; Yuan, Qiaoping; Shen, Pei-Hong; White, Kenneth V; Hodgkinson, Colin; Albaugh, Bernard; Virkkunen, Matti; Goldman, David

    2009-02-01

    Alcohol use disorders (AUD) with co-morbid antisocial personality disorder (ASPD) have been associated with serotonin (5-HT) dysfunction. 5-HT3 receptors are potentiated by ethanol and appear to modulate reward. 5-HT3 receptor antagonists may be useful in the treatment of early-onset alcoholics with co-morbid ASPD. Low-voltage alpha electroencephalogram (EEG) power, a highly heritable trait, has been associated with both AUD and ASPD. A recent whole genome linkage scan in one of our samples, Plains American Indians (PI), has shown a suggestive linkage peak for alpha power at the 5-HT3R locus. We tested whether genetic variation within the HTR3A and HTR3B genes influences vulnerability to AUD with comorbid ASPD (AUD+ASPD) and moderates alpha power. Our study included three samples: 284 criminal alcoholic Finnish Caucasians and 234 controls; two independent community-ascertained samples with resting EEG recordings: a predominantly Caucasian sample of 191 individuals (Bethesda) and 306 PI. In the Finns, an intronic HTR3B SNP rs3782025 was associated with AUD+ASPD (P=.004). In the Bethesda sample, the same allele predicted lower alpha power (P=7.37e(-5)). Associations between alpha power and two other HTR3B SNPs were also observed among PI (P=.03). One haplotype in the haplotype block at the 3' region of the gene that included rs3782025 was associated with AUD+ASPD in the Finns (P=.02) and with reduced alpha power in the Bethesda population (P=.00009). Another haplotype in this block was associated with alpha power among PI (P=.03). No associations were found for HTR3A. Genetic variation within HTR3B may influence vulnerability to develop AUD with comorbid ASPD. 5-HT3R might contribute to the imbalance between excitation and inhibition that characterize the brain of alcoholics.

  19. Measurement of $C\\!P$ violation in the phase space of $B^{\\pm} \\to K^{\\pm} \\pi^{+} \\pi^{-}$ and $B^{\\pm} \\to K^{\\pm} K^{+} K^{-}$ decays

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The charmless decays $B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-$ and $B^{\\pm}\\to K^{\\pm}K^+K^-$ are reconstructed using data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-) = 0.032 \\pm 0.008 {\\mathrm{\\,(stat)}} \\pm 0.004 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-) = -0.043 \\pm 0.009 {\\mathrm{\\,(stat)}} \\pm 0.003 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the $C\\!P$ asymmetry of the $B^{\\pm}\\to J/\\psi K^{\\pm}$ reference mode. The significance of $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-)$ exceeds three standard deviations and is the first evidence of an inclusive $C\\!P$ asymmetry in charmless three-body $B$ decays. In addition to the inclusive $C\\!P$ asymmetries, larger asymmetries are observed in localised regions of phase space.

  20. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  1. A family-based association study of the HTR1B gene in eating disorders

    Directory of Open Access Journals (Sweden)

    Sandra Hernández

    Full Text Available Objective: To explore the association of three polymorphisms of the serotonin receptor 1Dβ gene (HTR1B in the etiology of eating disorders and their relationship with clinical characteristics. Methods: We analyzed the G861C, A-161T, and A1180G polymorphisms of the HTR1B gene through a family-based association test (FBAT in 245 nuclear families. The sample was stratified into anorexia nervosa (AN spectrum and bulimia nervosa (BN spectrum. In addition, we performed a quantitative FBAT analysis of anxiety severity, depression severity, and Yale-Brown-Cornell Eating Disorders Scale (YBC-EDS in the AN and BN-spectrum groups. Results: FBAT analysis of the A-161T polymorphism found preferential transmission of allele A-161 in the overall sample. This association was stronger when the sample was stratified by spectrums, showing transmission disequilibrium between the A-161 allele and BN spectrum (z = 2.871, p = 0.004. Quantitative trait analysis showed an association between severity of anxiety symptoms and the C861 allele in AN-spectrum participants (z = 2.871, p = 0.004. We found no associations on analysis of depression severity or preoccupation and ritual scores in AN or BN-spectrum participants. Conclusions: Our preliminary findings suggest a role of the HTR1B gene in susceptibility to development of BN subtypes. Furthermore, this gene might have an impact on the severity of anxiety in AN-spectrum patients.

  2. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

    Science.gov (United States)

    Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R

    2016-04-01

    Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

  3. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  4. HTR8/SVneo Cells Display Trophoblast Progenitor Cell-Like Characteristics Indicative of Self-Renewal, Repopulation Activity, and Expression of “Stemness-” Associated Transcription Factors

    Directory of Open Access Journals (Sweden)

    Maja Weber

    2013-01-01

    Full Text Available Introduction. JEG3 is a choriocarcinoma—and HTR8/SVneo a transformed extravillous trophoblast—cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT- is distinct from JEG3 (CDX2+ and NOTCH1+ as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo’s self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of “stemness-” associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.

  5. Conceptual design of small-sized HTGR system (1). Major specifications and system designs

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tazawa, Yujiro; Yan, Xing L.; Tachibana, Yukio

    2011-06-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2030s. The design philosophy is that the HTR50S is a high advanced reactor, which is reducing the R and D risk based on the HTTR design, upgrading the performance and reducing the cost for commercialization by utilizing the knowledge obtained by the HTTR operation and the GTHTR300 design. The major specifications of the HTR50S were determined and targets of the technology demonstration using the HTR50S (e.g., the increasing the power density, reduction of the number of uranium enrichment in the fuel, increasing the burn up, side-by-side arrangement between the reactor pressure vessel and the steam generator) were identified. In addition, the system design of HTR50S, which offers the capability of electricity generation, cogeneration of electricity and steam for a district heating and industries, was performed. Furthermore, a market size of small-sized HTGR systems was investigated. (author)

  6. Perspectives for the french R and D program for high and very high temperature reactors - HTR2008-58172

    International Nuclear Information System (INIS)

    Yvon, P.; Hittner, D.; Delbecq, J. M.

    2008-01-01

    A R and D programme has been launched addressing the needs of the development of an indirect cycle flexible modular HTR operating at 850 deg. C for electricity generation and/or heat production for industrial processes. In the frame of this program, several significant technical challenges required to demonstrate the viability and performance of the system have been successfully addressed. Design and safety analysis needed the development of computational tools, therefore reactor physics, and thermo-fluid dynamics codes have been developed and are now in the process of being validated in the frame of international code-to-code and code to experiment benchmarks. Most importantly, the performance of the HTR/VHTR fuel identified as TRISO-coated particle must prove to be excellent in operating as well as accidental conditions. A manufacturing and quality control process has been developed and now fuel qualification based on irradiation and heating safety tests is being prepared on the basis of irradiation programs in France and in the frame of the GENERATION IV International Forum (GIF) as well as the development of fuel behaviour models including performance data, failure particle prediction and long-term integrity of the coating. Material and component technologies have been investigated in normal and accident conditions for V/HTR objectives. Significant progress has been made for vessel structures and reactor core structural elements. Major challenges still lie ahead for plate type compact intermediate heat exchangers, especially at temperatures above 850 deg. C, but an alternative solution with helical tubes is also being developed. In order to demonstrate that materials have adequate performance over long service life under impure helium environment and constraints, the research programme focuses on microstructural and mechanical property data, long-term irradiation behaviour, corrosion, modelling and codification of design rules as well as qualification of

  7. 40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?

    Science.gov (United States)

    2010-07-01

    ... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...

  8. Performance limits of coated particle fuel. Part III. Fission product migration in HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nabielek, H.; Hick, H.; Wagner-Loffler, M.; Voice, E. H.

    1974-06-15

    A general introduction and literature survey to the physics and mathematics of fission product migration in HTR fuel is given as well as a review of available experimental results and their evaluation in terms of models and materials data.

  9. Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1.

    Science.gov (United States)

    Jacobo, Sarah Melissa P; Deangelis, Margaret M; Kim, Ivana K; Kazlauskas, Andrius

    2013-05-01

    Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.

  10. Anomalous elevated radiocarbon measurements of PM2.5

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Fallon, Stewart J.; Zermeño, Paula; Bench, Graham; Schichtel, Bret A.

    2013-01-01

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 ( 14 C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of 14 C approximately 1.2 × 10 −1214 C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer 14 C can skew the 14 C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where 14 C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare (∼10%) for PM sampling sites.

  11. The development on-line monitoring system of active magnetic bearings for HTR-10GT

    International Nuclear Information System (INIS)

    Shi Zhengang; Shi Lei; Zha Meisheng; Yu Suyuan

    2005-01-01

    High Temperature Gas-cooled Reactor (HTR) is recognized as an advanced type of reactor incorporating many design enhancements such as inherent safety features, fuel cycle flexibility, highly fuel utilization, highly efficient electricity generation and process heat application. The research and development of HTR started at the middle of the 1970's, and came to be a part of the Chinese High Technology Program in 1986. A plan to build a 10 MW High Temperature Gas-cooled Reactor (HTR-10) was approved by the State Science and Technology Commission in 1990, and in 1995 the construction was initiated at the Institute of Nuclear Energy Technology (INET), Tsinghua University. The full power 10 MW operation for 72 hours have reached in 2003, and have been checked and accepted by the State Science and Technology Commission. In order to advance the HTR-10 performance, the project of the Helium Gas Turbine Generator for the HTR-10 was authorized by the State Science and Technology Commission, and stared in 2003. In this project, active magnetic bearings (AMBs) are chosen to support the generator rotor and the turbocompressor rotor in the power conversion unit because of their numerous advantages over the conventional bearings. In order to detect how the AMB system works in operation and make diagnosis whether the system behaves normally or not, the monitoring system based on the virtual instruments is designed to monitor the working conditions of the PCU, and to ensure its normal operation. This monitoring system consists of the industry personal computer (PC), the data acquisition system, the measurement transmitters and the LabVIEW system platform. It is located at the PCU control room, and communicates with the master control room by Controller Area Net (CAN). The development is divided into the following three steps: First, a data acquisition platform to collect and acquire all the necessary and useful data from the operation of the AMB system is developed. Second, the

  12. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    International Nuclear Information System (INIS)

    Reitsamer, G.; Proksch, E.; Stolba, G.; Strigl, A.; Falta, G.; Zeger, J.

    1984-02-01

    This paper describes methods and measurements developed at the Austrian Research Centre Seibersdorf for the evaluation of the irradiation performance of HTR fuel. Main interest is concentrated on particle failure rates, fission product release, burn-up and inventory measurements (solid and gaseous fission products, uranium inventory). (Author) [de

  13. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Science.gov (United States)

    2010-07-01

    ... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by § 93.116... make a categorical hot-spot finding that (93.116(a) is met without further hot-spot analysis for any...

  14. Commissioning of the THTR-300-MWe prototype power plant - A milestone for further application of this high-temperature reactor line

    International Nuclear Information System (INIS)

    Simon, M.; Baust, E.; Schoening, J.

    1986-10-01

    With the completion of the THTR 300 and the development of the follow-on plant HTR 500, the BBC/HRB company group has taken the pebble bed high-temperature reactor to the threshold of the commercial stage. The HTR is an important innovation in the field of reactor technology which can play an important role in the intermediate and long-term supply of safe, environmental friendly and economic energy. The power level of 550 MW meets the requirements of the present energy market which shows a trend towards smaller power units as a result of grid size, investment effort, and the slower increase in electricity demand in industrial nations. The advantages of the high-temperature reactor, such as high thermal efficiency, low waste heat, low radiation exposure of operating and maintenance personnel, high inherent safety, simple mode of operation, flexible fuel cycle with the potential to extend fuel resources, high availability, are currently uncontested and will represent the future standards for the peaceful uses of nuclear energy. For special applications in industry (steam and electric power as a cogeneration product) and in case of special siting conditions (near industrial centers), BBC/HRB developed a small 100 MW HTR, which can also be constructed as a 200 MW twin plant at favorable cost conditions. For an economic use of domestic coal in a processed form, the HTR represents the optimum solution as to economic and environmental aspects as well as extension of resources, especially if combined with conventional gasification procedures and in direct application of nuclear process heat at high gas temperatures of about 950 deg. C. In this field the development of the heat-exchanging components remains to be completed, before commercial application will be possible. The HTR is particularly well suited for erection in developing countries and industrial threshold countries which turn to nuclear energy for the first time. On an international level the interest in the

  15. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  16. CEA and AREVA R and D on V/HTR fuel fabrication with the CAPRI experimental manufacturing line

    International Nuclear Information System (INIS)

    Charollais, Francois; Fonquernie, Sophie; Perrais, Christophe; Perez, Marc; Cellier, Francois; Vitali, Marie-Pierre

    2006-01-01

    In the framework of the French V/HTR fuel development and qualification program, the Commissariat a l'Energie Atomique (CEA) and AREVA through its program called ANTARES (Areva New Technology for Advanced Reactor Energy Supply) conduct R and D projects covering the mastering of UO 2 coated particle and fuel compact fabrication technology. To fulfill this task, a review of past knowledge, of existing technologies and a preliminary laboratory scale work program have been conducted with the aim of retrieving the know-how on HTR coated particle and compact manufacture: - The different stages of UO 2 kernel fabrication GSP Sol-Gel process have been reviewed, reproduced and improved; - The experimental conditions for the chemical vapour deposition (CVD) of coatings have been defined on dummy kernels and development of innovative characterization methods has been carried out; - Former CERCA compacting process has been reviewed and updated. In parallel, an experimental manufacturing line for coated particles, named GAIA, and a compacting line based on former CERCA compacting experience have been designed, constructed and are in operation since early 2005 at CEA Cadarache and CERCA Romans, respectively. These two facilities constitute the CAPRI line (CEA and AREVA PRoduction Integrated line). The major objectives of the CAPRI line are: - to recover and validate past knowledge; - to permit the optimisation of reference fabrication processes for kernels and coatings and the investigation of alternative and innovative fuel design (UCO kernel, ZrC coating); - to test alternative compact process options; - to fabricate and characterize fuel required for irradiation and qualification purpose; - to specify needs for the fabrication of representative V/HTR TRISO fuel meeting industrial standards. This paper presents the progress status of the R and D conducted on V/HTR fuel particle and compact manufacture by mid 2005. (authors)

  17. Winter mass concentrations of carbon species in PM10, PM 2.5 and PM1 in Zagreb air, Croatia.

    Science.gov (United States)

    Godec, Ranka; Čačković, Mirjana; Šega, Krešimir; Bešlić, Ivan

    2012-11-01

    The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM(10), PM(2.5) and PM(1) particle fractions. Daily PM(10), PM(2.5) and PM(1) samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m(-3) in PM(10), 9.0 and 1.4 μg m(-3) in PM(2.5), and 5.5 and 1.1 μg m(-3) in PM(1). Average OC/EC ratios in PM(10), PM(2.5), and PM(1) were 7.4, 6.9 and 5.4, respectively.

  18. Measurements of the branching fractions and $C\\!P$ asymmetries of $B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}$ and $B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    A study of $B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}$ and $B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}$ decays is performed with data corresponding to $0.37\\,{\\rm fb}^{-1}$ of proton-proton collisions at $\\sqrt{s}=7\\,\\mathrm{Te\\kern -0.1em V}$. Their branching fractions are found to be \\begin{eqnarray*} \\mathcal{B}(B^{\\pm} \\to J\\!/\\!\\psi\\, \\pi^{\\pm}) &=& (3.88 \\pm 0.11 \\pm 0.15) \\times 10^{-5}\\ {\\rm and}\\\\ \\mathcal{B}(B^{\\pm} \\to \\psi(2S) \\pi^{\\pm}) &=& (2.52 \\pm 0.26 \\pm 0.15) \\times 10^{-5}, \\end{eqnarray*} where the first uncertainty is related to the statistical size of the sample and the second quantifies systematic effects. The measured $C\\!P$ asymmetries in these modes are \\begin{eqnarray*} A_{CP}^{J\\!/\\!\\psi\\, \\pi} &=& 0.005 \\pm 0.027 \\pm 0.011\\ {\\rm and} \\\\ A_{CP}^{\\psi(2S) \\pi} &=& 0.048 \\pm 0.090 \\pm 0.011 \\end{eqnarray*} with no evidence of direct $C\\!P$ violation seen.

  19. Results of a European industrial heat market analysis as a pre-requisite to evaluating the HTR market in Europe and elsewhere

    International Nuclear Information System (INIS)

    Bredimas, Alexandre

    2014-01-01

    High temperature nuclear reactors will mainly address the market of industrial cogeneration. This market is a part of the overall market of the heat concretely consumed by industry, in particular heat intensive industries. In simpler terms, the HTR market is a part of the industrial cogeneration market, which itself is a part of the industrial heat market. The EU-supported project EUROPAIRS (2009–2011) has therefore carried out a comprehensive study of the complete European industrial heat market in order to prepare for the deployment of HTRs. This information did not exist priori to the study. The purposes of this paper are (1) to present the methodology of the study and the experience gathered in order to exchange with non-European equivalent or future initiatives (beyond the discussions already engaged with the US), (2) to synthesise the quantitative results of the study and (3) to briefly report on the cogeneration usages in several key industries (e.g. chemicals, refining, steelmaking…) which may affect HTR designing. The paper finishes with some reflection on the part of the heat market that HTRs could potentially address. In correlation with our other paper on the pre-economic analysis, this paper intend to pave the way for an international cooperation on evaluating the market for HTR worldwide, which is an information of common interest to the HTR community

  20. Monitoring viable cells of the biological control agent Lactobacillus plantarum PM411 in aerial plant surfaces by means of a strain-specific viability quantitative PCR.

    Science.gov (United States)

    Daranas, Núria; Bonaterra, Anna; Francés, Jesús; Cabrefiga, Jordi; Montesinos, Emilio; Badosa, Esther

    2018-03-09

    A viability qPCR (v-qPCR) assay was developed for the unambiguous detection and quantification of Lactobacillus plantarum PM411 viable cells in aerial plant surfaces. A 972 bp region of a PM411 predicted prophage with mosaic architecture enabled the identification of a PM411 strain-specific molecular marker. Three primer sets, with different amplicon lengths (92, 188, and 317 bp), and one TaqMan probe were designed. All the qPCR assays showed good linearity over a 4-log range and good efficiencies, but differed in sensitivity. The nucleic acid-binding dye PEMAX was used for selectively detecting and enumerating viable bacteria by v-qPCR. The primer set amplifying a 188 bp DNA fragment was selected as the most suitable for v-qPCR. The performance of the method was assessed on apple blossoms, pear, strawberry and kiwifruit leaves in potted plants under controlled environmental conditions, and pear and apple blossoms under field conditions, by comparing v-qPCR population estimation to those obtained by qPCR and specific plate counting on MRS-rifampicin. The population estimation did not differ significantly between methods when conditions were conducive to bacterial survival. However, under stressful conditions, differences between methods were observed due to cell death or viable but non-culturable state induction. While qPCR overestimated the population level, plate counting underestimated this value in comparison to v-qPCR. PM411 attained stable population levels of viable cells on flower environment under high relative humidity. However, the unfavourable conditions onto the leaf surface and the relatively dryness in the field caused an important decrease of viable population. IMPORTANCE The v-qPCR method in combination with plate counting and qPCR is a powerful tool for studies of colonization and survival in field conditions, to improve formulations and delivery strategies of PM411, or to optimize the dose and timing of spray schedules. It is expected that PEMAX

  1. Standard and chances of the HTR in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Simon, M.; Harder, H.

    1980-01-01

    If one believes the verbal support of the politicians on the High-Temperature Reactor this reactor type seems to have a good future. The facts show that inspite of the well known properties of the HTR and the engagement of the industry and potential operators, progress is hardly made. Soon it could be too late for this reactor line. (orig.) [de

  2. Program status of the high temperature reactor development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1984-01-01

    The status of the HTR development program in the Federal Republic of Germany in 1984 is characterized by the beginning of a transition phase from a national program to a commercial program. In the last 20 years the HTR technology program was strongly, nearly completely supported by the Federal Government and the State Government of North-Rhine-Westfalia. Funding of the program up to now exceeded 5 billion DM. Within this framework it was possible to establish competent-reactor-system companies, to enable industries to supply HTR- specific components including fuel elements and nuclear graphites, to maintain the strong engagement of the national centre KFA Juelich in general R and D activities, to build and operate the AVR-plant for more than 16 years, to erect the demonstration plant THTR-300 now approaching completion and to build and operate many efficient test facilities. Thereby the HTR technology development achieved a stage of maturity which is not only considered to be most advanced, but is also ready now for commerical deployment. The assessment report which comprised both the fast breeder and the HTR development included all major impacts, such as history, status, prospects, benefits, industrial aspects and international developments of the technology. The program description is facilitated by distinguishing the five major program elements: AVR, THTR-300, THTR follow-up plant, nuclear process heat program, fuel cycle activities

  3. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin

    LENUS (Irish Health Repository)

    Boehm, Manja

    2012-04-25

    AbstractBackgroundCampylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear.ResultsIn the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni’s HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori’s HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria.ConclusionThese results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  4. Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin.

    Science.gov (United States)

    Boehm, Manja; Hoy, Benjamin; Rohde, Manfred; Tegtmeyer, Nicole; Bæk, Kristoffer T; Oyarzabal, Omar A; Brøndsted, Lone; Wessler, Silja; Backert, Steffen

    2012-04-25

    Campylobacter jejuni is one of the most important bacterial pathogens causing food-borne illness worldwide. Crossing the intestinal epithelial barrier and host cell entry by C. jejuni is considered the primary reason of damage to the intestinal tissue, but the molecular mechanisms as well as major bacterial and host cell factors involved in this process are still widely unclear. In the present study, we characterized the serine protease HtrA (high-temperature requirement A) of C. jejuni as a secreted virulence factor with important proteolytic functions. Infection studies and in vitro cleavage assays showed that C. jejuni's HtrA triggers shedding of the extracellular E-cadherin NTF domain (90 kDa) of non-polarised INT-407 and polarized MKN-28 epithelial cells, but fibronectin was not cleaved as seen for H. pylori's HtrA. Deletion of the htrA gene in C. jejuni or expression of a protease-deficient S197A point mutant did not lead to loss of flagella or reduced bacterial motility, but led to severe defects in E-cadherin cleavage and transmigration of the bacteria across polarized MKN-28 cell layers. Unlike other highly invasive pathogens, transmigration across polarized cells by wild-type C. jejuni is highly efficient and is achieved within a few minutes of infection. Interestingly, E-cadherin cleavage by C. jejuni occurs in a limited fashion and transmigration required the intact flagella as well as HtrA protease activity, but does not reduce transepithelial electrical resistance (TER) as seen with Salmonella, Shigella, Listeria or Neisseria. These results suggest that HtrA-mediated E-cadherin cleavage is involved in rapid crossing of the epithelial barrier by C. jejuni via a very specific mechanism using the paracellular route to reach basolateral surfaces, but does not cleave the fibronectin receptor which is necessary for cell entry.

  5. Results from an in-plant demonstration of intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Messick, N.

    1993-01-01

    A learning systems-based reconfigurable controller was demonstrated on the deaerating feedwater heater at the Experimental Breeder Reactor II (EBR-II) on April 1, 1993. Failures of the normal pressure regulating process were introduced by reducing the steam flow to the heater by as much as 10%. The controller maintained pressure in the heater at acceptable levels for several minutes, whereas operator intervention would have otherwise been required within a few seconds. This experiment demonstrates the potential of advanced control techniques for improving safety, reliability, and performance of power plant operations as well as the utility of EBR-II as an experimental power plant controls facility

  6. Enhanced PM10 bounded PAHs from shipping emissions

    Science.gov (United States)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  7. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter

    International Nuclear Information System (INIS)

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-01-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM 1 and PM 10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. - Highlights: • Using 16 s rDNA double variable region (V3 + V4) sequencing to elucidate the bacterial communities. • Several potential microbial allergens and pathogens present in PM 1 and PM 10 were found. • Providing a great supplement to environmental science and human health assessment.

  8. Conception of a modular HTR-process heat facility with optimization of the pressure level

    International Nuclear Information System (INIS)

    Bousack, H.

    1984-11-01

    The operation of a steam reformer heated by nuclear power with a process pressure of about 20 bar provides advantages with respect to process engineering due to the improved conversion and simplified product gas treatment for the follow-on process. The effects of a reduction in pressure on the components of the primary circuit in a modular HTR facility, as well as various process engineering possibilities for producing methanol in the follow-on process are discussed in this paper. Studies cover the influence of core geometry and power density, as well as possibilities of increasing the modular power at a maximum accident temperature of 1600 0 C. An inherently functioning area cooling system is proposed for afterheat removal outside the primary circuit. Based on the optimized pressure, a modular HTR process heat facility is conceived to produce methanol from natural gas and carbon dioxide basically satisfying the requirement of zero emission. (orig.) [de

  9. Study on the shuffling scheme in HTR-10 MW test module

    International Nuclear Information System (INIS)

    Jing Xingqing; Zhang Xu; Luo Jingyu

    1993-01-01

    The shuffling ways, once through then out and multiple through then out, in HTR-10 MW Test Module are studied. Multiple through then out is better than once through with regard to rational use of the fuel and flattening the power. The behaviour of equilibrium core and loss of coolant accident is analyzed. The results indicate that characteristic features of the multiple through then out could be better to satisfy the demands of safety criterions

  10. Analysis of impact of mixing flow on the pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Hao Chen; Li Fu; Guo Jiong

    2014-01-01

    The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)

  11. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  12. Search for direct CP violating charge asymmetries in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays

    CERN Document Server

    Batley, J Richard; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Cabibbo, Nicola; Ceccucci, A; Cundy, Donald C; Falaleev, V; Fidecaro, Maria; Gatignon, L; Gonidec, A; Kubischta, Werner; Norton, A; Maier, A; Patel, M; Peters, A; Balev, S; Frabetti, P L; Goudzovski, E; Khristov, P Z; Kekelidze, V D; Kozhuharov, V; Litov, L; Madigozhin, D T; Marinova, E; Molokanova, N A; Polenkevich, I; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Monnier, E; Swallow, E; Winston, R; Rubin, P; Walker, A; Baldini, W; Cotta-Ramusino, A; Dalpiaz, P; Damiani, C; Fiorini, M; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Wahle, H; Bizzeti, A; Calvetti, M; Celeghini, E; Iacopini, E; Lenti, M; Martelli, F; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Kleinknecht, K; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Renk, B; Wache, M; Wanke, R; Winhart, A; Coward, D; Dabrowski, A; Fonseca-Martin, T; Shieh, M; Szleper, M; Velasco, M; Wood, M D; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Nappi, A; Pepé, M; Petrucci, M C; Piccini, M; Raggi, M; Valdata-Nappi, M; Cerri, C; Collazuol, G; Costantini, F; Di Lella, L; Doble, N; Fantechi, R; Fiorini, L; Giudici, S; Lamanna, G; Mannelli, I; Michetti, A; Pierazzini, G M; Sozzi, M; Bloch-Devaux, B; Cheshkov, C; Chèze, J B; De Beer, M; Derré, J; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Ziolkowski, M; Bifani, S; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Widhalm, L

    2007-01-01

    A measurement of the direct CP violating charge asymmetries of the Dalitz plot linear slopes $A_g=(g^+-g^-)/(g^++g^-)$ in $K^\\pm\\to\\pi^\\pm\\pi^+\\pi^-$ and $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ decays by the NA48/2 experiment at CERN SPS is presented. A new technique of asymmetry measurement involving simultaneous $K^+$ and $K^-$ beams and a large data sample collected allowed a result of an unprecedented precision. The charge asymmetries were measured to be $A^c_g=(-1.5\\pm2.1)\\times10^{-4}$ with $3.11\\times 10^9$ $K^{\\pm}\\to\\pi^\\pm\\pi^+\\pi^-$ decays, and $A^n_g=(1.8\\pm1.8)\\times10^{-4}$ with $9.13\\times 10^7$ $K^{\\pm}\\to\\pi^\\pm\\pi^0\\pi^0$ decays. The precision of the results is limited mainly by the size of the data sample.

  13. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels.

    Science.gov (United States)

    Espitia-Pérez, Lyda; da Silva, Juliana; Espitia-Pérez, Pedro; Brango, Hugo; Salcedo-Arteaga, Shirley; Hoyos-Giraldo, Luz Stella; de Souza, Claudia T; Dias, Johnny F; Agudelo-Castañeda, Dayana; Valdés Toscano, Ana; Gómez-Pérez, Miguel; Henriques, João A P

    2018-02-01

    Epidemiological studies indicate that living in proximity to coal mines is correlated with numerous diseases including cancer, and that exposure to PM 10 and PM 2.5 components could be associated with this phenomenon. However, the understanding of the mechanisms by which PM exerts its adverse effects is still incomplete and comes mainly from studies in occupationally exposed populations. The aims of this study were to: (1) evaluate DNA damage in lymphocytes assessing the cytokinesis-block micronucleus cytome assay (CBMN-cyt) parameters; (2) identify aneugenic or clastogenic effects in lymphocytes of exposed populations using CREST immunostaining for micronuclei; (3) evaluate multi-elemental composition of atmospheric particulate matter; and (4) verify relation between the DNA damage and PM 2.5 and PM 10 levels around the mining area. Analysis revealed a significant increase in micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells of individuals with residential proximity to open-pit coal mines compared to residents from non-mining areas. Correlation analysis demonstrated a highly significant association between PM 2.5 levels, MNBN frequencies and CREST+ micronuclei induction in exposed residents. These results suggest that PM 2.5 fraction generated in coal mining activities may induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. Analysis of the chemical composition of PM 2.5 by PIXE demonstrated that Si, S, K and Cr concentrations varied significantly between coal mining and reference areas. Enrichment factor values (EF) showed that S, Cr and Cu were highly enriched in the coal mining areas. Compared to reference area, mining regions had also higher concentrations of extractable organic matter (EOM) related to nonpolar and polar compounds. Our results demonstrate that PM 2.5 fraction represents the most important health risk for residents living near open-pit mines, underscoring the need for

  14. Demonstration of risk-based approaches to nuclear plant regulation

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Darling, S.S.; Oddo, J.M.

    1993-01-01

    This paper describes generic technical support EPRI is providing to the nuclear power industry relative to its recent initiatives in the area of risk-based regulations (RBR). A risk-based regulatory approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate safety resources commensurate with the risk posed by nuclear plant operations. This approach will reduce O ampersand M costs, and also improve nuclear plant safety. In order to enhance industry, Nuclear Regulatory Commission (NRC) and public confidence in RBR, three things need to be shown: (1) manpower/resource savings are significant for both NRC and industry; (2) the process is doable in a reasonable amount of time; and (3) the process, if uniformly applied, results in demonstrably cheaper power and safer plants. In 1992, EPRI performed a qualitative study of the key RBR issues contributing to high O ampersand M costs. The results are given on Table 1. This study is being followed up by an in-depth quantitative cost/benefit study to focus technical work on producing guidelines/procedures for licensing submittals to NRC. The guidelines/procedures necessarily will be developed from successful demonstration projects such as the Fitzpatrick pilot plant study proposed by the New York Power Authority and other generic applications. This paper presents three examples: two motor operated valve projects performed by QUADREX Energy Services Corporation working with utilities in responding to NRC Generic Letter 89-10, and a third project working with Yankee Atomic Electric Company on service water systems at a plant in its service system. These demonstration projects aim to show the following: (1) the relative ease of putting together a technical case based on RBR concepts; (2) clarity in differentiating the various risk trade-offs, and in communicating overall reductions in risk with NRC; and (3) improved prioritization of NRC directives

  15. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1987-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (author)

  16. Plant design and safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Reutler, H.

    1988-01-01

    The new KWU/Interatom concept of a modular High Temperature Reactor is characterized by the fact that several standardized nuclear heat production units, each having a power output up to 200 MW(th), are connected into parallel to obtain a power plant of any desired output for the production of process steam and electricity for the application in district heating and for the direct application of process heat. The safety concept of the modular reactor is such that the reactor plant shall stay in a predictable state and shall not release an excessive amount of fission products into the environment even for hypothetical accidents. (orig.)

  17. Does the HTR module have a chance for the future?

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1989-01-01

    The HTR module was developed as a robust and market-orientated heat source for a wide spectrum of applications. Its technology is largely based on that of the AVR. The choice of a low power density and the small core geometry permit thorough use to be made of the favourable safety characteristics and give an extra-ordinarily high degree of passive safety. There are possibilities for its introduction into the international market at present, particularly in the USSR and the People's Republic of China. (orig.)

  18. Fundamental principles for a nuclear design and structural analysis code for HTR components operating at temperatures above 8000C

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1985-01-01

    With reference to the special characteristics of an HTR plant for the supply of nuclear process heat, the investigation of the fundamental principles to form the basis for a high temperature nuclear structural design code has been described. As examples, preliminary design values are proposed for the creep rupture and fatigue behaviour. The linear damage accumulation rule is for practical reasons proposed for the determination of service life, and the difficulties in using this rule are discussed. Finally, using the data obtained in structural analysis, the main areas of investigation which will lead to improvements in the utilization of the materials are discussed. Based on the current information, the working group ''Design Code'' believes that a service life of 70000 h for the heat-exchanging components operating at above 800 0 C can be. (orig.)

  19. Knowns and unknowns of plasma membrane protein degradation in plants.

    Science.gov (United States)

    Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji

    2018-07-01

    Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes.

    Science.gov (United States)

    Ollitrault, David; Legendre, Florence; Drougard, Carole; Briand, Mélanie; Benateau, Hervé; Goux, Didier; Chajra, Hanane; Poulain, Laurent; Hartmann, Daniel; Vivien, Denis; Shridhar, Vijayalakshmi; Baldi, Alfonso; Mallein-Gerin, Frédéric; Boumediene, Karim; Demoor, Magali; Galera, Philippe

    2015-02-01

    Osteoarthritis (OA) is an irreversible pathology that causes a decrease in articular cartilage thickness, leading finally to the complete degradation of the affected joint. The low spontaneous repair capacity of cartilage prevents any restoration of the joint surface, making OA a major public health issue. Here, we developed an innovative combination of treatment conditions to improve the human chondrocyte phenotype before autologous chondrocyte implantation. First, we seeded human dedifferentiated chondrocytes into a collagen sponge as a scaffold, cultured them in hypoxia in the presence of a bone morphogenetic protein (BMP), BMP-2, and transfected them with small interfering RNAs targeting two markers overexpressed in OA dedifferentiated chondrocytes, that is, type I collagen and/or HtrA1 serine protease. This strategy significantly decreased mRNA and protein expression of type I collagen and HtrA1, and led to an improvement in the chondrocyte phenotype index of differentiation. The effectiveness of our in vitro culture process was also demonstrated in the nude mouse model in vivo after subcutaneous implantation. We, thus, provide here a new protocol able to favor human hyaline chondrocyte phenotype in primarily dedifferentiated cells, both in vitro and in vivo. Our study also offers an innovative strategy for chondrocyte redifferentiation and opens new opportunities for developing therapeutic targets.

  1. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2004-12-02

    tended to be slightly higher. Exposure concentrations were about 249 {micro}g/m{sup 3} PM, of which 87 {micro}g/m{sup 3} was sulfate and approximately 110 {micro}g/m{sup 3} was secondary organic material ({approx}44%). Results indicated subtle differences in breathing pattern between exposed and control (sham) animals, but no differences in other endpoints (in vivo chemiluminescence, blood cytology, bronchoalveolar lavage fluid analysis). It was suspected that primary particle losses may have been occurring in the venturi aspirator/orifice sampler; therefore, the stack sampling system was redesigned. The modified system resulted in no substantial increase in particle concentration in the emissions, leading us to conclude that the electrostatic precipitator at the power plant has high efficiency, and that the sampled emissions are representative of those exiting the stack into the atmosphere. This is important, since the objective of the Project is to carry out exposures to realistic coal combustion-derived secondary PM arising from power plants. During the next reporting period, we will document and describe the remainder of the fieldwork at Plant 0, which we expect to be complete by mid-November 2004. This report will include detailed Phase I toxicological findings for all scenarios run, and Phase II toxicological findings for one selected scenario. Depending upon the outcome of the ongoing fieldwork at Plant 0 (i.e. the biological effects observed), not all the proposed scenarios may be evaluated. The next report is also expected to include preliminary field data for Plant 1, located in the Southeast.

  2. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    Science.gov (United States)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and

  3. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  4. [Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].

    Science.gov (United States)

    Liang, Dan; Wang, Bin; Wang, Yun-qi; Zhang, Hui-lan; Yang, Song-nan; Li, Ang

    2014-09-01

    Four typical types of green shrubs of Beijing (Euonymus japonicus, Buxus microphylla, Berberis thunbergii cv. atropurpurea, Taxus cuspidate cv. nana) were selected to study their capacities in adsorbing and arresting PM2.5 using both field observations and air chamber simulations. Concurrently, in order to analyze the pollution characteristics of Beijing in winter and spring, the PM2.5 concentrations of December 2012 to May 2013 were collected. Experimental results showed that: From the gas chamber experiments, the ability to adsorb and arrest PM2.5 was in the order of Berberis thunbergii cv. atropurpurea > Buxus microphylla > Taxus cuspidate cv. nana > Euonymus japonicus, mainly due to the differences in leaf characteristics; Outside measurement results showed that the ability to adsorb and arrest PM2.5 was ranked as Buxus microphylla > Berberis thunbergii cv. atropurpurea > Taxus cuspidate cv. nana > Euonymus japonicus. Chamber simulation and outdoor observation showed that Buxus microphylla and Berberis thunbergii cv. atropurpurea had strong ability to adsorb and arrest PM2.5; Meanwhile, the slight differences between the chamber simulation and outdoor observation results might be related to plant structure. Compared to tree species, the planting condition of shrub species was loose, and it greened quickly; By analyzing the Beijing PM2.5 concentration values in winter and spring, it was found that the PM2.5 concentration was particularly high in the winter of Beijing, and evergreen shrubs maintained the ability to adsorb and arrest PM2.5.

  5. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  6. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  7. Observation of $C\\!P$ violation in $B^\\pm \\to D K^\\pm$ decays

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    An analysis of $B^{\\pm}\\to DK^{\\pm}$ and $B^{\\pm}\\to D\\pi^{\\pm}$ decays is presented where the $D$ meson is reconstructed in the two-body final states:$K^{\\pm}\\pi^{\\mp}$, $K^+K^-$, $\\pi^+\\pi^-$ and $\\pi^{\\pm}K^{\\mp}$. Using $1.0{\\rm \\,fb}^{-1}$ of LHCb data, measurements of several observables are made including the first observation of the suppressed mode $B^{\\pm}\\to[\\pi^{\\pm}K^{\\mp}]_DK^{\\pm}$. $C\\!P$ violation in $B^{\\pm}\\to DK^{\\pm}$ decays is observed with $5.8\\,\\sigma$ significance.

  8. Anomalous elevated radiocarbon measurements of PM{sub 2.5}

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Fallon, Stewart J. [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Radiocarbon Dating Laboratory, Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Zermeno, Paula; Bench, Graham [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808 Livermore, CA 94551 (United States); Schichtel, Bret A. [Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523 (United States)

    2013-01-15

    Two-component models are often used to determine the contributions made by fossil fuel and natural sources of carbon in airborne particulate matter (PM). The models reduce thousands of actual sources to two end members based on isotopic signature. Combustion of fossil fuels produces PM free of carbon-14 ({sup 14}C). Wood or charcoal smoke, restaurant fryer emissions, and natural emissions from plants produce PM with the contemporary concentration of {sup 14}C approximately 1.2 Multiplication-Sign 10{sup -1214}C/C. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading and radiocarbon analysis is becoming a popular source apportionment method. Emissions from incinerators combusting medical or biological wastes containing tracer {sup 14}C can skew the {sup 14}C/C ratio of PM, however, so critical analysis of sampling sites for possible sources of elevated PM needs to be completed prior to embarking on sampling campaigns. Results are presented for two ambient monitoring sites in different areas of the United States where {sup 14}C contamination is apparent. Our experience suggests that such contamination is uncommon but is also not rare ({approx}10%) for PM sampling sites.

  9. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, V.; Charollais, F. [CEA Cadarache, DEN/DEC/SPUA, BP 1, 13108 St Paul Lez Durance (France); Dugne, O. [CEA Marcoule, DEN/DTEC/SCGS BP 17171 30207 Bagnols sur Ceze (France); Garcia, C. [Laboratoire des Composites Thermostructuraux (LCTS), UMR CNRS 5801, 3 allee de La Boetie, 33600 Pessac (France); Perez, M. [CEA Grenoble DRT/DTH/LTH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2008-07-01

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  10. Observation of photon polarization in $B^\\pm \\to K^\\pm\\pi^\\mp\\pi^\\pm\\gamma$ decays

    CERN Multimedia

    Veneziano, G

    2014-01-01

    A study of the flavor-changing neutral current radiative $B^{\\pm} \\to K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}\\gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at $7$ and $8\\,$TeV center-of-mass energies is presented. In this sample, corresponding to an integrated luminosity of $3\\,\\text{fb}^{-1}$, nearly $14\\,000$ signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ final state in the $[1.1, 1.9]$\\,GeV/$c^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \\to s\\gamma$ transition is reported with a significance of $5.2\\,\\sigma$.

  11. Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP.

    Science.gov (United States)

    Liu, Yangsheng; Chen, Rui; Shen, Xingxing; Mao, Xiaoling

    2004-04-01

    From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.

  12. Industrial Fuel Gas Demonstration Plant Program. Demonstration plant operation plan (Deliverable No. 38)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Demo Plant Operating Plan is composed of the following sequence of events starting with the training or personnel, familiarizing of the personnel with the plant and completing the long-term run in the following sequences: inspection during construction, plant completion, shakedown of equipment, process unit startup, shakedown of process units, variable run operation and a turnaround. During the construction period, technical personnel from DRC, MLGW and IGT will be at the plant site becoming familiar with the equipment, its installation and all of the auxiliaries so that on completion of construction they will be well grounded on the plant detail and its configuration. At the same time the supervisory operating personnel will have hands on training the gasifier operation at the IGT pilot plant to develop a field for gasifier operation. As a plant sections are completed, they will be checked out in accordance with the contractor and operator (client) procedure as outlined. Subsequent to this, various vendor designs and furnished equipment will be checked out operating-wise and a performance test run if feasible. The actual startup of the plant will be subsequential with the support areas as utilities, coal handling and waste treatment being placed in operation first. Subsequent to this the process units will be placed in operation starting from the rear of the process train and working forward. Thus the downstream units will be operating before the reactor is run on coal. The reactor will be checked out on coke operation.

  13. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  14. Modelling of fission product release behavior from HTR spherical fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Verfondern, K.; Mueller, D.

    1991-01-01

    Computer codes for modelling the fission product release behavior of spherical fuel elements for High Temperature Reactors (HTR) have been developed for the purpose of being used in risk analyses for HTRs. An important part of the validation and verification procedure for these calculation models is the theoretical investigation of accident simulation experiments which have been conducted in the KueFA test facility in the Hot Cells at KFA. The paper gives a presentation of the basic modeling and the calculational results of fission product release from modern German HTR fuel elements in the temperature range 1600-1800 deg. C using the TRISO coated particle failure model PANAMA and the diffusion model FRESCO. Measurements of the transient release behavior for cesium and strontium and of their concentration profiles after heating have provided informations about diffusion data in the important retention barriers of the fuel: silicon carbide and matrix graphite. It could be shown that the diffusion coefficients of both cesium and strontium in silicon carbide can significantly be reduced using a factor in the range of 0.02 - 0.15 compared to older HTR fuel. Also in the development of fuel element graphite, a tendency towards lower diffusion coefficients for both nuclides can be derived. Special heating tests focussing on the fission gases and iodine release from the matrix contamination have been evaluated to derive corresponding effective diffusion data for iodine in fuel element graphite which are more realistic than the iodine transport data used so far. Finally, a prediction of krypton and cesium release from spherical fuel elements under heating conditions will be given for fuel elements which at present are irradiated in the FRJ2, Juelich, and which are intended to be heated at 1600/1800 deg. C in the KueFA furnace in near future. (author). 7 refs, 11 figs

  15. The Evritania (Greece) demonstration plant of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.; Karabela, A.J. [Aristotle University of Thessaloniki (Greece). Dept. of Chemical Engineering and Chemical Process Engineering Research Institute

    1999-06-01

    This paper is focused on describing the Evritania demonstration plant for pyrolysis of forestry biomass. This plant was constructed in the village of Voulpi, district of Evritania, in central Greece, in 1995, with a threefold purpose; development of know-how, forest fire prevention and rural development. The products are charcoal and bio-oil. The plant capacity is 1200-1450 kg/h of wet biomass and the pyrolysis temperature is approx. 400 deg C. The raw material used is Arbutus unedo, which is an evergreen broad-leaf tree which covers the area. Other agricultural waste could also be used, such as olive pits and cuttings, almond shells and cotton kernels. The paper includes the conceptual process flow sheet, the changes and improvements made during the trial phase, data from the start-up phase, and product characteristics. Comparison of the process with the Alten process is presented. Additionally, comparisons are made of product characteristics with those from other pyrolysis processes. In general, the results obtained are encouraging even though several improvements of the pilot plant are required. (author)

  16. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr

    2005-03-31

    This report documents progress made on the subject project during the period of September 1, 2004 through February 28, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreement (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, all fieldwork at Plant 0 was completed. Stack sampling was conducted in October to determine if there were significant differences between the in-stack PM concentrations and the diluted concentrations used for the animal exposures. Results indicated no significant differences and therefore confidence that the revised stack sampling methodology described in the previous semiannual report is appropriate for use in the Project. Animal exposures to three atmospheric scenarios were carried out. From October 4-7, we conducted exposures to oxidized emissions with the addition of secondary organic aerosol (SOA). Later in October, exposures to the most complex scenario (oxidized, neutralized emissions plus SOA) were repeated to ensure comparability with the results of the June/July exposures where a different stack sampling setup was employed. In November, exposures

  17. The presence of both serotonin 1A receptor (HTR1A and dopamine transporter (DAT1 gene variants increase the risk of borderline personality disorder

    Directory of Open Access Journals (Sweden)

    Peter R Joyce

    2014-01-01

    Full Text Available Dysfunction in the dopaminergic and serotonergic neurotransmitter systems has been demonstrated to be important in the aetiology of Borderline personality disorder (BPD. We investigated the relationship of two BPD risk factors, the HTR1A promoter polymorphism -1019C>G (rs6295 and the DAT1 repeat allele, with BPD in a major depressive disorder cohort of 367 patients. Out-patients with major depressive disorder were recruited for two treatment trials and assessed for personality disorders, including BPD. DNA samples were collected and the rs6295 polymorphism was detected with a TaqMan® assay. The DAT1 repeat allele was genotyped using a modified PCR method. The impact of polymorphisms on BPD was statistically analysed using uncontrolled logistic and multiple logistic regression models. BPD patients had higher frequencies of the DAT1 9,9 (OR=2.67 and 9,10 (OR=3.67 genotypes and also those homozygous HTR1A G allele (OR=2.03. No significant interactions between HTR1A and DAT1 genotypes, were observed; however, an increased risk of BPD was observed for those patients who were either 9,10; G,G (OR=6.64 and 9,9; C,G (OR=5.42. Furthermore, the odds of BPD in patients exhibiting high-risk variants of these two genes differed from those of patients in low-risk groups by up to a factor of 9. Our study provides evidence implicating the importance of the serotonergic and dopaminergic systems in BPD and that the interaction between genes from different neurotransmitters may play a role in the susceptibility to BPD.

  18. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    Science.gov (United States)

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  19. Polymorphisms in the 5-HTR2A gene related to obstructive sleep apnea syndrome Polimorfismos no gene HTR2A relacionados à síndrome da apneia obstrutiva do sono

    Directory of Open Access Journals (Sweden)

    Vânia Belintani Piatto

    2011-06-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is one of the most complex disorders of sleep; it involves several genetic factors that contribute to the phenotype. Serotonin (5-HT regulates a variety of visceral and physiological functions, including sleep. Gene 5-HTR2A polymorphisms may change the transcription of several receptors in the serotoninergic system, thereby contributing to OSAS. AIM: To investigate the prevalence of T102C and -1438G/A polymorphisms in the 5-HTR2A gene of patients with and without OSAS . MATERIAL AND METHOD: A molecular study of 100 index-cases and 100 controls of both genders. DNA was extracted from blood leukocytes samples and the regions that enclose both polymorphisms were amplified with PCR-RFLP. STUDY DESIGN: A cross-sectional case study. RESULTS: There was a significant prevalence of males in index cases compared to controls (pA síndrome da apneia obstrutiva do sono (SAOS é um dos distúrbios mais complexos do sono, envolvendo múltiplos fatores genéticos contribuintes para o fenótipo. A serotonina (5-HT está envolvida na regulação de uma variedade de funções viscerais e fisiológicas, inclusive o sono. Polimorfismos no gene 5-HTR2A podem alterar a transcrição, afetando o número de receptores do sistema serotoninérgico, contribuindo para a SAOS. OBJETIVO: Investigar a prevalência dos polimorfismos T102C e -1438G/A no gene HTR2A em pacientes com e sem SAOS. MATERIAL E MÉTODO: Estudo molecular em 100 pacientes como casos-índice e em 100 como grupo controle, de ambos os gêneros. O DNA foi extraído de leucócitos de sangue periférico e realizada a amplificação das regiões que abrangem ambos os polimorfismos pelas técnicas da PCR-RFLP. DESENHO DO ESTUDO: Estudo de caso/controle em corte transversal. Resultados: Houve prevalência significativa do gênero masculino nos casos-índice em relação aos controles (p<0,0001. Para o polimorfismo T102C, não houve diferença genotípica significante entre

  20. Strategy of VHTR Realization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    High temperature gas cooled reactor has been developed since 1956. Fundamental idea of a gas cooled reactor is to achieve high temperature which is suitable for high efficiency application such as electricity generation. The core is composed of ceramics, graphite blocks which are mechanical stable up to very high temperature. Fuel is ceramics, TRISO ( tri-isotropic coated micro particle) whose dense coating layers work as small radioactivity containment. Coolant is inert gas, helium, which is stable chemically, neutronically, and thermal hydraulically. Several test reactors such as DRE, PB-1, FSV, AVR, THTR, HTTR, HTR-10 were built and demonstrated their safety. Large GA-HTR, RSA-PBMR projects are canceled and US-NGNP project is idling. Only Chinese HTR-PM demonstrator is under construction. HTGR has long history of development. For realization and market penetration, VHTR community should look at niche market such as carbon free energy supply to industry complex, electric power for small grid, carbon free hydrogen production, power source for space colony. Technology Readiness Level should be advanced to get proper investment from industry. For this, cooperation between international R and D institutions is required. Clearly divided role between universities, research institutions, and industries will reduce complication and shorten VHTR realization day.

  1. Strategy of VHTR Realization

    International Nuclear Information System (INIS)

    Chang, Jonghwa

    2015-01-01

    High temperature gas cooled reactor has been developed since 1956. Fundamental idea of a gas cooled reactor is to achieve high temperature which is suitable for high efficiency application such as electricity generation. The core is composed of ceramics, graphite blocks which are mechanical stable up to very high temperature. Fuel is ceramics, TRISO ( tri-isotropic coated micro particle) whose dense coating layers work as small radioactivity containment. Coolant is inert gas, helium, which is stable chemically, neutronically, and thermal hydraulically. Several test reactors such as DRE, PB-1, FSV, AVR, THTR, HTTR, HTR-10 were built and demonstrated their safety. Large GA-HTR, RSA-PBMR projects are canceled and US-NGNP project is idling. Only Chinese HTR-PM demonstrator is under construction. HTGR has long history of development. For realization and market penetration, VHTR community should look at niche market such as carbon free energy supply to industry complex, electric power for small grid, carbon free hydrogen production, power source for space colony. Technology Readiness Level should be advanced to get proper investment from industry. For this, cooperation between international R and D institutions is required. Clearly divided role between universities, research institutions, and industries will reduce complication and shorten VHTR realization day

  2. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  3. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  4. Evidence for the effect of serotonin receptor 1A gene (HTR1A) polymorphism on tractability in Thoroughbred horses.

    Science.gov (United States)

    Hori, Y; Tozaki, T; Nambo, Y; Sato, F; Ishimaru, M; Inoue-Murayama, M; Fujita, K

    2016-02-01

    Tractability, or how easily animals can be trained and controlled, is an important behavioural trait for the management and training of domestic animals, but its genetic basis remains unclear. Polymorphisms in the serotonin receptor 1A gene (HTR1A) have been associated with individual variability in anxiety-related traits in several species. In this study, we examined the association between HTR1A polymorphisms and tractability in Thoroughbred horses. We assessed the tractability of 167 one-year-old horses reared at a training centre for racehorses using a questionnaire consisting of 17 items. A principal components analysis of answers contracted the data to five principal component (PC) scores. We genotyped two non-synonymous single nucleotide polymorphisms (SNPs) in the horse HTR1A coding region. We found that one of the two SNPs, c.709G>A, which causes an amino acid change at the intracellular region of the receptor, was significantly associated with scores of four of five PCs in fillies (all Ps Horses carrying an A allele at c.709G>A showed lower tractability. This result provides the first evidence that a polymorphism in a serotonin-related gene may affect tractability in horses with the effect partially different depending on sex. © 2015 Stichting International Foundation for Animal Genetics.

  5. The role of the plasma membrane H+-ATPase in plant-microbe interactions.

    Science.gov (United States)

    Elmore, James Mitch; Coaker, Gitta

    2011-05-01

    Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.

  6. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature

    Directory of Open Access Journals (Sweden)

    S. Kim

    2012-02-01

    Full Text Available PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR method, which produced five organic carbon (OC fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP, and three elemental carbon (EC fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.7 μg m−3, 17.2 μg m−3, and 28.4 μg m−3, respectively. The averaged mass fractions of OC and EC were 23.0% and 10.4% for PM1.0, 22.9% and 9.8% for PM2.5, and 16.4% and 6.0% for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion (Han et al., 2010. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was

  7. A study of CP violation in $B^\\pm \\to D K^\\pm$ and $B^\\pm \\to D \\pi^\\pm$ decays with $D \\to K^0_{\\rm S} K^\\pm \\pi^\\mp$ final states

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Esen, Sevda; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    A first study of CP violation in the decay modes $B^\\pm\\to [K^0_{\\rm S} K^\\pm \\pi^\\mp]_D h^\\pm$ and $B^\\pm\\to [K^0_{\\rm S} K^\\mp \\pi^\\pm]_D h^\\pm$, where $h$ labels a $K$ or $\\pi$ meson and $D$ labels a $D^0$ or $\\overline{D}^0$ meson, is performed. The analysis uses the LHCb data set collected in $pp$ collisions, corresponding to an integrated luminosity of 3 fb$^{-1}$. The analysis is sensitive to the CP-violating CKM phase $\\gamma$ through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of $\\gamma$ using other decay modes.

  8. The further advancement of the high temperature reactor line

    International Nuclear Information System (INIS)

    Oehme, H.; Schloesser, J.

    1978-01-01

    The development of the HTR line has been reoriented since early 1976 in the light of five objectives: the more than ten concept variants of electricity and process heat generating HTR's were reduced to one concept each. Both concepts agree in their main basic elements, using spherical fuel elements, prestressed concrete pressure vessels and integrated designs. For electricity generation the HTR with a direct coupled gas turbine (HHT system) was chosen in order to achieve an optimum combination of forces of operators, manufacturers and in research the project structure was streamlined. Project companies of the operators are presently being established; the GHT and HBR companies will set up a consortium for planning the nuclear heat supply system. Time scheduling was concentrated on the first HHT and process heat plants. A tender for the HHT power plant is to be submitted in 1983, for the PNP plant in 1985. The THTR-300 nuclear power plant is due to be completed in 1981. The technical status of the HTR projects is characterized as follows: satisfactory progress has been achieved in the THTR-300 in 1977. Three important permits under the Atomic Energy Act are due to be issued in 1978 and, in addition, an application is to be filed for the first partial construction permit. In 1977 the AVR Experimental Nuclear Power Station had been in operation for ten years and continues to be operated successfully at 950 0 C. In the Nuclear Process Heat Prototype Plant Project (PNP) a number of components were harmonized with those of the electricity producing HTR in 1977. The basic concept of the prototype facility was revamped. All basic development work is continued as planned. In the gasification sector a successful demonstration has been launched of the hydrogenating gasification of lignite. (orig.) [de

  9. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  10. Indoor pollution: PM2.5 and PM10 from cigarette smoke

    International Nuclear Information System (INIS)

    Chianese, E.; Barone, G.; Castaldo, R.M.; Riccio, A.

    2009-01-01

    This work is aimed to establishing the temporal and spatial dispersion of PM 10 and PM 2.5 particulate matter fractions generated by cigarettes smoking in an indoor ambient. To this purpose, PM 10 and PM 2.5 concentrations were collected with a mobile instrument positioned in a room accommodating a smoking machine. [it

  11. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  12. Local contribution of wood combustion to PM10 and PM2.5; Lokale bijdrage van houtverbranding aan PM10 en PM2,5

    Energy Technology Data Exchange (ETDEWEB)

    Kos, G.; Weijers, E. [ECN Biomassa, Kolen en Milieuonderzoek, Petten (Netherlands)

    2011-04-15

    In February 2009 the concentration of wood smoke in a residential area in Schoorl (Noord-Holland, Netherlands) was investigated over a period of three weeks. The aim was to assess the effect of local particulate matter (PM) emissions - caused by heating with wood stoves in this area - on local PM concentration. [Dutch] In februari 2009 zijn in Schoorl in Noord-Holland concentraties houtrook bepaald door levoglucosanmetingen (een voor houtrook kenmerkende koolwaterstofverbinding). Lokale houtrook draagt daar significant bij aan de concentratie fijn stof: tussen 9% en 27% voor PM10 en tussen 30% en 39% voor PM2,5.

  13. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  14. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lengar, Igor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koberl, Oliver [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  16. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  17. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  18. The Effect of PM 10 on Ischemia- Reperfusion Induced Arrhythmias in Rats

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    Full Text Available ABSTRACT Epidemiological studies show that particulate matter (PM is the principal instigator of some adverse clinical symptoms involving cardiovascular diseases. PM exposure can increase experimental infarct size and potentiate myocardial ischemia and arrhythmias in experimental MI models such as ischemia-reperfusion (I/R injury.The present study was aimed to evaluate the effects of particulate matter (PM10 on ischemia- reperfusion induced arrhythmias with emphasis on the protective role of VA as an antioxidant on them. Male Wistar rats were divided into 8 groups (n=10: Control, VAc, Sham, VA, PM1 (0.5 mg/kg, PM2 (2.5 mg/kg, PM3 group (5 mg/kg, PM3 + VA group. Within 48 hours, PM10 was instilled into trachea in two stages. Then the hearts were isolated, transferred to a Langendorff apparatus, and subjected to global ischemia (30 minutes followed by reperfusion (60 minutes. The ischemia- reperfusion induced ventricular arrhythmias were assessed according to the Lambeth conventions.In the present study,the number, incidence and duration of arrhythmiasduring30 minutes ischemia were demonstrated to be more than those in the reperfusion stage. PM exposure increased significantly the number, incidence and duration of arrhythmias in the ischemia and reperfusion duration. Vanillic acid reduced significantly the number, incidence and duration of arrhythmias during the ischemia and reperfusion period.In summary, the results of this study demonstrated that the protective and dysrhythmic effects of VA in the PM exposure rats in I/R model are probably related to its antioxidant properties.

  19. Needs in Research and Development on materials for the gas coolant nuclear system: HTR/VHTR and GFR; Besoins en R et D sur les materiaux pour les systemes nucleaires a caloporteur gaz: HTR/VHTR et GFR

    Energy Technology Data Exchange (ETDEWEB)

    Billot, Ph. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN), 91 - Gif Sur Yvette (France)

    2003-07-01

    This presentation takes stock on the materials for high temperature reactors HTR (850 C), very high temperature VHTR(>1000 C) and fast neutrons high temperature GGF(850 C). It concerns the welding materials for the vessel, Ni-based superalloys for gas turbines, coatings, graphite, ceramics and corrosion studies. (A.L.B.)

  20. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    Science.gov (United States)

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  1. Trace Elements Speciation of Submicron Particulate Matter (PM1 Collected in the Surroundings of Power Plants

    Directory of Open Access Journals (Sweden)

    Elwira Zajusz-Zubek

    2015-10-01

    Full Text Available This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se content in highly mobile (F1, mobile (F2, less mobile (F3 and not mobile (F4 fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF and a principal component analysis (PCA. There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  2. 'Once through' cycles in the pebble bed HTR

    International Nuclear Information System (INIS)

    Teuchert, E.

    1977-12-01

    In the pebble bed HTR the 'Once Through' cycles achieve a favorable conservation of uranium resources due to their high burnup and due to the relatively low fissile inventory. A detailed study is given for cycles with highly enriched uranium and thorium, 20% enriched uranium and thorium, and for the low (approximately 8%) enriched cycle. The recommended cycle is based on the known THTR fuel element in the Th/U (93%) cycle. The variant with separate Seed elements and Breed elements presents the best pioneer in view of later recycling and thermal breeding. The minimum proliferation risk is achieved in the Th/U (20%) cycle basing on the fuel element type of the AVR, due to the low amount and high denaturization of the disloaded plutonium. (orig.) [de

  3. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  4. A putatively functional polymorphism in the HTR2C gene is associated with depressive symptoms in white females reporting significant life stress.

    Directory of Open Access Journals (Sweden)

    Beverly H Brummett

    Full Text Available Psychosocial stress is well known to be positively associated with subsequent depressive symptoms. Cortisol response to stress may be one of a number of biological mechanisms that links psychological stress to depressive symptoms, although the precise causal pathway remains unclear. Activity of the x-linked serotonin 5-HTR2C receptor has also been shown to be associated with depression and with clinical response to antidepressant medications. We recently demonstrated that variation in a single nucleotide polymorphism on the HTR2C gene, rs6318 (Ser23Cys, is associated with different cortisol release and short-term changes in affect in response to a series of stress tasks in the laboratory. Based on this observation, we decided to examine whether rs6318 might moderate the association between psychosocial stress and subsequent depressive symptoms. In the present study we use cross-sectional data from a large population-based sample of young adult White men (N = 2,366 and White women (N = 2,712 in the United States to test this moderation hypothesis. Specifically, we hypothesized that the association between self-reported stressful life events and depressive symptoms would be stronger among homozygous Ser23 C females and hemizygous Ser23 C males than among Cys23 G carriers. In separate within-sex analyses a genotype-by-life stress interaction was observed for women (p = .022 but not for men (p = .471. Homozygous Ser23 C women who reported high levels of life stress had depressive symptom scores that were about 0.3 standard deviations higher than female Cys23 G carriers with similarly high stress levels. In contrast, no appreciable difference in depressive symptoms was observed between genotypes at lower levels of stress. Our findings support prior work that suggests a functional SNP on the HTR2C gene may confer an increased risk for depressive symptoms in White women with a history of significant life stress.

  5. Application of grey model on analyzing the passive natural circulation residual heat removal system of HTR-10

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; PENG Changhong; WANG Zenghui; WANG Ruosu

    2008-01-01

    Using the grey correlation analysis, it can be concluded that the reactor pressure vessel wall temperature has the strongest effect on the passive residual heat removal system in HTR (High Temperature gas-cooled Reactor),the chimney height takes the second place, and the influence of inlet air temperature of the chimney is the least. This conclusion is the same as that analyzed by the traditional method. According to the grey model theory, the GM(1,1) and GM(1, 3) model are built based on the inlet air temperature of chimney, pressure vessel temperature and the chimney height. Then the effect of three factors on the heat removal power is studied in this paper. The model plays an important role on data prediction, and is a new method for studying the heat removal power. The method can provide a new theoretical analysis to the passive residual heat removal system of HTR.

  6. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    Gao Mingshan; Yang Guojun; Xu Yang; Zhao Lei; Yu Suyuan

    2005-01-01

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  7. A network-based system of simulation, control and online assistance for HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shutang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)], E-mail: zhust@tsinghua.edu.cn; Luo Shaojie; Shi Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2008-07-15

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design.

  8. A network-based system of simulation, control and online assistance for HTR-10

    International Nuclear Information System (INIS)

    Zhu Shutang; Luo Shaojie; Shi Lei

    2008-01-01

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design

  9. Study of the Effect of Burnable Poison Particles Applying in a Pebble Bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhao Jing; Zhang Jian; Xia Bing

    2014-01-01

    In pebble bed high temperature gas cooled reactors (HTR), spherical fuel elements pass through the core several times to balance the burnup process in the fuel region, resulting in an acceptable shape and peak factor of power density in the simulation analysis. In contrast, when fuel elements pass through the core only once, the peak of power density occurs at the top of the core and its value is too high to be safe. These indicators/parameters can be improved by incorporating burnable poison in the fuel elements under certain conditions. In the current study, burnable poison particles (BPPs) in fuel elements are evaluated. In spite of the strong absorption capability of "1"0B, BPPs can decrease the depletion speed and increase the duration of "1"0B because of the self-shielding effect, resulting in improved shape and peak factor of power distribution. Several BPPs with different radius are discussed in power distribution, following the calculation for a full-scale reactor core with modified VSOP code. According the result, applying BPPs on fuel pebbles is an effective means to improve the distribution of the power density under one-through fuel load in HTR. (author)

  10. Congruence between PM H+-ATPase and NADPH oxidase during root growth: a necessary probability.

    Science.gov (United States)

    Majumdar, Arkajo; Kar, Rup Kumar

    2018-07-01

    Plasma membrane (PM) H + -ATPase and NADPH oxidase (NOX) are two key enzymes responsible for cell wall relaxation during elongation growth through apoplastic acidification and production of ˙OH radical via O 2 ˙ - , respectively. Our experiments revealed a putative feed-forward loop between these enzymes in growing roots of Vigna radiata (L.) Wilczek seedlings. Thus, NOX activity was found to be dependent on proton gradient generated across PM by H + -ATPase as evident from pharmacological experiments using carbonyl cyanide m-chlorophenylhydrazone (CCCP; protonophore) and sodium ortho-vanadate (PM H + -ATPase inhibitor). Conversely, H + -ATPase activity retarded in response to different ROS scavengers [CuCl 2 , N, N' -dimethylthiourea (DMTU) and catalase] and NOX inhibitors [ZnCl 2 and diphenyleneiodonium (DPI)], while H 2 O 2 promoted PM H + -ATPase activity at lower concentrations. Repressing effects of Ca +2 antagonists (La +3 and EGTA) on the activity of both the enzymes indicate its possible mediation. Since, unlike animal NOX, the plant versions do not possess proton channel activity, harmonized functioning of PM H + -ATPase and NOX appears to be justified. Plasma membrane NADPH oxidase and H + -ATPase are functionally synchronized and they work cooperatively to maintain the membrane electrical balance while mediating plant cell growth through wall relaxation.

  11. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  12. The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae

    2006-07-15

    This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a

  13. Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection.

    Science.gov (United States)

    Du, Yanying; Qiao, Xueguang; Rong, Qiangzhou; Zhang, Jing; Feng, Dingyi; Wang, Ruohui; Sun, Hao; Hu, Manli; Feng, Zhongyao

    2013-05-20

    An in-line fiber quasi-Michelson interferometer (IFQMI) working on reflection is proposed and experimentally demonstrated. The sensing head is fabricated by splicing a section of polarization-maintaining photonic crystal fiber (PM-PCF) with a lead-in single mode fiber (SMF). Some cladding modes are excited into the PM-PCF via the mismatch-core splicing interface between PM-PCF and SMF. Besides, two orthogonal polarized-modes are formed due to the inherent multiholes cladding structure of the PM-PCF. A well-defined interference pattern is obtained as the result of cladding-orthogonal modes interference. The IFQMI with 20 cm long PM-PCF is proposed for strain and torsion measurements. A strain sensitivity of -1.3 pm/με and a torsion sensitivity of -19.17 pm/deg are obtained, respectively. The proposed device with 10 cm long PM-PCF exhibits a considered temperature sensitivity of 9.9 pm/°C. The IFQMI has a compact structure and small size, making it a good candidate for multiparameter measurements.

  14. New measurement of the $K^{\\pm} \\to \\pi^{\\pm}\\mu^{+}\\mu^{-}$ decay

    CERN Document Server

    Batley, J.R.; Lazzeroni, C.; Munday, D.J.; Slater, M.W.; Wotton, S.A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Balev, S.; Frabetti, P.L.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Marinova, E.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Yu.; Stoynev, S.; Zinchenko, A.; Monnier, E.; Swallow, E.; Winston, R.; Rubin, P.; Walker, A.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.; Bizzeti, A.; Lenti, M.; Veltri, M.; Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.; Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales Morales, C.; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.; Coward, D.; Dabrowski, A.; Fonseca Martin, T.; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M.D.; Cenci, P.; Pepe, M.; Petrucci, M.C.; Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.; Cerri, C.; Fantechi, R.; Collazuol, G.; Di Lella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.; Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Bloch-Devaux, B.; Cheshkov, C.; Cheze, J.B.; De Beer, M.; Derre, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.; Holder, M.; Ziolkowski, M.; Biino, C.; Cartiglia, N.; Marchetto, F.; Bifani, S.; Clemencic, M.; Goy Lopez, S.; Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.

    2011-01-01

    A sample of 3120 $K^\\pm\\to\\pi^\\pm\\mu^+\\mu^-$ decay candidates with $(3.3\\pm0.7)$% background contamination has been collected by the NA48/2 experiment at the CERN SPS, allowing a detailed study of the decay properties. The branching ratio was measured to be ${\\rm BR}=(9.62\\pm0.25)\\times 10^{-8}$. The form factor $W(z)$, where $z=(M_{\\mu\\mu}/M_K)^2$, was parameterized according to several models. In particular, the slope of the linear form factor $W(z)=W_0(1+\\delta z)$ was measured to be $\\delta=3.11\\pm0.57$. Upper limits of $2.9\\times 10^{-2}$ and $2.3\\times 10^{-2}$ on possible charge asymmetry and forward-backward asymmetry were established at 90% CL. An upper limit ${\\rm BR}(K^\\pm\\to\\pi^\\mp\\mu^\\pm\\mu^\\pm)<1.1\\times 10^{-9}$ was established at 90% CL for the rate of the lepton number violating decay.

  15. Measurements of PM1, PM2.5 and PM10 at Nordic background stations using low-cost equipment

    DEFF Research Database (Denmark)

    Ferm, Martin; Areskoug, Hans; Makkonen, Ulla

    Mass concentrations of PM1, PM2.5 and PM10 in air were measured at four EMEP stations in the Nordic countries during 2006. All stations used the same low-cost equipment for sampling PM1, but used different techniques for the other size fractions. The PM1 filters were analysed for inorganic ions...... for the first half of June. PM1 constituted on average more than half of the PM2.5 concentrations, but was on average less than half of the PM10 concentrations. There were two episodes of high PM1 concentrations during the year, one in May-June and another one in August-September. The highest PM1 concentrations...... on a daily basis. The PM2.5 concentration, which is the parameter that should be measured within EU, correlated fairly well with the concentration of accumulation mode particles (PM1). In June only a minor fraction of PM1 consisted of inorganic ions. Only ammonium and sulphate ions of the measured ions in PM...

  16. Research on application of burnable poison in pebble bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhang Jian; Shan Wenzhi; Jing Xingqing

    2013-01-01

    Burnable poison in fuel ball was used in pebble bed high-temperature gas-cooled reactor (HTR) to optimize the shape and the peak factor of power distribution in certain conditions. Two options are available and evaluated, that is the homogeneous burnable poison in graphite matrix and burnable poison particles (BPPs) in fuel balls. Due to the absorption cross section of "1"0B, the depletion speed for homogeneous burnable poison is very fast, and difficult to control, on the other side, the depletion speed of BPPs can be optimized respecting to its size, and better shape and peak value of power distribution can be achieved. (authors)

  17. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria.

    Science.gov (United States)

    Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr

    2018-01-01

    Concentrations of particulate matter less than 1  μm, 2.5  μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Kimberlina: a zero-emissions demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Pronske, K. [Clean Energy Systems Inc. (USA)

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  19. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals.

    Science.gov (United States)

    Chevalier, Adrien S; Chaumont, François

    2015-05-01

    Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Economics and market potential of the modular high temperature reactor in the Netherlands

    International Nuclear Information System (INIS)

    Lako, P.; Stoffer, A.; Beeldman, M.

    1995-04-01

    This report considers the economics and market potential of the modular HTR under circumstances representative for the Netherlands. First power generation costs for different types of nuclear power plants, such as the HTR, are estimated. Then a comparison is made with power generation costs of fossil fuel fired alternatives. The market potential of the modular HTR for industrial cogeneration is analysed, as well as the fossil fuel prices needed for economic competition with a gas fired plant for cogeneration. At last the economics of the HTR are analysed under different CO 2 reduction constraints. (orig.)