WorldWideScience

Sample records for htr core design

  1. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  2. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  3. Studies on equilibrium fuel management schemes on the Dragon HTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Daub, J; Pedersen, J

    1971-02-03

    The Dragon Project has recently started investigations on fuel management in HTR's with the assumed Dragon design. The study covers the results of investigations into a number of equilibrium fuel management schemes with the 1-dimensional FLATTER code and calculations of the corresponding total power generating costs with the programme TECO.

  4. A 350 MW HTR with an annular pebble bed core

    International Nuclear Information System (INIS)

    Wang Dazhong; Jiang Zhiqiang; Gao Zuying; Xu Yuanhui

    1992-12-01

    A conceptual design of HTR-module with an annular pebble bed core was proposed. This design can increase the unit power capacity of HTR-Module from 200 MWt to 350 MWt while it can keep the inherent safety characteristics of modular reactor. The preliminary safety analysis results for 350 MW HTR are given. In order to solve the problem of uneven helium outlet temperature distribution a gas flow mixing structure at bottom of core was designed. The experiment results of a gas mixing simulation test rig show that the mixing function can satisfy the design requirements

  5. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  6. The physics design of the HTR-1160

    International Nuclear Information System (INIS)

    Huebner, A.; Brandes, S.

    1975-01-01

    This paper describes the physica design of the reactor core of the helium cooled, graphite moderated high-temperature reactor HTR-1160. A discussion is given of the design criteria, the calculational methods, the burnup cycle, the power distribution and the reactivity control. (orig.) [de

  7. HTR-10GT AMBs displacement sensor design

    International Nuclear Information System (INIS)

    Shi Zhengang; Zha Meisheng; Zhao Lei; Sun Zhuo

    2005-01-01

    The 10 MW high temperature gas-cooled test module reactor (HTR-10GT) with the core made of spherical fuel elements was designed and constructed by the Institute of Nuclear and New Energy Technology of Tsinghua University in China. In the HTR-10GT, turbo-compressor and generator rotors are connected by a flexible coupling. The rotors, restricted by actual instruments and working environment, must be supported without any contact and lubrication. Active magnetic bearing (AMB), known as its advantages over the conventional bearings., such as contact-free, no-lubricating and active damping vibration, is the best way to suspend and stabilize the position of rotors of HTR-10GT. Each rotor is suspended by two radial and one axial AMBs. The radial AMB's radial gap is 0.15 mm considering the gap of 0.4 mm between the compressor stator and blades in order to protect the compressor. The control system controls the rotor position to meet the required gaps between rotor and stator through windings current. All the position information concerning radial and axial AMB is generated by sensors for measuring the displacement of the levitated body. Some typical sensors, i.e. eddy current displacement sensor, capacitive displacement sensor, can provide position information, but, quite often, unsatisfactory anti-jamming, which is a key issue for AMB systems near generator and other electric devices in HTR-10GT. Therefore, a kind of new type sensor is designed to measure the radial and axial displacements and the vibration of the rotors. This paper focuses on the design characteristics of the HTR-10GT AMBs displacement sensors and introduction of the related experiments to demonstrate its performance. (authors)

  8. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  9. Approach to equilibrium calculations for the dragon HTR design

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-06-10

    The calculational methods and the model used in representing the core and the fuel management operations are described. Different layouts of the first core and approach to equilibrium schemes for the Dragon HTR design are investigated. A simple fuelling modus is found and the tchnological and economical implications are discussed in detail.

  10. Status of the HTR 500 design program

    International Nuclear Information System (INIS)

    Baust, E.; Arndt, E.

    1987-01-01

    Since 1982 BBC/HRB have offered the HTR 500 as the follow-on project of the THTR 300, the first large pebble bed reactor. The technical concept of the HTR-500 largely corresponds to the THTR 300 which has been in operation for almost 2 years now. In developing the design concept of the HTR 500 the ideas and demands of the reactor users in the FRG interested in the HTR have been taken into consideration to a large extent. In 1982 these potential users formed a working group 'Arbeitsgemeinschaft Hochtemperaturreaktor' (AHR), representing 16 power indusry companies and in early 1983, awarded a contract to HRB to perform a conceptual design study on the HTR 500. Within this conceptual design study BBC/HRB developed the safety concept of the HTR 500, prepared a detailed description of the overall power plant, and performed a cost calculation. These activities were completed in 1984. Based on the positive results of this conceptual design study, BBC/HRB are expecting to be granted a design contract by the users company Hochtemperaturreaktor GmbH (HRG) to establish the final complete design plans and documents for the HTR 500. (author)

  11. Design of 50 MWe HTR-PBMR reactor core and nuclear power plant fuel using SRAC2006 programme

    International Nuclear Information System (INIS)

    Bima Caraka Putra; Yosaphat Sumardi; Yohannes Sardjono

    2014-01-01

    This research aims to assess the design of core and fuel of nuclear power plant type High Temperature Reactor-Pebble Bed Modular Reactor 50 MWe from the Beginning of Life (BOL) to Ending of life (EOL) with eight years operating life. The parameters that need to be analyzed in this research are the temperature distribution inside the core, quantity enrichment of U 235 , fuel composition, criticality, and temperature reactivity coefficient of the core. The research was conducted with a data set of core design parameters such as nuclides density, core and fuel dimensions, and the axial temperature distribution inside the core. Using SRAC2006 program package, the effective multiplication factor (k eff ) values obtained from the input data that has been prepared. The results show the value of the criticality of core is proportional to the addition of U 235 enrichment. The optimum enrichment obtained at 10.125% without the use of burnable poison with an excess reactivity of 3.1 2% at BOL. The addition Gd 2O3 obtained an optimum value of 12 ppm burnable poison with an excess reactivity 0.38 %. The use of Er 2O3 with an optimum value 290 ppm has an excess reactivity 1.24 % at BOL. The core temperature reactivity coefficient with and without the use of burnable poison has a negative values that indicates the nature of its inherent safety. (author)

  12. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  13. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  14. Analysis on First Criticality Benchmark Calculation of HTR-10 Core

    International Nuclear Information System (INIS)

    Zuhair; Ferhat-Aziz; As-Natio-Lasman

    2000-01-01

    HTR-10 is a graphite-moderated and helium-gas cooled pebble bed reactor with an average helium outlet temperature of 700 o C and thermal power of 10 MW. The first criticality benchmark problem of HTR-10 in this paper includes the loading number calculation of nuclear fuel in the form of UO 2 ball with U-235 enrichment of 17% for the first criticality under the helium atmosphere and core temperature of 20 o C, and the effective multiplication factor (k eff ) calculation of full core (5 m 3 ) under the helium atmosphere and various core temperatures. The group constants of fuel mixture, moderator and reflector materials were generated with WlMS/D4 using spherical model and 4 neutron energy group. The critical core height of 150.1 cm obtained from CITATION in 2-D R-Z reactor geometry exists in the calculation range of INET China, JAERI Japan and BATAN Indonesia, and OKBM Russia. The k eff calculation result of full core at various temperatures shows that the HTR-10 has negative temperature coefficient of reactivity. (author)

  15. Risk assessment of small-sized HTR with pebble-bed core

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.; Wolters, J.

    1987-01-01

    Two recent concepts of small-sized HTR's (HTR-Modul and HTR-100) were analysed regarding their safety concepts and risk protection. In neither case do core cooling accidents contribute to the risk because of the low induced core temperatures. Water ingress accidents dominate the risk in both cases by detaching deposited fission products which can be released into the environment. For these accident sequences no early fatalities and practically no lethal case of cancer were computed. Both HTR concepts include adequate precautionary measures and an infinitely small risk according to the usual standards. The safety concepts make express use of the specific inherent safety features of pebble-bed HTR's. (orig.)

  16. Progress and problems in modelling HTR core dynamics

    International Nuclear Information System (INIS)

    Scherer, W.; Gerwin, H.

    1991-01-01

    In recent years greater effort has been made to establish theoretical models for HTR core dynamics. At KFA Juelich the TINTE (TIme dependent Neutronics and TEmperatures) code system has been developed, which is able to model the primary circuit of an HTR plant using modern numerical techniques and taking into account the mutual interference of the relevant physical variables. The HTR core is treated in 2-D R-Z geometry for both nucleonics and thermo-fluid-dynamics. 2-energy-group diffusion theory is used in the nuclear part including 6 groups of delayed neutron precursors and 14 groups of decay heat producers. Local and non-local heat sources are incorporated, thus simulating gamma ray transport. The thermo-fluid-dynamics module accounts for heterogeneity effects due to the pebble bed structure. Pipes and other components of the primary loop are modelled in 1-D geometry. Forced convection may be treated as well as natural convection in case of blower breakdown accidents. Validation of TINTE has started using the results of a comprehensive experimental program that has been performed at the Arbeitsgemeinschaft Versuchsreaktor GmbH (AVR) high temperature pebble bed reactor at Juelich. In the frame of this program power transients were initiated by varying the helium blower rotational speed or by moving the control rods. In most cases a good accordance between experiment and calculation was found. Problems in modelling the special AVR reactor geometry in two dimensions are described and suggestions for overcoming the uncertainties of experimentally determined control rod reactivities are given. The influence of different polynomial expansions of xenon cross sections to long term transients is discussed together with effects of burnup during that time. Up to now the TINTE code has proven its general applicability to operational core transients of HTR. The effects of water ingress on reactivity, fuel element corrosion and cooling gas properties are now being

  17. Neutronic feasibility design of a small long-life HTR

    International Nuclear Information System (INIS)

    Ding Ming; Kloosterman, Jan Leen

    2011-01-01

    Highlights: ► We propose the neutronic feasibility design of a small, long lifetime and transportable HTR. ► Comparison of cylindrical, annular and scatter cores of the small block-type HTR. ► The design of the scatter core effectively reduces the number of the fuel block and increases the lifetime and burnup of the reactor. - Abstract: Small high temperature gas-cooled reactors (HTRs) have the advantages of transportability, modular construction and flexible site selection. This paper presents the neutronic feasibility design of a 20 MWth U-Battery, which is a long-life block-type HTR. Key design parameters and possible reactor core configurations of the U-Battery were investigated by SCALE 5.1. The design parameters analyzed include fuel enrichment, the packing fraction of TRISO particles, the radii of fuel compacts and kernels, and the thicknesses of top and bottom reflectors. Possible reactor core configurations investigated include five cylindrical, two annular and four scatter reactor cores for the U-Battery. The neutronic design shows that the 20 MWth U-Battery with a 10-year lifetime is feasible using less than 20% enriched uranium, while the negative values of the temperature coefficients of reactivity partly ensure the inherent safety of the U-Battery. The higher the fuel enrichment and the packing fraction of TRISO particles are, the lower the reactivity swing during 10 years will be. There is an optimum radius of fuel kernels for each value of the fuel compact design parameter (i.e., radius) and a specific fuel lifetime. Moreover, the radius of fuel kernels has a small influence on the infinite multiplication factor of a typical fuel block in the range of 0.2–0.25 mm, when the radius of fuel compacts is 0.6225 cm and the lifetime of the fuel block is 10 years. The comparison of the cylindrical reactor cores with the non-cylindrical ones shows that neutron under-moderation is a basic neutronic characteristic of the reactor core of the U

  18. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  19. Core dynamics of HTR under ATWS and accident conditions

    International Nuclear Information System (INIS)

    Nabbi, R.

    1988-05-01

    The systematic classification of the ATWS has been undertaken by analogy to the considerations made for LWR. The initiating events of ATWS and protection actions of safety systems resulting from monitoring of the system variables have been described. The main emphasis of this work is the analysis of the core dynamic consequences of scram failure during the anticipated transients. The investigation has shown that because of the temperature feedback mechanisms a temperature rise during the ATWS results in a self-shutdown of the reactor. Further inherent safety features of the HTR - conditioned by the high heat capacity of the core and by the compressibility of the coolant - do effectively counteract an undesirable increase of temperature and pressure in the primary circuit. In case of the long-term failure of the forced cooling and following core heatup, neutron physical phenomena appear which determine the reactivity behaviour of the HTR. They are, for instance, the decay of Xenon 135, release of the fission products and subsiding of the top reflector. The results of the computer simulations show that a recriticality has to be excluded during the first 2 days if the reactor is shutdown by the reflector rods at the beginning of the accident. (orig./HP) [de

  20. Relevant safety issues in designing the HTR-10 reactor

    International Nuclear Information System (INIS)

    Sun Yuliang; Xu Yuanghui

    2001-01-01

    The HTR-10 is a 10 MWth pebble bed high temperature gas cooled reactor being constructed as a research facility at the Institute of Nuclear Energy Technology. This paper discusses design issues of the HTR-10 which are related to safety. It addresses the safety criteria used in the development and assessment of the design, the safety important systems, and the safety classification of components. It also summarises the results of safety analysis, including the approach used for the radioactive source term, as well as the approach to containment design. (author)

  1. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  2. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  3. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  4. State of the art in HTR engineering and design

    International Nuclear Information System (INIS)

    Baust, E.

    1984-11-01

    The high-temperature reactor is an universally applicable energy source on the electricity and heat market, providing energy safely, compatible with the environment, and economically. The startup of the THTR-300, which will commence power generation in spring 1985, and the good results of the preparatory tests and studies for the subsequent plant, the HTR-500, created the required preconditions for the placing of an order to commence work to realize the first planning stage of the HTR-500. The order is expected to be placed within short. BBC/HRB has gained a reputation worldwide as the leading manufacturer of HTR plants. BBC/HRB has the know-how to offer HTR plants of various size over the entire capacity range between 100 and 600 MWe, or as twin-type plants up to 1200 MWe, their design being based on the THTR-300 reference plant. The HTR is an uncomplicated reactor system offering many advantages in terms of operation and safety. This reactor type therefore is the system of choice for energy generation for short-range energy supply. The system also is of interest as an export item, and hence is of significance to the economy and to employment policy. (orig.) [de

  5. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S., E-mail: alexandrossilva@ifba.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil); Mazaira, Leorlen Y.R., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Dominguez, Dany S.; Hernandez, Carlos R.G., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Programa de Pos-Graduacao em Modelagem Computacional; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  6. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Mazaira, Leorlen Y.R.; Dominguez, Dany S.; Hernandez, Carlos R.G.

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  7. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Dominguez, Dany S.; Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G.; Lira, Carlos Alberto Brayner de Oliveira

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  8. Proceedings of the workshop on structural design criteria for HTR

    International Nuclear Information System (INIS)

    Breitbach, G.; Schubert, F.; Nickel, H.

    1989-04-01

    The papers demonstrate the status of high temperature reactor technology with regard to its realization in the nuclear power industry of various countries (FRG, USA, Japan) as well as to the development of safety rules in Germany. The design criteria for HTR could be presented. The criteria already determine definitely and almost completely the relevant requirements of the component rules. The informations include the technical boundary conditions with regard to safety, the metallic high temperature components, a particular section dealing with the reactor pressure vessel, especially with the prestressed concrete vessel, and the structural graphite components. (DG)

  9. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach; Simulacao termohidraulica do nucleo do reator nuclear HTR-10 com o uso da abordagem realistica CFD

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S.; Dominguez, Dany S., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil); Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Lira, Carlos Alberto Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  10. Predictions of the Bypass Flows in the HTR-PM Reactor Core

    International Nuclear Information System (INIS)

    Sun Jun; Chen Zhipeng; Zheng Yanhua; Shi Lei; Li Fu

    2014-01-01

    In the HTR-PM reactor core, the basic structure materials are large amount of graphite reflectors and carbon bricks. Small gaps among those graphite and carbon bricks are widespread in the reactor core so that the cold helium flow may be bypassed and not completely heated. The bypass flows in relative lower temperature would change the flow and temperature distributions in the reactor core, therefore, the accurate prediction of bypass flows need to be carried out carefully to evaluate the influence to the reactor safety. Based on the characteristics of the bypass flow problem, hybrid method of the flow network and the CFD tools was employed to represent the connections and calculate flow distributions of all the main flow and bypass flow paths. In this paper, the hybrid method was described and applied to specific bypass flow problem in the HTR-PM. Various bypass flow paths in the HTR-PM were reviewed, figured out, and modeled by the flow network and the CFD methods, including the axial vertical gaps in the side reflectors, control rod channels, absorber sphere channels and radial gap flow through keys around the hot helium plenum. The bypass flow distributions and its flow rate ratio to the total flow rate in the primary loop were also calculated, discussed and evaluated. (author)

  11. Source Term Analysis of the Irradiated Graphite in the Core of HTR-10

    Directory of Open Access Journals (Sweden)

    Xuegang Liu

    2017-01-01

    Full Text Available The high temperature gas-cooled reactor (HTGR has potential utilization due to its featured characteristics such as inherent safety and wide diversity of utilization. One distinct difference between HTGR and traditional pressurized water reactor (PWR is the large inventory of graphite in the core acting as reflector, moderator, or structure materials. Some radionuclides will be generated in graphite during the period of irradiation, which play significant roles in reactor safety, environmental release, waste disposal, and so forth. Based on the actual operation of the 10 MW pebble bed high temperature gas-cooled reactor (HTR-10 in Tsinghua University, China, an experimental study on source term analysis of the irradiated graphite has been done. An irradiated graphite sphere was randomly collected from the core of HTR-10 as sample in this study. This paper focuses on the analytical procedure and the establishment of the analytical methodology, including the sample collection, graphite sample preparation, and analytical parameters. The results reveal that the Co-60, Cs-137, Eu-152, and Eu-154 are the major γ contributors, while H-3 and C-14 are the dominating β emitting nuclides in postirradiation graphite material of HTR-10. The distribution profiles of the above four nuclides are also presented.

  12. Design of the steam reformer for the HTR-10 high temperature process heat application

    International Nuclear Information System (INIS)

    Ju Huaiming; Xu Yuanhui; Jia Haijun

    2000-01-01

    The 10 MW High Temperature Reactor Test Module (HTR-10) is being constructed now and planned to be operational in 2000. One of the objectives is to develop the high temperature process heat application. The methane steam reformer is one of the key-facilities for the nuclear process heat application system. The paper describes the conceptual design of the HTR-10 Steam Reformer with He heating, and the design optimization computer code. It can be used to perform sensitivity analysis for parameters, and to improve the design. Principal parameters and construction features of the HTR-10 reformer heated by He are introduced. (author)

  13. A calculation model for a HTR core seismic response

    International Nuclear Information System (INIS)

    Buland, P.; Berriaud, C.; Cebe, E.; Livolant, M.

    1975-01-01

    The paper presents the experimental results obtained at Saclay on a HTGR core model and comparisons with analytical results. Two series of horizontal tests have been performed on the shaking table VESUVE: sinusoidal test and time history response. Acceleration of graphite blocks, forces on the boundaries, relative displacement of the core and PCRB model, impact velocity of the blocks on the boundaries were recorded. These tests have shown the strongly non-linear dynamic behaviour of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass non-linear model. Good correlation between experimental and analytical results was obtained for impact velocities and forces on the boundaries. This comparison has shown that the damping of the core is a critical parameter for the estimation of forces and velocities. Time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good agreement was obtained for forces and velocities. (orig./HP) [de

  14. The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae

    2006-07-15

    This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a

  15. A Small Modular Reactor Design for Multiple Energy Applications: HTR50S

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X.; Tachibana, Y.; Ohashi, H.; Sato, H.; Tazawa, Y.; Kunitomi, K. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2013-06-15

    HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's 950 .deg. C, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to 750 .deg. C for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to 900 .deg. C for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

  16. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  17. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  18. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  19. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  20. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  1. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  2. Design and Experiment of Auxiliary Bearing for Helium Blower of HTR-PM

    International Nuclear Information System (INIS)

    Yang Guojun; Shi Zhengang; Liu Xingnan; Zhao Jingjing

    2014-01-01

    The helium blower is the important equipment for HTR-PM. Active magnetic bearing (AMB) instead of mechanical bearing is selected to support the rotor of the helium blower. However, one implication of AMB is the requirement to provide the auxiliary bearing to mitigate the effects of failures or overload conditions. The auxiliary bearing is used to support the rotor when the AMB fails to work. It must support the dropping rotor and bear the great impact force and friction heat. The design of the auxiliary bearing is one of the challenging problems in the whole system. It is very important for the helium blower with AMB of HTR-PM to make success. The rotor’s length of helium blower of HTR-PM is about 3.3 m, its weight is about 4000 kg and the rotating speed is 4000 r/min. The axial load is 4500kg, and the radial load is 1950kg. The angular contact ball bearing was selected as the auxiliary bearing. The test rig has been finished. It is difficult to analyze the falling course of the rotor. The preliminary analysis of the dropping rotor was done in the special condition. The impact force of auxiliary bearing was computed for the axial and radial load. And the dropping test of the blower rotor for HTR-10 will be introduced also in this paper. Results offer the important theoretical base for the protector design of the helium blower with AMB for HTR-PM. (author)

  3. Safety study for HTR conceptual designs under German siting conditions. Phase I B, specialized volume I

    International Nuclear Information System (INIS)

    1982-08-01

    The basic methodology for determining sequences of events and their frequencies (events and fault trees) does not differ significantly from that of other risk studies. This applies analogously to the treatment of statistical data uncertainties and the description of results in the form of expected value with uncertainty factor. System unavailabilities are determined by means of failure rates, most of which originate from the German Risk Study, and consecutive test intervals. Unlike in other risk studies, common mode failures of components of the same kind are being considered by a mostly 10% fraction of the overall failure of the multi-train system (β-factor). A multitude of planned or unplanned operator actions are identified in the study. They are assessed using models from AIPA and according to WASH-1400. HTR-specific aspects allow mitigating operator actions in the range of days, which are approximately covered by subjective estimates, and extensive reversibility of human errors. British experience with gas-cooled reactors proved to be useful for HTR-specific components. Rates of 0.2 to 1 for small leaks and 1.5 x 10 -3 per reactor-year for larger leaks (tube ruptures) are derived on the basis of 2000 steam generator operating years. Failures of the main blowers (0.1 per blower-year) are covered by other transient events. The behaviour of structural components is of great significance for the progression of core heatup accidents. The liner of the reactor pressure vessel and the concrete located behind will fail over a large area due to decreasing strength at temperatures above 800 0 C. A rupture of closure plugs may be virtually precluded. This also applies to a failure of the reactor containment at internal design pressure. The ultimate strength will only be reached at pressures of more than 14 bar. (orig.) [de

  4. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  5. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  6. Main circulator design features for HTR 100, HTR 500 and space heating plants

    International Nuclear Information System (INIS)

    Engel, J.; Glass, D.

    1988-01-01

    All design alternatives for modern high-temperature reactors have a common circulator concept: It is based on a vertical shaft design with a flying impeller. The circulators are equipped with active magnetic bearings and are driven by induction motors connected to variable-speed static converters. Due to their multiple functions during normal reactor operation and under accident conditions, extremely high requirements are made to safety-relevant circulators, since with the reactor pressurized as well as under depressurized conditions specified delivery heads and flow rates have to be ensured. The use of active magnetic bearings permits to obtain maintenance-free operation and functional safety to an extent which had not been achieved before. Magnetic bearings are therefore provided for the total range including primary gas circulators of a drive power of several MW as well as circulators for helium loops of reactor auxiliary systems. The essential feature for using active magnetic bearings is the retainer bearing technology, preventing contact between rotor and static circulator parts upon unintended deenergisation of the magnets. Results of current experiments are reported. Another aspect to be considered for reliable long-term operation for several decades is the effect of rotor dynamics. The various natural frequencies resulting from torsion and bending modes in view of a drive by a frequency-controlled induction motor have to be considered as well as the specific characteristics of the active magnetic bearings. Special attention has to be directed to the internal cooling loop so as to ensure that reactor temperature excursions in the event of deviation from normal operation can be overcome without damage. For circulator components exposed to temperature fields the design characteristics are determined by combining experimental and analytical methods. The coordination of all component parts is currently being optimized on a prototype circulator whose detailed

  7. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Klippel, H.T.; Hogenbirk, A.; Oppe, J.; Sciolla, C.M.; Stad, R.C.L. van der; Zhang, B.C.

    1997-06-01

    As part of the activities within the framework of the development of INCOGEN, a 'Dutch' conceptual design of a smaller HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRs, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (orig.)

  8. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Hass, J.B.M. De; Klippel, H.Th.; Hogenbirk, A.; Oppe, J.; Sciolla, C.; Stad, R.C.L. Van Der; Zhang, B.C.

    1997-01-01

    As part of the activities within the framework of the development of INCOGEN, a ''Dutch'' conceptual design of a small HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRS, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (author)

  9. Instrumentation of steam cycle HTR's up to 900 MWe

    International Nuclear Information System (INIS)

    Leithner, D.E.; Winkenbach, B.

    1982-06-01

    Due to basic design features and inherent safety qualities in-core instrumentation is not needed in an HTR. Reactor safety requirements can be met by integral measurements. A modest spatial resolving power of the out-of-core instrumentation is sufficient for all operational purposes in small and medium sized steam cycle HTR's. Thus, the instrumentation concept of the THTR 300 MWe prototype reactor can be adopted without major changes for the HTR 450 MWe reactor project, as is demonstrated here for the neutron flux and temperature measurements. (author)

  10. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lengar, Igor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koberl, Oliver [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  11. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  12. Digital Distributed Control System Design: Control Policy for Shared Objects in HTR-PM

    International Nuclear Information System (INIS)

    Zhou Shuqiao; Huang Xiaojin

    2014-01-01

    HTR-PM is an HTR demonstration plant with a structure of two modules feeding one steam turbine. Compared with the structure of one single reactor feeding one turbine, there are more devices shared between these two modules. When they are operated, the shared components are prone to introduce collisions or even logical deadlocks for different technical processes. The future commercial HTR-PM plants are supposed to comprise more modules for a larger turbine, thus the collision problem introduced by the shared components may become severer. Therefore, how to design suitable policies in the distributed control system (DCS) to relieve the collisions during using these shared devices is a new and also a very important problem. In this paper, the classifications of the shared devices are first addressed, and then how to identify the shared objects of an NPP is proposed. Furthermore, a general model for the control logic design is proposed, taking into consideration the collision avoidance, time delay and fairness. The example of how to apply the schemes to relieve the conflicts and deadlocks in the processes of using the shared devices in fuel element cycling system is illustrated. (author)

  13. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  14. Design investigation of the HTR for the opening of very heavy oil deposits

    International Nuclear Information System (INIS)

    Gao, Z.

    1985-02-01

    In the north-east of China there are rich deposits of very heavy oil, which are to be found in a depth of 1500-1700 m. For opening an interaction of 370-390 0 Celsius steam is necessary. The HTR is well suited to produce the steam. A nuclear heat source of 1000 MWsub(th) makes possible the production of 1.5 million tons oil per year. This is a 30-40 per cent higher production of oil compared to the oil-fired steam production. Two concepts of smaller pebble bed reactors are suited as heat sources: the HTR-MEDUL-334 with a thermal power of the 334 MW and fuelled in the multiple run-through scheme and the HTR-OTTO-200 with 200 MW and once-through fuelling. Three or five reactors can be combined in the modular way to provide the power of 1000 MW. For both reactors the design, the neutron-physical and thermohydraulic behaviour are followed in the computer simulation. A central zone of the pebble bed reactor is fuelled with elements of strongly reduced fissile content. Due to the reduced power density the maximum fuel temperature appearing in extreme accidents is limited and accordingly the release of the fission products is avoided. (orig.) [de

  15. Initial study on burnable poisons in the Dragon HTR design

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Pedersen, J

    1971-06-15

    A first study on the effects of burnable poisons in a High Temperature Reactor is given in this paper, and some of the problems concerning the layout and distribution of burnable poison sticks in the core are explained. Time has not allowed us to obtain satisfactory solutions to these problems, but we hope, that this study could form the basis of valuable discussions on ways and means to overcome the difficulties of burnable poison management in HTRs.

  16. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    Gao Mingshan; Yang Guojun; Xu Yang; Zhao Lei; Yu Suyuan

    2005-01-01

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  17. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  18. Details of modelling HTR core physics: the use of pseudo nuclide traces

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Oppe, J.; Haas, J.B.M. de; Da Cruz, D.F.

    2003-01-01

    At present most combined neutronic and thermal hydraulic analyses of reactors, and the HTR is no exception, are being performed by codes employing few-group (typically 2-group) neutronics on the basis of parametrized few-group macroscopic (and microscopic) cross sections for homogenized areas, depending on quantities like irradiation (fuel only), 135 Xe concentration, temperature, etc. The irradiation parameter (time-integrated power per unit initial heavy metal mass) is sufficient for keeping track of the evolution of areas containing fuel. However, the use of the same parameter in areas without fuel, e.g. containing burnable poison, requires some special provisions. This can be met by the introduction of pseudo nuclides, with very specific cross sections and reaction chains, in the procedure to generate the parametrized few-group cross sections. It is shown that the time-evolution of a non-fuelled burnable poison area, as calculated by the 2-group (HTR) reactor code PANTHERMIX employing pseudo nuclides, compares well to the time-evolution obtained from an explicit burnup calculation by the WIMS8A/SNAP code. Examples are also shown using the pseudo nuclide method to keep track of the fast fluence (time-integrated flux above 0.1 MeV) in a continuous reload pebble-bed HTR reactor calculation by PANTHERMIX. Although the present implementation of the pseudo nuclide method exhibits some peculiarities connected to the specific codes in use (WIMS8A and PANTHERMIX) it is considered to be sufficiently general to be applicable in other code suites, requiring only limited modifications. (authors)

  19. Details of modelling HTR core physics: the use of pseudo nuclide traces

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Oppe, J.; Haas, J.B.M. de; Da Cruz, D.F. [Nuclear Research and consultancy Group (NRG), Petten (Netherlands)

    2003-07-01

    At present most combined neutronic and thermal hydraulic analyses of reactors, and the HTR is no exception, are being performed by codes employing few-group (typically 2-group) neutronics on the basis of parametrized few-group macroscopic (and microscopic) cross sections for homogenized areas, depending on quantities like irradiation (fuel only), {sup 135}Xe concentration, temperature, etc. The irradiation parameter (time-integrated power per unit initial heavy metal mass) is sufficient for keeping track of the evolution of areas containing fuel. However, the use of the same parameter in areas without fuel, e.g. containing burnable poison, requires some special provisions. This can be met by the introduction of pseudo nuclides, with very specific cross sections and reaction chains, in the procedure to generate the parametrized few-group cross sections. It is shown that the time-evolution of a non-fuelled burnable poison area, as calculated by the 2-group (HTR) reactor code PANTHERMIX employing pseudo nuclides, compares well to the time-evolution obtained from an explicit burnup calculation by the WIMS8A/SNAP code. Examples are also shown using the pseudo nuclide method to keep track of the fast fluence (time-integrated flux above 0.1 MeV) in a continuous reload pebble-bed HTR reactor calculation by PANTHERMIX. Although the present implementation of the pseudo nuclide method exhibits some peculiarities connected to the specific codes in use (WIMS8A and PANTHERMIX) it is considered to be sufficiently general to be applicable in other code suites, requiring only limited modifications. (authors)

  20. Coordinated Control Design for the HTR-PM Plant: From Theoretic Analysis to Simulation Verification

    International Nuclear Information System (INIS)

    Dong Zhe; Huang Xiaojin

    2014-01-01

    HTR-PM plant is a two-modular nuclear power plant based on pebble bed modular high temperature gas-cooled reactor (MHTGR), and adopts operation scheme of two nuclear steam supplying systems (NSSSs) driving one turbine. Here, an NSSS is composed of an MHTGR, a once-through steam generator (OTSG) and some connecting pipes. Due to the coupling effect induced by two NSSSs driving one common turbine and that between the MHTGR and OTSG given by common helium flow, it is necessary to design a coordinated control for the safe, stable and efficient operation of the HTR-PM plant. In this paper, the design of the feedback loops and control algorithms of the coordinated plant control law is firstly given. Then, the hardware-in-loop (HIL) system for verifying the feasibility and performance of this control strategy is introduced. Finally, some HIL simulation results are given, which preliminarily show that this coordinated control law can be implemented practically. (author)

  1. HTR characteristics affecting reactor physics

    International Nuclear Information System (INIS)

    Ehlers, K.

    1980-01-01

    A physical description of high-temperature has-cooled reactors is given, followed by an overview of HTR characteristics. The emphasis is placed on the HTR fuel cycle alternatives and thermohydraulics of pebble bed core. Some prospects of HTRs in the Federal Republic of Germany are also presented

  2. Simulation tests for temperature mixing in a core bottom model of the HTR-module

    International Nuclear Information System (INIS)

    Damm, G.; Wehrlein, R.

    1992-01-01

    Interatom and Siemens are developing a helium-cooled Modular High Temperature Reactor. Under nominal operating conditions temperature differences of up to 120deg C will occur in the 700deg C hot helium flow leaving the core. In addition, cold gas leakages into the hot gas header can produce even higher temperature differences in the coolant flow. At the outlet of the reactor only a very low temperature difference of maximum ± 15deg C is allowed in order to avoid damages at the heat exchanging components due to alternating thermal loads. Since it is not possible to calculate the complex flow behaviour, experimental investigations of the temperature mixing in the core bottom had to be carried out in order to guarantee the necessary reduction of temperature differences in the helium. The presented air simulation tests in a 1:2.9 scaled plexiglas model of the core bottom showed an extremely high mixing rate of the hot gas header and the hot gas duct of the reactor. The temperature mixing of the simulated coolant flow as well as the leakage flows was larger than 95%. Transfered to reactor conditions this means a temperature difference of only ± 3deg C for the main flow at a quite resonable pressure drop. For the cold gas leakages temperature differences in the hot gas up to 400deg C proved to be permissible. The results of the simulation experiments in the Aerodynamic Test Facility of Interatom permitted to design a shorter bottom reflector of the core. (orig.)

  3. Seismic analysis, support design and stress calculation of HTR-PM transport and conversion devices

    International Nuclear Information System (INIS)

    Zhang Zheyu; Yuan Chaolong; Zhang Haiquan; Nie Junfeng

    2012-01-01

    Background: The transport and conversion devices are important guarantees for normal operation of HTR-PM fuel handling system in normal and fault conditions. Purpose: A conflict of devices' support design needs to be solved. The flexibility of supports is required because of pipe thermal expansion displacement, while the stiffness is also required because of large devices quality and eccentric distance. Methods: In this paper, the numerical simulation was employed to analyze the seismic characteristics and optimize the support program, Under the chosen support program, the stress calculation of platen support bracket was designed by solidworks software. Results: The supports solved the conflict between the flexibility and stiffness requirements. Conclusions: Therefore, it can ensure the safety of transport and conversion devices and the supports in seismic conditions. (authors)

  4. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  5. LMFBR core design analysis

    International Nuclear Information System (INIS)

    Cho, M.; Yang, J.C.; Yoh, K.C.; Suk, S.D.; Soh, D.S.; Kim, Y.M.

    1980-01-01

    The design parameters of a commercial-scale fast breeder reactor which is currently under construction by regeneration of these data is preliminary analyzed. The analysis of nuclear and thermal characteristics as well as safety features of this reactor is emphasized. And the evaluation of the initial core mentioned in the system description is carried out in the areas of its kinetics and control system, and, at the same time, the flow distribution of sodium and temperature distribution of the initial FBR core system are calculated. (KAERI INIS Section)

  6. HTR-TN a European network for the development of HTR technology

    International Nuclear Information System (INIS)

    Von Lensa, W.

    2001-01-01

    A network called High-temperature reactor technology network (HTR-TN) has been created at a European level to coordinate works and knowledge on the subject with a long-term perspective and to serve as a channel for international collaboration. An analysis confirmed that the obvious economic penalty of HTR due to its low density power could be compensated by the combination of recent advances that may completely change the positioning of HTR on the energy market: -) the modular concept allowed to get a reactor free from core melt risk without intervention of any active safety system, implying a drastic simplification of the design of the reactor and the safety systems as well as a standardisation and potential for shop fabrication in series; -) the development of gas turbines, the efficiency of which increased, in 10 years, from 35% till 50% and more, enabling to consider suppression of the secondary system; -) the ultra high burn-up potential of HTR fuel and the possibility for direct disposal of spent HTR fuel elements that may reduce cost of the fuel cycle and contribute to the reduction of civil and military plutonium stockpiles. (A.C.)

  7. Results of the Simulation of the HTR-Proteus Core 4.2 Using PEBBED-COMBINE: FY10 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2010-07-01

    ABSTRACT The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. This report is a follow-on to INL/EXT-09-16620 in which the same calculation was performed but using earlier versions of the codes and less developed methods. In that report, results indicated that the cross sections generated using COMBINE-7.0 did not yield satisfactory estimates of keff. It was concluded in the report that the modeling of control rods was not satisfactory. In the past year, improvements to the homogenization capability in COMBINE have enabled the explicit modeling of TRIS particles, pebbles, and heterogeneous core zones including control rod regions using a new multi-scale version of COMBINE in which the 1-dimensional discrete ordinate transport code ANISN has been integrated. The new COMBINE is shown to yield benchmark quality results for pebble unit cell models, the first step in preparing few-group diffusion parameters for core simulations. In this report, the full critical core is modeled once again but with cross sections generated using the capabilities and physics of the improved COMBINE code. The new PEBBED-COMBINE model enables the exact modeling of the pebbles and control rod region along with better approximation to structures in the reflector. Initial results for the core multiplication factor indicate significant improvement in the INL’s tools for modeling the neutronic properties of a pebble bed reactor. Errors on the order of 1.6-2.5% in keff are obtained; a significant improvement over the 5-6% error observed in the earlier This is acceptable for a code system and model in the early stages of development but still too high for a production code. Analysis of a simpler core model indicates an over-prediction of the flux in the low end of the thermal spectrum. Causes of this discrepancy are under investigation. New

  8. Statistical core design

    International Nuclear Information System (INIS)

    Oelkers, E.; Heller, A.S.; Farnsworth, D.A.; Kearfott, K.J.

    1978-01-01

    The report describes the statistical analysis of DNBR thermal-hydraulic margin of a 3800 MWt, 205-FA core under design overpower conditions. The analysis used LYNX-generated data at predetermined values of the input variables whose uncertainties were to be statistically combined. LYNX data were used to construct an efficient response surface model in the region of interest; the statistical analysis was accomplished through the evaluation of core reliability; utilizing propagation of the uncertainty distributions of the inputs. The response surface model was implemented in both the analytical error propagation and Monte Carlo Techniques. The basic structural units relating to the acceptance criteria are fuel pins. Therefore, the statistical population of pins with minimum DNBR values smaller than specified values is determined. The specified values are designated relative to the most probable and maximum design DNBR values on the power limiting pin used in present design analysis, so that gains over the present design criteria could be assessed for specified probabilistic acceptance criteria. The results are equivalent to gains ranging from 1.2 to 4.8 percent of rated power dependent on the acceptance criterion. The corresponding acceptance criteria range from 95 percent confidence that no pin will be in DNB to 99.9 percent of the pins, which are expected to avoid DNB

  9. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    International Nuclear Information System (INIS)

    Saragi, Elfrida; Setiadji, Moch

    2013-01-01

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 °C at one end and about 40 °C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier

  10. Fuel management of HTR-10

    International Nuclear Information System (INIS)

    Wu Zongxin; Jing Xingqing

    2001-01-01

    The 10 MW high temperature cooled reactor (HTR-10) built in Tsinghua University is a pebble bed type of HTGR. The continuous recharge and multiple-pass of spherical fuel elements are used for fuel management. The initiative stage of core is composed of the mix of spherical fuel elements and graphite elements. The equilibrium stage of core is composed of identical spherical fuel elements. The fuel management during the transition from the initiative stage to the equilibrium stage is a key issue for HTR-10 physical design. A fuel management strategy is proposed based on self-adjustment of core reactivity. The neutron physical code is used to simulate the process of fuel management. The results show that the graphite elements, the recharging fuel elements below the burn-up allowance, and the discharging fuel elements over the burn-up allowance could be identified by burn-up measurement. The maximum of burn-up fuel elements could be controlled below the burn-up limit

  11. Automated Core Design

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-01-01

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process

  12. HTR-10 management information system

    International Nuclear Information System (INIS)

    Liu Ruoxiao; Wu Zhongwang; Xi Shuren

    2000-01-01

    The HTR-10 Management information system (REMIS) strengthens the managerial level and usage of the information of HTR-10, thereby enhances the ability and efficiency of the design and management work. REMIS is designed based on the Client/Server framework. Database management system is SQL Server 6.5 for NT, While the client side is developed by Borland C ++ Builder, and it is based on Windows 95/98. The network protocol is TCP/IP. REMIS collects date of the HTR-10 at four parameters: Reactor properties, Design parameters, Equipment properties Reactor system flow charts. Final discussing extended prospect of REMIS

  13. Design and application of the HTR-100 industrial nuclear power plant

    International Nuclear Information System (INIS)

    Brandes, S.; Kohl, W.

    1988-01-01

    The small HTR-100 high temperature reactor combines the reactor concept of the AVR reactor, which has been proven for 20 years, with the latest component technology of the THTR power plant which has been in operation since 1985. The nuclear heat supply system is conceived so as to be applicable for the generation of electric power, district heat and process steam according to the customer's demand. The HTR-100 reactor has a thermal power of 258 MW and offers steam parameters of 190 bar/530 0 C. To cover a higher power demand HTR-100 reactors can be combined forming a larger power plant. Economic analyses have shown competitiveness with fossil power plants. (orig.)

  14. Development of a computer program for solving the neutronics equations of a multidimensional HTR core model

    International Nuclear Information System (INIS)

    Schaefer, A.

    1979-02-01

    A new code for efficient solution of the multidimensional stationary multi-group, diffusion equation, to be used within a HTGR-code model, is presented. The approximation and iteration methods are described. Spacial approximation is based on the QUABOX-coarse-mesh method, but iteration methods are different from QUABOX to give linear dependence of computation time on the number of energy groups. Results for various multidimensional multi-group problems, among them the THTR pebble bed reactor are analyzed. It is shown, that computational labor for a 3D-case is reduced by about a factor 30 in comparison with conventional finite-difference-methods. Thus 3D-full-core calculations appear to be feasible for large HTGR's. (orig.) [de

  15. Investigation of dynamic response of HTR core and comparison with shaking table-tests

    International Nuclear Information System (INIS)

    Anderheggen, E.; Prater, E.G.; Kreis, A.

    1990-01-01

    The analytical studies and the shaking table tests have been performed with the aim of gaining a fundamental understanding of the dynamic behaviour of such core material and validating the numerical model. The dynamic analysis of a graphite pebble-bed core could be a fairly complex undertaking if all nonlinear effects were considered. However, to achieve a practicable solution the ensemble of spheres must be replaced by a statistically equivalent continuum. Based on the Hertz theories for regular configurations, the mechanical characteristics, at small shear strains, correspond to those of an isotropic nonlinear hypoelastic medium, in which the Lame constants are a function of volumetric strain. Thus, the initial modulus values depend on confining pressure, so that the medium is inhomogeneous with respect to depth. During seismic excitation the volumetric strain, and thus the moduli, will change with time. To simplify the analysis, however, a linearized form of the model has been adopted, as well as considerations concerning damping effects. The numerical simulations carried out thus far concern mainly the 1:6 rigid wall model (i.e. with a cylinder diameter of 1.5 m) investigated experimentally and take the form of a back-analysis. Subsequently, the walls were tested separately and finally the combined behaviour was investigated. To date only preliminary results for the modelling of the reflector walls have been obtained. The objectives of this paper are thus twofold. Firstly, to discuss the constitutive law and its implementation in a general purpose finite element program. Secondly, to present some preliminary results of the dynamic analysis and to compare these with data obtained from the shaking table tests. 5 refs, 2 figs, 1 tab

  16. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  17. Status of development of the HTR module

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1989-01-01

    Growing concern about the rising global temperature of the earth due to the ''Greenhouse Effect'' is increasingly focussing worldwide interest on passively safe reactors for heat and power production. In this context the development status of the HTR-Module designed by the Siemens-Group merits strong interest. The HTR-Module has a high degree of passive safety features. Even in case of hypothetical accidents the decay heat is dissipated from the primary system to the environment by passive measures alone i.e. by heat conduction, convection and radiation. The detailed engineering for the HTR-Module continues to progress. In addition to the engineering for the layout considerable progress has been made in the detailed engineering for specific components - e.g. pressure vessel, steam generator, hot gas duct, blower etc. - and specific systems - e.g. first core, helium purification system, reactor safety system, reactor control etc. The procedure for the conceptual licence has been continued. A large number of supplementary analyses and reports have been elaborated and submitted for this procedure. Many workshop meetings have been held with the nominated experts. The hypothetical accidents have been analysed and a special report on these accidents has been submitted. The safety analyses report has been revised, taking into account the results and achievements reached during the ongoing licensing procedure. Parallel to these engineering activities outstanding in R and D work for the HTR-Module, e.g. in the field of fuel elements etc. has been continued. The HTR-Module has found worldwide interest. Respective activities are going on in Bangladesh, PR China, USSR, Indonesia etc. Relevant application studies have been carried out and/or initiated. (author). 15 refs, 16 figs

  18. The HTR 500 concept based on pratical THTR and AVR experience

    International Nuclear Information System (INIS)

    Wachholz, W.; Weicht, U.

    1988-01-01

    This paper discusses progress during the past ten years in the development of a specific HTR safety concept. This has been mainly characterized by the abandonment of the LWR specific safety principles and making use of the safety characteristics typical of the high-temperature reactor (HTR). In the design, construction and operation of high-temperature reactors - especially AVR (15 MWe plant in Juelich, FRG) and THTR (300 MWe plant in Hamm-Uentrop, FRG) - experience has been gained in the field of accident topology and plant risk of HTRs in recent years. This experience, based on detailed accident analyses performed by manufacturers and experts, is relevant for the entire HTR line independent of specific projects. The authors focus on the HTR 500, the first commercial high temperature reactor with a pebble bed core. Its design principles and the design of its systems are based on the earlier AVR and THTR projects

  19. Computation of deformations and stresses in graphite blocks for HTR core survey purposes

    International Nuclear Information System (INIS)

    Besdo, Dieter; Theymann, W.

    1975-01-01

    Stresses and deformations in graphite fuel elements for HTRs are caused by the temperature distribution and by irradiation under influence of creep, shrinking, thermal strains, and elastic deformations. The global deformations and the stress distribution in a prismatic fuel-element containing regularly distributed axial holes for the coolant flow and the fuel sticks, can be computed in the following manner: the block with its holes is treated as an effective homogeneous continuum with an equivalent global behaviour. Assuming that the fourth-order-tensor of the elastic constants is proportional to the corresponding tensor in the constitutive equations for creep, only the effective strains are of interest. The values of temperature and dose may be given in n points of the block at certain points of time. Then, the inelastic nonthermal strains are integrated by a Runge-Kutta-procedure in the n points. When interpolated and combined with thermal strains, they are incompatible. Hence, they produce elastic deformations which cause creep and can be computed by use of a Ritz-polynomial-series by help of a specific principle of the minimum of potential energy. Excessive computing time can be avoided easily since the influence of the local variation of the elastic constants within the block is almost negligible and, therefore, of practically no importance for the determination of the elastic strains. By this reason some matrices can be calculated a priori, and the elastic deformations are obtained by multiplications of these matrices rather than inversions. Therefore, this method is particularly suited for the computation of deformations and stresses for reactor core survey purposes where a large number (up to 7000 blocks) have to be treated

  20. HTR-10 severe accident management

    International Nuclear Information System (INIS)

    Xu Yuanhui; Sun Yuliang

    1997-01-01

    The High Temperature Gas-cooled Reactor (HTR-10) is under construction at the Institute of Nuclear Energy Technology site northwest of Beijing. This 10 MW thermal plant utilizes a pebble bed high temperature gas cooled reactor for a large range of applications such as electricity generation, steam and district heat generation, gas turbine and steam turbine combined cycle and process heat for methane reforming. The HTR-10 is the first high temperature gas cooled reactor to be licensed in China. This paper describes the safety characteristics and design criteria for the HTR-10 as well as the accident management and analysis required for the licensing process. (author)

  1. French programme for HTR fuel

    International Nuclear Information System (INIS)

    Gillet, R.M.

    1991-01-01

    It is reported that in the frameworks of the French HTR research program, stopped in 1979 the HTR coated particle fuel, fuel rod and prismatic fuel element design have been successfully developed and irradiation tested in France and specific examination methods for irradiated fuel particles, rods and graphite blocks have been developed. Currently CEA is involved in fission product transport experiments sponsored by the US Department of Energy and performed in the COMEDIE loop. Finally the CEA follows progress and developments in HTR fuel research and development throughout the world. 1 tab

  2. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    International Nuclear Information System (INIS)

    Murata, Isao; Miyamaru, Hiroyuki

    2008-01-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%Δk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  3. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka, 565-0871 (Japan)

    2008-07-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%DELTAk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  4. Fundamental principles for a nuclear design and structural analysis code for HTR components operating at temperatures above 8000C

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1985-01-01

    With reference to the special characteristics of an HTR plant for the supply of nuclear process heat, the investigation of the fundamental principles to form the basis for a high temperature nuclear structural design code has been described. As examples, preliminary design values are proposed for the creep rupture and fatigue behaviour. The linear damage accumulation rule is for practical reasons proposed for the determination of service life, and the difficulties in using this rule are discussed. Finally, using the data obtained in structural analysis, the main areas of investigation which will lead to improvements in the utilization of the materials are discussed. Based on the current information, the working group ''Design Code'' believes that a service life of 70000 h for the heat-exchanging components operating at above 800 0 C can be. (orig.)

  5. Progress of the HTR-10 project

    International Nuclear Information System (INIS)

    Zhong, D.; Xu, Y.

    1996-01-01

    This paper briefly introduces the main technical features and the design specifications of the HTR-10. Present status and main progress of the license applications, the design and manufacture of the main components and the engineering experiments as well as the construction of the HTR-10 are summarized. (author). 3 tabs

  6. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  7. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  8. Present status of research and development for HTR in China

    Energy Technology Data Exchange (ETDEWEB)

    Dazhong, Wang; Daxin, Zhong; Yuanhul, Xu [Institute of Nuclear Energy Technology, Tsinghua University, Beijing (China)

    1990-07-01

    The HTR R and D Project is being carried out in the relevant institutions in China. Some topics are covered such as, fuel element technology, graphite development, fuel element handling system, helium technology, fuel reprocessing technology as well as HTR design study. Some results of HTR research work are described. In addition, to provide a test facility for investigation of HTR Module reactor safety and process heat application of HTR, a joint project on building a 10 MW test HTR with Siemens-Interatom, KFA Juelich and INET is going on. The conceptual design of 10 MW test HTR has been completed by the joint group. In parallel the application study of HTR Module is being carried out for the oil industry, petrochemical industry as well as power generation. Some preliminary results of the application study, for example, for heavy oil recovery on Shengli oil field and process heat application in Yan shan petroleum company, are described. (author)

  9. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  10. Tritium in HTR systems

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-07-01

    Starting from the basis of the radiological properties of tritium, the provisions of present-day radiation protection legislation are discussed in the context of the handling of this radionuclide in HTR plants. Tritium transportation is then followed through from the place of its creation up until the sink, i.e. disposal and/or environmental route, and empirical values obtained in experiments and in plant operation translated into guidelines for plant design and planning. The use of the example of modular HTR plants permits indication that environmental contamination via the 'classical' routes of air and water emissions, and contamination of products, and resulting consumer exposure, are extremely low even on the assumption of extreme conditions. This leads finally to a requirement that the expenditure for implementation of measures for further reduction of tritium activity rates be measured against low radiological effect. (orig.) [de

  11. The Application of Integrated Design System for HTR-PM Design

    International Nuclear Information System (INIS)

    Qi Shi; Xiaojing Kang

    2014-01-01

    SmartPlant Enterprise(SPE) developed by Intergraph from America is a new generation integrated solution for engineering design. Combined with the application in a nuclear engineering, this paper introduced the composition and the data flow of Integrated Design System established by SPE, analyzed the advantages and the insufficiency, and provided the direction of continuous improvement. (author)

  12. The HTR safety concept demonstrated by selected examples

    International Nuclear Information System (INIS)

    Sommer, H.; Stoelzl, D.

    1981-01-01

    The licensing experience gained in the Federal Republic of Germany is based on the licensing procedures for the THTR-300 and the HTR-1160. In the course of the licensing procedures for these reactors a safety concept for an HTR has been developed. This experience constitutes the basis for the design of future HTR's. (author)

  13. Reliable core thermal design

    International Nuclear Information System (INIS)

    Amendola, A.

    1974-01-01

    The hot spot analysis is no longer limited to the calculation of a simple safety factor against overtemperature, but is now integrated in the overall design philosophy. This paper describes the development of a probabilistic method of analysis and compares it with other advanced calculation methods. Feedbacks from the analysis act: - on the nominal temperature distribution in order to satisfy the maximum temperature limit and in the same time to optimize the coolant temperature for maximum plant efficiency, and - on the specifications of manufacturing tolerances and experimental investigations in order to identify and to reduce the most important design uncertainties. Moreover the computer codes SHOSPA and THEDRA are briefly discussed. Both codes deliver the zero hot spot probability as a function of the geometrical size assumed for a ''spot''. THEDRA delivers also the expected hot spot distribution. By means of THEDRA it is possible to evaluate the pins failure expectation if the distribution of pin failures versus operating temperature is known. (author)

  14. Advancements in reactor physics modelling methodology of Monte Carlo Burnup Code MCB dedicated to higher simulation fidelity of HTR cores

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2014-01-01

    The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)

  15. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  16. SMART core protection system design

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, H. Y.; Koo, I. S.; Park, H. S.; Kim, J. S.; Son, C. H.

    2003-01-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system

  17. Operational requirements of spherical HTR fuel elements and their performance

    International Nuclear Information System (INIS)

    Roellig, K.; Theymann, W.

    1985-01-01

    The German development of spherical fuel elements with coated fuel particles led to a product design which fulfils the operational requirements for all HTR applications with mean gas exit temperatures from 700 deg C (electricity and steam generation) up to 950 deg C (supply of nuclear process heat). In spite of this relatively wide span for a parameter with strong impact on fuel element behaviour, almost identical fuel specifications can be used for the different reactor purposes. For pebble bed reactors with relatively low gas exit temperatures of 700 deg C, the ample design margins of the fuel elements offer the possibility to enlarge the scope of their in-service duties and, simultaneously, to improve fuel cycle economics. This is demonstrated for the HTR-500, an electricity and steam generating 500 MWel eq plant presently proposed as follow-up project to the THTR-300. Due to the low operating temperatures of the HTR-500 core, the fuel can be concentrated in about 70% of the pebbles of the core thus saving fuel cycle costs. Under all design accident conditions fuel temperatures are maintained below 1250 deg C. This allows a significant reduction in the engineered activity barriers outside the primary circuit, in particular for the loss of coolant accident. Furthermore, access to major primary circuit components and the reuse of the fuel elements after any design accident are possible. (author)

  18. State of the Art of helium heat exchanger development for future HTR-projects - HTR2008-58146

    International Nuclear Information System (INIS)

    Esch, M.; Juergens, B.; Hurtado, A.; Knoche, D.; Tietsch, W.

    2008-01-01

    In Germany two HTR nuclear power plants had been built and operated, the AVR-15 and the THTR-300. Also various projects for different purposes in a large power range had been developed, The AVR-15, an experimental reactor with a power output of 15 MWel was operated for more than 20 years with excellent results. The THTR-300 was designed as a prototype demonstration plant with 300 MWel and should be the technological basis for the entire future reactor line. The THTR-300 was prematurely shut down and decommissioned because of political reasons. But because of the accompanying comprehensive R and D program and the operation time of about 5 years, the technology was proved and essential operational results were gained. The AVR steam generator was installed above the reactor core. The six THTR heat exchangers were arranged circularly around the reactor core, Both heat exchanger systems have been operated successfully and furthermore acted as a residual heat removal system. The technology knowledge and experience gained on these existing HTR plants is still available at Westinghouse Electric Germany GmbH since Westinghouse is one of the legal successors of the former German HTR companies. As a follow-up project of THTR, the HTR-500 was developed and designed up to the manufacturing stage. For this plant additionally to the 8 steam generators, two residual heat removal heat exchangers were foreseen. These were to be installed in a ring around the reactor core. All these HTRs were designed for the generation of electricity using a steam cycle. Extensive research work has also been done for advanced applications of HTR technology e.g. using a direct cycle within the HHT project or generating process heat within the framework of the PNP project, Because of the critical attitude of the German government to the nuclear power in the past 20 years in Germany there was only a very limited interest in the further development of the HTR technology. As a consequence of the German

  19. Equilibrium core layout for the 1000 MW direct cycle HTR (HHT) with hexagonal monolith moulded fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Dworak, A

    1973-03-15

    The aim of this survey is to calculate an equilibrium Thorium fuel cycle for a 1000 MW HHT-core in off-load refuelling with hexagonal monolith moulded fuel blocks. It was tried to achieve an axial power distribution similar to the advanced pebble-bed reactors (OTTO) by introducing three axial core zones with different heavy metal content and initial enrichment.

  20. Conceptual design of PFBR core

    International Nuclear Information System (INIS)

    Lee, S.M.; Govindarajan, S.; Indira, R.; John, T.M.; Mohanakrishnan, P.; Shankar Singh, R.; Bhoje, S.B.

    1996-01-01

    The design options selected for the core of the 500 MWe Prototype Fast Breeder Reactor are presented. PFBR has a conventional mixed oxide fuel core of homogeneous type with two enrichment zones for power flattening and with radial and axial blankets to make the reactor self-sustaining in fissile material. Pin diameter has been selected for minimization of fissile inventory. Considerations for the choice of number of pins per subassembly, integrated versus separate axial blankets, and other pin and subassembly parameters are discussed. As the core size is moderate, no special schemes for reducing the maximum positive sodium voiding coefficient is envisages. Two independent, diverse fast acting shutdown systems working in fail-safe mode are selected. The number of absorber rods has been minimized by choosing a layout for maximum antishadow effect. Nine control and safety rods are distributed in two rods for power flattening by differential insertion. Three Diverse Safety Rods, are also provided which are normally fully withdrawn. The optimization of layout of radial and axial shielding and adequacy of flux at detector location are also discussed. (author). 2 figs

  1. Design configuration of GCFR core assemblies

    International Nuclear Information System (INIS)

    LaBar, M.P.; Lee, G.E.; Meyer, R.J.

    1980-05-01

    The current design configurations of the core assemblies for the gas-cooled fast reactor (GCFR) demonstration plant reactor core conceptual design are described. Primary emphasis is placed upon the design innovations that have been incorporated in the design of the core assemblies since the establishment of the initial design of an upflow GCFR core. A major feature of the design configurations is that they are prototypical of core assemblies for use in commercial plants; a larger number of the same assemblies would be used in a commercial plant

  2. Survey of HTR related research at IRI, Delft, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Wallerbos, E.J.M.; Van der Hagen, T.H.J.J.; Van Dam, H. [Interfaculty Reactor Institute IRI, Delft University of Technology, Delft (Netherlands); Tuerkcan, E. [ECN Nuclear Research, Petten (Netherlands)

    1998-09-01

    High temperature helium-cooled reactors have a large potential for inherent safety. Therefore, several projects on HTR research are being carried out or were carried out at the Interfaculty Reactor Institute (IRI) of the Delft University of Technology in Delft, Netherlands. As part of a larger research programme measurements of core reactivity, reactivity worth of safety rods and of small samples being oscillated in the reactor core were carried out at the PROTEUS facility of the Paul Scherrer Institute at Villigen, Switzerland. Together with other partners in the Netherlands a small inherently safe co-generation plant with a pebble-bed HTR core was designed and analysed. It was verified that such a reactor can operate continuously for 10 years by adding continuously fuel pebbles until the maximum available core height is reached. As a new, innovative, inherently safe reactor type the design of a fluidized-bed reactor with coated fuel particles on a helium gas stream is discussed and results are shown for the analysis of inherent criticality safety under varying coolant flow rates. IRI is also taking part in the new IAEA Co-ordinated Research Programme, which involves participation in the start-up experiments of the Japanese HTTR and carrying out calculations for the core physics benchmark test. 11 refs.

  3. Out-of-core instrumentation system for the detection of flux disturbances in pebble-bed HTR reactors

    International Nuclear Information System (INIS)

    Neef, R.D.; Al-Dabagh, D.; Carlson, D.E.; Knob, P.; Schaal, H.

    1981-01-01

    Investigations have shown that central (radial) disturbances inside the core can be identified from the correlated measuring signals of the upper and bottom reflectors. Excentric (azimuthal) disturbances are easily recognized in the horizontal (r-PHI) plane; it should be possible to establish also their three-dimensional extent on the basis of all three instrumentation systems. Combined measurements with all three systems of instrumentation yield sufficient information for the initiation and monitoring of control processes in case of disturbances. (orig.) [de

  4. For a Global HTR Marketing Initiative

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Venneri, Francesco; Richards, Matthew

    2014-01-01

    HTRs are at a crossroads in their history. The technology is proven and the current technical developments relatively mastered but the marketing track record is disappointing. This paper comes to the conclusion that an international, collaborative marketing and communication plan must be implemented in order to address the marketing bottleneck of HTRs. The paper reflects about the HTR product specificities, its unique selling points and its positioning against other nuclear designs and gas cogeneration. It summarises the global market status and demonstrates that the global market for HTRs is there, for electricity generation, industrial cogeneration and polygeneration. The paper finally argues that HTR vendors have a shared interest to unite in order to succeed in activating the market demand for HTR, and suggests an action plan for an international collaboration among HTR vendors to market and communicate globally on HTRs and reach together a critical mass of business leads worldwide, a mutually beneficial outcome. (author)

  5. Safety study for HTR-concepts designs under German siting conditions. Phase I B, Appendix II

    International Nuclear Information System (INIS)

    1982-04-01

    The report presents the work carried out on systems, reliability and consequence analysis for core heatup accidents. Long-term failure of the main cooling system and loss of the electric auxiliary power supply, here defined as transients, are the dominating initiating events. The most important sequences of events as far as risk is concerned presume a failure to start in the auxiliary cooling system, which leads to a slow rise in temperature and pressure in the reactor core. Temperatures of the fuel elements reach failure limits after ten hours at the earliest. Substantial releases of fission products into the environment are, however, only to be expected either if the containment remains unisolated or if the containment fails due to overpressure. The earliest point at which structural failure could occur is about 4.5 days, the frequency is estimated at 10 -6 per reactor year. The cause of failure of the reactor containment is loss of liner cooling which results in a danger of iguitable gas mixture, which, if they deflagrate, can subject the containment to stresses beyond its ultimate strength. However, it is much more probable that the liner cooling system and reactor containment will remain intact and that releases of fission products damaging to health will be completely avoided. (orig./HP) [de

  6. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  7. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  8. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  9. The challenge of introducing HTR plants on to the international power plant market

    International Nuclear Information System (INIS)

    Bogen, J.; Stoelzl, D.

    1987-01-01

    The international power plant market today is characterized by high increase in energy consumption for developing countries with limitations of investment capital and low increase in energy consumption for industrialized countries with limitations of additional power plant capacities. As a consequence there is a low demand for large new power stations. This leads to a tendency for small and medium sized power plant units - meeting high environmental standards - for which the total investment volume is low and full load operation of a plant can be realized earlier due to the small block capacity. - For nuclear power plants the High-Temperature-Reactor (HTR)-line with spherical fuel elements and a core structure of graphite is specially suited for this small and medium sized nuclear reactor (SMSNR) capacity. The excellent safety characteristics, the high availability, the low radiation doses for the operation personnel and the environment of the HTR line has been demonstrated by 20 years of operation of the AVR-15 MWe experimental power plant in Juelich F.R.G. and since 1985 by operation of the THTR-300 MWe prototype plant at Hamm-Uentrop F.R.G. Up-dated concepts of the HTR-line are under design for electricity generation (HTR-500), for co-generation of power and heat (HTR-100) and for district heating purposes only (GHR-10). By implementing two HTR projects the Brown Boveri Group is in the position to realize the collected experiences from design, licensing, erection, commissioning and operation for the follow-on projects. This leads to practical and sound technical solutions convenient for existing manufacturing processes, well known materials, standardized components and usual manufacturing tolerances. Specific plant characteristics can be used for advantages in the competition. (author)

  10. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  11. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  12. Verification test of control rod system for HTR-10

    International Nuclear Information System (INIS)

    Zhou Huizhong; Diao Xingzhong; Huang Zhiyong; Cao Li; Yang Nianzu

    2002-01-01

    There are 10 sets of control rods and driving devices in 10 MW High Temperature Gas-cooled Test Reactor (HTR-10). The control rod system is the controlling and shutdown system of HTR-10, which is designed for reactor criticality, operation, and shutdown. In order to guarantee technical feasibility, a series of verification tests were performed, including room temperature test, thermal test, test after control rod system installed in HTR-10, and test of control rod system before HTR-10 first criticality. All the tests data showed that driving devices working well, control rods running smoothly up and down, random position settling well, and exactly position indicating

  13. Fission product retention in TRISO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1991-01-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbounded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 deg. C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 deg. C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 deg. C and above may exist. (author). 6 refs, 6 figs, 4 tabs

  14. Fission product retention in TRISCO coated UO2 particle fuels subjected to HTR simulated core heating tests

    International Nuclear Information System (INIS)

    Baldwin, C.A.; Kania, M.J.

    1990-11-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600 degree C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800 degree C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800 degree C and above may exist. 6 refs., 6 figs., 4 tabs

  15. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2017-01-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  16. Scale analysis of decay heat removal system between HTR-10 and HTR-PM reactors under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Lapa, Celso M.F., E-mail: thiagodbtr@gmail.com, E-mail: lapa@ien.gov.br, E-mail: alvim@nuclear.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The 10 MW high-temperature gas-cooled test module (HTR-10) is a graphite-moderated and helium-cooled pebble bed reactor prototype that was designed to demonstrate the technical and safety feasibility of this type of reactor project under normal and accidental conditions. In addition, one of the systems responsible for ensuring the safe operation of this type of reactor is the passive decay heat removal system (DHRS), which operates using passive heat removal processes. A demonstration of the heat removal capacity of the DHRS under accidental conditions was analyzed based on a benchmark problem for design-based accidents on an HTR-10, i.e., the pressurized loss of forced cooling (PLOFC) described in technical reports produced by the International Atomic Energy Agency. In fact, the HTR-10 is also a proof-of-concept reactor for the high-temperature gas-cooled reactor pebble-bed module (HTR-PM), which generates approximately 25 times more heat than the HTR-10, with a thermal power of 250 MW, thereby requiring a DHRS with a higher system capacity. Thus, because an HTR-10 is a prototype reactor for an HTR-PM, a scaling analysis of the heat transfer process from the reactor to the DHRS was carried out between the HTR-10 and HTR-PM systems to verify the distortions of scale and the differences between the main dimensionless numbers from the two projects. (author)

  17. Prospective studies of HTR fuel cycles involving plutonium

    International Nuclear Information System (INIS)

    Bonin, B.; Greneche, D.; Carre, F.; Damian, F.; Doriath, J.Y.

    2002-01-01

    High Temperature Gas Cooled reactors (HTRs) are able to accommodate a wide variety of mixtures of fissile and fertile materials without any significant modification of the core design. This flexibility is due to an uncoupling between the parameters of cooling geometry, and the parameters which characterize neutronic optimisation (moderation ratio or heavy nuclide concentration and distribution). Among other advantageous features, an HTR core has a better neutron economy than a LWR because there is much less parasitic capture in the moderator (capture cross section of graphite is 100 times less than the one of water) and in internal structures. Moreover, thanks to the high resistance of the coated particles, HTR fuels are able to reach very high burn-ups, far beyond the possibilities offered by other fuels (except the special case of molten salt reactors). These features make HTRs especially interesting for closing the nuclear fuel cycle and stabilizing the plutonium inventory. A large number of fuel cycle studies are already available today, on 3 main categories of fuel cycles involving HTRs : i) High enriched uranium cycle, based on thorium utilization as a fertile material and HEU as a fissile material; ii) Low enriched uranium cycle, where only LEU is used (from 5% to 12%); iii) Plutonium cycle based on the utilization of plutonium only as a fissile material, with (or without) fertile materials. Plutonium consumption at high burnups in HTRs has already been tested with encouraging results under the DRAGON project and at Peach Bottom. To maximize plutonium consumption, recent core studies have also been performed on plutonium HTR cores, with special emphasis on weapon-grade plutonium consumption. In the following, we complete the picture by a core study for a HTR burning reactor-grade plutonium. Limits in burnup due to core neutronics are investigated for this type of fuel. With these limits in mind, we study in some detail the Pu cycle in the special case of a

  18. Critical evaluation of the experiments and mathematical models for the determination of fission product release from the spherical fuel elements in cases of core heating accidents in modular HTR's

    International Nuclear Information System (INIS)

    Bailly, H.W.

    1987-01-01

    In this work, the thermal behaviour of modular reactors in cases of core heating accidents and the physical phenomena relevant for a release of radioactive materials from HTR fuel elements are explained as far as is necessary for understanding the work. The present mathematical models by which the release of radioactive materials from HTR fuel elements due to diffusion or breaking particles in cases of core heating accidents are also described, examined and evaluated with regard to their applicability to module reactors. The experiments used to verify the mathematical models are also evaluated. The mathematical models are in nearly all cases computer programs, which describe the complicated process of releasing radioactive materials quantitative mathematically. One should point out that these models are constantly being developed further, in line with the increasing amount of knowledge. To conclude the work, proposals are made for improving the certainty of information from experiments and mathematical models to determine the release behaviour of modular reactors. (orig./GL) [de

  19. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  20. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; In, Kim Young; Kim, Young Il; Kim, Y G; Kim, S J; Song, H; Kim, T K; Kim, W S; Hwang, W; Lee, B O; Park, C K; Joo, H K; Yoo, J W; Kang, H Y; Park, W S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  1. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  2. Introduction of HTR-PM Operation and Fuel Management System

    International Nuclear Information System (INIS)

    Liu Fucheng; Luo Yong; Gao Qiang

    2014-01-01

    There is a big difference between High Temperature Gas-cooled Reactor Pebble-modules Demonstration Project(HTR-PM) and PWR in operation mode. HTR-PM is a continually refuelled reactor, and the operation and fuel management of it, which affect each other, are inseparable. Therefore, the analysis of HTR-PM fuel management needs to be carried out “in real time”. HTR-PM operation and fuel management system is developed for on-power refuelling mode of HTR-PM. The system, which calculates the core neutron flux and power distribution, taking high-temperature reactor physics analysis software-VSOP as a basic tool, can track and predict the core state online, and it has the ability to restructure core power distribution online, making use of ex-core detectors to correct and check tracking calculation. Based on the ability to track and predict, it can compute the core parameters to provide support for the operation of the reactor. It can also predict the operation parameters of the reactor to provide reference information for the fuel management.The contents of this paper include the development purposes, architecture, the main function modules, running process, and the idea of how to use the system to carry out HTR-PM fuel management. (author)

  3. HTR fuel development for advanced application

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.; Graham, L.W.; Hick, H.

    1975-01-01

    The advantages of the HTR for nuclear steam supply systems are briefly outlined. Due to its great design flexibility a number of different designs have evolved and the main characteristics of existing experimental prototype and power reactor HTR designs are summarized. The present state of coated particle fuel, particularly with regard to performance, is considered. Some implications of producing higher temperatures are discussed. Finally some of the developments in progress such as minimising the temperature drop between fuel and coolant, and of improving fuel performance by better fission product retention, better chemical stability, and the use of alternative coated materials, are discussed. (U.K.)

  4. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  5. Web-based Core Design System Development

    International Nuclear Information System (INIS)

    Moon, So Young; Kim, Hyung Jin; Yang, Sung Tae; Hong, Sun Kwan

    2011-01-01

    The selection of a loading pattern is one of core design processes in the operation of a nuclear power plant. A potential new loading pattern is identified by selecting fuels that to not exceed the major limiting factors of the design and that satisfy the core design conditions for employing fuel data from the existing loading pattern of the current operating cycle. The selection of a loading pattern is also related to the cycle plan of an operating nuclear power plant and must meet safety and economic requirements. In selecting an appropriate loading pattern, all aspects, such as input creation, code runs and result processes are processed as text forms manually by a designer, all of which may be subject to human error, such as syntax or running errors. Time-consuming results analysis and decision-making processes are the most significant inefficiencies to avoid. A web-based nuclear plant core design system was developed here to remedy the shortcomings of an existing core design system. The proposed system adopts the general methodology of OPR1000 (Korea Standard Nuclear Power Plants) and Westinghouse-type plants. Additionally, it offers a GUI (Graphic User Interface)-based core design environment with a user-friendly interface for operators. It reduces human errors related to design model creation, computation, final reload core model selection, final output confirmation, and result data validation and verification. Most significantly, it reduces the core design time by more than 75% compared to its predecessor

  6. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  7. Procedures and results of the probabilistic safety study of the HTR-1160 plant

    International Nuclear Information System (INIS)

    Kroeger, W.; Bongartz, R.

    1981-01-01

    A research team of the Institute for Nuclear Safety Research of the Juelich Nuclear Research Center (KFA) and staff members of the Gesellschaft fuer Reaktorsicherheit, sponsored by the Federal Ministry of the Interior, carried out a safety and risk analysis of high temperature reactors. The studies, which included the transfer to German conditions and the modification in some points of methodology of the American AIPA Study, were performed on the German concept of an 1160 MWe HTR with block-type fuel elements. They referred to accidents and possible impacts on the environment, residual risks and measures to reduce them. The study covered a total of approx. 15 groups of initiating events, including potential external impacts. The dominating initiating events are transients in a pressurized reactor. Differences relative to the light water reactor concept arise with respect to releases as a result of accidents and, above all, release times; they are due to different physical characteristics. HTR'S are characterized by thermal inertia and resistance to temperatures. If the results of the study are extended to the HTR line with a pebble bed core currently in the planning phase, the power densities alone, which are considerably lower in some designs, are indicative of an even more effective fission product retention than is already found in the HTR-1160 plant analyzed here. (orig.) [de

  8. HTR fuel research in the HTR-TN network on the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M. [HFR Unit, Institute for Advanced Materials, European Commission, Joint Research Centre, Petten (Netherlands); Languille, A. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Guillermier, P. [FRAMATOME ANP, 69 - Lyon (France); Bakker, K. [Nuclear Research and Consultancy Group, Petten (Netherlands); Nabielek, H. [Forschungszentrum Juelich (Germany)

    2001-07-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  9. HTR fuel research in the HTR-TN network on the high flux reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Conrad, R.; Sevini, P.; Burghartz, M.; Languille, A.; Guillermier, P.; Bakker, K.; Nabielek, H.

    2001-01-01

    Foremost, this paper explains the economic and strategic reasons for the comeback of the HTR reactor as one of the most promising reactors in the future. To study all the points related to HTR technology, a European network called HTR-TN was created in April 2000, with actually twenty European companies involved. This paper explains the organisation of the network and the related task-groups. In the field of fuel, one of these task-groups works on the fuel cycle and another works on the fuel itself in order to validate by testing HTR fuel possibilities. To this aim, an experimental loop is under construction in the HFR reactor to test full-size pebble type fuel elements and another under study to test compact fuel possibilities. These loops are based on all the experience accumulated by the High Flux Reactor in the years 70-90, when a lot of test were performed for fuel and material for the HTR technology and the facility design uses all the existing HFR knowledge. In conclusion, a host of research work, co-ordinated in the frame of a European network HTR-TN has begun. and should allow in the near future a substantial progress in the knowledge of this very promising fuel. (author)

  10. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  11. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  12. Core design and fuel management studies

    International Nuclear Information System (INIS)

    Min, Byung Joo; Chan, P.

    1997-06-01

    The design target for the CANDU 9 requires a 20% increase in electrical power output from an existing 480-channel CANDU core. Assuming a net electrical output of 861 MW(e) for a natural uranium fuelled Bruce-B/Darlington reactor in a warm water site, the net electrical output of the reference CANDU 9 reactor would be 1033 MW(e). This report documents the result of the physics studies for the design of the CANDU 9 480/SEU core. The results of the core design and fuel management studies of the CANDU 9 480/SEU reactor indicated that up to 1033 MW(e) output can be achieved in a 480-channel CANDU core by using SEU core can easily be maintained indefinitely using an automated refuelling program. Fuel performance evaluation based on the data of the 500 FPDs refuelling simulation concluded that SEU fuel failure is not expected. (author). 2 tabs., 38 figs., 5 refs

  13. A synthesis on the HTR scenario studies at CEA - HTR2008-58059

    International Nuclear Information System (INIS)

    Boucher, L.; Greneche, D.

    2008-01-01

    The aim of the studies is to assess the impact of the deployment of an HTR park replacing one part of the current PWR reactors. The other part of the current park is replaced by EPRs. In these scenarios, the annual electricity production is constant at 400 TWhe. This value corresponds roughly to the present nuclear electricity production in France. From 2002 to 2007, an important program study on HTR has been carried out by CEA and AREVA NC under the joint CEA - AREVA NC project 'prospective studies on the management of Plutonium and the back end of the cycle'. This program addresses core physic and scenario studies, and also the back end of the fuel cycle : reprocessing of spent fuel and HTR waste management. Some core physic studies have already been presented in the reference [1]. This paper presents the results of the scenario studies using two concepts: either the standard core of the Gas Turbine Modular Helium Reactor concept (GTMHR) with Uranium or Plutonium fuel, or the Multiple Fuel Rows Core (MFRC) dedicated to the actinide burning. The insertion of a new concept (fuel, reactor, process) must be evaluated in the global electronuclear system with an analysis of the impact on the fuel cycle (Enrichment, Fuel Fabrication, Reactor, Processing, Interim Storage, Waste storage). The scenario studies are used to evaluate different solutions to manage nuclear materials (uranium, plutonium) and wastes (minor actinides and fission products), from the present situation in France (closed cycle with storage of used MOX fuels) until the final equilibrium: mixed nuclear park with EPR and HTR. These studies allow to calculate material flows and inventories of these elements in each step of the fuel cycle. The simulation of transient scenarios from the present situation to the future situation is performed with the COSI code. HTR reactors feature a high flexibility with regard to fuel cycle options. Several versions of core have been investigated, with different type of

  14. HTR Development in China

    International Nuclear Information System (INIS)

    Wang Dazhong

    2014-01-01

    The roles of HTRs in China: 1. Due to the inherent safety features, high efficiency of electricity generation, site flexibility, the modular HTR can act as a supplement to LWR for small and medium size power generation. 2. Co-generation to supply steam up to 600℃, for petroleum refinery, oil sand and oil shale processing, sea water desalination and district heating, etc. 3. Hydrogen production at 900~1000 ℃ by V/HTR. Conclusions and prospects: • China’s energy system will experience transition and reform in the future; • Nuclear energy will play an irreplaceable role in China’s energy development; • Due to the excellent features of inherent safety, the HTR is a promising technology for electricity generation and process heat utilization; • Further international cooperation and exchanges need to be enhanced

  15. Reactor core design aiding system

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Hamaguchi, Yukio; Nakao, Takashi; Kondo, Yasuhide

    1995-01-01

    A two-dimensional radial power distribution and an axial one-dimensional power distribution are determined based on a distribution of a three-dimensional infinite multiplication factor, to obtain estimated power distribution estimation values. The estimation values are synthesized to obtain estimated three-dimensional power distribution values. In addition, the distribution of a two-dimensional radial multiplication factor and the distribution of an one-dimensional axial multiplication factor are determined based on the three-dimensional power distribution, to obtain estimated values for the multiplication factor distribution. The estimated values are synthesized to form estimated values for the three-dimensional multiplication factor distribution. Further, estimated fuel loading pattern value is determined based on the three-dimensional power distribution or the two-dimensional radial power distribution. Since the processes for determining the estimated values comprise only additive and multiplying operations, processing time can be remarkably saved compared with calculation based on a detailed physical models. Since the estimation is performed on every fuel assemblies, a nervous circuit network not depending on the reactor core system can be constituted. (N.H.)

  16. The HTR-10 project and its further development

    International Nuclear Information System (INIS)

    Xu Yuanhui

    2002-01-01

    The 10 MW High Temperature Gas-cooled Reactor-Test Module (termed as HTR-10) is one of key project in the National High Technology Research and Development Program (1986-2000). Main objectives for the HTR-10 are: (1). To acquire know-how to design, construct and operate the HTGRs, (2). To establish an experimental facility, (3). To demonstrate the inherent safety features of the Modular HTGR, (4). To test electricity and heat co-generation and closed cycle gas turbine technology and (5). To do research and development work for high temperature process heat application. The Institute of Nuclear Energy Technology (INET) of Tsinghua University was appointed as the leading institute to be responsible for design, license applications, construction and operation of the HTR-10. The HTR-10 technical design represents the features of HTR-Module design. After five years construction, installation and pre-operation the HTR-10 reached the criticality in December 2000. Up to now all of results on zero point experiments and fuel elements irradiation test are fine. China will continue to develop the high temperature gas-cooled reactor in the future using the HTR-10 base

  17. Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark

    International Nuclear Information System (INIS)

    Liu, Shichang; Li, Zeguang; Wang, Kan; Cheng, Quan; She, Ding

    2018-01-01

    Highlights: •A new random geometry was developed in RMC for mixed and polytype particle/pebble. •This capability was applied to the full core calculations of HTR-10 benchmark. •Reactivity, temperature coefficient and control rod worth of HTR-10 were compared. •This method can explicitly model different packing fraction of different pebbles. •Monte Carlo code with this method can simulate polytype particle/pebble type reactor. -- Abstract: With the increasing demands of high fidelity neutronics analysis and the development of computer technology, Monte Carlo method is becoming more and more attractive in accurate simulation of pebble bed High Temperature gas-cooled Reactor (HTR), owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. For the double-heterogeneous geometry of pebble bed, traditional Monte Carlo codes can treat it by explicit geometry description. However, packing methods such as Random Sequential Addition (RSA) can only produce a sphere packing up to 38% volume packing fraction, while Discrete Element Method (DEM) is troublesome and also time consuming. Moreover, traditional Monte Carlo codes are difficult and inconvenient to simulate the mixed and polytype particles or pebbles. A new random geometry method was developed in Monte Carlo code RMC to simulate the particle transport in polytype particle/pebble in double heterogeneous geometry systems. This method was verified by some test cases, and applied to the full core calculations of HTR-10 benchmark. The reactivity, temperature coefficient and control rod worth of HTR-10 were compared for full core and initial core in helium and air atmosphere respectively, and the results agree well with the benchmark results and experimental results. This work would provide an efficient tool for the innovative design of pebble bed, prism HTRs and molten salt reactors with polytype particles or pebbles using Monte Carlo method.

  18. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  19. Development of Core Design Technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Hong, S. G.; Jang, J. W. (and others)

    2007-06-15

    This report describes the contents of core design technology and computer code system development performed during 2005 and 2006 on the objects of nuclear proliferation resistant core and nuclear fuel basic key technology development security. Also, it is including the future application plans for the results and the developed methodology, important information and the materials acquired in this period. Two core designs with single enrichment were considered for the KALIMER-600 during the first year : 1) the first core uses the non-fuel rods such as B4C, ZrH1.8, and dummy rods, 2) the core using different cladding thickness for each core region (inner, middle, and outer cores) without non-fuel rods to flatten the power distribution. In particular, the latter design was intended to simplify the fuel assembly design by eliminating the heterogeneity. It was found that the proposed design satisfy all of the Gen IV SFR design goals on the cycle length longer than 18 EFPM, fuel discharge burnup larger than 80GWd/t, sodium void worth, conversion ratio, reactivity burnup swing and so on. For this object reactor, the structure integrity outside of reactor is confirmed for the radiation exposure during the plant life according to the result of shielding design and evaluation. The transmutation capability and the core characteristics of sodium cooled fast reactor was also evaluated according to the change of MA amount. The reactivity coefficients for the BN-600 reactor with MA fueled are calculated and the results are compared and evaluated with other participants results. Even though the discrepancies between the results of participants are somewhat large but the K-CORE results are close to the average within a standard deviation. To have the capability of 3-dimensional core dynamic analysis such as analyzing power distribution and reactivity variations according to the asymmetric insertion/withdrawal of control rods, the calculation module for core dynamic parameters was

  20. CORD, PWR Core Design and Fuel Management

    International Nuclear Information System (INIS)

    Trkov, Andrej

    1996-01-01

    1 - Description of program or function: CORD-2 is intended for core design applications of pressurised water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refuelling). 2 - Method of solution: The calculations are performed at the cell level with a lattice code in the supercell approximation to generate the single cell cross sections. Fuel assembly cross section homogenization is done in the diffusion approximation. Global core calculations can be done in the full three-dimensional cartesian geometry. Thermohydraulic feedbacks can be accounted for. The Effective Diffusion Homogenization method is used for generating the homogenized cross sections. 3 - Restrictions on the complexity of the problem: The complexity of the problem is selected by the user, depending on the capacity of his computer

  1. Fuel cycle studies for the Dragon HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A; Nunn, R M; Twitchin, A E

    1971-02-15

    This note reports the progress made at B.N.L. in the study of the fuel cycle for the HTR design described by Daub (1970). The primary purpose of the study is to examine the special problems of the approach to equilibrium fuel cycle.

  2. Analysis of stress in reactor core vessel under effect of pressure lose shock wave

    International Nuclear Information System (INIS)

    Li Yong; Liu Baoting

    2001-01-01

    High Temperature gas cooled Reactor (HTR-10) is a modular High Temperature gas cooled Reactor of the new generation. In order to analyze the safety characteristics of its core vessel in case of large rupture accident, the transient performance of its core vessel under the effect of pressure lose shock wave is studied, and the transient pressure difference between the two sides of the core vessel and the transient stresses in the core vessel is presented in this paper, these results can be used in the safety analysis and safety design of the core vessel of HTR-10. (author)

  3. LMFBR design and its evolution. (2) Core design of LMFBR

    International Nuclear Information System (INIS)

    Uto, Nariaki; Mizuno, Tomoyasu

    2003-01-01

    Sodium-cooled core design studies are performed. MOX fuel core with axial blanket partial elimination subassembly due to safety consideration is studied. This type of core with high internal conversion ratio possesses capability of achieving 26 months of operation cycle length and 100 GWd/t of burnup averaged over core and blanket, which are superior characteristics in view of reducing cost of power generation. Metal fuel core is also studied, and its higher breeding capability reveals a potential of better core performance such as longer operation cycle length for the same level of electricity generation, though core outlet temperature is limited to lower level due to steel cladding-metal fuel compatibility concerns. Another metal fuel core concept using single Pu enrichment and two radial regions with individual fuel pin diameters achieves 550degC of core outlet temperature identical to that of MOX fuel core, keeping operation cycle length comparable with that of MOX fuel core. This series of study results show that sodium-cooled MOX and metal fuel cores have a high flexibility in satisfying various needs including fuel cycle cost and breeding capability, depending on the stage of introducing commercialized fast reactor cycle system. (author)

  4. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  5. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  6. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.

  7. Some concept for the TRIGA core design

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1994-01-01

    There is the research reactor called TRIGA Mark-2 of 100 kW in Atomic Energy Research Laboratory, Musashi Institute of Technology. Recently, while the various calculations on the core were carried out, the author became aware of that this TRIGA core was designed at that time with excellent consideration. The reason for that is, although fuel is arranged in simple concentric circular state at a glance, it was known that in reality, this is the modification of the hexagonal core of triangular lattice. In the examination of square lattice fuel arrangement, the reactivity was calculated by using the gap between fuel rods as the parameter and by using ENDF/B-4 library and Monte Carlo code Keno-5. It is known that the design of the lattice with maximum reactivity cannot be done by the square lattice. The similar examination was carried out on triangular lattice, and it was found that the gap between fuel rods of 4 mm is the optimal design. The average neutron energy spectra in the fuel rods of the TRIGA Mark-2 core agreed considerably well with the energy spectra at 4.16 cm fuel rod pitch in triangular hexagonal core. In the reactor of about 100 kW, even if the gap between fuel rods is less than 4 mm, heat removal is sufficiently possible. (K.I.)

  8. Advance of core design method for ATR

    International Nuclear Information System (INIS)

    Maeda, Seiichirou; Ihara, Toshiteru; Iijima, Takashi; Seino, Hideaki; Kobayashi, Tetsurou; Takeuchi, Michio; Sugawara, Satoru; Matsumoto, Mitsuo.

    1995-01-01

    Core characteristics of ATR demonstration plant has been revised such as increasing the fuel burnup and the channel power, which is achieved by changing the number of fuel rod per fuel assembly from 28 to 36. The research and development concerning the core design method for ATR have been continued. The calculational errors of core analysis code have been evaluated using the operational data of FUGEN and the full scale simulated test results in DCA (Deuterium Critical Assembly) and HTL (Heat Transfer Loop) at O-arai engineering center. It is confirmed that the calculational error of power distribution is smaller than the design value of ATR demonstration plant. Critical heat flux correlation curve for 36 fuel rod cluster has been developed and the probability evaluation method based on its curve, which is more rational to evaluate the fuel dryout, has been adopted. (author)

  9. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  10. LEU-HTR critical experiment program for the PROTEUS facility in Switzerland

    International Nuclear Information System (INIS)

    Brogli, R.; Bucher, K.H.; Chawla, R.; Foskolos, K.; Luchsinger, H.; Mathews, D.; Sarlos, G.; Seiler, R.

    1990-01-01

    New critical experiments in the framework of an IAEA Coordinated Research Program on 'Validation of Safety Related Reactor Physics Calculations for Low Enriched HTRs' are planned at the PSI PROTEUS facility. The experiments are designed to supplement the experimental data base and reduce the design and licensing uncertainties for small- and medium-sized helium-cooled reactors using low-enriched uranium (LEU) and graphite high temperature fuel. The main objectives of the new experiments are to provide first-of-a-kind high quality experimental data on: 1) The criticality of simple, easy to interpret, single core region LEU HTR systems for several moderator-to-fuel ratios and several lattice geometries; 2) the changes in reactivity, neutron balance components and control rod effectiveness caused by water ingress into this type of reactor, and 3) the effects of the boron and/or hafnium absorbers that are used to modify the reactivity and the power distributions in typical HTR systems. Work on the design and licensing of the modified PROTEUS critical facility is now in progress with the HTR experiments scheduled to begin early in 1991. Several international partners will be involved in the planning, execution and analysis of these experiments in order to insure that they are relevant and cost effective with respect to the various gas cooled reactor national programs. (author)

  11. LEU-HTR critical experiment program for the PROTEUS facility in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R; Bucher, K H; Chawla, R; Foskolos, K; Luchsinger, H; Mathews, D; Sarlos, G; Seiler, R [Paul Scherrer Institute, Laboratory for Reactor Physics and System Technology Wuerenlingen and Villigen, Villigen PSI (Switzerland)

    1990-07-01

    New critical experiments in the framework of an IAEA Coordinated Research Program on 'Validation of Safety Related Reactor Physics Calculations for Low Enriched HTRs' are planned at the PSI PROTEUS facility. The experiments are designed to supplement the experimental data base and reduce the design and licensing uncertainties for small- and medium-sized helium-cooled reactors using low-enriched uranium (LEU) and graphite high temperature fuel. The main objectives of the new experiments are to provide first-of-a-kind high quality experimental data on: 1) The criticality of simple, easy to interpret, single core region LEU HTR systems for several moderator-to-fuel ratios and several lattice geometries; 2) the changes in reactivity, neutron balance components and control rod effectiveness caused by water ingress into this type of reactor, and 3) the effects of the boron and/or hafnium absorbers that are used to modify the reactivity and the power distributions in typical HTR systems. Work on the design and licensing of the modified PROTEUS critical facility is now in progress with the HTR experiments scheduled to begin early in 1991. Several international partners will be involved in the planning, execution and analysis of these experiments in order to insure that they are relevant and cost effective with respect to the various gas cooled reactor national programs. (author)

  12. International HTR activities

    International Nuclear Information System (INIS)

    Baust, E.; Weisbrodt, I.

    1989-01-01

    Asea Brown Boveri AG (ABB) and their subsidiary High Temperature Reactor Construction GmbH (HRB) have brought the pebble bed high temperature reactor to the edge of being ready for the market with the construction and operation of the AVR reactor at Juelich and the THTR 300 at Hamm-Uentrop. Siemens/Interatom have developed the HTR modular concept and, together with their partners HRB, KFA, Rheinbraun Bergbauforschung have taken the nuclear process heat project to its present advanced state of development. The further introduction of the HTR to the market is a long-term objective, due to the present market situation. ABB and Siemens AG have therefore agreed to collaborate by forming a joint company. (orig.)

  13. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    Marth, W.; Schroeder, R.

    1983-07-01

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.) [de

  14. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K.; Cho, M. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW{sub th} block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW{sub th} block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared.

  15. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Cho, M. S.

    2016-01-01

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW_t_h block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW_t_h block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared

  16. Plutonium re-cycle in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J. A.

    1974-03-15

    The study of plutonium cycles in HTRs using reprocessed plutonium from Magnox and AGR fuel cycles has shown that full core plutonium/uranium loadings are in general not feasible, burn-up is limited due the need for lower loadings of plutonium to meet reload core reactivity limits, on-line refueling is not practicable due to the need for higher burnable poison loadings, and low conversion rates in the plutonium-uranium cycles cannot be mitigated by axial loading schemes so that fissile make-up is needed if HTR plutonium recycle is desired.

  17. Mechanical design philosophy for the graphite components of the core structure of an HTGR

    International Nuclear Information System (INIS)

    Bodmann, E.

    1987-01-01

    Parallel to the layout and design of the graphite components for THTRs and the succeeding high temperature reactor projects, the design methods for graphite components have been improved over the years. The aim of this works is to develop the design methods which take into account both the particular properties of graphite and the particular functions of the components. Because of the close relation ship between materials and design codes, this development work has progressed with the development, testing and qualification of German reactor graphite. In this paper, the experience in this field of Hochtemperatur Reaktorbau GmbH and the results of the work and approach to the design problems are reported. The example of a HTR 500 design for a 550 MWe power station is taken up, and the core structure is explained. The graphite components are divided into three classes according to the stress limits. The loading of these components is reviewed. The aim of the design is not the complete avoidance of failure, but to avoid the failure of a single component from leading to a disadvantageous consequence which is not allowable. The classification of loading events, Weibull statistics and maximum allowable stress, the formation of the permissible stress, the assessment of stress due to multiaxial loading and so on are described. (Kako, I.)

  18. Two Phase Flow Stability in the HTR-10 Steam Generator

    Institute of Scientific and Technical Information of China (English)

    居怀明; 左开芬; 刘志勇; 徐元辉

    2001-01-01

    A 10 MW High Temperature Gas Cooled Reactor (HTR-10) designed bythe Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.

  19. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  20. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  1. Future Development of Modular HTGR in China after HTR-PM

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wang, Haitao; Dong Yujie; Li Fu

    2014-01-01

    The modular high temperature gas-cooled reactor (MHTGR) is an inherently safe nuclear energy technology for efficient electricity generation and process heat applications. The MHTGR is promising in China as it may replace fossil fuels in broader energy markets. In line with China’s long-term development plan of nuclear power, the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University developed and designed a MHTGR demonstration plant, named high-temperature gas-cooled reactor-pebble bed module (HTR-PM). The HTR-PM came into the construction phase at the end of 2012. The HTR-PM aims to demonstrate safety, economic potential and modularization technologies towards future commercial applications. Based on experiences obtained from the HTR-PM project with respect to design, manufacture, construction, licensing and project management, a further step aiming to promote commercialization and market applications of the MHTGR is expected. To this purpose, INET is developing a commercialized MHTGR named HTR-PM600 and a conceptual design is under way accordingly. HTR-PM600 is a pebble-bed MHTGR power generation unit with a six-pack of 250MWth reactor modules. The objective is to cogenerate electricity and process heat flexibly and economically in order to meet a variety of market needs. The design of HTR-PM600 closely follows HTR-PM with respect to safety features, system configuration and plant layout. HTR-PM600 has the six modules feeding one steam turbine to generate electricity with capacity to extract high temperature steam from various interfaces of the turbine for further process heat applications. A standard plant consists of two HTR-PM600 units. Based on the economic information of HTR-PM, a preliminary study is carried out on the economic prospect of HTR-PM600. (author)

  2. Core design aspects of SNR 2

    International Nuclear Information System (INIS)

    Wehmann, U.K.

    1987-01-01

    The paper describes in its first part the main characteristics of the core of the SNR 2 fast breeder reactor which is being planned within the European collaboration on fast breeder reactors. In the second part some core design aspects are discussed. The fuel element management with an inwards shuffling after each cycle is illustrated which offers advantages with respect to linear rating, steel damage and average discharge burnup. For this management, the full three-dimensional power and burnup history has been calculated and some typical results are presented. The shutdown requirements and the capabilities of the two shutdown systems of SNR 2 are discussed. The necessity for a reliable surveillance of the power distribution is demonstrated by the pronounced power tilts in case of the unintentional withdrawal of an absorber rod. Finally, a short review of the main nuclear design methods and their validation with help of the evaluation of experiments in zero power facilities and power reactors is given

  3. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  4. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  5. Thermal hydraulic design of PFBR core

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  6. Study on the Break Accidents of the HTR-PM Primary Loop

    International Nuclear Information System (INIS)

    Lang Minggang; Sun Ximing; Zheng Yanhua

    2014-01-01

    In thermal hydraulics design and safety analysis of the HTR-PM, the THERMIX code was used to study the behavior of the helium in the primary system. Once the helium leaks from the primary loop through a break or a relief valve, it is hard to simulate the states of the leakage room with THERMIX. In this paper, the latest version of RELAP5/MOD4, was used to simulate the behavior of the helium released to the containment rooms. A RELAP5/MOD4 model of the HTR-PM, including the core, the primary system, the secondary loop and the containment, were developed and evaluated in this paper. Based on the model, this paper studied the accidents consequences of a large break in the pressure relief room and a small break in the instrument room of the HTR-PM reactor building. The simulating results illustrate that the temperature in the pressure relief room was no more than 200℃ after a un-isolating large break, and the temperature in the instrument room is less than 130 ℃ after a small un-isolating break. The analysis shows that the scram function and the ability to monitor the reactor temperature and pressure after accidents would not be affected by the break. (author)

  7. Core designs of modern VVER projects

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kushmanov, S.; Vjalitsyn, V.; Vasilchenko, R.

    2015-01-01

    The presented operational experience of TVS - 2M (pilot-commercial operation started in 2006 at Balakovo NPP -1) enables to use it as reference for new projects because of similarity in designs and operational conditions. In the paper main parameters of fuel cycles, stability to impact of damaging factors, pilot operation of MG, new alloys, ADF and NTMC, upgrade of FA - 2M for the further power uprating, profiling of Gd-fuel rods for 18-month Fuel Cycle (FC) and perfection of absorber element design are the discussed issues. At the end author concluded that: 1) Core designs of new projects AES-2006 and VVER-TOI are based on extensive successful operational experience of the close prototype of TVS - 2M. 2) All improvements both of technical and economic parameters of fuel are subjected to representative examination by pilot operation at the power units with VVER-1000 being close prototypes of new designs

  8. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  9. HTR Plans in Poland

    International Nuclear Information System (INIS)

    Sobolewski, Józef

    2017-01-01

    Target for HTR: Polish Heat Market: Today 100% heat market is dominated by fossil fuels; mostly coal in district heating and coal and gas in industry heat generation. Huge potential for nuclear reactors Currently can be addressed only in terms of LWR, i.e. T <250 ° C, useful in district heating, but not in industry. Need for new technologies •HTGR (High Temperature Gas Reactor) ~600°C, e.g. for industry steam generation. •VHTR (Very High Temperature Reactor), ... ~1000°C, e.g. for hydrogen production

  10. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  11. Computer-Aided Test Flow in Core-Based Design

    OpenAIRE

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project

  12. Core design characteristics of the hyper system

    International Nuclear Information System (INIS)

    Yonghee, Kim; Won-Seok, Park; Hill, R.N.

    2003-01-01

    In Korea, an accelerator-driven system (ADS) called HYPER (Hybrid Power Extraction Reactor) is being studied for the transmutation of the radioactive wastes. HYPER is a 1000 MWth lead-bismuth eutectic (LBE)-cooled ADS. In this paper, the neutronic design characteristics of HYPER are described and its transmutation performances are assessed for an equilibrium cycle. The core is loaded with a ductless fuel assembly containing transuranics (TRU) dispersion fuel pins. In HYPER, a relatively high core height, 160 cm, is adopted to maximize the multiplication efficiency of the external source. In the ductless fuel assembly, 13 non-fuel rods are used as tie rods to maintain the mechanical integrity of assembly. As the reflector material, pure lead is used to improve the neutron economy and to minimise the generation of radioactive materials. In HYPER, to minimise the burn-up reactivity swing, a B 4 C burnable absorber is employed. For efficient depletion of the B-10 absorber, the burnable absorber is loaded only in the axially-central part (92 cm long) of the 13 tie rods of each assembly. In the current design, the amount of the B 4 C absorber was determined such that the burn-up reactivity swing is about 3.0% Δk. The long-lived fission products (LLFPs) 99 Tc and 129 I are also transmuted in the HYPER core such that their supporting ratios are equal to that of the TRUs. A heterogeneous LLFP transmutation in the reflector zone has been analysed in this work. A unique feature of the HYPER system is that it has an auxiliary core shutdown system, independent of the accelerator shutdown system. It has been shown that a cylindrical B 4 C absorber between the target and fuel blanket can drastically reduce the fission power even without shutting off the accelerator power. (author)

  13. The materials challenge for LFR core design

    International Nuclear Information System (INIS)

    Grasso, Giacomo; Agostini, Pietro

    2013-01-01

    LFR share the main issues of all Fast Reactors, while presenting specific issues due to the use of lead as coolant. A number of constraints impairs the design of a LFR core, possibly resulting in a viability domain not exploitable for producing electricity in an efficient (hence economic) way. In particular, the most restrictive issues to be faced pend on the cladding. The selection of proper cladding materials provides the solution for the issues impairing the resistance of the cladding against stresses and irradiation effects. On the other hand, the protection of the cladding requires surface protections like oxide scales (passivation) or adherent layers (coating). Oxide scales seem not sufficient for a stable and effective protection of the base material. The application of adherent layers seems the only promising solution for protecting the cladding against corrosion. For the short term (i.e.: ALFRED), advanced 15/15Ti with coating is the reference solution for the cladding, allowing a core design complying with all the design constraints and goals. The candidate coatings are already being tested under irradiation to proceed towards qualification. In parallel, new base materials and/or coatings are presently under investigation. For the long term (i.e.: ELFR), the availability of such advanced materials/coatings might allow the extension of the viability domain towards higher and broader ranges (temperature, dpa, etc.), extending the fields of applications of LFRs and resulting in higher performances

  14. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  15. Multimedia foundations core concepts for digital design

    CERN Document Server

    Costello, Vic; Youngblood, Susan

    2012-01-01

    Understand the core concepts and skills of multimedia production and digital storytelling using text, graphics, photographs, sound, motion, and video. Then, put it all together using the skills that you have developed for effective project planning, collaboration, visual communication, and graphic design. Presented in full color with hundreds of vibrant illustrations, Multimedia Foundations trains you in the principles and skill sets common to all forms of digital media production, enabling you to create successful, engaging content, no matter what tools you are using. Companion website

  16. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  17. Design evaluation of emergency core cooling systems using Axiomatic Design

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2007-01-15

    In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.

  18. Thermodynamic correlations for the accident analysis of HTR's

    International Nuclear Information System (INIS)

    Rehm, W.; Jahn, W.; Finken, R.

    1976-12-01

    The thermal properties of Helium and for the case of a depressurized primary circuit, various mixtures of primary cooling gas were taken into consideration. The temperature dependence of the correlations for the thermal properties of the graphite components in the core and for the structural materials in the primary circuit are extrapolated about normal operation conditions. Furthermore the correlations for the effective thermal conductivity, the heat transfer and pressure drop are described for pebble bed HTR's. In addition some important heat transfer data of the steam generator are included. With these correlations, for example accident sequences with failure of the afterheat removal systems are discussed for pebble bed HTR's. It is concluded that the transient temperature behaviour demonstrates the inherent safety features of the HTR in extreme accidents. (orig.) [de

  19. Why HTR/VHTR? A European point of view

    International Nuclear Information System (INIS)

    Basini, V.; Bogusch, E.; Breuil, E.; Buckthorpe, D.; Chauvet, V.; Ftitterer, M.; Van Heek, A.; Hittner, D.; Von Lensa, W.; Pirson, J.; Verrier, D.

    2008-01-01

    a process heat application, even at a reasonable temperature level ∼500-700 deg. C), and not necessarily to search for higher temperatures ∼ 800-1000 deg. C), which will be reached in the longer term, if there are significant market needs for such temperatures. After a period of 7 years dedicated to the development of base HTR technologies within several projects of the 5. and 6. Euratom Framework Programmes, HTR-TN proposes to launch in the 7. Framework Programme the development of a demonstrator coupling a HTR with an industrial process heat application. Such a development cannot be performed by the nuclear industry and research alone: it requires a close partnership with end-user industries. As a first step for building such a partnership, HTR-TN proposes, together with partners of different industries (steel, chemistry...) and Technical Support Organisations of Safety Authorities a preliminary project preparing the launching of the demonstrator design, by assessing the technical, economical and safety feasibility of the coupling, proposing coupling architectures, identifying the technical and licensing issues for coupling and defining a programme of development for the reactor, the heat transport system and the industrial heat application. (authors)

  20. Axial temperatures and fuel management models for a HTR system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-11-12

    In the HTR system, there is a large difference in temperature between different parts of the reactor core. The softer neutron spectrum in the upper colder core regions tends to shift the power productions in the fresh fuel upwards. As uranium 235 depletes and plutonium with its higher cross sections in the lower hot regions is built-up, an axial power flattening takes place. These effects have been studied in detail for a single column in an equilibrium environment. The aim of this paper is to relate these findings to a whole reactor core and to investigate the influence of axial temperatures on the overall performance and in particular, the fuel management scheme chosen for the reference design. A further objective has been to calculate the reactivity requirements for different part load conditions and for various daily and weekly load diagrams. As the xenon cross section changes significantly with temperature these investigations are performed for an equilibrium core with due representation of axial temperature zones.

  1. Burnup measurement study and prototype development in HTR-PM

    International Nuclear Information System (INIS)

    Yan Weihua; Zhang Zhao; Xiao Zhigang; Zhang Liguo

    2014-01-01

    In a pebble-bed core which employs the multi-pass scheme, it is mandatory to determine the burnup of each pebble after the pebble has been extracted from the core in order to determine whether its design burnup has been reached or whether it has to be reinserted into the core again. The burnup of the fuel pebbles can be determined by measuring the activity of 137 Cs with an HPGe detector because of their good correspondence, which is independent of the irradiation history in the core. Based on experiments and Geant4 simulation, the correction factor between the fuel and calibration source was derived by using the efficiency transfer method. By optimizing spectrum analysis algorithm and parameters, the relative standard deviation of the 137 Cs activity can be still controlled below 3.0% despite of the presence of interfering peaks. On the foundation of the simulation and experiment research, a complete solution for burnup measurement system in HTR-PM is provided. (authors)

  2. Inherent safe design of advanced high temperature reactors - concepts for future nuclear power plants

    International Nuclear Information System (INIS)

    Hodzic, A.; Kugeler, K.

    1997-01-01

    This paper discusses the applicable solutions for a commercial size High Temperature Reactor (HTR) with inherent safety features. It describes the possible realization using an advanced concept which combines newly proposed design characteristics with some well known and proven HTR inherent safety features. The use of the HTR technology offers the conceivably best solution to meet the legal criteria, recently stated in Germany, for the future reactor generation. Both systems, block and pebble bed ,reactor, could be under certain design conditions self regulating in terms of core nuclear heat, mechanical stability and the environmental transfer. 23 refs., 7 figs

  3. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  4. HTR-TN achievements and prospects for future developments

    International Nuclear Information System (INIS)

    Hittner, D.; Angulo, C.; Basini, V.; Bogusch, E.; Breuil, E.; Buckthorpe, D.; Chauvet, V.; Futterer, M.A.; Van Heek, A.; Von Lensa, W.; Yvon, P.

    2011-01-01

    It is already 10 years since the (European) High Temperature Reactor Technology Network (HTR-TN) launched a program for development of HTR technology, which expanded through three successive Euratom framework programs, with many projects in line with the network strategy. Widely relying in the beginning on the legacy of the former European HTR developments (DRAGON, AVR, THTR, etc.) that it contributed to safeguard, this program led to advances in HTR/VHTR technologies and produced significant results, which can contribute to the international cooperation through Euratom involvement in the Generation IV International Forum (GIF). the main achievements of the European program, performed in complement to efforts made in several European countries and other GIF partners, are presented: they concern the validation of computer codes (reactor physics, as well as system transient analysis from normal operation to air ingress accident and fuel performance in normal and accident conditions), materials (metallic materials for vessel, direct cycle turbines and intermediate heat exchanger, graphite, etc.), component development, fuel manufacturing and irradiation behavior, and specific HTR waste management (fuel and graphite). Key experiments have been performed or are still ongoing, like irradiation of graphite and of fuel material (PYCASSO experiment), high burn-up fuel PIE, safety test and isotopic analysis, IHX mock-up thermohydraulic test in helium atmosphere, air ingress experiment for a block type core, etc. Now HTR-TN partners consider that it is time for Europe to go a step forward toward industrial demonstration. In line with the orientations of the 'Strategic Energy Technology Plan (SET-Plan)' recently issued by the European Commission that promotes a strategy for development of low-carbon energy technologies and mentions Generation IV nuclear systems as part of key technologies, HTR-TN proposes to launch a program for extending the contribution of nuclear energy to

  5. Engineering and licensing progress of the HTR-Module

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrodt, I A

    1988-07-01

    This report deals not only with the latest status of Siemens/Interatom's HTR-Module but also reflects the latest engineering and licensing progress of the HTR-Module against the background of the specified design requirements and of the discussions on passively safe reactors. Therefore, I intend to report also about two examples of the accident analysis - one design basis accident, i.e. the leak-before-break of the reactor pressure vessel and one beyond design accident, i. e. massive water ingress.

  6. Engineering and licensing progress of the HTR-Module

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1988-01-01

    This report deals not only with the latest status of Siemens/Interatom's HTR-Module but also reflects the latest engineering and licensing progress of the HTR-Module against the background of the specified design requirements and of the discussions on passively safe reactors. Therefore, I intend to report also about two examples of the accident analysis - one design basis accident, i.e. the leak-before-break of the reactor pressure vessel and one beyond design accident, i. e. massive water ingress

  7. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  8. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  9. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  10. Core design and performance of small inherently safe LMRs

    International Nuclear Information System (INIS)

    Orechwa, Y.; Khalil, H.; Turski, R.B.; Fujita, E.K.

    1986-01-01

    Oxide and metal-fueled core designs at the 900 MWt level and constrained by a requirement for interchangeability are described. The physics parameters of the two cores studied here indicate that metal-fueled cores display attractive economic and safety features and are more flexible than are oxide cores in adapting to currently-changing deployment scenarios

  11. Design and cost of the sulfuric acid decomposition reactor for the sulfur based hydrogen processes - HTR2008-58009

    International Nuclear Information System (INIS)

    Hu, T. Y.; Connolly, S. M.; Lahoda, E. J.; Kriel, W.

    2008-01-01

    The key interface component between the reactor and chemical systems for the sulfuric acid based processes to make hydrogen is the sulfuric acid decomposition reactor. The materials issues for the decomposition reactor are severe since sulfuric acid must be heated, vaporized and decomposed. SiC has been identified and proven by others to be an acceptable material. However, SiC has a significant design issue when it must be interfaced with metals for connection to the remainder of the process. Westinghouse has developed a design utilizing SiC for the high temperature portions of the reactor that are in contact with the sulfuric acid and polymeric coated steel for low temperature portions. This design is expected to have a reasonable cost for an operating lifetime of 20 years. It can be readily maintained in the field, and is transportable by truck (maximum OD is 4.5 meters). This paper summarizes the detailed engineering design of the Westinghouse Decomposition Reactor and the decomposition reactor's capital cost. (authors)

  12. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  13. A network-based system of simulation, control and online assistance for HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shutang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)], E-mail: zhust@tsinghua.edu.cn; Luo Shaojie; Shi Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2008-07-15

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design.

  14. A network-based system of simulation, control and online assistance for HTR-10

    International Nuclear Information System (INIS)

    Zhu Shutang; Luo Shaojie; Shi Lei

    2008-01-01

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design

  15. Design and suspension experiments of the full-size active magnetic bearing test rig for the HTR-10GT

    International Nuclear Information System (INIS)

    Lu Qiyue; Shi Lei; Zhao Lei; Yu Suyuan

    2005-01-01

    In this paper, we introduce the fundamental properties of the full-size active magnetic bearing experimental set system (AMB-F), including control unit, data I/O channel, feedback unit and executor. Besides, the 72-hours continuously running experiment of the AMB-F, with special attention to the vibration of stators' shell, is presented. This experiment is designed mainly for validating the total system's stability. It is the basis of further characteristic experiments. (authors)

  16. Evaluation of design, leak monitoring, dnd NDEA strategies to assure PBMR Helium pressure boundary reliability - HTR2008-58037

    International Nuclear Information System (INIS)

    Fleming, K. N.; Smit, K.

    2008-01-01

    This paper discusses the reliability and integrity management (RIM) strategies that have been applied in the design of the PBMR passive metallic components for the helium pressure boundary (HPB) to meet reliability targets and to evaluate what combination of strategies are needed to meet the targets. The strategies considered include deterministic design strategies to reduce or eliminate the potential for specific damage mechanisms, use of an on-line leak monitoring system and associated design provisions that provide a high degree of leak detection reliability, and periodic nondestructive examinations combined with repair and replacement strategies to reduce the probability that degradation would lead to pipe ruptures. The PBMR RIM program for passive metallic piping components uses a leak-before-break philosophy. A Markov model developed for use in LWR risk-informed in-service inspection evaluations was applied to investigate the impact of alternative RIM strategies and plant age assumptions on the pipe rupture frequencies as a function of rupture size. Some key results of this investigation are presented in this paper. (authors)

  17. Learn from the Core--Design from the Core

    Science.gov (United States)

    Ockerse, Thomas

    2012-01-01

    The current objective, object-oriented approach to design is questioned along with design education viewed as a job-oriented endeavor. Instead relational knowledge and experience in a holistic sense, both tacit and explicit, are valued along with an appreciation of the unique character of the student. A new paradigm for design education is…

  18. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-09-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System are presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented

  19. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1978-07-01

    In order to obtain the license for construction and operation of HTR developed and introduced into Japan, it is necessary to assure integrity of reactor structures and the capability of reactor shutdown and maintain safety shutdown for the seismic design condition. Because Japanese land is located in relatively high seismacity zone, when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. For the above reason, many efforts of seismic research and development for HTR have been made at institutes and companies in Japan. In the paper, descriptions are: (1) Present status of development and construction plans of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, (5) future plan. (auth.)

  20. HTR-E project. High-temperature components and systems

    International Nuclear Information System (INIS)

    Breuil, E.; Exner, R.

    2002-01-01

    The HTR-E European project (four years project) is proposed for the 5th Framework Programme and concerns the technical developments needed for the innovative components of a modern HTR with a direct cycle. These components have been selected with reference to the present projects (GT-MHR, PBMR): (1) the helium turbine, the recuperator heat exchanger, the electro-magnetic bearings and the helium rotating seal; (2) the tribology. Sliding innovative components in helium environment are particularly concerned. (3) the helium purification system. Recommendations on impurities contents have to be provided in accordance with the materials proposed for the innovative components. The main outcomes expected from the HTR-E project are the design recommendations and identification of further R and D needs for these components. This will be based: (1) on experience feedback from European past helium test loops and reactors; (2) on design studies, thermal-hydraulic and structural analyses; (3) and on experimental tests

  1. Overview of Japanese seismic research program for HTR

    International Nuclear Information System (INIS)

    Ikushima, T.

    1978-01-01

    In order to obtain the license for construction and operation of HTR developed in and/or introduced into Japan, it is necessary to insure the integrity of reactor structures and the capability of reactor shutdown and the maintenance of safety shutdown for the seismic design condition. Because Japan is located in relatively high seismicity zone, even when an excessive earthquake would occur, the public and plant personnel should be protected from radiation hazard. The report describes the following: (1) present status of development and construction plan of HTR, (2) guideline of aseismic design, (3) need of aseismic research, (4) present status of research and development, and (5) future plans

  2. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of

  3. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Suzuki, Masao; Hill, R.N.

    1992-01-01

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  4. Development and Reliability Analysis of HTR-PM Reactor Protection System

    International Nuclear Information System (INIS)

    Li Duo; Guo Chao; Xiong Huasheng

    2014-01-01

    High Temperature Gas-Cooled Reactor-Pebble bed Module (HTR-PM) digital Reactor Protection System (RPS) is a dedicated system, which is designed and developed according to HTR-PM NPP protection specifications. To decrease the probability of accident trips and increase the system reliability, HTR-PM RPS has such features as a framework of four redundant channels, two diverse sub-systems in each channel, and two level two-out-of-four logic voters. Reliability analysis of HTR-PM RPS is based on fault tree model. A fault tree is built based on HTR-PM RPS Failure Modes and Effects Analysis (FMEA), and special analysis is focused on the sub-tree of redundant channel ''2-out-of-4'' logic and the fault tree under one channel is bypassed. The qualitative analysis of fault tree, such as RPS weakness according to minimal cut sets, is summarized in the paper. (author)

  5. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  6. Review of advanced core designs for LMFBRs

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1986-01-01

    It is a matter of great importance for the development of LMFBR to reduce its power cost to the level of the other power generating means. For this purpose, some ideas that use advanced core concepts to reduce LMFBR's power cost by improving its fuel cycle economics have recently been proposed. In this report, two hopeful ideas that use advanced core concepts: (1) Ultra Long Life Core (ULLC) - non-refueling over LMFBR power plant life; (2) Integral Fast Reactor (IFR) concept - metal fueled core and pyrometallurgical reprocessing; are picked up and their economical effect and technical probrems are investigated. (author)

  7. Development status of the HTGR in the world. Outline and construction status of the demonstration HTGR program (HTR-PM) of China

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Okamoto, Futoshi; Mouri, Tomoaki; Saito, Masanao; Nishio, Hiroki; Ohashi, Junpei

    2014-01-01

    Based on successful construction and operation experiences of HTR-10 reactor with pebble bed fuel and helium coolant, HTR-PM (HTR Pebble-bed Modular) reactor program was under way with 200 MWe of twin reactors with the same core configuration as HTR-10 reactor, which, each with a single steam generator, would drive a single steam turbine. Core height was 11 meters, and main steam temperature would be at 566 C. Although HTR-PM reactor program was interrupted by effects of the Fukushima accident, first concrete basement construction was started in December 2012 with aiming at connecting the Grid in 2017. This article reviewed outline and construction status of HTR-PM reactor in China. (T. Tanaka)

  8. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  9. Energy analysis of control rod drive mechanism in HTR-10

    International Nuclear Information System (INIS)

    Bo Hanliang; Wu Yuanqiang

    2000-01-01

    This paper presents a theoretical model for the control rod drive mechanism for the 10 MW High Temperature Gas Cooled Reactor (HTR-10) and analyzes accidents which may occur in the drive mechanism, for example, chain break, coupling damage and other damage scenarios. The results show that the matching problem between buffer capability and coupling strength is the main reason for coupling damage; increased temperatures would reduce eddy damping and cause a mismatch between buffer capability and coupling strength; and the displacement of the buffer spring will affect the coupling force. The results provide a theoretical basis for the design of the control rod drive mechanism for HTR-10

  10. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  11. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  12. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Ser Gi Hong; Sang Ji Kim; Hoon Song; Yeong Il Kim

    2004-01-01

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH 2 ) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  13. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  14. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  15. A new impetus for developing industrial process heat applications of HTR in europe - HTR2008-58259

    International Nuclear Information System (INIS)

    Hittner, D.; De Groot, S.; Griffay, G.; Yvon, P.; Pienkowski, L.; Ruer, J.; Angulo, C.; Laquaniello, G.

    2008-01-01

    Due to its high operating temperature (up to 850 deg. C with present technologies, possibly higher in the longer term), and its power range (a few hundred MW), the modular HTR could address a larger scope of industrial process heat needs than other present nuclear systems. Even if HTR can contribute to competitive electricity generation, this potential for industrial heat applications is the main incentive for developing this type of reactor, as it could open to nuclear energy a large non-electricity market. However several issues must be addressed and solved successfully for HTR to actually enter the market of industrial process heat: 1) as an absolute prerequisite, to develop a strategic alliance of nuclear industry and R and D with process heat user industries. 2) to solve some key technical issues, as for instance the design of a reactor and of a coupling system flexible enough to reconcile a single reactor design with multiple applications and versatile requirements for the heat source, and the development of special adaptations of the application processes or even of new processes to fit with the assets and constraints of HTR heat supply, 3) to solve critical industrial issues such as economic competitiveness, availability and 4) to address the licensing issues raised by the conjunction of nuclear and industrial risks. In line with IAEA initiatives for supporting non-electric applications of nuclear energy and with the orientations of the SET-Plan of the European Commission, the (European) HTR Technology Network (HTR-TN) proposes a new project, together with industrial process heat user partners, to provide a first impetus to the strategic alliance between nuclear and non-nuclear industries. End user requirements will be expressed systematically on the basis of inputs from industrial partners on various types of process heat applications. These requirements will be confronted with the capabilities of the HTR heat source, in order to point out possible

  16. Licensing experience of the HTR-10 test reactor

    International Nuclear Information System (INIS)

    Sun, Y.; Xu, Y.

    1996-01-01

    A 10MW high temperature gas-cooled test reactor (HTR-10) is now being projected by the Institute of Nuclear Energy Technology within China's National High Technology Programme. The Construction Permit of HTR-10 was issued by the Chinese nuclear licensing authority around the end of 1994 after a period of about one year of safety review of the reactor design. HTR-10 is the first high temperature gas-cooled reactor (HTGR) to be constructed in China. The purpose of this test reactor project is to test and demonstrate the technology and safety features of the advanced modular high temperature reactor design. The reactor uses spherical fuel elements with coated fuel particles. The reactor unit and the steam generator unit are arranged in a ''side-by-side'' way. Maximum fuel temperature under the accident condition of a complete loss of coolant is limited to values much lower than the safety limit set for the fuel element. Since the philosophy of the technical and safety design of HTR-10 comes from the high temperature modular reactor design, the reactor is also called the Test Module. HTR-10 represents among others also a licensing challenge. On the one side, it is the first helium reactor in China, and there are less licensing experiences both for the regulator and for the designer. On the other side, the reactor design incorporates many advanced design features in the direction of passive or inherent safety, and it is presently a world-wide issue how to treat properly the passive or inherent safety design features in the licensing safety review. In this presentation, the licensing criteria of HTR-10 are discussed. The organization and activities of the safety review for the construction permit licensing are described. Some of the main safety issues in the licensing procedure are addressed. Among these are, for example, fuel element behaviour, source term, safety classification of systems and components, containment design. The licensing experiences of HTR-10 are of

  17. Preparation of spherical fuel elements for HTR-PM in INET

    International Nuclear Information System (INIS)

    Xiangwen, Zhou; Zhenming, Lu; Jie, Zhang; Bing, Liu; Yanwen, Zou; Chunhe, Tang; Yaping, Tang

    2013-01-01

    Highlights: • Modifications and optimizations in the manufacture of spherical fuel elements (SFE) for HTR-PM are presented. • A newly developed overcoater exhibits good stability and high efficiency in the preparation of overcoated particles. • The optimized carbonization process reduces the process time from 70 h in the period of HTR-10 to 20 h. • Properties of the prepared SFE and matrix graphite balls meet the design specifications for HTR-PM. • In particular the mean free uranium fraction of 5 consecutive batches is only 8.7 × 10 −6 . -- Abstract: The spherical fuel elements were successfully manufactured in the period of HTR-10. In order to satisfy the mass production of fuel elements for HTR-PM, several measures have been taken in modifying and optimizing the manufacture process of fuel elements. The newly developed overcoater system and its corresponding parameters exhibited good stability and high efficiency in the preparation of overcoated particles. The optimized carbonization process could reduce the carbonization time from more than 70 h to 20 h and improve the manufacturing efficiency. Properties of the manufactured spherical fuel elements and matrix graphite balls met the design specifications for HTR-PM. The mean free uranium fraction of 5 consecutive batches was 8.7 × 10 −6 . The optimized fuel elements manufacturing process could meet the requirements of design specifications of spherical fuel elements for HTR-PM

  18. The Dragon project and high temperature reactor (HTR position)

    International Nuclear Information System (INIS)

    Shepherd, L.

    1981-01-01

    After introduction describing the initiation of HTR work at AERE and in West Germany and the USA, the subject is discussed in detail under the headings: the Dragon Reactor Experiment (design and objectives); fuel elements and graphite (description of cooperative research programmes; development of coated fuel particles); helium technology; other Dragon activities. (U.K.)

  19. HTR-2002: Proceedings of the conference on high temperature reactors

    International Nuclear Information System (INIS)

    2002-01-01

    High temperature reactors are considered as future inherently safe and efficient energy sources. The presentations covered all the relevant aspects of the existing HTGRs and/or helium cooled pebble bed reactors. They were sorted into 7 sessions: HTR Projects and Programmes; Fuel and Fuel Cycle; Physics and Neutronics; Thermohydraulic Calculation; Engineering, Design and Applications; Materials and Components; Safety and Licensing

  20. Design Report for the core design of the first core Mark-Ia of the SNR-300

    International Nuclear Information System (INIS)

    Stanculescu, A.

    1984-05-01

    The report describes the first core Mark-Ia of the SNR-300 reactor and its different assembly types with their operational strategy. Methods, criteria and results of the neutron physical, thermal hydraulic and core mechanical design of the whole core and its assemblies are presented

  1. TH3D, a three-dimensional thermal hydraulic tool, for design and safety analysis of HTRS - HTR2008-58178

    International Nuclear Information System (INIS)

    Hossain, K.; Buck, M.; Bernnat, W.; Lohnert, G.

    2008-01-01

    The institute of nuclear engineering and energy systems (IKE), Univ. of Stuttgart (Germany)) has developed a new thermal hydraulic tool which can be used for three-dimensional thermal hydraulic analysis of pebble bed as well as block type HTRs. During nominal operation, the flow inside the gas-cooled High Temperature Reactor is essentially single-phase, impressible, and non-isothermal. So, at least one gas phase has to be considered beside the solid phase for thermal hydraulic analysis of HTRs. Each phase (e.g. solid, gas) is considered as a continuum which occupies only its respective fraction of. the control volume. Thermal non-equilibrium is considered between phases and time dependent energy conservation equations for solid and gas phases are solved. Simplified momentum conservation equation for gas obtained from porous media approximation is solved along with the time dependent mass conservation equation. Pro visions for simulating more than one gas component are available in this newly developed code TH3D which could be required for simulating some accident situations (e.g air / water ingress by pipes break). The interaction between phases is made by a set of constitutive equations which re/v on semi-empirical correlations obtained from different experiments. Finite volume method with a staggered grid approach is used for spatial discretization and a fully implicit, time adaptive, multi step method is used for time-dependent discretization. A benchmark calculation which is oriented to the pebble i fuel reactor PBMR-400 and a 3D calculation were presented in HTR -2006 conference and will also be published in Nuclear Engineering and Design (NED) journal. In order to demonstrate the capabilities of TH3D for simulating all block type HTRs. A benchmark calculation which is proposed by IAEA CRP-3 and oriented to the Gas Turbine Modular Helium Reactor (GT-MHR) is performed. calculations are performed for the steady state case (nominal operation) as well as for Loss

  2. Basic criticality relations for gas core design

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1992-01-01

    Minimum critical fissile concentrations are calculated for U-233, U-235, Pu-239, and Am-242m mixed homogeneously with hydrogen at temperatures to 15,000K. Minimum critical masses of the same mixtures in a 1000 liter sphere are also calculated. It is shown that propellent efficiencies of a gas core fizzler engine using Am-242m as fuel would exceed those in a solid core engine as small as 1000L operating at 100 atmospheres pressure. The same would be true for Pu-239 and possibly U-233 at pressures of 1000 atm. or at larger volumes

  3. Worldwide status of HTR development

    International Nuclear Information System (INIS)

    1978-06-01

    The International Atomic Energy Agency convened a technical committee meeting on high temperature reactors (HTRs) from 12-14 Dec. 1977 at Agency Headquarters to provide a forum for the exchange of information on the status of HTR development programmes and to receive advice on the Agency programme in this field. The continuing high level of international interest in HTRs was evidenced by the participation from 11 countries and 2 organizations: Austria, Belgium, France, Federal Republic of Germany, Japan, Netherlands, Poland, Switzerland, Union of Soviet Socialist Republics, United Kingdom of Great Britain, United States of America, Commission of the European Communities, and the OECD Nuclear Energy Agency. In order to promote the continuing exchange of technical information through the offices of the IAEA, a recommendation was made that the Agency establish a standing International Working Group on High Temperature Reactors (IWGHTR). This recommendation is being implemented in 1978. Considerable information on recent progress in HTR development was present at the technical committee meeting in technical reports and in progress reports on HTR development programmes. Since this material will not be published, this summary report on the worldwide status of HTR development at the beginning of 1978 has been prepared, based primarily on information presented at the December 1977 meeting

  4. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  5. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-01-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System is presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented. (author)

  6. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  7. The R&D of HTGR high temperature helium sampling loop: From HTR-10 to HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chao, E-mail: fangchao@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084 (China); The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Bao, Xuyin; Yang, Chen; Yang, Yanran; Cao, Jianzhu [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084 (China); The Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China)

    2016-09-15

    A High Temperature Helium Sampling Loop (HTHSL) for studying the transportation (deposition) behavior and total amount of solid fission products in high-temperature helium coming from the steam generator (SG) in the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) and High Temperature Reactor-Pebble bed Modules (HTR-PM) are researched and designed, respectively. Through the optimal design and simulation based on thermohydraulics analysis, the three-sleeve structure of deposition sampling device (DSD) could realize full-length temperature control evenly so that it could be used to study fission products in the primary circuit of HTR-10. On the other hand, an improved DSD is also designed for HTR-PM based on corresponding simulations, which could be used to sample the important nuclei in the high temperature helium from SG. These schemes offer two different methods to obtain the original source term in the high temperature helium, which will provide deeper understanding for the analysis of source terms of HTGR.

  8. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  9. The present state of the HTR concept based on experience gained from AVR and THTR

    International Nuclear Information System (INIS)

    Wachholz, W.

    1989-01-01

    During the past ten years the development of a specific HTR concept has made remarkable progress. This has been mainly characterized by making use of the safety characteristics typical of the High-Temperature Reactor (HTR). In the design, construction and operation of High-Temperature Reactors - especially AVR (15 MWe plant in Juelich, FRG) and THTR (300 MWe plant in Hamm-Uentrop, FRG) - comprehensive experience has been gained in the field of operational availability and safety, accident topology and plant risk of HTRs in recent years. This experience is relevant for the entire HTR line independent of specific projects. (author). 3 refs, 5 figs, 1 tab

  10. Applications and Prospects of Modularization Technology in HTR Project Starting from Primary Loop Cavity Construction

    International Nuclear Information System (INIS)

    Yang Guokang; Chen Jing; Huang Wen; Lin Lizhi; Sun Yunlun; Chen Yan; Mao Jiaxin; Wang Yougang; Wang Jinwen; Lin Mingfeng; Yang Mingshan

    2014-01-01

    Primary loop cavity is one of the key areas and major difficulties in HTR-PM project construction. In order to shorten the construction schedule and improve the construction quality, researches on modular design and construction of primary loop cavity has been carried out and the results have been applied in HTR-PM project construction, and got significant application benefit. This paper summarizes the modularization technology application research and project implementation results of primary loop cavity, and analyzes the application and prospects of modularization technology in the HTR project construction. (author)

  11. How Cultural Knowledge Shapes Core Design Thinking

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Ranjan, Apara; Bødker, Mads

    2018-01-01

    The growing trend of co-creation and co-design in cross-cultural design teams presents challenges for the design thinking process. We integrate two frameworks, one on reasoning patterns in design thinking, the other on the dynamic constructivist theory of culture, to propose a situation specific...... framework for the empirical analysis of design thinking in cross-cultural teams. We illustrate the framework with a qualitative analysis of 16 episodes of design related conversations, which are part of a design case study. The results show that cultural knowledge, either as shared by the cross......-cultural team or group specific knowledge of some team members, shape the reasoning patterns in the design thinking process across all the 16 episodes. Most of the design discussions were approached by the designers as problem situations that were formulated in a backward direction, where the value to create...

  12. Numerical Simulation of Two-branch Hot Gas Mixing at Reactor Outlet of HTR-PM

    International Nuclear Information System (INIS)

    Hao Pengefei; Zhou Yangping; Li Fu; Shi Lei; He Heng

    2014-01-01

    A series of two-branch model experiment has been finished to investigate the thermal mixing efficiency of the HTR-PM reactor outlet. This paper introduces the numerical simulation on the design of thermal mixing structure of HTR-PM and the test facility with Fluent software. The profiles of temperature, pressure and velocity in the mixing structure design and the test facility are discussed by comparing with the model experiment results. The numerical simulation results of the test facility have good agreement to the experiment results. In addition, the thermal-fluid characters obtained by numerical simulation show the thermal mixing structure of HTR-PM has similarity with the test facility. Finally, it is concluded that the thermal mixing design at HTR-PM reactor outlet can fulfilled the requirements for high thermal mixing efficiency and appropriate pressure drop. (author)

  13. Experiment study on thermal mixing performance of HTR-PM reactor outlet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yangping, E-mail: zhouyp@mail.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); Hao, Pengfei [School of Aerospace, Tsinghua University, Beijing 100084 (China); Li, Fu; Shi, Lei [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China); He, Feng [School of Aerospace, Tsinghua University, Beijing 100084 (China); Dong, Yujie; Zhang, Zuoyi [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    A model experiment is proposed to investigate the thermal mixing performance of HTR-PM reactor outlet. The design of the test facility is introduced, which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main mixing structure, hot gas duct, exhaust pipe system and I&C system. Experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed, which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis results show the mixing efficiency of the test facility is higher than that required by the steam generator of HTR-PM, which indicates that the thermal mixing structure of HTR-PM fulfills its design requirement.

  14. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  15. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  16. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  17. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  18. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  19. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  20. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  1. Calculation of HTR-10 first criticality with MVP

    International Nuclear Information System (INIS)

    Xie Jiachun; Yao Lianying

    2015-01-01

    The first criticality of 10 MW pebble-bed high temperature gas-cooled reactor-test module (HTR-10) was calculated with MVP. According to the characteristics of HTR-10, the Statistical Geometry Model of MVP was employed to describe the random arrangement of coated fuel particles in the fuel pebbles and the random distribution of the fuel and dummy pebbles in the core. Compared with previous results from VSOP and MCNP, the MVP results with JENDL-3.3 library were little more different, but the results with ENDF/B-Ⅵ.8 library were very close. The relative errors were less than 0.7%, compared with the first criticality experimental results. The study shows that MVP could be used in the physics calculations for pebble bed high temperature gas-cooled reactors. (authors)

  2. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  3. Scalable Multi-core Architectures Design Methodologies and Tools

    CERN Document Server

    Jantsch, Axel

    2012-01-01

    As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallalization of the computation and 3D integration technologies lead to distributed memory architectures. This book provides a current snapshot of industrial and academic research, conducted as part of the European FP7 MOSART project, addressing urgent challenges in many-core architectures and application mapping.  It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies. Describes trends towards distributed memory architectures and distributed power management; Integrates Network on Chip with distributed, shared memory architectures; Demonstrates novel design methodologies and frameworks for multi-core design space exploration; Shows how midll...

  4. Core design with respect to the safety concept

    International Nuclear Information System (INIS)

    Kollmar, W.

    1981-01-01

    In the present paper the following topics are dealt with: Principles of reactor core design and optimization, fuel management and safety concept for higher cycles and results of risk analyses (e.g. rod ejection, steam line break etc.) (RW)

  5. CopperCore, an Open Source IMS Learning Design Engine

    NARCIS (Netherlands)

    Vogten, Hubert

    2004-01-01

    The presentation gives an overview of the approach of the development programme of the OTEC department towards the development of Open Source. The CopperCore IMS Learning Design engine is described as an example of this approach.

  6. Improvement of SSR core design for ABWR-II

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Okada, Hiroyuki; Kitamura, Hideya; Sakurada, Koichi; Tanabe, Akira

    2003-01-01

    In order to enhance the spectral shift effect in the ABWR-II reactor, a novel core design to bring out better performance of spectral shift rods (SSRs) is studied. The SSR is a new type of water rod, in which the water level develops naturally during operation and changes according to the coolant flow rate through the channel. By using the SSR, the average moderator density, which is directly related to core reactivity, can be controlled over a wide range by the core flow rate. In the new SSR core design, two types of SSR bundles, in which settings for the SSR water levels are different, are utilized and loaded according to flow distribution in the core. This two-region SSR core design allows wide variation in the average SSR water level, thus improving fuel economy. Enhancement of SSR function in the two-region SSR core increases the uranium saving factor by about 25%, from the 6% of the conventional uniform SSR core to about 8%. (author)

  7. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  8. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  9. Review on JMTR safety design for LEU core conversion

    International Nuclear Information System (INIS)

    Komori, Yoshihiro; Yokokawa, Makoto; Saruta, Toru; Inada, Seiji; Sakurai, Fumio; Yamamoto, Katsumune; Oyamada, Rokuro; Saito, Minoru

    1993-12-01

    Safety of the JMTR was fully reviewed for the core conversion to low enriched uranium fuel. Fundamental policies for the JMTR safety design were reconsidered based on the examination guide for safety design of test and research reactors, and safety of the JMTR was confirmed. This report describes the safety design of the JMTR from the viewpoint of major functions for reactor safety. (author)

  10. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  11. Development of digital I&C system in HTR-PM

    International Nuclear Information System (INIS)

    Shi Guilian

    2014-01-01

    Conclusions: HTR-PM DCS has been under execution for 5 years( 2009-2014) . It has taken CTEC 150 man/year so far. With close cooperation with INET, Chinergyand Shanghai Electric, CTEC overcame difficulties, like iterative design, voluminous customization work, new technology, and lacking of drawings. However, the accomplishment of the planned milestones prepared CTEC for the following work in HTR-PM DCS. 1. The 1ST integrated DCS, including safety DCS, non-safety DCS, DEH supplied by Chinese supplier. Rod control system and DEH are integrated in non-safety DCS. Simplified interface, integrated platform, and easy to use and maintenance. 2. CTEC obtained knowledge of 4th generation HTR-PM digital I&C, key design technology, and riched its DCS products by participation in HTRPM. HTR-PM Safety DCS project provided valuable experience for CTEC’s development and application of FIRMSYS, a safety protection control system platform. 3. The qualification solution by customized HTR-PM safety DCS prototype helps simply safety DCS design, V&V, qualification and safety review of the actual system, but results in some problems in system upgrade and maintenance. With the satisfactory application of FIRMSYS in 1000mw PWR and platform qualification , the future HTR-PM safety DCS could be provided based on a qualified safety DCS platform.

  12. Forming Core Elements for Strategic Design Management

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2007-01-01

    . This evolution also leads to a demand for precise definitions of the values and qualities that can be used as managing tools in common building practice and it puts the traditional architectural design process under pressure. This paper outlines an approach to architectural quality as dealt with in the design...... and how the architectural potentials are realized when dealing with modern industrial processes are examined. To analyse and structure the empirical data, a model was developed consisting of four approaches for action. The approaches are categorized along different dichotomies in order to point out...... the model was tested in the architectural education at the Royal Danish Academy of Fine Arts - School of Architecture. The overall research project has two aims - to help offices identify the characteristics and specific methods of working with architectural quality in an industrialized context...

  13. A Minimum Shuffle Core Design Strategy for ESBWR

    International Nuclear Information System (INIS)

    Karve, A.A.; Fawcett, R.M.

    2008-01-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)

  14. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  15. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  16. Reverse depletion method for PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kim, Y.J.

    1985-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. Prospects for even greater use of in-board fresh fuel loading are good as utilities seek to reduce core vessel fluence, mitigate pressurized thermal shock concerns, and extend vessel lifetime. Consequently, large numbers of burnable poison (BP) pins are being used to control the power peaking at the in-board fresh fuel positions. This has presented an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of BP pins in the fresh fuel. A procedure was developed that utilizes the well-known Haling depletion to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and BP distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provide for the maximum utility to PWR core reload design

  17. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  18. Optimization of reload core design for PWR

    International Nuclear Information System (INIS)

    Shen Wei; Xie Zhongsheng; Yin Banghua

    1995-01-01

    A direct efficient optimization technique has been effected for automatically optimizing the reload of PWR. The objective functions include: maximization of end-of-cycle (EOC) reactivity and maximization of average discharge burnup. The fuel loading optimization and burnable poison (BP) optimization are separated into two stages by using Haling principle. In the first stage, the optimum fuel reloading pattern without BP is determined by the linear programming method using enrichments as control variable, while in the second stage the optimum BP allocation is determined by the flexible tolerance method using the number of BP rods as control variable. A practical and efficient PWR reloading optimization program based on above theory has been encoded and successfully applied to Qinshan Nuclear Power Plant (QNP) cycle 2 reloading design

  19. GFR fuel and core pre-conceptual design studies

    International Nuclear Information System (INIS)

    Chauvin, N.; Ravenet, A.; Lorenzo, D.; Pelletier, M.; Escleine, J.M.; Munoz, I.; Bonnerot, J.M.; Malo, J.Y.; Garnier, J.C.; Bertrand, F.; Bosq, J.C.

    2007-01-01

    The revision of the GFR core design - plate type - has been undertaken since previous core presented at Global'05. The self-breeding searched for has been achieved with an optimized design ('12/06 E'). The higher core pressure drop was a matter of concern. First of all, the core coolability in natural circulation for pressurized conditions has been studied and preliminary plant transient calculations have been performed. The design and safety criteria are met but no more margin remains. The project is also addressing the feasibility and the design of the fuel S/A. The hexagonal shape together with the principle of closed S/A (wrapper tube) is kept. Ceramic plate type fuel element combines a high enough core power density (minimization of the Pu inventory) and plutonium and minor actinides recycling capabilities. Innovative for many aspects, the fuel element is central to the GFR feasibility. It is supported already by a significant R and D effort also applicable to a pin concept that is considered as the other fuel element of interest. This combination of fuel/core feasibility and performance analysis, safety dispositions and performances analysis will compose the 'GFR preliminary feasibility' which is a project milestone at the end of the year 2007. (authors)

  20. Design and analysis of hot internals for the reactivity control and reserve shutdown units under test at the helium test facility - HTR2008-58159

    International Nuclear Information System (INIS)

    Beyer, E. J. J.; Craig, K. J.

    2008-01-01

    This paper describes the design process followed by Westinghouse Electric South Africa for the insertion of hot internals into the Reactivity Control System (RCS) and Reserve Shutdown System (RSS) Units Under Test (UUTs) at the Helium Test Facility (HTF) at Pelindaba (South Africa)). The aim of the UUTs is to allow the validation of the high temperature operation of the RCS and RSS systems for implementation into the proposed Demonstration Power Plant of the PBMR. The units use electrical heaters to obtain pebble-bed reactor thermal conditions for both the control rods and small absorber spheres (SAS) under a pressurized helium environment. Design challenges include providing for strength under elevated temperatures (900 deg. C maximum); pressure boundary integrity (9 MPa maximum); separation of different volumes (representing core barrel, reactor citadel and other Reactor Pressure Vessel (RPV) volumes); thermal protection of carbon steel vessels by using thermal insulation; allowing for diverse thermal expansion coefficients of different materials; allowing for de-pressurization events within the insulation and internals having access for temperature, pressure, stress and proximity sensors and electrical wiring through high pressure penetrations; and provision for assembly of the hot internals both on and off-site. thermal analyses using Computational Fluid Dynamics (CFD) were performed to evaluate both worst-case and operational conditions of the UUTs. Factors that were considered include thermal insulation properties, heat transfer modes (internal radiation, external radiation and natural convection, forced internal convection for cooling) and operating pressure (ranging from 1 to 9 MPa). The thermal design uses elements originally proposed for hot gas duct design. The results obtained show that the proposed design satisfies ASME VIII requirements of the pressure boundary and that all challenges are successfully met. (authors)

  1. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    significant failure is to be expected for the reference fuel particle during normal operation. It was found, however, that the sensitivity of the coating stress to the CO production in the kernel was large. The CO production is expected to be higher in DB fuel than in UO2 fuel, but its exact level has a high uncertainty. Furthermore, in the fuel performance analysis transient conditions were not yet taken into account. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high transuranic [TRU] content and high burn-up). Accomplishments of this work include: •Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel. •Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Uranium. •Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Modified Open Cycle Components. •Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Americium targets.

  2. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Boer, Brian; Ougouag, Abderrafi M.

    2011-01-01

    failure is to be expected for the reference fuel particle during normal operation. It was found, however, that the sensitivity of the coating stress to the CO production in the kernel was large. The CO production is expected to be higher in DB fuel than in UO2 fuel, but its exact level has a high uncertainty. Furthermore, in the fuel performance analysis transient conditions were not yet taken into account. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high transuranic (TRU) content and high burn-up). Accomplishments of this work include: (1) Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel. (2) Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Uranium. (3) Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Modified Open Cycle Components. (4) Core analysis of a HTR-MODULE design loaded with Deep-Burn fuel and Americium targets.

  3. Design of reactor internals in larger high-temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    Elter, C.

    1981-01-01

    In his paper, the author analyzes and summarizes the present state of the art with emphasis on the prototype reactor THTR 300 MWe, because in addition to spherical fuel elements, this type includes other features of future HTR design such as the same flow direction of cooland gas through the core. The paper on hand also elaborates design guidelines for reactor internals applicable with large HTR's of up to 1200 MWe. Proved designs will be altered so as to meet the special requirements of larger cores with spherical elements to be reloaded according to the OTTO principle. This paper is furthermore designed as a starting point for selective and swift development of reactor internals for large HTR's to be refuelled according to the OTTO principle. (orig./GL) [de

  4. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  5. HTR's role in process heat applications

    International Nuclear Information System (INIS)

    Kuhr, Reiner

    2008-01-01

    Advanced high-temperature nuclear reactors create a number of new opportunities for nuclear process heat applications. These opportunities are based on the high-temperature heat available, smaller reactor sizes, and enhanced safety features that allow siting close to process plants. Major sources of value include the displacement of premium fuels and the elimination of CO 2 emissions from combustion of conventional fuels and their use to produce hydrogen. High value applications include steam production and cogeneration, steam methane reforming, and water splitting. Market entry by advanced high-temperature reactor technology is challenged by the evolution of nuclear licensing requirements in countries targeted for early applications, by the development of a customer base not familiar with nuclear technology and related issues, by convergence of oil industry and nuclear industry risk management, by development of public and government policy support, by resolution of nuclear waste and proliferation concerns, and by the development of new business entities and business models to support commercialization. New HTR designs may see a larger opportunity in process heat niche applications than in power given competition from larger advanced light water reactors. Technology development is required in many areas to enable these new applications, including the commercialization of new heat exchangers capable of operating at high temperatures and pressures, convective process reactors and suitable catalysts, water splitting system and component designs, and other process-side requirements. Key forces that will shape these markets include future fuel availability and pricing, implementation and monetization of CO 2 emission limits, and the formation of international energy and environmental policy that will support initiatives to provide the nuclear licensing frameworks and risk distribution needed to support private investment. This paper was developed based on a plenary

  6. A Core Design Approach Aimed at Sustainability and Intrinsic Safety

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2013-01-01

    The comprehensive approach adopted for the core design of all LFRs investigated within the LEADER project, proved to effectively drive the design to the fulfillment of the aimed sustainability performances, and the respect of the design constraints for the robust implementation of the inherent safety principle: • the ELFR core is able to operate adiabatically, with a very narrow reactivity swing along a 2.5 y cycle; • wide margins are provided for protecting the fuel and the structures even in case of unprotected transients, allowing for very long grace times

  7. Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.

  8. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  9. Test facilities for HTR, (2)

    International Nuclear Information System (INIS)

    Ishizuka, Hiroshi; Hayakawa, Hitoshi; Miki, Toshiya.

    1981-01-01

    The core of the multi-purpose high temperature gas-cooled experimental reactor is a circular column as a whole, in which the columns of stacked graphite blocks of hexagonal prism are arranged. The blocks in a column are doweled so as not to move horizontally, but adjacent columns vibrate while colliding mutually at the time of an earthquake because there is a gap between them. For the purpose to know the vibrating characteristics of a column surrounded by gap, Fuji Electric Co., Ltd., carried out the experiment. The tested column, the testing setup and the test result are reported. The distribution of flow rate in the core must be clarified, and the design data must be established early for confirming the feasibility of core design. The core structure tester was installed in Japan Atomic Energy Research Institute. The 1/2.75 scale model of the reactor bed was used, and the sealing performance of the block assemblies was tested. The sealing tester is related also to the distribution of flow rate in the core, and the basic performance of seal elements and the cross flow in fuel blocks were tested. The one-column tester and the seal element/two-column tester, the piping unit and the blower filter unit compose this tester. (Kako, I.)

  10. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  11. Objectives for an HTR R and D physics programme

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, I; Scott, J A

    1973-10-15

    The paper reviews important objectives for an HTR R and D programme and the importance of particular characteristics for safety and reactor performance is discussed. Uncertainties in the physics characteristics influence reactor design through the inclusion of design margins and contingency allowances and may even eliminate certain design variants. The paper discusses quantitatively the relationship between some important uncertainties and reactor design and operating costs and derives targets for the precision with which it should be possible to compute the corresponding physics characteristics. To extrapolate to power reactor conditions, the need for a comprehensive computational scheme validated by an adequate experimental programme is emphasised. The reduction in uncertainty as the theoretical and experimental reactor physics development proceeds in order to meet the desired target uncertainty is illustrated with respect to the UK's programme in support of the low enriched HTR concept. The current situation for this concept is discussed and compared briefly with that for the Th cycle HTR for which somewhat less zero energy experimental data are available. (auth)

  12. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  13. EC-funded project (HTR-L) for the definition of a European safety approach for HTR's

    International Nuclear Information System (INIS)

    Ehster, S.; Dominguez, M.T.; Coe, I.; Brinkmann, G.; Lensa, W. von; Mheen, W. van der; Alessandroni, C.; Pirson, J.

    2002-01-01

    The inherent safety features of the HTRs make events leading to severe core damage highly unlikely and constitute the main differentiating aspects compared to LWRs. While a known and stable regulatory environment has long been established for Light Water Reactors, a different approach is necessary for the licensing of HTR based power plants. Among the R and D projects funded by the European Commission for HTR reactors, the HTR-L project is dedicated to the definition of a common and coherent European safety approach and the identification of the main licensing issues for the licensing framework of the Modular HTRs. Other specific objectives of this project are : To develop a methodology to classify the accidental conditions; To define the preliminary requirements for the confinement of radioactive products and to assess the need for a 'conventional' containment structure; To establish a SSC (2) classification and to define the rules for equipment qualification; To identify the key issues that need to be addressed in the licensing process of the HTRs; To organize a workshop with the concerned Safety Authorities at the end of the project. This paper will explain the project objectives and its final expected outcomes. (author)

  14. Turbo-machine deployment of HTR-10 GT

    International Nuclear Information System (INIS)

    Zhu Shutang; Wang Jie; Zhang Zhengming; Yu Suyuan

    2005-01-01

    As a testing project of gas turbine modular High Temperature Gas-cooled Reactor (HTGR), HTR-10GT has been studied and developed by Institute of Nuclear and New Energy Technology (INET) of Tsinghua University after the success of HTR-10 with steam turbine cycle. The main purposes of this project are to demonstrate the gas turbine modular HTGR, to optimize the deployment of Power Conversion Unit (PCU) and to verify the techniques of turbo-machine, operating modes and controlling measures. HTR-10GT is concentrated on the PCU design and the turbo-machine deployment. Possible turbo-machine deployments have been investigated and two of them are introduced in this paper. The preliminary design for the turbo-machine of HTR-10GT is single-shaft of vertical layout, arranged by the side of the reactor and the turbo-compressor rotary speed was selected to be 250 s -1 (15000 r/min) by considering the efficiency of turbo-compressor blade systems, the strength conditions and the mass and size characteristics of the turbo-compressor. The rotor system will be supported by electromagnetic bearings (EMBs) to curb the possible pollutions of the primary loop. Of all the components in this design, the high speed turbo-generator seems to be a world-wide technical nut. As an alternative design, a gearbox complex is used to reduce the rotary speed from the turbo-compressor 250 s -1 to 50 s -1 so that the ordinary generator can be used. (authors)

  15. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    Crambes, M.

    1980-01-01

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  16. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  17. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  18. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  19. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  20. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  1. Design and economic implications of heterogeneity in an LMFBR core

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1983-01-01

    Much emphasis is currently being placed in LMFBR design on reducing both the capital cost and the fuel cycle cost of an LMFBR to insure its economic competativeness without a rapid increase in the uranium prices. In this study the relationship between two core design options, their neutronic consequences, and their effect on fuel cycle cost are analyzed. The two design options are the selection of pin diameter and the degree of heterogeneity. In the case of a heterogeneous core, with a low sodium void reactivity worth this ratio of fertile internal blanket to driver assemblies is generally about 0.40. However, some advantages of cores with heterogeneity of 0.08 to 0.2 for a fixed pin diameter have been reported

  2. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wu Zongxin; Wang Dazhong; Xu Yuanhui; Sun Yuliang; Li Fu; Dong Yujie

    2009-01-01

    After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MW th high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10. Due to intensive engineering and R and D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled. The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MW th pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW. A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line. The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures. According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started. After the successful operation of the demonstration plant

  3. Calculation of the Fission Product Release for the HTR-10 based on its Operation History

    International Nuclear Information System (INIS)

    Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.-J.

    2014-01-01

    Since the first criticality of the HTR-10 test reactor in 2000, a rather complex operation history was performed. As the HTR-10 is the only pebble bed reactor in operation today delivering experimental data for HTR simulation codes, an attempt was made to simulate the whole reactor operation up to the presence. Special emphasis was put on the fission product release behaviour as it is an important safety aspect of such a reactor. The operation history has to be simulated with respect to the neutronics, fluid mechanics and depletion to get a detailed knowledge about the time-dependent nuclide inventory. In this paper we report about such a simulation with VSOP 99/11 and our new fission product release code STACY. While STACY (Source Term Analysis Code System) so far was able to calculate the fission product release rates in case of an equilibrium core and during transients, it now can also be applied to running-in-phases. This coupling demonstrates a first step towards an HCP Prototype. Based on the published power histogram of the HTR-10 and additional information about the fuel loading and shuffling, a coupled neutronics, fluid dynamics and depletion calculation was performed. Special emphasis was put on the complex fuel-shuffling scheme within both VSOP and STACY. The simulations have shown that the HTR-10 up to now generated about 2580 MWd while reshuffling the core about 2.3 times. Within this paper, STACY results for the equilibrium core will be compared with FRESCO-II results being published by INET. Compared to these release rates, which are based on a few user defined life histories, in this new approach the fission product release rates of Ag-110m, Cs-137, Sr-90 and I-131 have been simulated for about 4000 tracer pebbles with STACY. For the calculation of the HTR-10 operation history time-dependent release rates are being presented as well. (author)

  4. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  5. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  6. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  7. Core design methodology and software for Temelin NPP

    International Nuclear Information System (INIS)

    Havluj, F; Hejzlar, J.; Klouzal, J.; Stary, V.; Vocka, R.

    2011-01-01

    In the frame of the process of fuel vendor change at Temelin NPP in the Czech Republic, where, starting since 2010, TVEL TVSA-T fuel is loaded instead of Westinghouse VVANTAGE-6 fuel, new methodologies for core design and core reload safety evaluation have been developed. These documents are based on the methodologies delivered by TVEL within the fuel contract, and they were further adapted according to Temelin NPP operational needs and according to the current practice at NPP. Along with the methodology development the 3D core analysis code ANDREA, licensed for core reload safety evaluation in 2010, have been upgraded in order to optimize the safety evaluation process. New sequences of calculations were implemented in order to simplify the evaluation of different limiting parameters and output visualization tools were developed to make the verification process user friendly. Interfaces to the fuel performance code TRANSURANUS and sub-channel analysis code SUBCAL were developed as well. (authors)

  8. Status of experimental data for the VHTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The VHTR (Very High Temperature Reactor) is being emerged as a next generation nuclear reactor to demonstrate emission-free nuclear-assisted electricity and hydrogen production. The VHTR could be either a prismatic or pebble type helium cooled, graphite moderated reactor. The final decision will be made after the completion of the pre-conceptual design for each type. For the pre-conceptual design for both types, computational tools are being developed. Experimental data are required to validate the tools to be developed. Many experiments on the HTGR (High Temperature Gas-cooled Reactor) cores have been performed to confirm the design data and to validate the design tools. The applicability and availability of the existing experimental data have been investigated for the VHTR core design in this report.

  9. PGSFR Core Thermal Design Procedure to Evaluate the Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Kim, Sang-Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Korea Atomic Energy Research Institute (KAERI) has performed a SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal design is to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damage in SFR subassemblies arises from a creep induced failure. The creep limit is evaluated based on the maximum cladding temperature, power, neutron flux, and uncertainties in the design parameters, as shown in Fig. 1. In this work, the core thermal design procedures are compared to verify the present PGSFR methodology based on the nuclear plant design criteria/guidelines and previous SFR thermal design methods. The PGSFR core thermal design procedure is verified based on the nuclear plant design criteria/guidelines and previous methods in LWRs and SFRs. The present method aims to directly evaluate the fuel cladding failure and to assure more safety margin. The 2 uncertainty is similar to 95% one-side tolerance limit of 1.96 in LWRs. The HCFs, ITDP, and MCM reveal similar uncertainty propagation for cladding midwall temperature for typical SFR conditions. The present HCFs are mainly employed from the CRBR except the fuel-related uncertainty such as an incorrect fuel distribution. Preliminary PGSFR specific HCFs will be developed by the end of 2015.

  10. Strengths, weaknesses, opportunities and threats for HTR deployment in Europe

    International Nuclear Information System (INIS)

    Bredimas, Alexandre; Kugeler, Kurt; Fütterer, Michael A.

    2014-01-01

    High temperature nuclear reactors are a technology, of which early versions were demonstrated in the 1960s–1980s in Germany (AVR, THTR) and the United States (Peach Bottom, Fort St. Vrain). HTRs were initially designed for high temperature, high efficiency electricity generation but the technology, the market and the targeted applications have evolved since then to address industrial cogeneration and new operational conditions (in particular new safety regulations). This paper intends to analyse the latest status of HTR today, as regards their intrinsic strengths and weaknesses and their external context, whether positive (opportunities) or negative (threats). Different dimensions are covered by the analysis: technology status, results from R and D programmes (especially in Europe), competences and skills, licensing aspects, experience feedback from demonstrator operation (in particular in Germany), economic conditions and other non-technical aspects. Europe has a comprehensive experience in the field of HTR with capabilities in both pebble bed and prismatic designs (R and D, engineering, manufacturing, operation, dismantling, and the full fuel cycle). Europe is also a promising market for HTR as the process heat market is large with good industrial and cogeneration infrastructures. The analysis of the European situation is to a good deal indicative for the global potential of this technology

  11. Core designs for the de-regulated market

    International Nuclear Information System (INIS)

    Almberger, J.; Bernro, R.; Pettersson, H.

    1999-01-01

    Complete text of publication follows: The electricity market deregulation in the Nordic countries encourages innovations and cost reductions for power production in the Vattenfall reactors. The competition on the electricity market is strong, electricity price reductions dramatic and uncertainties about the future power demand is large. In the fuel area this situation has given increased attention to traditional areas like flexibility in power production, improved core designs, need for margins (improved fuel designs), improved surveillance, decreased lead times. At Vattenfall new fuel designs are already being implemented following the last fuel purchase, for which flexibility and margins, were given high values in the evaluations with the multipurpose task of eliminating fuel related problems and meeting the future market situation. This strategy has given Vattenfall a flying start to meeting the demands of the de-regulated market. What has been added are broad studies undertaken to investigate the various route into the future with respect to finding the most effective strategies for fuel and core design and optimization. In the present paper the Vattenfall priorities for fuel designs and margins are presented in a schematic manner summarizing the results of the last fuel purchase and also presenting the current program for LFAs. Technical limitations, licensing and R and D aspects, with respect to improving the fuel utilization will be mentioned. The main focus in the paper is on the broad study carried out in the PWR core design area. Driven by the relatively low power demand various possibilities for higher production flexibility have been investigated specifically extended coast-down, coast-up and yearly load follow. Further to reduce the costs for fuel consumption improvements in core designs have been studied: improved low leakage loading patterns, low enriched end zones, improved Gd designs etc. Main results and conclusions of the core design studies will

  12. High Performance Systolic Array Core Architecture Design for DNA Sequencer

    Directory of Open Access Journals (Sweden)

    Saiful Nurdin Dayana

    2018-01-01

    Full Text Available This paper presents a high performance systolic array (SA core architecture design for Deoxyribonucleic Acid (DNA sequencer. The core implements the affine gap penalty score Smith-Waterman (SW algorithm. This time-consuming local alignment algorithm guarantees optimal alignment between DNA sequences, but it requires quadratic computation time when performed on standard desktop computers. The use of linear SA decreases the time complexity from quadratic to linear. In addition, with the exponential growth of DNA databases, the SA architecture is used to overcome the timing issue. In this work, the SW algorithm has been captured using Verilog Hardware Description Language (HDL and simulated using Xilinx ISIM simulator. The proposed design has been implemented in Xilinx Virtex -6 Field Programmable Gate Array (FPGA and improved in the core area by 90% reduction.

  13. Does the HTR module have a chance for the future?

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1989-01-01

    The HTR module was developed as a robust and market-orientated heat source for a wide spectrum of applications. Its technology is largely based on that of the AVR. The choice of a low power density and the small core geometry permit thorough use to be made of the favourable safety characteristics and give an extra-ordinarily high degree of passive safety. There are possibilities for its introduction into the international market at present, particularly in the USSR and the People's Republic of China. (orig.)

  14. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  15. Design criteria for high-temperature-affected, metallic and ceramic components, and for the prestressed concrete reactor pressure vessel of future HTR systems. Final report. Vol. 1-4

    International Nuclear Information System (INIS)

    1988-08-01

    This work in five separate volumes reports on the elaboration of basic data for the formulation of design criteria for HTR components and is arranged into the four following subject areas : (1) safety-specific limiting conditions; (2) metallic components; (3) prestressed concrete reactor pressure vessels; (4) graphitic reactor internals. Under item 2, the mechanical and physical characteristics of the materials X20CrMoV 12 1, X10NiCrAlTi 32 20, and NiCr23Co12Mo are examined up to temperatures of 950deg C. Stress-strain rate laws are elaborated for description of the inelastic deformation behavior. The representation of the subject area reactor pressure vessels deals with four main topics: Prestressed concrete support structure, liner, vessel closures, thermal protection system. Quality-assurance classes are defined under item 4 for graphitic components and load levels for load categories. The material evaluation is discussed in detail (e.g. manufacturing monitoring from the raw material to the graphitization and manufacturing testing up to the acceptance test). In addition, the corrosion behavior and irradiation behavior of graphite is examined and rules for computation of stresses in irradiated and unirradiated graphitic components are elaborated. (MM) [de

  16. New design on air-core resistive NMR imaging magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Mingwu, Fan; Yixin, Miao

    1984-08-01

    A new type of NMR imaging air-core resistive magnet is designed. Based on the BIM Magnetostatic calculation the resultant four equiradial coils structure with optimized shapes of cross section possesses a larger spherical working volume obviously, comparing with the common four-coils imaging magnet. The manufacturing tolerance is also calculated.

  17. 300 MWe Burner Core Design with two Enrichment Zoning

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il

    2008-01-01

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has been also performed. In the early stage of the development of a fast reactor, the main purpose is an economical use of a uranium resource but nowadays in addition to the maximum utilization of a uranium resource, the burning of a high level radioactive waste is taken as an additional interest for the harmony of the environment. In way of constructing the commercial size reactor which has the power level ranging from 800 MWe to 1600 MWe, the demonstration reactor which has the power level ranging from 200 MWe to 600 MWe was usually constructed for the midterm stage to commercial size reactor. In this paper, a 300 MWe burner core design was performed with purpose of demonstration reactor for KALIMER-600 burner of 600 MWe. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in design of KALIMER-600 burner, the 2 enrichment zoning approach was adapted

  18. Status of the HTR programme in France

    International Nuclear Information System (INIS)

    Ballot, B.; Gauthier, J.C.; Hittner, D.; Lebrun, J.Ph.; Lecomte, M.; Carre, F.; Delbecq, J.M.

    2007-01-01

    AREVA is convinced that HTR (High Temperature Reactor) is not in competition with large LWRs for electricity generation, and that its actual added value is its potential for addressing cogeneration and industrial process heat production. Therefore AREVA launched in 2004 the ANTARES programme for a pre-conceptual design study, with the support of EDF and together with a large research and development programme needed for the design in close collaboration with Cea. The pre-conceptual phase was finalized end of 2006. The specific feature of AREVA's concept, which distinguishes it from other ones, is its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important being the design flexibility to adapt readily to combined heat and power applications, with a standardised nuclear heat source as independent as possible of the versatile process heat applications with which it is coupled. Standardisation should expedite licensing. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The reactor module produces 600 MWth which can be split into the required process heat, the remaining power driving an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful energy

  19. A 3-D inelastic analysis of HTR graphite structures and a comparison with A 2-D approach

    International Nuclear Information System (INIS)

    Willaschek, J.

    1979-01-01

    In High Temperature Reactor Cores (HTR) a large number of elements are constructed of nuclear graphite. The dimensions of the graphite components are limited by stresses and strains resulting from thermal loads, irradiation induced dimensional changes and stress-dependent irradiation creep. Therefore it is necessary to examine the feasibility of design concepts with regard to the structural integrity of the material. This paper presents an analysis of a radial reflector concept for use in a 3000 MWth HTR for process heat production. This concept of a pebble bed reactor (OTTO cycle) requires reflector dimensions and shapes which have previously not been used and which may exceed acceptable stress limits. Graphite reflector elements in a HTR are subject to a high fluence of fast neutrons. The fluence varies spatially within an element. Irradiation-induced strains occur which in turn vary non-linearly with the fluence. At low fluences the graphite shrinks. With increasing fluence shrinkage is saturated and after a 'turn-around' point the graphite begins to swell. The net effect of fluence gradient and irradiation-induced strain is a 'necking' of the element which moves radially outwards with time. In this paper a three-dimensional inelastic analysis of a graphite block with the above deformation history is described. The influence of irradiation on dimensional stability and other material properties was taken into account. Numerical results were obtained with the finite-element computer code ADINA, modified at INTERATOM for the task in hand. The radial reflector block was modelled using 21-node three-dimensional continuum elements of elastic-creep material. The element stiffness matrices were calculated using the standard 2x2x2 Gauss integration; material nonlinearities with quadratic displacement functions and linearised initial strains were employed. (orig.)

  20. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  1. ASTRID core: Design objectives, design approach, and R&D in support

    International Nuclear Information System (INIS)

    Mignot, G.; Devictor, N.

    2012-01-01

    ASTRID core design is mainly guided by safety objectives: 1. Prevention of the core meltdown accident: To prevent meltdown accidents: - by a natural behavior of the core and the reactor (no actuation of the two shutdown systems); - with adding passive complementary systems if natural behavior is not sufficient for some transient cases. 2. Mitigation of the fusion accident: To garantee that core fusion accidents don’t lead to significant mechanical energy release, whatever initiator event: - by a natural core behavior; - with adding specific mitigation dispositions in case of natural behavior is not suffficient

  2. Reactivity control in HTR power plants with respect to passive safety system. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-12-01

    The R and D and Demonstration of the High Temperature Reactor (HTR) is described in overview. The HTR-MODULE power plant, as the most advanced concept, is taken for the description of the reactivity control in general. The idea of the ``modularization of the core`` of the HTR has been developed as the answer on the experiences of the core melt accident at Three Miles Island. The HTR module has two shutdown systems: The ``6 rods``-system for hot shutdown at the ``18 small absorber pebbles units`` - system for cold shutdown. With respect to the definition of ``Passive Systems`` of IAEA-TECDOC-626 the total reactivity control system of the HTR-MODULE is a passive system of category D, because it is an emergency reactor shutdown system based on gravity driven rods, and devices, activated by fail-safe trip logic. But reactivity control of the HTR does not only consist of these engineered safety system but does have a self-acting stabilization by the negative temperature coefficient of the reactivity, being rather effective in reactivity control. Examples from computer calculations are presented, and, in addition, experimental results from the ``Stuck Rod Experiment`` at the AVR reactor in Juelich. On the basis of this the proposal is made that ``self-acting stabilization as a quality of the function`` should be discussed as a new category in addition to the active and passive engineered safety systems, structures and components of IAEA-TECDOC-626. The requirements for a future ``catastrophe-free`` nuclear technology are presented. In the appendix the 7th amendment of the atomic energy act of the Federal Republic of Germany, effective 28 July 94, is given. (author).

  3. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    Yang Guojun; Xu Yang; Shi Zhengang; Gu Huidong

    2005-01-01

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  4. GCRA review and appraisal of HTGR reactor-core-design program

    International Nuclear Information System (INIS)

    1980-09-01

    The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation

  5. Survey of appropriate endothermic processes for association with the HTR

    International Nuclear Information System (INIS)

    Brown, G.; Harrison, G.E.; Gent, C.W.; Plummer, J.

    1975-01-01

    Emphasis is placed on association of the HTR system as a heat source with chemical processes requiring temperatures up to 850 to 900 0 C, corresponding to a reactor coolant temperature of 950 0 C, though processes requiring temperatures up to 1100 0 C and above are reviewed. Particular attention is given to processes for the production of hydrogen-containing gases, including coal/lignite gasification which has been the subject of a recent study. Rising fuel prices make the HTR an attractive proposition if design concepts and materials can be developed to match the requirements. Other appropriate endothermic processes considered are oil processing, including tar sands and shales, and also energy production. Since the full temperature range of the reactor system must be utilised mention is made of low grade heat uses. Even very large chemical works have relatively small energy requirement by nuclear heat standards and adoption of the HTR as a heat source is likely only if it is associated with a large chemical/metallurgical complex or with the processing of a natural resource. (author)

  6. Intelligent system for conceptural design of new reactor cores

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1995-01-01

    The software system IRDS has been developed at Japan Atomic Energy Research Institute to support the conceptual design of a new type of reactor core in the fields of neutronics, thermohydraulics, and fuel behavior. IRDS involves various analysis codes, database, and man-machine interfaces that efficiently support a whole design process on a computer. The main purpose of conceptual design is to decide an optimal set of basic design parameters. Designers usually carry out many parametric survey calculations and search a design window (DW), which is a feasible parameter range satisfying design criteria and goals. An automatic DW search function is installed to support such works. The man-machine interface based on menu windows will enable nonspecialists to use various analysis codes easily

  7. Notes on HTR applications in methanol production

    International Nuclear Information System (INIS)

    Santoso, B.; Barnert, H.

    1997-01-01

    Notes on the study of HTR applications are presented. The study in particular should be directed toward the most feasible applications of HTR for process heat generation. A prospective study is the conversion of CO 2 gas from Natuna to methanol or formic acid. Further studies needs to be deepened under the auspices of IAEA and countries that have similar interest. (author). 3 refs, 3 figs

  8. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  9. Adaption of the PARCS Code for Core Design Audit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong Chol; Lee, Young Jin; Uhm, Jae Beop; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of); Jeong, Hun Young; Ahn, Seunghoon; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The eigenvalue calculation also includes quasi-static core depletion analyses. PARCS has implemented variety of features and has been qualified as a regulatory audit code in conjunction with other NRC thermal-hydraulic codes such as TRACE or RELAP5. In this study, as an adaptation effort for audit applications, PARCS is applied for an audit analysis of a reload core design. The lattice physics code HELIOS is used for cross section generation. PARCS-HELIOS code system has been established as a core analysis tool. Calculation results have been compared on a wide spectrum of calculations such as power distribution, critical soluble boron concentration, and rod worth. A reasonable agreement between the audit calculation and the reference results has been found.

  10. The Renewal of HTR Development in Europe

    International Nuclear Information System (INIS)

    Hittner, Dominique

    2002-01-01

    The European HTR-Technology Network (HTR-TN), created in 2000, presently groups 20 organisations from European nuclear research and industry for developing the technologies of direct-cycle modular HTRs, which presently raise a large world-wide interest, because of their high potential for economic competitiveness, natural resource sparing, safety and minimisation of the waste impacts, in line with the goals of sustainable development of Generation IV. All aspects of HTR technologies are addressed by HTR-TN, from the reactor physics to the development of materials, fuel and components. Most of this activity is supported by the European Commission in the frame of its 5. EURATOM Framework Programme. The first results of HTR-TN programme are given: the analysis of the reactor physics international benchmark on the commissioning tests of HTTR (Japan), the long term behaviour of spent HTR fuel in geologic disposal conditions, the preparation of a very high burnup fuel irradiation and the development of fabrication processes for producing high performance coated particles, etc. (authors)

  11. Core design study on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Hiroshi, Akie; Yoshihiro, Nakano; Toshihisa, Shirakawa; Tsutomu, Okubo; Takamichi, Iwamura

    2002-01-01

    The conceptual core design study of reduced-moderation water reactors (RMWRs) with tight-pitched MOX-fuelled lattice has been carried out at JAERI. Several different RMWR core concepts based on both BWR and PWR have been proposed. All the core concepts meet with the aim to achieve both a conversion ratio of 1.0 or larger and negative void reactivity coefficient. As one of these RMWR concepts, the ABWR compatible core is also proposed. Although the conversion ratio of this core is 1.0 and the void coefficient is negative, the discharge burn-up of the fuel was about 25 GWd/t. By adopting a triangular fuel pin lattice for the reduction of moderator volume fraction and modifying axial Pu enrichment distribution, it was aimed to extend the discharge burn-up of ABWR compatible type RMWR. By using a triangular fuel lattice of smaller moderator volume fraction, discharge burn-up of 40 GWd/t seems achievable, keeping the high conversion ratio and the negative void coefficient. (authors)

  12. Means, methods and performances of the AREVA's HTR compact controls

    International Nuclear Information System (INIS)

    Banchet, J.; Guillermier, P.; Tisseur, D.; Vitali, M. P.

    2008-01-01

    In the AREVA's HTR development program, the reactor plant is composed of a prismatic core containing graphite cylindrical fuel elements, called compacts, where TRISO particles are dispersed. Starting from its past compacting process, the latter being revamped through the use of state of the art equipments, CERCA, 100% AREVA NP's subsidiary, was able to recover the quality of past compacts production. The recovered compacting process is composed of the following manufacturing steps: graphite matrix granulation, mix between the obtained granulates and particles, compacting and calcining at low pressure and temperature. To adapt this past process to new manufacturing equipments, non destructive examination tests were carried out to assess the compact quality, the latter being assessed via in house developed equipments and methods at each step of the design of experiments. As for the manufacturing process, past quality control methods were revamped to measure compact dimensional features (diameter, perpendicularity and cone effect), visual aspect, SiC layer failure fraction (via anodic disintegration and burn leach test) and homogeneity via 2D radiography coupled to ceramography. Although meeting quality requirements, 2D radiography method could not provide a quantified specification for compact homogeneity characterization. This limitation yielded the replacement of this past technique by a method based on X-Ray tomography. Development was conducted on this new technique to enable the definition of a criterion to quantify compact homogeneity, as well as to provide information about the distances in between particles. This study also included a comparison between simulated and real compacts to evaluate the accuracy of the technique as well as the influence of particle packing fraction on compact homogeneity. The developed quality control methods and equipments guided the choices of manufacturing parameters adjustments at the development stage and are now applied for

  13. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  14. Design and analysis of PCRV core cavity closure

    International Nuclear Information System (INIS)

    Lee, T.T.; Schwartz, A.A.; Koopman, D.C.A.

    1980-05-01

    Design requirements and considerations for a core cavity closure which led to the choice of a concrete closure with a toggle hold-down as the design for the Gas-Cooled Fast Breeder Reactor (GCFR) plant are discussed. A procedure for preliminary stress analysis of the closure by means of a three-dimensional finite element method is described. A limited parametric study using this procedure indicates the adequacy of the present closure design and the significance of radial compression developed as a result of inclined support reaction

  15. Overview of PEC core design and requirements for PEC core restraint systems

    International Nuclear Information System (INIS)

    Cecchini, F.

    1984-01-01

    The Italian PEC reactor is an experimental loop type fast reactor of 120 MW thermal. Its main purpose is the in-pile development of fast reactor fuel. The mechanical principles in PEC core design and current modifications to ensure a safe seismic perturbation and shutdown are discussed in this paper. These anti-seismic modifications are aimed to limit the extent of reactivity perturbation during the seismic event and to guarantee control rod entry at any time during the seismic event

  16. Multicavity PCPVs for HTR and GCFR systems

    International Nuclear Information System (INIS)

    Eadie, D.Mc.D.

    1979-01-01

    There is little extra to report since the presentation of the paper 180/75 Multicavity PCPVs for HTR and GCFR Systems by P.L.T. Morgan and J.N. Bradbury at the International Conference on Experience in the Design, Construction and Operation of Prestressed Concrete Pressure Vessels and Containments for Nuclear Reactors at York, England, in September 1975. The paper presented at the York Conference demonstrated how a particular mode of behaviour could develop in a very local region between the pods and the external wall of a multicavity pressure vessel. Two main points emerge from the paper presented at York - 1. Local analysis for equilibrium of parts of the structure are as important as analysis of the general structural behaviour. With modern computer techniques, in which crack propagation and plasticity may be included, the development of local critical areas can be observed, but the idealisation of the structure has to be sufficiently refined and the cost will be high; 2. Criteria for acceptance of a design must be realistic and must be continually reviewed in the light of the trends of design philosophy. In conclusion, some pictures of model tests demonstrate the physical reality of the mode of failure described in the paper

  17. First Results for Fluid Dynamics, Neutronics and Fission Product Behaviour in HTR applying the HTR Code Package (HCP) Prototype

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Kasselmann, S.; Xhonneux, A.; Lambertz, D.

    2014-01-01

    To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT are fed back into a new spectrum code of the HCP. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT–3D. Comparisons will be shown against data generated by the legacy codes VSOP99/11, NAKURE and FRESCO-II. (author)

  18. First results for fluid dynamics, neutronics and fission product behavior in HTR applying the HTR code package (HCP) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J., E-mail: h.j.allelein@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH Aachen University, 52064 Aachen (Germany); Kasselmann, S.; Xhonneux, A.; Tantillo, F.; Trabadela, A.; Lambertz, D. [Forschungszentrum Jülich, 52425 Jülich (Germany)

    2016-09-15

    To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT lead to new cross sections, which are fed back into MGT-3D. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT-3D. Comparisons will be shown against data generated by SERPENT and the legacy codes VSOP99/11, NAKURE and FRESCO-II.

  19. Designing the colorectal cancer core dataset in Iran

    Directory of Open Access Journals (Sweden)

    Sara Dorri

    2017-01-01

    Full Text Available Background: There is no need to explain the importance of collection, recording and analyzing the information of disease in any health organization. In this regard, systematic design of standard data sets can be helpful to record uniform and consistent information. It can create interoperability between health care systems. The main purpose of this study was design the core dataset to record colorectal cancer information in Iran. Methods: For the design of the colorectal cancer core data set, a combination of literature review and expert consensus were used. In the first phase, the draft of the data set was designed based on colorectal cancer literature review and comparative studies. Then, in the second phase, this data set was evaluated by experts from different discipline such as medical informatics, oncology and surgery. Their comments and opinion were taken. In the third phase refined data set, was evaluated again by experts and eventually data set was proposed. Results: In first phase, based on the literature review, a draft set of 85 data elements was designed. In the second phase this data set was evaluated by experts and supplementary information was offered by professionals in subgroups especially in treatment part. In this phase the number of elements totally were arrived to 93 numbers. In the third phase, evaluation was conducted by experts and finally this dataset was designed in five main parts including: demographic information, diagnostic information, treatment information, clinical status assessment information, and clinical trial information. Conclusion: In this study the comprehensive core data set of colorectal cancer was designed. This dataset in the field of collecting colorectal cancer information can be useful through facilitating exchange of health information. Designing such data set for similar disease can help providers to collect standard data from patients and can accelerate retrieval from storage systems.

  20. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  1. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  2. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  3. Analysis of aging mechanism and management for HTR-PM reactor pressure vessel

    International Nuclear Information System (INIS)

    Sun Yunxue; Shao Jin

    2015-01-01

    Reactor pressure vessel is an important part of the reactor pressure boundary, its important degree ranks high in ageing management and life assessment of nuclear power plant. Carrying out systematic aging management to ensure reactor pressure vessel keeping enough safety margins and executing design functions is one of the key factors to guarantee security and stability operation for nuclear power plant during the whole lifetime and prolong life. This paper briefly introduces the structure and aging mechanism of reactor pressure vessel in pressurized water reactor nuclear power plant, and introduces the design principle and structure characteristics of HTR-PM. At the same time, this paper carries out preliminary analysis and exploration. and discusses aging management of HTR-PM reactor pressure vessel. Finally, the advice of carring out aging management for HTR-PM reactor pressure vessel is proposed. (authors)

  4. Hyper-heuristic applied to nuclear reactor core design

    International Nuclear Information System (INIS)

    Domingos, R P; Platt, G M

    2013-01-01

    The design of nuclear reactors gives rises to a series of optimization problems because of the need for high efficiency, availability and maintenance of security levels. Gradient-based techniques and linear programming have been applied, as well as genetic algorithms and particle swarm optimization. The nonlinearity, multimodality and lack of knowledge about the problem domain makes de choice of suitable meta-heuristic models particularly challenging. In this work we solve the optimization problem of a nuclear reactor core design through the application of an optimal sequence of meta-heuritics created automatically. This combinatorial optimization model is known as hyper-heuristic.

  5. Simulated annealing algorithm for reactor in-core design optimizations

    International Nuclear Information System (INIS)

    Zhong Wenfa; Zhou Quan; Zhong Zhaopeng

    2001-01-01

    A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened

  6. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  7. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-01

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  8. The Research Status for Decommissioning and Radioactive Waste Minimization of HTR-PM

    International Nuclear Information System (INIS)

    Li Wenqian; Li Hong; Cao Jianzhu; Tong Jiejuan

    2014-01-01

    Decommissioning of the high-temperature gas-cooled reactor-pebble bed module (HTR-PM) as a part of the nuclear power plant, is very important during the early design stage of the construction, and it is under study and research currently. This article gives a thorough description of the current decommissioning study status of HTR-PM. Since HTR-PM has its features such as adopting a large amount of graphite, the waste inventory and characterization will be quite different from other type of reactors, new researches should be carried out and good lessons of practices and experiences should be learned from international other reactors, especially the AVR. Based on the new international regulations and Chinese laws, a comprehensive decommissioning program should be proposed to guarantee the HTR-PM will succeed in every stage of the decommissioning, such as defueling, decontamination, dismantling, demolition, waste classification and disposal, etc. In the meantime, the minimization of the radioactive waste should be taken into account during the whole process - before construction, during operation and after shut down. In this article, the decommissioning strategy and program conception of HTR-PM will be introduced, the radiation protection consideration during the decommissioning activities will be discussed, and the research on the activation problem of the decommissioning graphite will be introduced. (author)

  9. HTR fuel modelling with the ATLAS code. Thermal mechanical behaviour and fission product release assessment

    International Nuclear Information System (INIS)

    Guillermier, Pierre; Daniel, Lucile; Gauthier, Laurent

    2009-01-01

    To support AREVA NP in its design on HTR reactor and its HTR fuel R and D program, the Commissariat a l'Energie Atomique developed the ATLAS code (Advanced Thermal mechanicaL Analysis Software) with the objectives: - to quantify, with a statistical approach, the failed particle fraction and fission product release of a HTR fuel core under normal and accidental conditions (compact or pebble design). - to simulate irradiation tests or benchmark in order to compare measurements or others code results with ATLAS evaluation. These two objectives aim at qualifying the code in order to predict fuel behaviour and to design fuel according to core performance and safety requirements. A statistical calculation uses numerous deterministic calculations. The finite element method is used for these deterministic calculations, in order to be able to choose among three types of meshes, depending on what must be simulated: - One-dimensional calculation of one single particle, for intact particles or particles with fully debonded layers. - Two-dimensional calculations of one single particle, in the case of particles which are cracked, partially debonded or shaped in various ways. - Three-dimensional calculations of a whole compact slice, in order to simulate the interactions between the particles, the thermal gradient and the transport of fission products up to the coolant. - Some calculations of a whole pebble, using homogenization methods are being studied. The temperatures, displacements, stresses, strains and fission product concentrations are calculated on each mesh of the model. Statistical calculations are done using these results, taking into account ceramic failure mode, but also fabrication tolerances and material property uncertainties, variations of the loads (fluence, temperature, burn-up) and core data parameters. The statistical method used in ATLAS is the importance sampling. The model of migration of long-lived fission products in the coated particle and more

  10. Neutronic design of the XT-ADS core

    International Nuclear Information System (INIS)

    Van den Eynde, G.

    2007-01-01

    The EUROTRANS project is an integrated project in the 6th European Framework Program in the context of Partitioning and Transmutation. The objective of this project is the step-wise approach to a European Transmutation Demonstration. This project aims to deliver an advanced design of a small-scale Accelerator Driven System (ADS), XT-ADS, as well as the conceptual design of a European Facility for Industrial Transmutation (EFIT). The partners of this project accepted to use the MYRRHA Draft-2 design file as a starting basis for the design of the short-term XT-ADS demonstration machine. Instead of starting from a blank page, this allowed optimising an existing design towards the needs of XT-ADS, and this within the accepted limits of the safety requirements. Many options have been revisited and the framework is now set up. The main two objectives of the XT-ADS machine are the following: to demonstrate the feasibility of the ADS concept and to perform as a multi-purpose irradiation facility. Special attention is paid to the possibility of testing fuel dedicated to transmutation of minor actinides and long-life fission products. During the demonstration phase, the core will be loaded with MOX fuel in a clean core configuration. Since the XT-ADS must be a representative prototype, it has to operate at a reasonable power, a minimum of 50 MWth was set in the objectives. After this phase, the core will house In-Pile-Sections of different types for irradiating material samples, new types of fuel pins. We aim to be able to provide irradiation conditions that are close to EFIT conditions so XT-ADS can be used as a test-bed for EFIT parts

  11. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  12. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  13. The HTR-PM Plant Full Scope Training Simulator

    International Nuclear Information System (INIS)

    Wang Junsan; Wang Yuding; Zhou Shuyong; Cai Ruizhong; Cao Jianting

    2014-01-01

    This paper describes the technical aspects of the Full Scope Training Simulator developed for HTR-PM Plant in Shidao Bay, Shandong Province, China. An overview of the HTR-PM plant and simulator structure is presented. The models developed for the simulator are discussed in detail. Some important verification tests have been conducted on the HTR-PM Plant Training Simulator. (author)

  14. Postirradiation examination of HTR fuel

    International Nuclear Information System (INIS)

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances

  15. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  16. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings

    International Nuclear Information System (INIS)

    Zhao Jingxiong; Yang Guojun; Li Yue; Yu Suyuan

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved. (authors)

  17. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  18. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  19. The properties of spherical fuel elements and its behavior in the modular HTR

    International Nuclear Information System (INIS)

    Lohnert, G.H.; Ragoss, H.

    1985-01-01

    The reference fuel element for all future HTR applications in the Federal Republic of Germany as developed by NUKEM/HOBEG in the framework of the 'High temperature Fuel-Cycle Project' had to be scrutinised for its compatibility with all the other design principles of the modular HTR, or possibly for restrictions forced upon reactor layout. This reference fuel element can be characterized by the following features: moulded spherical fuel element of 60 mm in diameter with fuel free shell of 5 mm thickness, based on carbon matrix; low enriched uranium (U/Pu fuel cycle); UO 2 fuel kernels; TRISO coating (pyrocarbon and additional SiC layers)

  20. MCNP qualification on the HTR critical configurations: HTTR, HTR10 and PROTEUS results

    Energy Technology Data Exchange (ETDEWEB)

    TRAKAS, Christos; STOVEN, Gilles [AREVA NP, Tour Areva, 92084 Paris La Defence Cedex (France)

    2008-07-01

    Recent critical experiments, including PROTEUS, HTTR and HTR-10 provide a reliable qualification base for HTR criticality predictions. The fuel tested in these experiments, be it hexagonal block or pebble type, is irradiated in a spectrum comparable to that of the HTR planned by AREVA NP. The neutron spectrum is comparable in all three cases; the mean C/M value for all critical cases is less than +350 pcm (JEF2.2), +250 pcm (JEFF3.1) and +60 pcm (ENDF BVI). The C/M obtained for the rods worth, the reaction rates and the isothermal coefficient are very satisfactory. (authors)

  1. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  2. LFR core design for prevention & mitigation of severe accidents

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2012-01-01

    Conclusions: • Aiming at fully complying Gen-IV safety requirements – even in case of Fukushima-like events –, prevention and mitigation strategies must be stressed in FR design. • The safety of Lead-cooled Fast Reactors can rely on intrinsic features due to the coolant, such as: • the practical impossibility of Lead boiling, hence the unreliability of core (only) voiding for wide safety margins, and the retention of corium; • the high density of lead, for the buoyancy of Control Rods (allowing their safe positioning below the core), and the dispersion of molten core up to the setting up of a “cold melting pot”. • the possibility to adopt wide coolant channels for encouraging natural circulation, without affecting the hardness of the neutron spectrum; • the hard neutron spectrum allows the adiabatic operation of LFRs (which implies minimal criticality swings even through long cycles) with small amounts of Mas (hence with a negligible detriment to the safety features); • an effective reduction of the coolant density effect simply through the shortening of the active height

  3. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  4. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  5. Core damage frequency (reactor design) perspectives based on IPE results

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.; Forester, J.A.

    1996-01-01

    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed

  6. Capital costs of modular HTR reactors

    International Nuclear Information System (INIS)

    Kugeler, K.; Froehling, W.

    1993-01-01

    A decisive factor in the introduction of a reactor line, in addition of its safety, which should exclude releases of radioactivity into the environment, is its economic development and, consequently, its competitiveness. The costs of the pressurized water reactor are used for comparison with the modular HTR reactor. If the measures proposed for evolutionary increases in safety of the PWR are taken, cost increases will have to be expected for that line. The modular HTR can now attain specific construction costs of 3000 deutschmarks per electric kilowatt. Mass production and the introduction of cost-reducing innovations can improve the economy of this line even further. In this way, the modular HTR concept offers the possibility to vendors and operators to set up new economic yardsticks in safety technology. (orig.) [de

  7. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  8. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  9. Constructive and thermal design of a core fast discharge

    International Nuclear Information System (INIS)

    Schroer, H.

    1979-08-01

    The present study is concerned with the development and thermal design of a fast discharge system for balls for the PR 3000 MWsub(th) process heat reactor. The term 'fast discharge system for balls' denotes a very short-time discharge procedure of the entire core contents, i.e. the flowing out of the fuel elements due to gravity into a receiver tank underneath the prestressed-concrete vessel. From a safety-engineering point of view, the fast discharge system for balls constitutes an additional possibility of active decay heat removal, besides the multiply redundant and diversitary reactor protection system, serving to further reduce the remaining residual risk. A fast discharge system for balls, however, is to be used only in the event of all the other possibilities of active decay heat removal having failed and when the maximum permissible temperatures for particularly exposed primary circuit components have been reached. However, the application range of such a system is restricted exclusively to high-temperature reactors with spherical fuel elements; the procedure cannot be applied to other reactor systems because of the rigidly fixed position of the fuel elements inside the core and for reasons of fuel element geometry. Besides the purpose of application, the influence of in-core temperature development on the possible actuation of the fast discharge system is being described in particular detail. This is followed by a description of the structural and thermal design of three specific major components, i.e. the piping system, shut-off devices and fuel element receiver tank, which will have to be installed additionally for the implementation of a fast discharge system for balls as compared to previous plant concepts. (orig.) [de

  10. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    Science.gov (United States)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  11. Viability of HTR-10 as a Primary Driver of an Energy Complex for Remote Settlement

    International Nuclear Information System (INIS)

    Choong, Philip T.

    2014-01-01

    HTR-10, a proven 10 MWt prototype pebble bed reactor, is capable of generating 4 MWe to the power grid. However; with evolutional power upgrades, its output performance can be substantially enhanced to drive an energy complex to co-generate electricity, hydrogen, desalinated water and process heat for a remote island or settlement of several thousand people. Unlike the much publicized SMR power concepts in the literature, HTR-10 is the only full-blown stand-alone power system that has been demonstrated to be inherently safe and capable of high temperature output. Furthermore, this particular HTR family of reactors is proliferation-resistant and possesses many desirable market-competitive advantages such as high thermal efficiency, low thermal pollution, zero carbon footprints and minimal exclusion zones. An innovative classroom project course is structured to stimulate science and engineering students to explore novel use of HTR-10 as a high temperature heat source to be the core of an intelligent zero emission energy (Smart-ZEE) module capable of providing all energy needs of a remote community or island. (author)

  12. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  13. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  14. A study on the advanced statistical core thermal design methodology

    International Nuclear Information System (INIS)

    Lee, Seung Hyuk

    1992-02-01

    A statistical core thermal design methodology for generating the limit DNBR and the nominal DNBR is proposed and used in assessing the best-estimate thermal margin in a reactor core. Firstly, the Latin Hypercube Sampling Method instead of the conventional Experimental Design Technique is utilized as an input sampling method for a regression analysis to evaluate its sampling efficiency. Secondly and as a main topic, the Modified Latin Hypercube Sampling and the Hypothesis Test Statistics method is proposed as a substitute for the current statistical core thermal design method. This new methodology adopts 'a Modified Latin Hypercube Sampling Method' which uses the mean values of each interval of input variables instead of random values to avoid the extreme cases that arise in the tail areas of some parameters. Next, the independence between the input variables is verified through 'Correlation Coefficient Test' for statistical treatment of their uncertainties. And the distribution type of DNBR response is determined though 'Goodness of Fit Test'. Finally, the limit DNBR with one-sided 95% probability and 95% confidence level, DNBR 95/95 ' is estimated. The advantage of this methodology over the conventional statistical method using Response Surface and Monte Carlo simulation technique lies in its simplicity of the analysis procedure, while maintaining the same level of confidence in the limit DNBR result. This methodology is applied to the two cases of DNBR margin calculation. The first case is the application to the determination of the limit DNBR where the DNBR margin is determined by the difference between the nominal DNBR and the limit DNBR. The second case is the application to the determination of the nominal DNBR where the DNBR margin is determined by the difference between the lower limit value of the nominal DNBR and the CHF correlation limit being used. From this study, it is deduced that the proposed methodology gives a good agreement in the DNBR results

  15. Control rod repositioning considerations in core design analysis

    International Nuclear Information System (INIS)

    Armstrong, B.C.; Buechel, R.J.

    1990-01-01

    Control rod repositioning is a method for minimizing rod cluster control assembly (RCCA) wear in the upper internals area where the guide cards interface with the rodlets of the RCCAs. A number of utilities have implemented strategies for rod repositioning, which often has no impact on the nuclear analysis for cases where the control rods are never repositioned into the active fuel. Other strategies involve repositioning the control rods several steps into the active fuel. The impact of this type of repositioning on the axial power shape and consequently the total peaking factor F Q T varies, depending on the method in which the repositioning is implemented at the plant. Operating for long periods with all the control and shutdown rods inserted several steps in the active fuel followed by withdrawing them fully from the core results in a shifting of the power distribution toward the top of the core and must be accounted for in the design analysis. On the other hand, an optional plan for control rod repositioning that considers margins available in related design parameters can be devised that minimizes the effects of the repositioning for the reload. This paper summarizes a rod repositioning strategy implemented for a recent reload and some calculated power shape results for this strategy and other scenarios

  16. Actinide production in different HTR-fuel cycle concepts

    International Nuclear Information System (INIS)

    Filges, D.; Hecker, R.; Mirza, N.; Rueckert, M.

    1978-01-01

    At the 'Institut fuer Reaktorentwicklung der Kernforschungsanlage Juelich' the production of α-activities in the following HTR-OTTO cycle concepts were studied: 1. standard HTR cycle (U-Th); 2. low enriched HTR cycle (U-Pu); 3. near breeder HTR cycle (U-Th); 4. combined system (conventional and near breeder HTR). The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The calculations were performed by the short depletion code KASCO and the well-known ORIGEN program

  17. Stock-taking of the safety design of the nuclear power plant with HTR 1160 and the radiation exposure connected with its operation

    International Nuclear Information System (INIS)

    Drescher, H.P.; Geiser, H.; Roedder, P.; Dagbjartsson, S.; Ernst, H.; Ledermann, H.; Hecke, R. van.

    1976-06-01

    The study comprises: 1) Environmental pollution due to radioactive emissions; 2) personnel exposure during operation, maintenance, inspection, and repair; 3) environmental pollution due to the closing of the fuel cycle; 4) safety requirements; 5) state of the art of safety design; 6) reliability analyses; 7) the importance of the testability of systems and components relevant for safety. (HP) 891 HP [de

  18. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  19. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    the microspheres prepared by various methods were mainly controlled by either the porosity inside the microspheres or the degradation of materials, which could, therefore, lead to different release behaviours. This results indicated great potential of the PLGA microsphere formulation as an injectable depot for controllable in vivo release profile via rational core phase design. Core/shell microspheres fabricated by modified double emulsification-solvent evaporation methods, with various inner phases, to obtain high loading drugs system, as well as appropriate release behaviours. Accordingly, control in vivo release profile via rational core phase design.

  20. Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism

    International Nuclear Information System (INIS)

    Lim, Hong Sik; Kim, Min Hwan

    2009-01-01

    The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used

  1. Maintaining a technology-neutral approach to hydrogen production process development through conceptual design of the next generation nuclear plant - HTR2008-58191

    International Nuclear Information System (INIS)

    Patterson, M. W.; Park, C. V.

    2008-01-01

    The Energy Policy Act of 2005 (EPAct) charges the Dept. of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP - a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process down-selection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology road-maps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability. (authors)

  2. Exploring Many-Core Design Templates for FPGAs and ASICs

    Directory of Open Access Journals (Sweden)

    Ilia Lebedev

    2012-01-01

    Full Text Available We present a highly productive approach to hardware design based on a many-core microarchitectural template used to implement compute-bound applications expressed in a high-level data-parallel language such as OpenCL. The template is customized on a per-application basis via a range of high-level parameters such as the interconnect topology or processing element architecture. The key benefits of this approach are that it (i allows programmers to express parallelism through an API defined in a high-level programming language, (ii supports coarse-grained multithreading and fine-grained threading while permitting bit-level resource control, and (iii reduces the effort required to repurpose the system for different algorithms or different applications. We compare template-driven design to both full-custom and programmable approaches by studying implementations of a compute-bound data-parallel Bayesian graph inference algorithm across several candidate platforms. Specifically, we examine a range of template-based implementations on both FPGA and ASIC platforms and compare each against full custom designs. Throughout this study, we use a general-purpose graphics processing unit (GPGPU implementation as a performance and area baseline. We show that our approach, similar in productivity to programmable approaches such as GPGPU applications, yields implementations with performance approaching that of full-custom designs on both FPGA and ASIC platforms.

  3. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  4. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  5. An evaluation of the results of the HTR fuel programme conducted in the Dragon reactor experiment

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1982-01-01

    The Dragon Reactor Experiment was used over a period of ten years to investigate the behaviour of HTR fuel elements under realistic service conditions. The purpose of the work was to develop fuel capable of meeting the requirements of commercial power reactors. The studies divided into areas concerned with the mechanical behaviour of the graphite core structure under fast neutron irradiation and the ability of the coated particle fuel to retain fissile products over commercially viable life-cycles. (author)

  6. Study on the shuffling scheme in HTR-10 MW test module

    International Nuclear Information System (INIS)

    Jing Xingqing; Zhang Xu; Luo Jingyu

    1993-01-01

    The shuffling ways, once through then out and multiple through then out, in HTR-10 MW Test Module are studied. Multiple through then out is better than once through with regard to rational use of the fuel and flattening the power. The behaviour of equilibrium core and loss of coolant accident is analyzed. The results indicate that characteristic features of the multiple through then out could be better to satisfy the demands of safety criterions

  7. Reactor physics calculations on HTR type configurations

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.).

  8. Reactor physics calculations on HTR type configurations

    International Nuclear Information System (INIS)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.)

  9. PRELIMINARY RESULTS OF THE AGC-4 IRRADIATION IN THE ADVANCED TEST REACTOR AND DESIGN OF AGC-5 (HTR16-18469)

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gas Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results

  10. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  11. Ideas to Design an in situ Diamond Drilling Core Splitter within Soft ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... the wireline system of core barrel assembly and the device used in splitting of core ... Keywords: Design, In situ, Diamond drilling, Core splitter, Wireline system .... This is the most complex part of the core barrel and has many.

  12. Fast reactor calculational route for Pu burning core design

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    This document provides a description of a calculational route, used in the Reactor Physics Research Section for sensitivity studies and initial design optimization calculations for fast reactor cores. The main purpose in producing this document was to provide a description of and user guides to the calculational methods, in English, as an aid to any future user of the calculational route who is (like the author) handicapped by a lack of literacy in Japanese. The document also provides for all users a compilation of information on the various parts of the calculational route, all in a single reference. In using the calculational route (to model Pu burning reactors) the author identified a number of areas where an improvement in the modelling of the standard calculational route was warranted. The document includes comments on and explanations of the modelling assumptions in the various calculations. Practical information on the use of the calculational route and the computer systems is also given. (J.P.N.)

  13. Design studies of back up cores for the experimental multi-purpose VHTR, (1)

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu

    1982-09-01

    For the Experimental Multi-Purpose Very High Temperature Reactor, design studies have been made of two backup cores loaded with new type fuel elements. The purpose is to improve core operational characteristics of the standard design core (Mark-III core) consisting of pin-in-block type fuel element having externally cooled hollow fuel rods. The first backup core (semi-pin fuel core) is composed of fuel elements with internally cooled fuel pins, and the second core (multihole fuel core) is composed of multihole fuel elements, which can be adopted for the experimental VHTR as the substitution of the standard Mark-III fuel element. Either of the cores has 73 fuel columns and 4 m height. The arrangement of active core and reactor internal structure is same as that in the standard design core. These backup cores meet almost all design requirements of the VHTR and increase the margins for some important design items in comparison with the standard core (Mark-III core). This report describes the overall characteristics of nuclear, thermal-hydraulic, fuel and safety, and structural consideration for these cores. (author)

  14. Calculation and analysis of a HTR-pebble-bed reference core in the low enriched (U, Pu)- and (U, Th)-cycle with the new modular programme system DRACULA-II

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1975-12-01

    A short description of the programme system is given. Investigations are undertaken on the burn-up and temperature dependence of the resonance adsorption and the flux lowering in a fuel ball as well as the influence of the heterogeneous fuel distribution in a ball-shaped fuel element on the neutron spectrum. The feedback of these effects on the burn-up behaviour is analysed in the subsequent calculations of the above-mentioned reference cores. Beyond this a comparison of the DRAKULA II results with the VSOP calculations for these reference cores is performed and discussed. Especially the new graphical plotting possibility has to be mentioned for the burn-up and load condition of individual fuel element balls during their flow through the core in addition with the netto balance of the isotope vector at their removal from the reactor. (orig.) [de

  15. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  16. The Hitrex Programme: unperturbed HTR lattice and control rod measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beynon, A J; Nunn, D L

    1972-06-15

    Reactivity, power distributions, plutonium production and fast neutron graphite damage are being studied at Berkeley Nuclear Laboratories (BNL) on the HTR 'Hitrex' reactor under cold clean conditions. Rod interactions, important in assessing local criticality hazards, are receiving special attention in the measurements. The proposals for the first two series of measurements on Hitrex are discussed in this note, Hitrex 1a being the unperturbed reactor, and Hitrex 1b the same fuel array but with a number of different control absorber loadings in it. Common to both series will be cross pin, cross block and cross core measurements of power rating, thermal spectrum and damage dose distributions, so that these will be known as functions of the fuel, reflector and absorber environment.

  17. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    Science.gov (United States)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  18. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM

    Energy Technology Data Exchange (ETDEWEB)

    Yanhua, Zheng, E-mail: zhengyh@mail.tsinghua.edu.cn; Fubing, Chen; Lei, Shi

    2014-05-01

    Air ingress, one of the beyond design basis accidents for high temperature gas-cooled reactors, receives high attention during the design of the 250 MW pebble-bed modular high temperature gas-cooled reactor (HTR-PM), because it may result in severe consequence including the corrosion of the fuel element and graphite reflector. The diffusion process and the set-up time of the stable natural convection after the double-ended guillotine break of the hot-gas duct are studied in the paper. On the basis of the preliminary design of the HTR-PM and its DLOCA analysis results, the diffusion process, as well as the influence of the core temperature distribution and the length of the hot-gas duct, is studied with the DIFFLOW code, which adopts a one-dimension variable cross-section diffusion model with fixed wall temperature. To preliminarily estimate the influence of chemical reaction between oxygen and graphite, which will change the gas component of the mixture, the diffusion processes between the He/N{sub 2}, He/O{sub 2}, He/CO and He/CO{sub 2} are calculated, respectively. Furthermore, the code has been improved and the varying wall temperature can be simulated. The more accurate analysis is carried out with the changing temperature distribution from the DLOCA calculation. The analysis shows that there is enough time to adopt appropriate mitigation measures to stop the air ingress and the severe consequence of fuel element damage and large release of fission product can be avoided.

  19. Design Core Commonalities: A Study of the College of Design at Iowa State University

    Science.gov (United States)

    Venes, Jane

    2015-01-01

    This comprehensive study asks what a group of rather diverse disciplines have in common. It involves a cross-disciplinary examination of an entire college, the College of Design at Iowa State University. This research was intended to provide a sense of direction in developing and assessing possible core content. The reasoning was that material…

  20. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  1. Development of UCMS for Analysis of Designed and Measured Core Power Distribution

    International Nuclear Information System (INIS)

    Moon, Sang Rae; Hong, Sun Kwan; Yang, Sung Tae

    2009-01-01

    In this study, reactor core loading patterns were determined by calculating and verifying the factors affecting peak power and important core safety variables were reconciled with their design criteria using a newly designed unified core management system. Core loading patterns are designed for quadrant cores under the assumption that the power distribution of the reactor core is the same among symmetric fuel assemblies within the core. Actual core power distributions measured during core operation may differ slightly from their designed data. Reactor engineers monitor these differences between the designed and measured data by performing a surveillance procedure every month according to the technical specification requirements. It is difficult to monitor overall power distribution behavior throughout the assemblies using the current procedure because it requires the reactor engineer to compare the designed data with only the maximum value of the power peaking factor and the relative power density. It is necessary to enhance this procedure to check the primary variables such as core power distribution, because long cycle operation, high burnup, power up-rate, and improved fuel can change the environment in the core. To achieve this goal, a web-based Unified Core Management System (UCMS) was developed. To build the UCMS, a database system was established using reactor design data such as that in the Nuclear Design Report (NDR) and automated core analysis codes for all light water reactor power plants. The UCMS is designed to help reactor engineers to monitor important core variables and core safety margins by comparing the measured core power distribution with designed data for each fuel assembly during the cycle operation in nuclear power plants

  2. 78 FR 32988 - Core Principles and Other Requirements for Designated Contract Markets; Correction

    Science.gov (United States)

    2013-06-03

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 38 RIN 3038-AD09 Core Principles and Other... regarding Core Principles and Other Requirements for Designated Contract Markets by inserting a missing... regarding Core Principles and Other Requirements for Designated Contract Markets (77 FR 36612, June 19, 2012...

  3. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    International Nuclear Information System (INIS)

    Bomboni, Eleonora

    2008-01-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  4. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  5. HTR System Integration in Europe and South Africa

    International Nuclear Information System (INIS)

    Roelofs, Ferry; Ruer, J.; Cuadrado Garcia, P.; Cetnar, J.; Knoche, D.; Lapins, J.; Kasselman, S.; Stoker, P.; Fütterer, M.

    2014-01-01

    An HTR can be used for production of electricity and process heat. When these two applications are combined, a multitude of systems and components are needed. Whilst meeting the end user needs, this multitude of systems and components has to operate safely and economically. Therefore, within the framework of the European 7th framework program ARCHER project, a design schematic of a nuclear cogeneration system connected to a European and a South African industrial process is established and assessed. In order to provide an objective overview of the different indicators important for decision makers, the main characteristics with respect to the HTR system, the environment, safety, and economics are identified and compared to the characteristics of a modern gas turbine plant. In addition, a gap and SWOT analysis of a nuclear cogeneration system in Europe and South Africa are presented. In order to enable technical analysis of such a nuclear cogeneration system, a multitude of computer codes will be needed. Therefore, a code inventory is established of codes being used in Europe and South Africa for which the requirements for integration, development and qualification are assessed. (author)

  6. Accident situations tests HTR fuel with the device Kufa

    International Nuclear Information System (INIS)

    Kellerbauer, A. I.; Freis, D.

    2010-01-01

    The ceramic and ceramic-like coating materials in modern high-temperature reactor fuel are designed to ensure mechanical stability and retention of fission products under normal and transient conditions, regardless of the radiation damage sustained in-pile. In hypothetical depressurization and loss-of-forced-circulation (D LOFC) accidents, fuel elements of modular high-temperate reactors are exposed to temperatures several hundred degrees higher than during normal operation, causing increased thermo-mechanical stress on the coating layers. At the Institute for Transuranium Elements of the European Commission, a vigorous experimental program is being pursued with the aim of characterizing the performance of irradiated HTR fuel under such accident conditions. A cold finger device (Kufa), operational in ITUs hot cells since 2006, has been used to perform heating experiments on eight irradiated HTR fuel pebbles from the AVR experimental reactor and from dedicated irradiation campaigns at the High-Flux Reactor in Petten, the Netherlands. Gaseous fission products are collected in a cryogenic charcoal trap, while volatiles,are plated out on a water-cooled condensate plate. A quantitative measurement of the release is obtained by gamma spectroscopy. We highlight experimental results from the Kufa testing as well as the on-going development of new experimental facilities. (Author) 9 refs.

  7. Perspectives for the french R and D program for high and very high temperature reactors - HTR2008-58172

    International Nuclear Information System (INIS)

    Yvon, P.; Hittner, D.; Delbecq, J. M.

    2008-01-01

    A R and D programme has been launched addressing the needs of the development of an indirect cycle flexible modular HTR operating at 850 deg. C for electricity generation and/or heat production for industrial processes. In the frame of this program, several significant technical challenges required to demonstrate the viability and performance of the system have been successfully addressed. Design and safety analysis needed the development of computational tools, therefore reactor physics, and thermo-fluid dynamics codes have been developed and are now in the process of being validated in the frame of international code-to-code and code to experiment benchmarks. Most importantly, the performance of the HTR/VHTR fuel identified as TRISO-coated particle must prove to be excellent in operating as well as accidental conditions. A manufacturing and quality control process has been developed and now fuel qualification based on irradiation and heating safety tests is being prepared on the basis of irradiation programs in France and in the frame of the GENERATION IV International Forum (GIF) as well as the development of fuel behaviour models including performance data, failure particle prediction and long-term integrity of the coating. Material and component technologies have been investigated in normal and accident conditions for V/HTR objectives. Significant progress has been made for vessel structures and reactor core structural elements. Major challenges still lie ahead for plate type compact intermediate heat exchangers, especially at temperatures above 850 deg. C, but an alternative solution with helical tubes is also being developed. In order to demonstrate that materials have adequate performance over long service life under impure helium environment and constraints, the research programme focuses on microstructural and mechanical property data, long-term irradiation behaviour, corrosion, modelling and codification of design rules as well as qualification of

  8. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  9. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    than the analytic function. The second variation of the AFEN method we developed is the AFEN/PEN hybrid method. This method is designed especially for the multigroup reactor analysis. This hybrid method solves the diffusion equations for the fast energy groups by the PEN method, and those for the thermal energy groups by the AFEN method. This method is based on the observation that the fast group neutron flux distributions are generally so smooth that they can be approximated by a high-order polynomial and that, on the other hand, the thermal fluxes require the analytic function expansion for the representation of their strong gradients near the interface between assemblies having different neutronic properties. The results of benchmark problems on which this method was tested indicate that performance of the hybrid method is much better than that of the PEN method and is nearly the same to that of the AFEN method. In order for the AFEN method and its variations to be used in analyzing the neutron behavior in an actual reactor core, we also developed a new burnup correction model to reduce the errors in nodal flux distributions induced by the intranodal burnup gradients. It is essential for the nodal methods to maintain their accuracy in fuel depletion analysis. The burnup correction model developed in this study homogenizes equivalently the node with the burnup-induced cross section variations into the homogeneous node with the equivalent parameters such as the flux-volume-weighted constant cross sections and the discontinuity factors. The results of a benchmark problem show that this model eliminates almost all the errors in the nodal unknowns which are induced by the intranodal burnup gradients

  10. Core design for use with precision composite reflectors

    Science.gov (United States)

    Porter, Christopher C. (Inventor); Jacoy, Paul J. (Inventor); Schmitigal, Wesley P. (Inventor)

    1992-01-01

    A uniformly flexible core, and method for manufacturing the same, is disclosed for use between the face plates of a sandwich structure. The core is made of a plurality of thin corrugated strips, the corrugations being defined by a plurality of peaks and valleys connected to one another by a plurality of diagonal risers. The corrugated strips are orthogonally criss-crossed to form the core. The core is particularly suitable for use with high accuracy spherically curved sandwich structures because undesirable stresses in the curved face plates are minimized due to the uniform flexibility characteristics of the core in both the X and Y directions. The core is self venting because of the open geometry of the corrugations. The core can be made from any suitable composite, metal, or polymer. Thermal expansion problems in sandwich structures may be minimized by making the core from the same composite materials that are selected in the manufacture of the curved face plates because of their low coefficients of thermal expansion. Where the strips are made of a composite material, the core may be constructed by first cutting an already cured corrugated sheet into a plurality of corrugated strips and then secondarily bonding the strips to one another or, alternatively, by lying a plurality of uncured strips orthogonally over one another in a suitable jig and then curing and bonding the entire plurality of strips to one another in a single operation.

  11. Study on core flow distribution of the reference core design Mark-III of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Satoh, Sadao; Arai, Taketoshi; Miyamoto, Yoshiaki; Hirano, Mitsumasa

    1977-01-01

    Concerning the coolant flow distribution between fuel channels and other flow paths in the core, designated as Reference Core Mark-III of the Multi-purpose Experimental Very High Temperature Reactor, thermal analysis has been made of the control rods and other steel structures around the core to find the coolant flow rates (bypass flow) necessary to cool them to their safe operating temperatures. Calculations showed that adequate cooling could be achieved in the Mark-III Core by the bypass flow of 8% of the total reactor coolant flow, 4% each for the control-rod channels and for other structures. The thermal and coolant flow design bases, including the assumption of a 10% bypass flow, were thus confirmed to first approximation. (auth.)

  12. Conception of a modular HTR-process heat facility with optimization of the pressure level

    International Nuclear Information System (INIS)

    Bousack, H.

    1984-11-01

    The operation of a steam reformer heated by nuclear power with a process pressure of about 20 bar provides advantages with respect to process engineering due to the improved conversion and simplified product gas treatment for the follow-on process. The effects of a reduction in pressure on the components of the primary circuit in a modular HTR facility, as well as various process engineering possibilities for producing methanol in the follow-on process are discussed in this paper. Studies cover the influence of core geometry and power density, as well as possibilities of increasing the modular power at a maximum accident temperature of 1600 0 C. An inherently functioning area cooling system is proposed for afterheat removal outside the primary circuit. Based on the optimized pressure, a modular HTR process heat facility is conceived to produce methanol from natural gas and carbon dioxide basically satisfying the requirement of zero emission. (orig.) [de

  13. Neutronic design of a traveling wave reactor core

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2010-10-01

    The traveling wave reactor is an innovative kind of fast breeder reactor, capable of operate for decades without refueling and whose operation requires only a small amount of enriched fuel for the ignition. Also, one of its advantages is its versatility; it can be designed as small modules of about 100 M We or large scale units of 1000 M We. In this paper the behaviour of the traveling wave reactor core is studied in order to determine whether the traveling breeding/burning wave moves (as theoretically predicted) or not. To achieve this, we consider a two pieces cylinder, the first one, the ignition zone, containing highly enriched fuel and the second, the breeding zone, which is the larger, containing natural or depleted uranium or thorium. We consider that both zones are homogeneous mixtures of fuel, sodium as coolant and iron as structural material. We also include a reflector material outside the cylinder to reduce the neutron leakages. Simulations were run with MCNPX version 2.6 code. We observed that the wave does move as time passes as predicted by theory, and reactor remains supercritical in the time we have simulated (3000 days). Also, we found that thorium does not perform as well as uranium for breeding in this type of reactor. Further test with different reflectors are planned for both U-Pu and Th-U fuel cycles. (Author)

  14. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  15. PCTR experiments with HTR lattice in MARIUS

    Energy Technology Data Exchange (ETDEWEB)

    Gambier, G; Estiot, J C; de Lapperent, D; Laponche, B; Luffin, J; Morier, F

    1972-06-15

    PCTR experiments have been carried out in Marius III with HTR tubular fuel, enriched to around 1% in order to reach K{sub infinity} = 1 and to reduce the mass of poison. Three poisons were used - Aluminium, Copper and Vanadium. The effect of air was measured and corrections were made to the results to allow the effect of delayed neutrons and the effect of axial heterogeneities. Interpretation was made with APOLLO. (auth)

  16. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  17. The HTR, applications, economics and environmental aspects

    International Nuclear Information System (INIS)

    Barnert, H.; Schad, M.; Candeli, H.

    1990-01-01

    The High Temperature Reactor (HTR), as the only nuclear system producing high temperature heat up to 1000 deg. C, offers a wide variety of applications. Besides electricity production, via steam turbines and in future via gas turbines, there is: District heat with high efficiency, long distance energy for urban energy supply, high pressure injection steam production for enhanced oil recovery, medium range temperature heat direct application in chemical and related industry and last not least, high temperature application for the refinement of fossil energy carriers. Recent results of studies and programmes will be presented: Near term applications are identified, e.g. refineries and alumina industry with smaller HTR units. Another large market is the production of hydrogen, methanol and ammonia on the basis of natural gas, the relevant technology has been developed up to the pilot scale. The refinement of fossil energy carriers, in particular of coal, is subject of the R+D programme in the cooperation between German industrial companies and the Nuclear Research Center. The results are very promising and will be explained in detail. This programme will be continued. Objectives are: improvement of the technology and of the economics as well as environmental aspects, e.g. the reduction of emissions of carbon-dioxid. The topics of the programme deal with the different apparatus, e.g. steam methane reformer, steam coal gasifier, intermediate heat exchanger and last not least, the process heat HTR. (author)

  18. Relationship between the Toyo Tanso Group and HTR-PM

    International Nuclear Information System (INIS)

    Zhan Guobin; Konishi, Takashi

    2014-01-01

    IG-110 that is Isotropic graphite for nuclear applications, is the only product that is used for two types of High Temperature Gas-cooled Reactors, prismatic type HTTR and pebble-bed type HTR-10, that are currently in operation in the world. IG-110 is highly evaluated in the global market for its track record and physical stability. The Toyo Tanso Group won the contract to build graphite core internals for HTR-PM that is a world’s first modular pebble-bed high temperature gas-cooled demonstration reactor. A decision was made to manufacture IG-110 graphite materials at Toyo Tanso Japan called TTJ and to process products and undertake temporary assembly at Shanghai Toyo Tanso called STT. Manufacture of graphite materials for which TTJ is responsible has been completed. As the next step, processing of products is scheduled to commence at STT from this autumn. Our graphite materials were required to be 2,000 mm or more in maximum length. The number of graphite blocks required exceeded 3,500. Although the graphite structure requirements including configuration were highly challenging, we were able to meet all the requirements with our engineering capabilities, i.e. decades of track record in manufacture and stability in characteristics. STT that will start the machining process this autumn is equipped with state-of-the-art processing machines and three-dimensional measuring machines. Notably, STT has high levels of engineering capabilities to process and inspect tens of thousands of internal components for reactors in accordance with drawings and to temporarily assemble these components. (author)

  19. Results of a German probabilistic risk assessment study for the HTR-1160 concept

    International Nuclear Information System (INIS)

    Fassbender, J.; Kroeger, W.

    1981-01-01

    The paper reviews ''Accident Initiations and Progression Analysis'' methodology and results which applied to the German equivalent of the HTGR-1160 and German site conditions. The investigation of accidents contributing to risk was concentrated on those event sequences which lead to major release of core inventory or - with less importance - to release of plate-out activity together with coolant gas activity. With regard to release mechanisms severe HTR-accidents were grouped into: a) water ingress events with fission product release due to hydrolysis of defective coated particles and desorption of plate out activity and b) core heating events with fission product release after coated particle failure due to excessive temperatures

  20. Results of a German probabilistic risk assessment study for the HTR-1160 concept

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, J.; Kroeger, W. [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Nukleare Sicherheitsforschung

    1981-01-15

    The paper reviews ''Accident Initiations and Progression Analysis'' methodology and results which applied to the German equivalent of the HTGR-1160 and German site conditions. The investigation of accidents contributing to risk was concentrated on those event sequences which lead to major release of core inventory or - with less importance - to release of plate-out activity together with coolant gas activity. With regard to release mechanisms severe HTR-accidents were grouped into: a) water ingress events with fission product release due to hydrolysis of defective coated particles and desorption of plate out activity and b) core heating events with fission product release after coated particle failure due to excessive temperatures.

  1. The HTR-10 test reactor project and potential use of HTGR for non-electric application in China

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Xu Yuanhui; Wu Zhongxin

    1997-01-01

    Coal is the dominant source of energy in China. This use of coal results in two significant problems for China; it is a major burden on the train, road and waterway transportation infrastructures and it is a significant source of environmental pollution. In order to ease the problems caused by the burning of coal and to help reduce the energy supply shortage in China, national policy has directed the development of nuclear power. This includes the erection of nuclear power plants with water cooled reactors and the development of advanced nuclear reactor types, specifically, the high temperature gas cooled reactor (HTGR). The HTGR was chosen for its favorable safety features and its ability to provide high reactor outlet coolant temperatures for efficient power generation and high quality process heat for industrial applications. As the initial modular HTGR development activity within the Chinese High Technology Programme, a 10MW helium cooled test reactor is currently under construction on the site of the Institute of Nuclear Energy Technology northwest of Beijing. This plant features a pebble-bed helium cooled reactor with initial criticality anticipated in 1999. There will be two phases of high temperature heat utilization from the HTR-10. The first phase will utilize a reactor outlet temperature of 700 deg. C with a steam generator providing steam for a steam turbine cycle which works on an electrical/heat co-generation basis. The second phase is planned for a core outlet temperature of 900 deg. C to investigate a steam cycle/gas turbine combined cycle system with the gas turbine and the steam cycle being independently parallel in the secondary side of the plant. This paper provides a review of the technical design, licensing, safety and construction schedule for the HTR-10. It also addresses the potential uses of the HTGR for non-electric applications in China including process steam for the petrochemical industry, heavy oil recovery, coal conversion and

  2. Plant Operation Station for HTR-PM Low Power and Shutdown operation Probabilistic safety analysis

    International Nuclear Information System (INIS)

    Liu Tao; Tong Jiejuan

    2014-01-01

    Full range Probabilistic safety analysis (PSA) is one of key conditions for nuclear power plant (NPP) licensing according to the requirement of nuclear safety regulatory authority. High Temperature Gas Cooled Reactor Pebble-bed Module (HTR-PM) has developed construction design and prepared for the charging license application. So after the normal power operation PSA submitted for review, the Low power and Shutdown operation Probabilistic safety analysis (LSPSA) also begin. The results of LSPSA will together with prior normal power PSA results to demonstrate the safety level of HTR-PM NPP Plant Operation Station (POS) is one of important terms in LSPSA. The definition of POS lays the foundation for LSPSA modeling. POS provides initial and boundary conditions for the following event tree and fault tree model development. The aim of this paper is to describe the state-of-the-art of POS definition for HTR-PM LSPSA. As for the first attempt to the high temperature gas cooled reactor module plant, the methodology and procedure of POS definition refers to the LWR LSPSA guidance, and adds to plant initial status analysis due to the HTR-PM characteristics. A specific set of POS grouping vectors is investigate and suggested for HTR-PM NPP, which reflects the characteristics of plant modularization and on-line refueling. As a result, seven POSs are given according to the grouping vectors at the end of the paper. They will be used to the LSPSA modelling and adjusted if necessary. The papers ’work may provide reference to the analogous NPP LSPSA. (author)

  3. Optimal burnable poison utilization in PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.

    1986-01-01

    A method was developed for determining the optimal distribution and depletion of burnable poisons in a Pressurized Water Reactor core. The well-known Haling depletion technique is used to achieve the end-of-cycle core state where the fuel assembly arrangement is configured in the absence of all control poison. The soluble and burnable poison required to control the core reactivity and power distribution are solved for as unknown variables while step depleting the cycle in reverse with a target power distribution. The method was implemented in the NRC approved licensing code SIMULATE

  4. Design of the core support and restraint structures for FFTF and CRBRP

    International Nuclear Information System (INIS)

    Sutton, H.G.; Rylatt, J.A.

    1977-12-01

    This paper presents and compares the design and fabrication of the FFTF and CRBRP reactor structures which support and restrain the reactor core assemblies. The fabrication of the core support structure (CSS) for the FFTF reactor was completed October 1972 and this paper discusses how the fabrication problems encountered with the FFTF were avoided in the subsequent design of the CRBR CSS. The radial core restraint structure of the FFTF was designed and fabricated such that an active system could replace the present passive system which is segmented and relies on the CSS core barrel for total structure integrity to maintain core geometry. The CRBR core restraint structure is designed for passive restraint only, and this paper discusses how the combined strengths of the restraint structure former rings and the CSS core barrel are utilized to maintain core geometry. Whereas the CSS for the FFTF interfaces directly with the reactor core assemblies, the CRBR CSS does not. A comparison is made on how intermediate structures in CRBR (inlet modules) provide the necessary design interfaces for supporting and providing flow distribution to the reactor core assemblies. A discussion is given on how the CRBR CSS satisfied the design requirements of the Equipment Specification, including thermal transient, dynamic and seismic loadings, and results of flow distribution testing that supported the CRBR design effort. The approach taken to simplify fabrication of the CRBR components, and a novel 20 inch deep narrow gap weld joint in the CSS are described

  5. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S. [National Nuclear Energy Agency (Batan), PUSPIPTEK-Serpong Tangerang (Indonesia)

    2000-07-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  6. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S.

    2000-01-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  7. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  8. Application of neural network to multi-dimensional design window search in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1999-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)

  9. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Hah, Chang Joo; Ju, Cho Sung [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  10. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  11. Pulsed air-core deflector-magnet design parameters

    International Nuclear Information System (INIS)

    Jason, A.J.; Cooper, R.K.; Liebman, A.D.; Blind, B.; Koelle, A.R.

    1983-01-01

    The response of air-core magnets to pulsed excitation is dependent on the pulse frequency spectrum because of fields produced by induced currents in the magnet structure. We discuss this phenomenon quantitatively in terms of magnet performance optimization

  12. Uncertainty reevaluation of T/H parameters of HANARO core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Park, Cheol; Kim, Heo Nil; Chae, Hee Taek

    1999-03-01

    HANARO core was designed by statistical thermal design method which was generally applied to power plant design. However, reevaluation of core thermal margin reflecting design changes as well as experiences through commissioning and operation is necessary for safe operation of reactor. For this objective, the revision of data for T/H design parameters and the reevaluation of their uncertainties were performed. (Author). 30 refs., 7 figs.

  13. PEMODELAN TERAS UNTUK ANALISIS PERHITUNGAN KONSTANTA MULTIPLIKASI REAKTOR HTR-PROTEUS

    Directory of Open Access Journals (Sweden)

    Zuhair Zuhair

    2015-04-01

    with packing fraction of 5.76% without exclusive zone. Pebble bed core modeling was approximated by utilizing regular lattice of balls that are arranged as BCC lattice based on repeated cell generated from a numerous unit cell. The MCNP5 calculation results showed that excellent agreement with the experiment, although the HTRPROTEUS core predicted more reactive than the measurement, especially in cores 4.2 and 4.3. ENDF/B-VI library indicates consistency with the most accurate keff estimation compared to ENDF/B-V library, mainly ENDF/B-VI (66c. The deviation of calculated keff estimation with experiment is attributed to the consequence of specified graphite reflector composition. The comparison conducted shows that MCNP5 produces HTR-PROTEUS core keff is more precise compared to the results of MCNP4B and MCNP-BALL. These results concluded that the success of this modeling methodology justifies MCNP5 application for other pebble bed reactor analysis. Keywords: HTR-PROTEUS core modeling multiplication constant, MCNP5

  14. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  15. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  16. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  17. HTR-500 - a technical and engineered safeguards concept

    International Nuclear Information System (INIS)

    Schoening, J.; Wachholz, W.; Stoelzl, D.

    1985-01-01

    The plant succeeding the THTR-300 nuclear power plant, which has just started its trial phase of power operation, is the HTR-500. On behalf of the Arbeitsgemeinschaft Hochtemperaturreaktor (AHR), the BBC/HRB Group completed a preliminary project study of a nuclear power plant equipped with a high temperature reactor in the 500 MW power range, in which the changed requirements in the nuclear power market are taken into account and electricity generating costs are to be achieved which are competitive with those of a 1230 MW convoy pressurized water reactor of the present design. On this basis, construction documents are to be drafted, and the licensing procedure under the Atomic Energy Act is to be carried out, within a planning phase of roughly four years. (orig.) [de

  18. Design and analysis of three-layer-core optical fiber

    Science.gov (United States)

    Zheng, Siwen; Liu, Yazhuo; Chang, Guangjian

    2018-03-01

    A three-layer-core single-mode large-mode-area fiber is investigated. The three-layer structure in the core, which is composed of a core-index layer, a cladding-index layer, and a depression-index layer, could achieve a large effective area Aeff while maintaining an ultralow bending loss without deteriorating cutoff behaviors. The single-mode large mode area of 100 to 330 μm2 could be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property could be improved in this three-layer-core structure. The bending loss could decrease by 2 to 4 orders of magnitude compared with the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission or high-power optical fiber laser and amplifier in optical communications, which could be used for the basic physical layer structure of big data storage, reading, calculation, and transmission applications.

  19. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  20. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  1. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  2. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  3. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  4. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  5. Current directions in core-shell nanoparticle design

    Science.gov (United States)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  6. Overview of the design of core restraint systems

    International Nuclear Information System (INIS)

    Heinecke, J.

    1984-01-01

    The optimization of the core restraint system is an important condition for the safe and reliable operation of a fast breeder reactor. For KNK II which is under successful operation and SNR 300 all requirements for safety and operation have been met with help of a ring type system. For SNR 2 the decision between the ring type system and the free standing core has to be done in the near future. Within these considerations the advantages of a ring type restraint system of limiting deflections during operation and limiting of possible movements under seismic conditions have to be balanced against the somewhat more complicated structure of the ring type restraint system

  7. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  8. CAREM 25: actual status of the core neutronic design. Calculation line

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es

  9. 75 FR 80571 - Core Principles and Other Requirements for Designated Contract Markets

    Science.gov (United States)

    2010-12-22

    ... Part II Commodity Futures Trading Commission 17 CFR Parts 1, 16, and 38 Core Principles and Other... CFR Parts 1, 16, and 38 RIN 3038-AD09 Core Principles and Other Requirements for Designated Contract... Principles 1. Subpart B--Designation as Contract Market 2. Subpart C--Compliance With Rules i. Proposed Sec...

  10. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia

    NARCIS (Netherlands)

    Al Hadithy, A. F. Y.; Ivanova, S. A.; Pechlivanoglou, P.; Semke, A.; Fedorenko, O.; Kornetova, E.; Ryadovaya, L.; Brouwers, J. R. B. J.; Wilffert, B.; Bruggeman, R.; Loonen, A. J. M.

    2009-01-01

    Background: Pharmacogenetics of tardive dyskinesia and dopamine D3 (DRD3), serotonin 2A (HTR2A), and 2C (HTR2C) receptors has been examined in various populations, but not in Russians. Purpose: To investigate the association between orofaciolingual (TDof) and limb-truncal dyskinesias (TDlt) and

  11. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  12. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  13. Teaching to the Common Core by Design, Not Accident

    Science.gov (United States)

    Phillips, Vicki; Wong, Carina

    2012-01-01

    The Bill & Melinda Gates Foundation has created tools and supports intended to help teachers adapt to the Common Core State Standards in English language arts and mathematics. The tools seek to find the right balance between encouraging teachers' creativity and giving them enough guidance to ensure quality. They are the product of two years of…

  14. Common Core Standards and their Impact on Standardized Test Design

    NARCIS (Netherlands)

    Polleck, J.N.; Jeffery, J.V.

    2017-01-01

    With adoption of the Common Core (CCSS) in a majority of U.S. states came developmentof new high-stakes exams. Though researchers have investigated CCSS andrelated policies, less attention has been directed toward understanding how standardsare translated into testing. Due to the influence that

  15. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  16. Study of the Effect of Burnable Poison Particles Applying in a Pebble Bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhao Jing; Zhang Jian; Xia Bing

    2014-01-01

    In pebble bed high temperature gas cooled reactors (HTR), spherical fuel elements pass through the core several times to balance the burnup process in the fuel region, resulting in an acceptable shape and peak factor of power density in the simulation analysis. In contrast, when fuel elements pass through the core only once, the peak of power density occurs at the top of the core and its value is too high to be safe. These indicators/parameters can be improved by incorporating burnable poison in the fuel elements under certain conditions. In the current study, burnable poison particles (BPPs) in fuel elements are evaluated. In spite of the strong absorption capability of "1"0B, BPPs can decrease the depletion speed and increase the duration of "1"0B because of the self-shielding effect, resulting in improved shape and peak factor of power distribution. Several BPPs with different radius are discussed in power distribution, following the calculation for a full-scale reactor core with modified VSOP code. According the result, applying BPPs on fuel pebbles is an effective means to improve the distribution of the power density under one-through fuel load in HTR. (author)

  17. An integrated software system for core design and safety analyses: Cascade-3D

    International Nuclear Information System (INIS)

    Wan De Velde, A.; Finnemann, H.; Hahn, T.; Merk, S.

    1999-01-01

    The new Siemens program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of the most advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management. (authors)

  18. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  19. The integrated code system CASCADE-3D for advanced core design and safety analysis

    International Nuclear Information System (INIS)

    Neufert, A.; Van de Velde, A.

    1999-01-01

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  20. Design and analysis of EI core structured transverse flux linear reluctance actuator

    OpenAIRE

    FENERCİOĞLU, AHMET; AVŞAR, YUSUF

    2015-01-01

    In this study, an EI core linear actuator is proposed for horizontal movement systems. It is a transverse flux linear switched reluctance motor designed with an EI core structure geometrically. The actuator is configured into three phases and at a 6/4 pole ratio, and it has a stationary active stator along with a sliding passive translator. The stator consists of E cores and the translator consists of I cores. The actuator has a yokeless design because the stator and translator have no back i...

  1. Possibility of using gamma radiation from HTR reactors for the processing of food and medical products

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2004-01-01

    During the fission process in most of the presently operating nuclear reactors nuclear energy is converted into thermal energy and transferred to common steam cycles for power generation. As part of the fission process also α, β and neutrons particles are released from the nucleus; the release of gamma-rays is also a part of the fission process. In present nuclear reactors α, β, neutrons particles and particularly gamma-rays are not gainfully used as a result of the reactor design and of the containment. These plants are built as required by regulations and international standards for safety. The inherently safe HTR reactor, by its physics and design, does not need a special reinforced containment and it is worth looking into the possibilities of this design feature to use the by-products, such as Gamma-rays, from nuclear fission. In the HTR Pebble Bed Reactors the α, and β particles will remain in the kernels of the pebbles. This means that only the neutron particles and gamma-rays will be available outside the reactor pressure vessel. In this report a proposal is presented to use the gamma-rays of the HTR reactor for irradiation of food and agricultural produce. For neutron shielding a reflector is placed inside the reactor while outside the reactor neutron- and thermal-shielding will be accomplished with water. The high energy gamma-rays will pass through the water-shield and could be harnessed for radiation processing of food and medical products. (author)

  2. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  3. South African safety assessment framework for the pebble bed modular reactor - HTR2008-58192

    International Nuclear Information System (INIS)

    Joubert, J.; Kohtz, N.; Coe, I.

    2008-01-01

    It is planned to construct a first of a kind Pebble Bed Modular Reactor (PBMR) in South Africa. A need has been recognized to accompany the licensing process for the PBMR with independent safety assessments to ensure that the safety case submitted by the applicant complies with the licensing requirements of the NNR. At the HTR 2006 Conference, the framework and major challenges on safety assessment that the South African National Nuclear Regulator (NNR) faces in developing and applying appropriate strategies and tools were presented. This paper discusses the current status of the various NNR assessment activities and describes how this will be considered in the NNR Final Report on the PBMR Safety Case. The traditional safety assessment process has been adapted to take into account the developmental nature of the project. By performing safety assessments, the designer and applicant must ensure that the design as proposed for construction and as-built meets the safety requirements defined by the regulatory framework. The regulator performs independent safety assessments, including independent analyses in areas deemed safety significant and potentially safety significant. The developmental nature of the project also led to the identification of a series of regulatory assessment activities preceding the formal assessment of the safety case. Besides an assessment of the resolution of Key Licensing Issues which have been defined in an early stage of the project and are discussed in /l/, these activities comprise the participation in an SAR Early Intervention Process, the execution of a regulatory HAZOP and the development of a regulatory assessment specification for the formal assessment of the safety case. This paper briefly describes these activities and their current status. During the last two years, significant progress was made with the development or adjustment of tools for the independent analysis by the regulator of the steady state core design, of the transient

  4. Design of the air-core transformer in spherical tokamak

    International Nuclear Information System (INIS)

    Wang Zhongtian; Jian Guangde; Li Fangzhu; Mao Guoping

    2002-01-01

    An ideal current distribution in the air-core transformer coils is obtained using variation principle. Climbing mountain method is utilized for optimizing the dimension and position of the real coils. Not only can the requirement of minimizing the stray field in the plasma region be guaranteed, but also integer turns for the coil can be realized. The latter brings a significant convenience to engineering

  5. Comparison of design margin for core shroud in between design and construction code and fitness-for-service code

    International Nuclear Information System (INIS)

    Dozaki, Koji

    2007-01-01

    Structural design methods for core shroud of BWR are specified in JSME Design and Construction Code, like ASME Boiler and Pressure Vessel Code Sec. III, as a part of core support structure. Design margins are defined according to combination of the structural design method selected and service limit considered. Basically, those margins in JSME Code were determined after ASME Sec. III. Designers can select so-called twice-slope method for core shroud design among those design methods. On the other hand, flaw evaluation rules have been established for core shroud in JSME Fitness-for-Service Code. Twice-slope method is also adopted for fracture evaluation in that code even when the core shroud contains a flaw. Design margin was determined as structural factors separately from Design and Construction Code. As a natural consequence, there is a difference in those design margins between the two codes. In this paper, it is shown that the design margin in Fitness-for-Service Code is conservative by experimental evidences. Comparison of design margins between the two codes is discussed. (author)

  6. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  7. Analysis of a basic core performance for FBR core nuclear design. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    1999-03-01

    The spatial distribution of reaction rates in the ZPPR-13A, having an axially heterogeneous core, has been analyzed. The ZPPR-13A core is treated as a 2-dimensional RZ configuration consisting of a homogeneous core. The analysis is performed by utilizing both probabilistic and deterministic treatments. The probabilistic treatment is performed with the Monte Carlo Code MVP running with continuous energy variable. By comparing the results obtained by both treatments and reviewing the calculation method of effective resonance cross sections, for deterministic treatment, utilized for the reaction rate distributions, it is revealed that the present treatment of effective resonance cross sections is not accurate, since there are observed effects due to dependence on energy group number or energy group width, and on anisotropic scattering. To utilize multi-band method for calculating effective resonance cross sections, widely used by the European researchers, the computer code GROUPIE is installed and the performance of the code is confirmed. Although, in order to improve effective resonance cross sections accuracy, the thermal neutron reactor standard code system SRAC-95 was introduced last year in which the ultra-fine group spectrum calculation module PEACO worked specially under the restriction that number of nuclei having resonance cross section, in any zone, should be less than three, because collision probabilities were obtained by an interpolation method. This year, the module is improved so that these collision probabilities are directly calculated, and by this improvement the highly accurate effective resonance cross sections below the energy of 40.868 keV can be calculated for whole geometrical configurations considered. To extend the application range of the module PEACO, the cross sections of sodium and structure material nuclei are prepared so that they are also represented as ultra-fine group cross sections. By such modifications of cross section library

  8. Mechanical design of core components for a high performance light water reactor with a three pass core

    International Nuclear Information System (INIS)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-01-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  9. Design factors affecting dynamic behaviour of fast reactor cores. UK review paper

    Energy Technology Data Exchange (ETDEWEB)

    Brindley, K W [National Nuclear Corporation Ltd., Risley, Warrington (United Kingdom); Perks, M A [United Kingdom Atomic Energy Authority, Risley, Warrington (United Kingdom)

    1982-01-01

    This paper summarises the consideration that has been given in the UK to the following factors that affect the dynamic behaviour of fast reactor cores: fuel design - Pu/u homogeneity, fuel expansion, fuel-clad gaps, uranium fraction. Structural response - CR supports, diagrid, sub-assembly bowing sodium expansion coefficients - low void cores including heterogenous cores. Calculational methods and models are outlined and some experimental results are discussed. (author)

  10. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains.

    Directory of Open Access Journals (Sweden)

    Przemyslaw Glaza

    Full Text Available Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3, showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ and an N-terminally truncated HtrA3S (ΔN-HtrA3S were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

  11. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains.

    Science.gov (United States)

    Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara

    2015-01-01

    Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

  12. Polymer Design and Processing for Liquid-Core waveguides

    DEFF Research Database (Denmark)

    Sagar, Kaushal Shashikant

    precursor material. Upon attaining thermodynamically stable gyroid phase segregation, nanoporosity is induced by chemically removing PDMS, the so-called sacrificial block. The isotropic nanoporosity in the polymer is utilized in fabricating a novel type of waveguides for opto-fluidic applications, which we...... are spontaneously filled with water by capillary suction, forming the core, while the unmodified hydrophobic regions remain dry, forming the clad. Two types of photo-modification reactions are presented in this thesis: photo-oxidation and thiol-ene photo-clicking. The hydrophilicity is firstly induced by surface...

  13. Design Basis of Core Components and their Realization in the frame of the EPR'sTM Core Component Development

    International Nuclear Information System (INIS)

    Schebitz, Florian; Mekmouche, Abdelhalim

    2008-01-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI TM RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR TM , the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR TM . (authors)

  14. Comparison of the behaviour of two core designs for ASTRID in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Marie, N.; Prulhière, G.; Lecerf, J. [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France)

    2016-02-15

    Highlights: • Low void worth CFV and SFRv2 cores are compared for ASTRID pre-conceptual design. • Severe accident behaviour is assessed with a simplified calculation approach and tools. • Mitigation to limit reactivity inserted by core compaction is easier for CFV than for SFRv2 core. • When facing arbitrary reactivity ramps, CFV core would lead to lower energy release than SFRv2 core. • Time scale for core degradation is one order of magnitude larger for CFV than for SFRv2. - Abstract: The present paper is dedicated to the studies carried out during the first stage of the pre-conceptual design of the French demonstrator of fourth generation SFR reactors (ASTRID) in order to compare the behaviour of two envisaged core concepts under severe accident transients. Among the two studied core concepts, whose powers are 1500 MWth, the first one is a classical homogeneous core (called SFRv2) with large pin diameter whose the sodium overall voiding reactivity effect is 5 $. The second concept is an axially heterogeneous core (called CFV) whose global void reactivity effect is negative (−1.2 $ at the end of cycle at the equilibrium). The comparison of the cores relies on two typical accident families: a reactivity insertion (unprotected transient overpower, UTOP) and an overall loss of core cooling (unprotected loss of flow, ULOF). In the first part of the comparison, the primary phase of an UTOP is studied in order to assess typical features of the transient behaviour: power and reactivity evolutions, material heating and melting/vaporization and mechanical energy release due to fuel vapor expansion. The second part of the comparison deals with the calculation of the reactivity potential for degraded states (molten pools) representative of the secondary phase of a mild UTOP and of a strong UTOP (strong or mild qualifies the reactivity ramp inserted). According to the reactivity potential, the amount of fuel to extract from the core and the amount of absorber

  15. The HTR modular power reactor system. Qualification of fuel elements and materials

    International Nuclear Information System (INIS)

    Heidenreich, U.; Breitling, H.; Nieder, R.; Ohly, W.; Mittenkuehler, A.; Ragoss, H.; Seehafer, H.J.; Wirtz, K.; Serafin, N.

    1989-01-01

    For further development of the HTR modular power reactor system (HTR-M-KW), the project activities for 'Qualification of fuel elements and materials' reported here cover the work for specifying the qualifications to be met by metallic and ceramic materials, taking into account the design-based requirements and the engineered safety requirements. The fission product retention data determined for the HTR modular reactor fuel elements could be better confirmed by evaluation of the experiments, and have been verified by various calculation methods for different operating conditions. The qualification of components was verified by strength analyses including a benchmark calculation for specified normal operation and emergencies; the results show a convenient behaviour of the components and their materials. In addition, a fuel element burnup measuring system was designed that applies Cs-137 gamma spectroscopy; its feasibility was checked by appropriate analyses, and qualification work is in progress. The installation of a prototype measurement system is the task for project No. 03 IAT 211. (orig.) [de

  16. Two-branch Gas Experiments for Hot Gas Mixing of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Yangping; Hao Pengefei; He Heng; Li Fu; Shi Lei

    2014-01-01

    A model experiment is proposed to investigate the hot gas mixing efficiency of HTR-PM reactor outlet. The test facility is introduced which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main body of test facility, hot gas duct, exhaust pipe system and I&C system. Two-branch gas experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis result shows the mixing efficiency is higher than the requirement of thermal mixing by steam generator even with conservative assumption which indicates that the design of hog gas mixing structure of HTR-PM fulfills the requirement for thermal mixing at two-branch working conditions. (author)

  17. Testing of HTR UO{sub 2} TRISO fuels in AVR and in material test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kania, Michael J., E-mail: MichaelJKania@googlemail.com [Retired from Lockheed Martin Corp, 20 Beach Road, Averill Park, NY 12018 (United States); Nabielek, Heinz, E-mail: heinznabielek@me.com [Retired from Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Verfondern, Karl [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Allelein, Hans-Josef [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, 52072 Aachen (Germany)

    2013-10-15

    The German High Temperature Reactor Fuel Development Program successfully developed, licensed and manufactured many thousands of spherical fuel elements that were used to power the experimental AVR reactor and the commercial THTR reactor. In the 1970s, this program extended the performance envelope of HTR fuels by developing and qualifying the TRISO-coated particle system. Irradiation testing in real-time AVR tests and accelerated MTR tests demonstrated the superior manufacturing process of this fuel and its irradiation performance. In the 1980s, another program direction change was made to a low enriched UO{sub 2} TRISO-coated particle system coupled with high-quality manufacturing specifications designed to meet new HTR plant design needs. These needs included requirements for inherent safety under normal operation and accident conditions. Again, the German fuel development program met and exceeded these challenges by manufacturing and qualifying the low-enriched UO{sub 2} TRISO-fuel system for HTR systems with steam generation, gas-turbine systems and very high temperature process heat applications. Fuel elements were manufactured in production scale facilities that contained near defect free UO{sub 2} TRISO coated particles, homogeneously distributed within a graphite matrix with very low levels of uranium contamination. Good irradiation performance for these elements was demonstrated under normal operating conditions to 12% FIMA and under accident conditions not exceeding 1600 °C.

  18. Key technology for (V)HTR: laser beam joining of SiC

    International Nuclear Information System (INIS)

    Knorr, J.; Lippmann, W.; Reinecke, A.M.; Wolf, R.; Rasper, R.; Kerber, A.; Wolter, A.

    2005-01-01

    Laser beam joining has numerous advantages over other methods presently known. After having been developed successful for brazing silicon carbide for high temperature applications, this technology is now also available for silicon nitride. Thus the field of application of SiC and Si 3 N 4 which are very interesting materials for the nuclear sector is considerably extended thanks to this new technology. Ceramic encapsulation of fuel and absorber increases the margins for operation at very high temperatures. Additionally, without ceramic encapsulation of the main core components, it will be difficult to continue claiming non-catastrophic behaviour for the (V)HTR. (orig.)

  19. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  20. Effect of the design change of the LSSBP on core flow distribution of APR+ Reactor

    International Nuclear Information System (INIS)

    Kim, Kihwan; Euh, Dong-Jin; Choi, Hae-Seob; Kwon, Tae-Soon

    2014-01-01

    The uniform core inlet flow distribution of an Advanced Power Reactor Plus (APR+) is required to prevent the failure rate of the HIPER fuel assembly and improve the core thermal margin. KEPCO-E and C and KAERI proposed a design change of the Lower Support Structure Bottom Plate (LSSBP), since the core flow rates were intense near the outer region of the intact LSSBP in a previous study. In this study, an experiment was carried out to evaluate the effect of the design change of the LSSBP on the core flow distribution using the APR+ Core Flow and Pressure (ACOP) test facility. The results showed great improvement on the core flow distribution under a 4-pump balanced flow condition. Under the 4-pump balanced flow condition, fifteen tests were repeated using the ACOP test facility to verify the effect of the 50% blocked flow area at the outer region of the LSSBP on the core inlet flow distribution. The profiles of the core inlet mass flow rates were analyzed using ensemble averaged values, and compared with that of the intact LSSBP. The results showed great improvement for the overall core region. The change in design of the LSSBP is expected to improve the hydraulic performance of an APR+ reactor

  1. VG-400 atomic power and technological installation. Possible core design

    International Nuclear Information System (INIS)

    Komarov, E.V.; Laptev, F.V.; Lyubivyj, A.G.; Mitenkov, F.M.; Samojlov, O.B.; Sukhachevskij, Yu.B.

    1979-01-01

    The main characteristics, basic circuit and configuration of equipment of the VG-400 atomic power and technological installation are considered. This installation is intended for supplying with highly-potential heat of thermal electrochemical hydrogen production and for power generation in the steam-turbine cycle. The main installation characteristics: HTGR reactor heat power 1100 MW, electric power 300 MW, helium coolant pressure 50 atm, output temperature 950 deg C, steam pressure in the second contour 175 atm, temperature 535 deg C, core diameter and height 6.4 m and 4 m, respectively, number of spherical fuel elements 8.5x10 5 . The installation can ensure hydrogen production of 10 5 Nxm 3 /h. For the VG-400 reactor block the integral arrangement of the first circuit equipment in the reinforced concrete is chosen. Two versions of the reactor core with prismatic and spherical fuel elements are compared. It is shown that taking into account great potentialities of the spherical zone in a case of further temperature increase and its positive qualities with respect to construction and processing of fuel elements and graphite blocks, the utilization of simplier units and mechanisms in the overloading system and in the process of profiling of energy distribution the choice of the spherical configuration for the VG-400 pilot plant installation seems to be valid

  2. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  3. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  4. Design of Multi-core Fiber Patch Panel for Space Division Multiplexing Implementations

    DEFF Research Database (Denmark)

    Gonzalez, Luz E.; Morales, Alvaro; Rommel, Simon

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 d...

  5. Designing Class Activities to Meet Specific Core Training Competencies: A Developmental Approach

    Science.gov (United States)

    Guth, Lorraine J.; McDonnell, Kelly A.

    2004-01-01

    This article presents a developmental model for designing and utilizing class activities to meet specific Association for Specialists in Group Work (ASGW) core training competencies for group workers. A review of the relevant literature about teaching group work and meeting core training standards is provided. The authors suggest a process by…

  6. Design of multi-core fiber patch panel for space division multiplexing implementations

    NARCIS (Netherlands)

    González, Luz E.; Morales, Alvaro; Rommel, Simon; Jørgensen, Bo F.; Porras-Montenegro, N.; Tafur Monroy, Idelfonso

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 dB

  7. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  8. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    International Nuclear Information System (INIS)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  9. FFTF reload core nuclear design for increased experimental capability

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Nelson, J.V.; Dobbin, K.D.; Bennett, R.A.

    1976-01-01

    In anticipation of continued growth in the FTR experimental irradiations program, the enrichments for the next batches of reload driver fuel to be manufactured have been increased to provide a substantially enlarged experimental reactivity allowance. The enrichments for these fuel assemblies, termed ''Cores 3 and 4,'' were selected to meet the following objectives and constraints: (1) maintain a reactor power capability of 400 MW (based on an evaluation of driver fuel centerline melting probability at 15 percent overpower); (2) provide a peak neutron flux of nominally 7 x 10 15 n/cm 2 -sec, with a minimum acceptable value of 95 percent of this (i.e., 6.65 x 10 15 n/cm 2 -sec); and (3) provide the maximum experimental reactivity allowance that is consistent with the above constraints

  10. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  11. A hybrid method for in-core optimization of pressurized water reactor reload core design

    International Nuclear Information System (INIS)

    Stevens, J.G.

    1995-05-01

    The objective of this research is the development of an accurate, practical, and robust method for optimization of the design of loading patterns for pressurized water reactors, a nonlinear, non-convex, integer optimization problem. The many logical constraints which may be applied during the design process are modeled herein by a network construction upon which performance objectives and safety constraints from reactor physics calculations are optimized. This thesis presents the synthesis of the strengths of previous algorithms developed for reload design optimization and extension of robustness through development of a hybrid liberated search algorithm. Development of three independent methods for reload design optimization is presented: random direct search for local improvement, liberated search by simulated annealing, and deterministic search for local improvement via successive linear assignment by branch and bound. Comparative application of the methods to a variety of problems is discussed, including an exhaustive enumeration benchmark created to allow comparison of search results to a known global optimum for a large scale problem. While direct search and determinism are shown to be capable of finding improvement, only the liberation of simulated annealing is found to perform robustly in the non-convex design spaces. The hybrid method SHAMAN is presented. The algorithm applies: determinism to shuffle an initial solution for satisfaction of heuristics and symmetry; liberated search through simulated annealing with a bounds cooling constraint treatment; and search bias through relational heuristics for the application of engineering judgment. The accuracy, practicality, and robustness of the SHAMAN algorithm is demonstrated through application to a variety of reload loading pattern optimization problems

  12. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  13. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  14. AREVA HTR concept for near-term deployment

    Energy Technology Data Exchange (ETDEWEB)

    Lommers, L.J., E-mail: lewis.lommers@areva.com [AREVA Inc., 2101 Horn Rapids Road, Richland, WA 99354 (United States); Shahrokhi, F. [AREVA Inc., Lynchburg, VA (United States); Mayer, J.A. [AREVA Inc., Marlborough, MA (United States); Southworth, F.H. [AREVA Inc., Lynchburg, VA (United States)

    2012-10-15

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  15. HTR plus modern turbine technology for higher efficiencies

    International Nuclear Information System (INIS)

    Barnert, H.; Kugeler, K.

    1996-01-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question 'can the HTR compete with high efficiencies?' is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab

  16. AREVA HTR concept for near-term deployment

    International Nuclear Information System (INIS)

    Lommers, L.J.; Shahrokhi, F.; Mayer, J.A.; Southworth, F.H.

    2012-01-01

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  17. HTR plus modern turbine technology for higher efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-08-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question `can the HTR compete with high efficiencies?` is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab.

  18. Legal Protection on IP Cores for System-on-Chip Designs

    Science.gov (United States)

    Kinoshita, Takahiko

    The current semiconductor industry has shifted from vertical integrated model to horizontal specialization model in term of integrated circuit manufacturing. In this circumstance, IP cores as solutions for System-on-Chip (SoC) have become increasingly important for semiconductor business. This paper examines to what extent IP cores of SoC effectively can be protected by current intellectual property system including integrated circuit layout design law, patent law, design law, copyright law and unfair competition prevention act.

  19. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  20. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  1. Gas core reactor power plants designed for low proliferation potential

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1977-09-01

    The feasibility of gas core nuclear power plants to provide adequate power while maintaining a low inventory and low divertability of fissile material is studied. Four concepts were examined. Two used a mixture of UF 6 and helium in the reactor cavities, and two used a uranium-argon plasma, held away from the walls by vortex buffer confinement. Power levels varied from 200 to 2500 MWth. Power plant subsystems were sized to determine their fissile material inventories. All reactors ran, with a breeding ratio of unity, on 233 U born from thorium. Fission product removal was continuous. Newly born 233 U was removed continuously from the breeding blanket and returned to the reactor cavities. The 2500-MWth power plant contained a total of 191 kg of 233 U. Less than 4 kg could be diverted before the reactor shut down. The plasma reactor power plants had smaller inventories. In general, inventories were about a factor of 10 less than those in current U.S. power reactors

  2. HTR-PM Progress and Further Commercial Deployment

    International Nuclear Information System (INIS)

    Wu, Frank

    2017-01-01

    Project Milestones: • 2004: industry investment agreement was signed • 2006: decided to use 2×250 MWt reactor modules with a 200 MWe steam turbine, became a key government R&D project • 2008: ATP was issued • 2012.12.9: FCD the first concrete poured. Chinese HTR development: HTR Roles in China - Power generation: supplement to LWR; repowering coal fired plants - Co-generation to supply steam - Hydrogen production

  3. Market potential of heat utilization of modular HTR in Japan

    International Nuclear Information System (INIS)

    Ide, Akira; Tasaka, Kanji.

    1993-01-01

    HTR is considered to be the most suitable reactor type to use in the field other than power generation. So it is useful to know market potential of this type of reactor in Japan to justify its development. This potential was estimated to be about 400 200MWt modular HTR reactors. This number will be double if the market of hydrogen is developed. (J.P.N.)

  4. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  5. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  6. Introduction to Open Core Protocol Fastpath to System-on-Chip Design

    CERN Document Server

    Schwaderer, W David

    2012-01-01

    This book introduces Open Core Protocol (OCP), not as a conventional hardware communications protocol but as a meta-protocol: a means for describing and capturing the communications requirements of an IP core, and mapping them to a specific set of signals with known semantics.  Readers will learn the capabilities of OCP as a semiconductor hardware interface specification that allows different System-On-Chip (SoC) cores to communicate.  The OCP methodology presented enables intellectual property designers to design core interfaces in standard ways. This facilitates reusing OCP-compliant cores across multiple SoC designs which, in turn, drastically reduces design times, support costs, and overall cost for electronics/SoCs. Provides a comprehensive introduction to Open Core Protocol, which is more accessible than the full specification; Designed as a hands-on, how-to guide to semiconductor design; Includes numerous, real “usage examples” which are not available in the full specification; Integrates coverag...

  7. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores.

  8. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  9. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores

  10. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  11. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  12. A reverse depletion method for pressurized water reactor core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kin, Y.J.

    1986-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. The large numbers of burnable poison pins used to control the power peaking at the in-board fresh fuel positions have introduced an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of burnable poison pins in the fresh fuel. A new method for performing core design more suitable for low-leakage fuel management is reported. A procedure was developed that uses the wellknown ''Haling depletion'' to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and burnable poison distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provided for the maximum utility to PWR core reload design

  13. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  14. Status of the Astrid core at the end of the pre-conceptual design phase 1

    International Nuclear Information System (INIS)

    Chenaud, Ms.; Devictor, N.; Mignot, G.; Varaine, F.; Venard, C.; Martin, L.; Phelip, M.; Lorenzo, D.; Serre, F.; Bertrand, F.; Alpy, N.; Le-Flem, M.; Gavoille, P.; Lavastre, R.; Richard, P.; Verrier, D.; Schmitt, D.

    2013-01-01

    Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase. (authors)

  15. The future of HTR development and market chances

    International Nuclear Information System (INIS)

    Baust, E.; Weisbrodt, I.

    1989-01-01

    In more than thirty years of development, the pebble bed high-temperature reactor has been brought to the threshold of commercial maturity. On the basis of the experience accumulated with the 15 MW AVR reactor and the THTR-300, unit sizes tailored to demand (HTR-500, modular HTR, GHR-10) will be developed for the electricity and heat markets of the future. The high-temperature reactor is a meaningful supplement to the proven line of light-water reactors and is particularly suitable for being exported to developing countries and industrial threshold countries because of its special technical and inherent safeguards properties. There is broad worldwide interest in the HTR, as is evidenced by several existing agreements on cooperation. It is for this reason that market chances are believed to exist for the HTR after the expected revival of the nuclear power market. ABB and Siemens therefore have decided to develop and market the HTR jointly in the future as a matter of long term strategy by working through a joint subsidiary, HTR-GmbH. (orig.) [de

  16. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  17. Reactor core design calculations and fuel management in PWR; Izracun projekta sredice in upravljanja z forivom tlacnovodnega reaktorja

    Energy Technology Data Exchange (ETDEWEB)

    Ravnik, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1987-07-01

    Computer programs and methods developed at J. Stefan Institute for nuclear core design of Krsko NPP are treated. development, scope, verification and organisation of core design procedure are presented. The core design procedure is applicable to any NPP of PWR type. (author)

  18. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {a