WorldWideScience

Sample records for htgr component test

  1. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  2. Peach Bottom HTGR decommissioning and component removal

    International Nuclear Information System (INIS)

    Kohler, E.J.; Steward, K.P.; Iacono, J.V.

    1977-07-01

    The prime objective of the Peach Bottom End-of-Life Program was to validate specific HTGR design codes and predictions by comparison of actual and predicted physics, thermal, fission product, and materials behavior in Peach Bottom. Three consecutive phases of the program provide input to the HTGR design methods verifications: (1) Nondestructive fuel and circuit gamma scanning; (2) removal of steam generator and primary circuit components; and (3) Laboratory examinations of removed components. Component removal site work commenced with establishment of restricted access areas and installation of controlled atmosphere tents to retain relative humidity at <30%. A mock-up room was established to test and develop the tooling and to train operators under simulated working conditions. Primary circuit ducting samples were removed by trepanning, and steam generator access was achieved by a combination of arc gouging and grinding. Tubing samples were removed using internal cutters and external grinding. Throughout the component removal phase, strict health physics, safety, and quality assurance programs were implemented. A total of 148 samples of primary circuit ducting and steam generator tubing were removed with no significant health physics or safety incidents. Additionally, component removal served to provide access fordetermination of cesium plateout distribution by gamma scanning inside the ducts and for macroexamination of the steam generator from both the water and helium sides. Evaluations are continuing and indicate excellent performance of the steam generator and other materials, together with close correlation of observed and predicted fission product plateout distributions. It is concluded that such a program of end-of-life research, when appropriately coordinated with decommissioning activities, can significantly advance nuclear plant and fuel technology development

  3. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  4. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  5. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, M.; Asanabe, S.; Kawaguchi, K.; Ono, S.; Oyamada, T.

    1980-01-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the conditions simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  6. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Ono, Shigeharu; Asanabe, Sadao; Kawaguchi, Katsuyuki; Oyamada, Tetsuya.

    1981-11-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the condition simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  7. Quality control procedures for HTGR fuel element components

    International Nuclear Information System (INIS)

    Delle, W.W.; Koizlik, K.; Luhleich, H.; Nickel, H.

    1976-08-01

    The growing use of nuclear reactors for the production of electric power throughout the world, and the consequent increase in the number of nuclear fuel manufacturers, is giving enhanced importance to the consideration of quality assurance in the production of nuclear fuels. The fuel is the place, where the radioactive fission products are produced in the reactor and, therefore, the integrity of the fuel is of utmost importance. The first and most fundamental means of insuring that integrity is through the exercise of properly designed quality assurance programmes during the manufacture of the fuel and other fuel element components. The International Atomic Energy Agency therefore conducted an International Seminar on Nuclear Fuel Quality Assurance in Oslo, Norway from 24 till 28 May, 1976. This KFA report contains a paper which was distributed preliminary during the seminar and - in the second part - the text of the oral presentation. The paper gives a summary of the procedures available in the present state for the production control of HTGR core materials and of the meaning of the particular properties for reactor operation. (orig./UA) [de

  8. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  9. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  10. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Baldwin, D.H.

    1984-08-01

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH 4 . This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH 4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  11. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  12. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  13. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  14. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  15. Life time test of a partial model of HTGR helium-helium heat exchanger

    International Nuclear Information System (INIS)

    Kitagawa, Masaki; Hattori, Hiroshi; Ohtomo, Akira; Teramae, Tetsuo; Hamanaka, Junichi; Itoh, Mitsuyoshi; Urabe, Shigemi

    1984-01-01

    Authors had proposed a design guide for the HTGR components and applied it to the design and construction of the 1.5 Mwt helium heat exchanger test loop for the nuclear steel making under the financial support of the Japanese Ministry of International Trade and Industry. In order to assure that the design method covers all the conceivable failure mode and has enough safety margin, a series of life time tests of partial model may be needed. For this project, three types of model tests were performed. A life time test of a partial model of the center manifold pipe and eight heat exchanger tubes were described in this report. A damage criterion with a set of material constants and a simplified method for stress-strain analysis for stub tube under three dimensional load were newly developed and used to predict the lives of each tube. The predicted lives were compared with the experimental lives and good agreement was found between the two. The life time test model was evaluated according to the proposed design guide and it was found that the guide has a safety factor of approximately 200 in life for this particular model. (author)

  16. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  17. Construction of the HTTR and its testing program for advanced HTGR development

    International Nuclear Information System (INIS)

    Tanaka, T.; Baba, O.; Shiozawa, S.; Okubo, M.; Kunitomi, K.

    1996-01-01

    Concerning about global warming due to emission of greenhouse effect gas like CO 2 , it is essentially important to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors, because it can supply a large amount of energy and its plants emit only little amount of CO 2 during their lifetime. Hence, efforts are to be continuously devoted to establish and upgrade technologies of High Temperature Gas-cooled Reactor (HTGR) which can supply high-temperature heat with high thermal efficiency as well as high heat-utilizing efficiency. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950 deg. C at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). 2 refs, 2 figs, 1 tab., 2 photos

  18. In-pile tests of HTGR fuel particles and fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Kolesov, V.S.; Deryugin, A.I.

    1985-01-01

    Main types of in-pile tests for specimen tightness control at the initial step, research of fuel particle radiation stability and also study of fission product release from fuel elements during irradiation are described in this paper. Schemes and main characteristics of devices used for these tests are also given. Principal results of fission gas product release measurements satisfying HTGR demands are illustrated on the example of fuel elements, manufactured by powder metallurgy methods and having TRISO fuel particles on high temperature pyrocarbon and silicon carbide base. (author)

  19. Status of CHAP: composite HTGR analysis program

    International Nuclear Information System (INIS)

    Secker, P.A.; Gilbert, J.S.

    1975-12-01

    Development of an HTGR accident simulation program is in progress for the prediction of the overall HTGR plant transient response to various initiating events. The status of the digital computer program named CHAP (Composite HTGR Analysis Program) as of June 30, 1975, is given. The philosophy, structure, and capabilities of the CHAP code are discussed. Mathematical descriptions are given for those HTGR components that have been modeled. Component model validation and evaluation using auxiliary analysis codes are also discussed

  20. Seismic test of high temperature piping for HTGR

    International Nuclear Information System (INIS)

    Kobatake, Kiyokazu; Midoriyama, Shigeru; Ooka, Yuzi; Suzuki, Michiaki; Katsuki, Taketsugu

    1983-01-01

    Since the high temperature pipings for the high temperature gas-cooled reactor contain helium gas at 1000 deg C and 40 kgf/cm 2 , the double-walled pipe type consisting of the external pipe serving as the pressure boundary and the internal pipe with heat insulating structure was adopted. Accordingly, their aseismatic design is one of the important subjects. Recently, for the purpose of grasping the vibration characteristics of these high temperature pipings and obtaining the data required for the aseismatic design, two specimens, that is, a double-walled pipe model and a heat-insulating structure, were made, and the vibration test was carried out on them, using a 30 ton vibration table of Kawasaki Heavy Industries Ltd. In the high temperature pipings of the primary cooling system for the multi-purpose, high temperature gas-cooled experimental reactor, the external pipes of 32 B bore as the pressure boundary and the internal pipes of 26 B bore with internal heat insulation consisting of double layers of fiber and laminated metal insulators as the temperature boundary were adopted. The testing method and the results are reported. As the spring constant of spacers is larger and clearance is smaller, the earthquake wave response of double-walled pipes is smaller, and it is more advantageous. The aseismatic property of the heat insulation structure is sufficient. (Kako, I.)

  1. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  2. HTGR analytical methods and design verification

    International Nuclear Information System (INIS)

    Neylan, A.J.; Northup, T.E.

    1982-05-01

    Analytical methods for the high-temperature gas-cooled reactor (HTGR) include development, update, verification, documentation, and maintenance of all computer codes for HTGR design and analysis. This paper presents selected nuclear, structural mechanics, seismic, and systems analytical methods related to the HTGR core. This paper also reviews design verification tests in the reactor core, reactor internals, steam generator, and thermal barrier

  3. Mechanical design philosophy for the graphite components of the core structure of an HTGR

    International Nuclear Information System (INIS)

    Bodmann, E.

    1987-01-01

    Parallel to the layout and design of the graphite components for THTRs and the succeeding high temperature reactor projects, the design methods for graphite components have been improved over the years. The aim of this works is to develop the design methods which take into account both the particular properties of graphite and the particular functions of the components. Because of the close relation ship between materials and design codes, this development work has progressed with the development, testing and qualification of German reactor graphite. In this paper, the experience in this field of Hochtemperatur Reaktorbau GmbH and the results of the work and approach to the design problems are reported. The example of a HTR 500 design for a 550 MWe power station is taken up, and the core structure is explained. The graphite components are divided into three classes according to the stress limits. The loading of these components is reviewed. The aim of the design is not the complete avoidance of failure, but to avoid the failure of a single component from leading to a disadvantageous consequence which is not allowable. The classification of loading events, Weibull statistics and maximum allowable stress, the formation of the permissible stress, the assessment of stress due to multiaxial loading and so on are described. (Kako, I.)

  4. Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach

    International Nuclear Information System (INIS)

    Rand, C.P. du; Schoor, G. van

    2012-01-01

    Highlights: ► Different uncorrelated fault signatures are derived for HTGR component faults. ► A multiple classifier ensemble increases confidence in classification accuracy. ► Detailed simulation model of system is not required for fault diagnosis. - Abstract: The second paper in a two part series presents the area error method for generation of representative enthalpy–entropy (h–s) fault signatures to classify malfunctions in generation IV nuclear high temperature gas-cooled reactor (HTGR) components. The second classifier is devised to ultimately address the fault diagnosis (FD) problem via the proposed methods in a multiple classifier (MC) ensemble. FD is realized by way of different input feature sets to the classification algorithm based on the area and trajectory of the residual shift between the fault-free and the actual operating h–s graph models. The application of the proposed technique is specifically demonstrated for 24 single fault transients considered in the main power system (MPS) of the Pebble Bed Modular Reactor (PBMR). The results show that the area error technique produces different fault signatures with low correlation for all the examined component faults. A brief evaluation of the two fault signature generation techniques is presented and the performance of the area error method is documented using the fault classification index (FCI) presented in Part I of the series. The final part of this work reports the application of the proposed approach for classification of an emulated fault transient in data from the prototype Pebble Bed Micro Model (PBMM) plant. Reference data values are calculated for the plant via a thermo-hydraulic simulation model of the MPS. The results show that the correspondence between the fault signatures, generated via experimental plant data and simulated reference values, are generally good. The work presented in the two part series, related to the classification of component faults in the MPS of different

  5. Two-dimensional vertical model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1983-02-01

    The resistance against earthquakes of high-temperature gas cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. In the paper the test results of seismic behavior of a half-scale two-dimensional vertical slice core model and analysis are presented. The following results were obtained: (1) With soft spring support of the fixed side reflector structure, the relative column displacement is larger than that for hand support but the impact reaction force is smaller. (2) In the case of hard spring support the dowel force is smaller than for soft support. (3) The relative column displacement is larger in the core center than at the periphery. The impact acceleration (force) in the center is smaller than at the periphery. (4) The relative column displacement and impact reaction force are smaller with the gas pressure simulation spring than without. (5) With decreasing gap width between the top blocks of columns, the relative column displacement and impact reaction force decrease. (6) The column damping ratio was estimated as 4 -- 10% of critical. (7) The maximum impact reaction force for random waves such as seismic was below 60% that for a sinusoidal wave. (8) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  6. Two-dimensional horizontal model seismic test and analysis for HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1988-05-01

    The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

  7. The HTR-10 test reactor project and potential use of HTGR for non-electric application in China

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Xu Yuanhui; Wu Zhongxin

    1997-01-01

    Coal is the dominant source of energy in China. This use of coal results in two significant problems for China; it is a major burden on the train, road and waterway transportation infrastructures and it is a significant source of environmental pollution. In order to ease the problems caused by the burning of coal and to help reduce the energy supply shortage in China, national policy has directed the development of nuclear power. This includes the erection of nuclear power plants with water cooled reactors and the development of advanced nuclear reactor types, specifically, the high temperature gas cooled reactor (HTGR). The HTGR was chosen for its favorable safety features and its ability to provide high reactor outlet coolant temperatures for efficient power generation and high quality process heat for industrial applications. As the initial modular HTGR development activity within the Chinese High Technology Programme, a 10MW helium cooled test reactor is currently under construction on the site of the Institute of Nuclear Energy Technology northwest of Beijing. This plant features a pebble-bed helium cooled reactor with initial criticality anticipated in 1999. There will be two phases of high temperature heat utilization from the HTR-10. The first phase will utilize a reactor outlet temperature of 700 deg. C with a steam generator providing steam for a steam turbine cycle which works on an electrical/heat co-generation basis. The second phase is planned for a core outlet temperature of 900 deg. C to investigate a steam cycle/gas turbine combined cycle system with the gas turbine and the steam cycle being independently parallel in the secondary side of the plant. This paper provides a review of the technical design, licensing, safety and construction schedule for the HTR-10. It also addresses the potential uses of the HTGR for non-electric applications in China including process steam for the petrochemical industry, heavy oil recovery, coal conversion and

  8. Status of international HTGR development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial sector participation. The programs have produced four electricity-producing prototype/demonstration reactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these ractors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  9. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  10. Small demonstration HTGR concept

    International Nuclear Information System (INIS)

    Kiryushin, A.I.

    1989-01-01

    Currently the USSR is investigating two high-temperature gas-cooled reactors. The first plant is the VGM, a modular type HTGR with power rating of 180-250 MWth. The second plant is the VG-400 with 1000 MWth and a prestressed concrete reactor vessel. The paper contains the description of the VGM design and its main components. (author). 1 fig., 1 tab

  11. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  12. Impact test of components

    International Nuclear Information System (INIS)

    Borsoi, L.; Buland, P.; Labbe, P.

    1987-01-01

    Stops with gaps are currently used to support components and piping: it is simple, low cost, efficient and permits free thermal expansion. In order to keep the nonlinear nature of stops, such design is often modeled by beam elements (for the component) and nonlinear springs (for the stops). This paper deals with the validity and the limits of these models through the comparison of computational and experimental results. The experimental results come from impact laboratory tests on a simplified mockup. (orig.)

  13. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  14. HRB-22 capsule irradiation test for HTGR fuel. JAERI/USDOE collaborative irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Minato, Kazuo; Sawa, Kazuhiro; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    As a JAERI/USDOE collaborative irradiation test for high-temperature gas-cooled reactor fuel, JAERI fuel compacts were irradiated in the HRB-22 irradiation capsule in the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). Postirradiation examinations also were performed at ORNL. This report describes 1) the preirradiation characterization of the irradiation samples of annular-shaped fuel compacts containing the Triso-coated fuel particles, 2) the irradiation conditions and fission gas releases during the irradiation to measure the performance of the coated particle fuel, 3) the postirradiation examinations of the disassembled capsule involving visual inspection, metrology, ceramography and gamma-ray spectrometry of the samples, and 4) the accident condition tests on the irradiated fuels at 1600 to 1800degC to obtain information about fuel performance and fission product release behavior under accident conditions. (author)

  15. HTGR R and D programs

    International Nuclear Information System (INIS)

    Neylan, A.J.; Brisbois, J.

    1979-01-01

    A significant R and D program (including in certain cases full-scale prototype tests) formed the basis for the design and key elements in the foregoing projects and is continuing to provide a basis for generic design development. HTGR R and D programs are both privately and government sponsored. This paper provides an overview of the background, current status and outstanding design issues/problems remaining in the area of NSS Plant, Materials and Fuel. The specific objectives and scope of all recently completed, ongoing and planned major HTGR R and D programs are presented

  16. Initial Startup and Testing of the Fort St. Vrain HTGR - Lessons Learned which May Be Useful to the HTR-PM

    International Nuclear Information System (INIS)

    Brey, Larry H.

    2014-01-01

    Lessons Learned: Although the HTR-PM and FSV incorporate significant differences in their designs, there are lessons to be learned that are applicable to both plants. This is especially important for key systems that incorporate first-of-a-kind equipment. Basically, these lessons are just an application of common sense. • Complexity Breeds Unavailability. Incorporate system/components that are ruggedly simple in design with a history of reliable operation and minimal maintenance. • Assure Strong Expertise and Funding for this First HTR-PM. Quite likely, the successful startup and operation of this plant will require a level of support considerably greater than a typical nuclear plant. • Be Very Attentive to the Design Aspects of first-of-a-kind Components in the Class 1, Safety-Related Portions of the Plant. For example; a generic metallurgical failure could easily lead to a very long plant shutdown in order to redesign the failed component, re-license, manufacture, install and test prior to plant resuming plant operation. • Where Possible, Test all Key Systems/Components Prior to Installation using Actual Plant Configuration & Operating Characteristics This will help assure operational capability prior to application of nuclear heat. • Never Attempt to Start an Innovative Nuclear Power Plant Without First Having the Proper Regulatory Guides and Criteria in Place. FSV was licensed as a Research Facility. There was no Standard Review Plan or Regulatory Guides in place for the NRC (or PSC) to utilize in regulating this HTGR. • Do Not Be Reluctant to Incorporate a Generous Over-Build Capability into Systems/Components. It is significantly easier to design extra margin into the original compressors, pumps and motors than to be required to backfit into larger units after plant start-up. • Assure All Safety Documents Reflect the Actual Capability of the Plant to Respond to Accidents Described in the Safety Analysis. FSV was limited to 82% power during the

  17. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1979

    International Nuclear Information System (INIS)

    1979-11-01

    The technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-79 are reported. The report covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop an MEU fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  18. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant.

  19. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    International Nuclear Information System (INIS)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  20. HTGR generic technology program. Semiannual report ending March 31, 1980

    International Nuclear Information System (INIS)

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants

  1. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1981

    International Nuclear Information System (INIS)

    1981-05-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at General Atomic during the first half of FY-81. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was initiated during this period was the preparation of input data for a long-range technology program plan

  2. HTGR Fuel-Technology Program. Semiannual report for the period ending September 30, 1982

    International Nuclear Information System (INIS)

    1982-11-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at GA Technologies Inc. during the second half of FY-1982. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was completed during this period was the preparation of input data for a long-range technology program plan

  3. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    Energy Technology Data Exchange (ETDEWEB)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  4. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  5. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  6. HTGR fuel cycle

    International Nuclear Information System (INIS)

    1987-08-01

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL) [de

  7. HTGR market assessment: interim report

    International Nuclear Information System (INIS)

    1979-09-01

    The purpose of this Assessment is to establish the utility perspective on the market potential of the HTGR. The majority of issues and conclusions in this report are applicable to both the HTGR-Gas Turbine (GT) and the HTGR-Steam Cycle (SC). This phase of the HTGR Market Assessment used the HTGR-GT as the reference design as it is the present focus of the US HTGR Program. A brief system description of the HTGR-GT is included in Appendix A. This initial report provides the proposed structure for conducting the HTGR Market Assessment plus preliminary analyses to establish the magnitude and nature of key factors that affect the HTGR market. The HTGR market factors and their relationship to the present HTGR Program are discussed. This report discusses two of these factors in depth: economics and water availability. The water availability situation in the US and its impact on the potential HTGR market are described. The approach for applying the HTGR within a framework of utility systems analyses is presented

  8. Pressure vessel design codes: A review of their applicability to HTGR components at temperatures above 800 deg C

    International Nuclear Information System (INIS)

    Hughes, P.T.; Over, H.H.; Bieniussa, K.

    1984-01-01

    The governments of USA and Federal Republic of Germany have approved of cooperation between the two countries in an endeavour to establish structural design code for gas reactor components intended to operate at temperatures exceeding 800 deg C. The basis of existing codes and their applicability to gas reactor component design are reviewed in this paper. This review has raised a number of important questions as to the direct applicability of the present codes. The status of US and FRG cooperative efforts to obtain answers to these questions are presented

  9. NGNP Component Test Capability Design Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  10. User's manual for the Composite HTGR Analysis Program (CHAP-1)

    International Nuclear Information System (INIS)

    Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.; Wecksung, M.J.; Willcutt, G.J.E. Jr.

    1977-03-01

    CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework

  11. Behaviour of HTGR coated fuel particles at high-temperature tests

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Lyutikov, R.A.; Kurbakov, S.D.; Repnikov, V.M.; Khromonozhkin, V.V.; Soloviyov, G.I.

    1990-01-01

    At the temperature range 1200-2600 deg. C prereactor tests of TRISO fuel particles on the base of UO 2 , UC x O y and UO 2 +2Al 2 O 3 . SiO 2 kernels, and also fuel particle models with ZrC kernels were performed. Isothermal annealings carried out at temperatures of 1400-2600 deg. C, thermogradient ones at 1200-2200 deg. C (Δ T = 200-1200 deg. C/cm). It is shown that at heating to 2200 deg. C integrity of fuel particles is limited by different thermal expansion of PyC and SiC coatings, and also by thermal dissociation of SiC. At higher temperatures the failure is caused by development of high pressures within weakened fuel particles. It is found that uranium migration from alloyed fuel (UC x O y , UO 2 +2Al 2 O 3 .SiO 2 ) in the process of annealing is higher than that from UO 2 . (author)

  12. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Thoms, K.R.

    1979-03-01

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimens with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC 2

  13. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  14. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  15. HTGR generic technology program plan (FY 80)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs

  16. HG ion thruster component testing

    Science.gov (United States)

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  17. The prospects of HTGR in China

    International Nuclear Information System (INIS)

    Sun, Y.; Tong, Y.; Wu, Z.

    1994-01-01

    Present situations of the energy market in China are briefly introduced, while the forecast of the possible development of the Chinese energy market is shortly discussed. The discussion focuses on the expected roles of high temperature gas-cooled reactors (HTGR) in the Chinese energy market in the next century. The history and present status of the development of HTGR technologies in China are presented. In the National High-Tech Programme, a 10 MW helium-cooled test reactor (HTR-10) is projected to be built within this century. The main technical and safety features of the HTR-10 reactor are discussed. (author)

  18. Friction, adhesion and corrosion performance of metallurgical coatings in HTGR-helium

    International Nuclear Information System (INIS)

    Engel, R.; Kleemann, W.

    1981-01-01

    The friction-, adhesion-, thermal cycling- and corrosion performance of several metallurgical coating systems have been tested in a simulated HTGR-test atmosphere at elevated temperatures. The coatings were applied to a solid solution strengthened Ni-based superalloy. Component design requires coatings for the protection of mating surfaces, since under reactor operating conditions, contacting surfaces of metallic components under high pressures are prone to friction and wear damage. The coatings will have to protect the metal surface for 30 years up to 950 0 C in HTGR-helium. The materials tested were various refractory carbides with or without metallic binders and intermetallic compounds. The coatings evaluated were applied by plasma spraying-, detonation gun- and chemical vapor deposition techniques. These yielded two types of coatings which employ different mechanisms to improve the tribiological properties and maintain coating integrity. (Auth.)

  19. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  20. Safety aspects of solvent nitration in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Wilbourn, R.G.

    1977-06-01

    Reprocessing of HTGR fuels requires evaporative concentration of uranium and thorium nitrate solutions. The results of a bench-scale test program conducted to assess the safety aspects of planned concentrator operations are reported

  1. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  2. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    International Nuclear Information System (INIS)

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants

  3. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  4. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  5. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  6. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  7. HTGR fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-01-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents. The slow release of fission products over hundreds of hours allows for decay of short-lived isotopes. The slow and limited release of fission products under HTGR accident conditions results in very low off-site doses. The slow nature of the accident provides more time for operator action to mitigate the accident and for local and state authorities to respond. These features can be used to take advantage of close-in siting for process applications, flexibility in site selection, and emergency planning

  8. HTGR depressurization analysis

    International Nuclear Information System (INIS)

    Boccio, J.L.; Colman, J.; Skalyo, J.; Beerman, J.

    1979-01-01

    Relaxation of the prima facie assumption of complete mixing of primary and secondary containment gases during HTGR depressurization has led to a study program designed to identify and selectively quantify the relevant gas dynamic processes which prevail during the depressurization event. Uncertainty in the degree of gas mixedness naturally leads to uncertainty in containment vessel design pressure and heat loads and possible combustion hazards therein. This paper succinctly details an analytical approach and modeling methodology of the exhaust jet structure/containment vessel interaction during penetration failures. (author)

  9. Shaking table testing of mechanical components

    International Nuclear Information System (INIS)

    Jurukovski, D.; Taskov, Lj.; Mamucevski, D.; Petrovski, D.

    1995-01-01

    Presented is the experience of the Institute of Earthquake Engineering and Engineering Seismology, Skopje, Republic of Macedonia in seismic qualification of mechanical components by shaking table testing. Technical data and characteristics for the three shaking tables available at the Institute are given. Also, for characteristic mechanical components tested at the Institute laboratories, basic data such as producer, testing investor, description of the component, testing regulation, testing equipment and final user of the results. (author)

  10. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  11. HTGR Cost Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  12. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  13. HTGR safety research concerns at NRC

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1982-01-01

    A general discussion of HTGR technical and safety-related problems is given. The broad areas of current research programs specific to the Fort St. Vrain reactor and applicable to HTGR technology are summarized

  14. Overview of HTGR heat utilization system development at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Akino, N.; Shimizu, S.; Hada, K.; Inagaki, Y.; Onuki, K.; Takeda, T.; Nishihara, T.

    1998-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted research and development of nuclear heat utilization systems of a High Temperature Gas cooled Reactor (HTGR), which are capable to meet a large amount of energy demand without significant CO 2 emission to relax the global warming issue. The High Temperature engineering Test Reactor (HTTR) with thermal output of 30 MW and outlet coolant temperature of 950 deg C, the first HTGR in Japan, is under construction on the JAERI site, and its first criticality is scheduled for mid-1998. After the reactor performance and safety demonstration tests for several years, a hydrogen production system will be connected to the HTTR. A demonstration program on hydrogen production started in January 1997, in JAERI, as a study consigned by the Science and Technology Agency. A hydrogen production system connected to the HTTR is designed to be able to produce hydrogen by steam reforming of natural gas, using nuclear heat of 10 MW from the HTTR. The safety principle and standard are investigated for the HTTR hydrogen production system. In order to confirm safety, controllability and performance of key components in the HTTR hydrogen production system, an out-of-pile test facility on the scale of approximately 1/30 of the HTTR hydrogen production system is installed. It is equipped with an electric heater as a heat source instead of the HTTR. The out-of-pile test will be performed for four years after 2001. The HTTR hydrogen production system will be demonstratively operated after 2005 at its earliest plan. Other basic studies on the hydrogen production system using thermochemical water splitting, an iodine sulphur (IS) process, and technology of distant heat transport with microencapsulated phase change material have been carried out for more effective and various uses of nuclear heat. (author)

  15. Approach on a global HTGR R and D network

    International Nuclear Information System (INIS)

    Lensa, W. von

    1997-01-01

    The present situation of nuclear power in general and of the innovative nuclear reactor systems in particular requires more comprehensive, coordinated R and D efforts on a broad international level to respond to today's requirements with respect to public and economic acceptance as well as to globalization trends and global environmental problems. HTGR technology development has already reached a high degree of maturity that will be complemented by the operation of the two new test reactors in Japan and China, representing technological milestones for the demonstration of HTGR safety characteristics and Nuclear Process Heat generation capabilities. It is proposed by the IAEA 'International Working Group on Gas-Cooled Reactors' to establish a 'Global HTGR R and D Network' on basic HTGR technology for the stable, long-term advancement of the specific HTGR features and as a basis for the future market introduction of this innovative reactor system. The background and the motivation for this approach are illustrated, as well as first proposals on the main objectives, the structure and the further procedures for the implementation of such a multinational working sharing R and D network. Modern telecooperation methods are foreseen as an interactive tool for effective communication and collaboration on a global scale. (author)

  16. 2000 MW(t) HTGR-DC-GT Modesto Site dry cooled model 346 concice

    International Nuclear Information System (INIS)

    1979-07-01

    Construction information is presented for a 800 MW(e) HTGR power reactor. The information is itemized for each reactor component or system and incudes quantity, labor hours, labor cost, material cost, and total costs

  17. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  18. Shaking table testing of a HTGR reactor core, comparison with the results obtained using a nonlinear mathematical model

    International Nuclear Information System (INIS)

    Berriaud, C.; Cebe, E.; Livolant, M.; Buland, P.

    1975-01-01

    Two series of horizontal tests have been performed at Saclay on the shaking table VESUVE: sinusoidal test and time history response. Sinusoidal tests have shown the strongly nonlinear dynamic behavior of the core. The resonant frequency of the core is dependent on the level of the excitation. These phenomena have been explained by a computer code, which is a lumped mass nonlinear model. El Centro time history displacement at the level of PCRV was reproduced on the shaking table. The analytical model was applied to this excitation and good comparison was obtained for forces and velocities [fr

  19. Design evaluation of the HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.

    1978-06-01

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures

  20. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  1. Further HTGR core support structure reliability studies. Interim report No. 1

    International Nuclear Information System (INIS)

    Platus, D.L.

    1976-01-01

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties

  2. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  3. Compatibility and testing of electronic components

    CERN Document Server

    Jowett, C E

    2013-01-01

    Compatibility and Testing of Electronic Components outlines the concepts of component part life according to thresholds of failure; the advantages that result from identifying such thresholds; their identification; and the various tests used in their detection. The book covers topics such as the interconnection of miniature passive components; the integrated circuit compatibility and its components; the semiconductor joining techniques; and the thin film hybrid approach in integrated circuits. Also covered are topics such as thick film resistors, conductors, and insulators; thin inlays for el

  4. Component evaluation testing and analysis algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  5. Summary of foreign HTGR programs

    International Nuclear Information System (INIS)

    1980-06-01

    This report contains pertinent information on the status, objectives, budgets, major projects and facilities, as well as user, industrial and governmental organizations involved in major foreign gas-cooled thermal reactor programs. This is the second issue of this document (the first was issued in March 1979). The format has been revised to consolidate material according to country. These sections are followed by the foreign HTGR program index which serves as a quick reference to some of the many acronyms associated with the foreign HTGR programs

  6. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  7. Design and operation of equipment used to develop remote coating capability for HTGR fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Stinton, D.P.; Preston, M.K.; Heck, J.L.; Bolfing, B.J.; Lackey, W.J.

    1978-12-01

    Refabrication of HTGR fuels is a manufacturing process that consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and silicon carbide, preparation of fuel rods, and assembly of fuel rods into fuel elements. All the equipment for refabrication of 233 U-containing fuel must be designed for completely remote operation and maintenance in hot-cell facilities. Equipment to remotely coated HTGR fuel particles has been designed and operated. Although not all of the equipment development needed for a fully remote coating system has been completed, significant progress has been made. The most important component of the coating furnace is the gas distributor, which must be simple, reliable, and easily maintainable. Techniques for loading and unloading the coater and handling microspheres have been developed. An engineering-scale system, currently in operation, is being used to verify the workability of these concepts. Coating crucible handling components are used to remove the crucible from the furnace, remove coated particles, and exchange the crucible, if necessary. After the batch of particles has been unloaded, it is transferred, weighed, and sampled. The components used in these processes have been tested to ensure that no particle breakage or holdup occurs. Tests of the particle handling system have been very encouraging because no major problems have been encountered. Instrumentation that controls the equipment performed very smoothly and reliably and can be operated remotely

  8. HTGR accident and risk assessment

    International Nuclear Information System (INIS)

    Silady, F.A.; Everline, C.J.; Houghton, W.J.

    1982-01-01

    This paper is a synopsis of the high-temperature gas-cooled reactor probabilistic risk assessments (PRAs) performed by General Atomic Company. Principal topics presented include: HTGR safety assessments, peer interfaces, safety research, process gas explosions, quantitative safety goals, licensing applications of PRA, enhanced safety, investment risk assessments, and PRA design integration

  9. Surveillance test of the JMTR core components

    International Nuclear Information System (INIS)

    Takeda, Takashi; Amezawa, Hiroo; Tobita, Kenji

    1986-02-01

    Surveillance test for the core components of Japan Materials Testing Reactor (JMTR) was started in 1966, and completed in 1985 without one capsule. Most of capsules in the program, except one beryllium specimens, were removed from the core, and carred out the post-irradiation tests at the JMTR Hot Laboratory. The data is applied to review of JMTR core components management plan. JMTR surveillance test was carried out with several kind of materials of JMTR core components, Berylium as the reflector, Hafnium as the neutron absorber of control rod, 17-4PH stainless steel as a roller spring of the control rod, and 304 stainless steel as the grid plate. Results are described in this report. (author)

  10. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  11. The commercial application prospect of HTGR plant in China

    International Nuclear Information System (INIS)

    Wang Yingsu

    2008-01-01

    With an introduction of the features and current situation of the HTGR power generation as well as the development of HTGR demonstration project in China, the article analyzes the necessity of developing HTGR power plants. The article proposes to exercise the advantages of HTGR to full extent so as to further develop HTGR power plants. It is believed that HTGR is of great commercial promotion value under appropriate circumstances. (authors)

  12. Status of international HTGR [high-temperature gas-cooled reactor] development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial participation. The programs have produced four electricity-producing prototype/demonstration reaactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these reactors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  13. HTGR type reactors for the heat market

    International Nuclear Information System (INIS)

    Oesterwind, D.

    1981-01-01

    Information about the standard of development of the HTGR type reactor are followed by an assessment of its utilization on the heat market. The utilization of HTGR type reactors is considered suitable for the production of synthesis gas, district heat, and industrial process heat. A comparison with a pit coal power station shows the economy of the HTGR. Finally, some aspects of introducing new technologies into the market, i.e. small plants in particular are investigated. (UA) [de

  14. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  15. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  16. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  17. Scaling laws for HTGR core block seismic response

    International Nuclear Information System (INIS)

    Dove, R.C.

    1977-01-01

    This paper discusses the development of scaling laws, physical modeling, and seismic testing of a model designed to represent a High Temperature Gas-Cooled Reactor (HTGR) core consisting of graphite blocks. The establishment of the proper scale relationships for length, time, force, and other parameters is emphasized. Tests to select model materials and the appropriate scales are described. Preliminary results obtained from both model and prototype systems tested under simulated seismic vibration are presented

  18. HTGR-GT systems optimization studies

    International Nuclear Information System (INIS)

    Kammerzell, L.L.; Read, J.W.

    1980-06-01

    The compatibility of the inherent features of the high-temperature gas-cooled reactor (HTGR) and the closed-cycle gas turbine combined into a power conversion system results in a plant with characteristics consistent with projected utility needs and national energy goals. These characteristics are: (1) plant siting flexibility; (2) high resource utilization; (3) low safety risks; (4) proliferation resistance; and (5) low occupational exposure for operating and maintenance personnel. System design and evaluation studies on dry-cooled intercooled and nonintercooled commercial plants in the 800-MW(e) to 1200-MW(e) size range are described, with emphasis on the sensitivity of plant design objectives to variation of component and plant design parameters. The impact of these parameters on fuel cycle, fission product release, total plant economics, sensitivity to escalation rates, and plant capacity factors is examined

  19. Developmental assessment of the Fort St. Vrain version of the composite HTGR analysis program (CHAP-2)

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1981-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic simulation techniques used to predict plant response to postulated accident sequences. Results of these preliminary validation efforts are presented showing good agreement between code output and plant data for the portions of the code that have been tested. Plans for further development and assessment as well as application of the validated code are discussed. (author)

  20. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  1. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  2. Information exchange mainly on HTGR operation and maintenance technique between JAEA and INET in 2005

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Hino, Ryutaro; Yu Suyuan

    2006-06-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation with emphasis on HTGR operation and maintenance techniques between JAEA and INET and outlines cooperation activities during the fiscal year 2005. (author)

  3. Dynamic leaching test of personal computer components.

    Science.gov (United States)

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.

  4. Present status of HTGR research and development, 1995

    International Nuclear Information System (INIS)

    1996-02-01

    Based on the Long-term Program for Development and Utilization of Nuclear Energy which was revised in 1987, the Japan Atomic Energy Research Institute (JAERI) has carried out the Research and Development (R and D) on the High Temperature Gas-cooled Reactors (HTGRs) in Japan. The JAERI obtained the installation permit of the High Temperature Engineering Test Reactor (HTTR) from the Government in November 1990 and started the construction of the HTTR facility in the Oarai Research Establishment in March 1991. The HTTR is a test reactor with thermal output of 30MW and outlet coolant temperature of 850degC at the rated operation and 950degC at the high temperature test operation, using the pin-in-block type fuel, and has capability to demonstrate nuclear process heat utilization. The reactor pressure vessel and intermediate heat exchanger were installed in the reactor containment vessel in 1994, and reactor internals were also installed in the reactor pressure vessel in 1995. The first criticality will be attained in December 1997. This report describes the design outline and construction progress of the HTTR, R and D of fuel, materials and components for the HTGR and high temperature nuclear heat application, and innovative and basic researches for high temperature technologies at the HTTR. (J.P.N.)

  5. Environmental qualification testing of TFE valve components

    International Nuclear Information System (INIS)

    Eyvindson, A.; Krasinski, W.; McCutcheon, R.

    1997-01-01

    Valves containing tetrafluoroethylene (TFE) components are being used in many CANDU Nuclear Generating Stations. However, some concerns remain about the performance of TFE after exposure to high levels of radiation. Stations must therefore ensure that such valves perform reliably after being exposed to postulated accident radiation dose levels. The current Ontario Hydro Environmental Qualification [EQ] program specifies much higher postulated radiation exposure than the original design, to account for conditions following a LOCA. Initial assessments indicated that Teflon components would require replacement. Proof of acceptable performance can remove the need for large scale replacement, avoiding a significant cost penalty and preserving benefits due to the superior performance of TFE-based seals. A test program was undertaken at Chalk River Laboratories (CRL) to investigate the performance of three valves after irradiation to 10 Mrad. Such valves are currently used at the Bruce B Nuclear Generating Station. Each contains TFE packing rings; one also has TFE seats. Two of the valves are used in the ECIS recovery system, while the third is used for instrumentation loop isolation or as drain valves. All are exposed to little or no radiation during normal use. Based on the results of the tests, all the valves tested will still meet functional and performance requirements after the TFE components have been exposed to 10 Mrad of irradiation. (author)

  6. Overview of HTGR utilization system developments at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Inagaki, Y.

    1997-01-01

    JAERI has been constructing a 30-MWt HTGR, named HTTR, to develop technology and to demonstrate effectiveness of high-temperature nuclear heat utilization. A hydrogen production system by natural gas steam reforming is to be the first heat utilization system of the HTTR since its technology matured in fossil-fired plant enables to couple with HTTR in the early 2000's and technical solutions demonstrated by the coupling will contribute to all other hydrogen production systems. The HTTR steam reforming system is designed to utilize the nuclear heat effectively and to achieve hydrogen productivity competitive to that of a fossil-fired plant with operability, controllability and safety acceptable enough to commercialization, and an arrangement of key components was already decided. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test is planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions. The out-of-pile system is an approximately 1/20-1/30 scale system of the HTTR steam reforming system and simulates key components downstream from an IHX

  7. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  8. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part...

  9. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  10. Feasibility and Testing of Additive Manufactured Components

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Hummelt, Ed [Eaton Corporation; Solovyeva, Lyudmila [Eaton Corporation

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques were selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.

  11. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  12. Interim development report: engineering-scale HTGR fuel particle crusher

    International Nuclear Information System (INIS)

    Baer, J.W.; Strand, J.B.

    1978-09-01

    During the reprocessing of HTGR fuel, a double-roll crusher is used to fracture the silicon carbide coatings on the fuel particles. This report describes the development of the roll crusher used for crushing Fort-St.Vrain type fissile and fertile fuel particles, and large high-temperature gas-cooled reactor (LHTGR) fissile fuel particles. Recommendations are made for design improvements and further testing

  13. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  14. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  15. Development of components for the gas-cooled fast breeder reactor program

    International Nuclear Information System (INIS)

    Dee, J.B.; Macken, T.

    1977-01-01

    The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core. The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. (Auth.)

  16. HTGR Application Economic Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  17. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  18. HTGR Industrial Application Functional and Operational Requirements

    International Nuclear Information System (INIS)

    Demick, L.E.

    2010-01-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  19. Scoping study of flowpath of simulated fission products during secondary burning of crushed HTGR fuel in a quartz fluidized-bed burner

    International Nuclear Information System (INIS)

    Rindfleisch, J.A.; Barnes, V.H.

    1976-04-01

    The results of four experimental runs in which isotopic tracers were used to simulate fission products during fluidized bed secondary burning of HTGR fuel were studied. The experimental tests provided insight relative to the flow path of fission products during fluidized-bed burning of HTGR fuel

  20. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  1. Status of the HTGR development program in Japan

    International Nuclear Information System (INIS)

    Saito, S.

    1991-01-01

    According to the revision of the Long-Term Program for Development and Utilization of Nuclear Energy issued by the Japanese Atomic Energy Commission, High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, will be constructed by the Japan Atomic Energy Research Institute (JAERI) in order to establish and upgrade the technology basis for an HTGR, serving at the same time as a potential tool for new and innovative basic research. The budget for the construction of the HTTR was approved by the Government and JAERI is now proceeding with the construction design of the HTTR, focussing the first criticality in the end of FY 1995. In order to establish and upgrade HTGR technology basis systematically and efficiently, and also to carry out innovative basic research on high temperature technologies, Japan will perform necessary R and D mainly at JAERI, which is a leading organization of the R and D. In addition, in order to promote the R and D on HTGRs more efficiently, Japan will promote the existing international cooperation with the research organizations in foreign countries. (author). 5 figs, 3 tabs

  2. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  3. Present Status of HTGR Utilization System Development in Japan

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki

    2000-01-01

    Efforts are to be continuously devoted to establish and upgrade HTGR technology in the world. Japan Atomic Energy Research Institute (JAERI) has conducted the R and D of HTGRs since the 1960's in Japan, focusing on mainly the construction of High Temperature engineering Test Reactor (HTTR) which is an HTGR with a maximum helium gas temperature of 950 o C at the reactor outlet and HTGR utilization systems. The HTTR achieved first criticality on November 10, 1998 and will restart from January in 2001. In the R and D program of HTGR utilization systems, JAERI has conducted hydrogen production systems with HTGR to demonstrate the applicability of nuclear heat for extensive energy demands besides the electric power generation. JAERI has developed a hydrogen production system by steam reforming process of natural gas using nuclear heat supplied from the HTTR. Prior to the demonstration test of HTTR hydrogen production system, a 1/30-scale out-of-pile test facility is under construction for safety review and detailed design of the system. The out-of-pile test facility will be started in 2001 and will be continued about 4 years. The hydrogen permeation and corrosion tests have been carried out since 1997. Check and review for the demonstration program in the HTTR hydrogen production system will be made in 2001. Then the HTTR hydrogen production system is scheduled to be constructed from 2003 and demonstratively operated from around 2006. In parallel with the R and D of the HTTR hydrogen production system, hydrogen production method by thermochemical water splitting, so-called IS process, has been studied in JAERI. The IS process is placed as one of future candidates of the heat utilization systems of the HTTR following the steam reforming system. Continuous and stoichiometric production of hydrogen and oxygen for 48 hours was successfully achieved with a laboratory-scale apparatus mainly made of glass. Following this achievement, the study has been continued with a larger

  4. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  5. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  6. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Soelberg, Nick

    2010-01-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR 'full recycle' service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the 'pebble bed' approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R and D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in 'limited separation' or 'minimum fuel treatment' separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  7. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  8. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  9. HTGR development in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The status of high temperature gas-cooled reactors (HTGR) development in the United States of America is described, including the organizational structure for the development support, HTGR development programme, and plans for future activities in the field

  10. Preliminary risk assessments of the small HTGR

    International Nuclear Information System (INIS)

    Everline, C.J.; Bellis, E.A.

    1985-05-01

    Preliminary investment and safety risk assessments were performed for a preconceptual design of a four-module 250-MW(t) side-by-side steel-vessel pebble bed HTGR plant. Broad event spectra were analyzed involving component damage resulting in unscheduled plant outages and fission product releases resulting in offsite doses. The preliminary assessment indicates at this stage of the design that two categories of events govern the investment risk envelope: primary coolant leaks which release some circulating and plate-out activity that contaminates the confinement and turbogenerator damage which involves extensive turbine blade failure. Primary coolant leaks are important contributors because associated cleanup and decontamination requirements result in longer outages that arise from other events with comparable frequencies. Turbogenerator damage is the salient low-frequency investment risk accident due to the relatively long outages being experienced in the industry. Thermal transients are unimportant investment risk contributors because pressurized core heatups cause little damage, and depressurized core heatups occur at negligible frequencies relative to the forced outage goal. These preliminary results demonstrate investment and safety risk goal compliance at this stage in the design process. Studies are continuing in order to provide valuable insights into risk-significant events to assure a balanced approach to meeting user and regulatory requirements

  11. Design of the HTGR for process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1980-05-01

    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850 0 C (1562 0 F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics

  12. Proceedings of the 1st JAEA/KAERI information exchange meeting on HTGR and nuclear hydrogen technology

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sakaba, Nariaki; Nishihara, Tetsuo; Yan, Xing L.; Hino, Ryutaro

    2007-03-01

    Japan Atomic Energy Agency (JAEA) has completed an implementation with Korea Atomic Energy Research Institute (KAERI) on HTGR and nuclear hydrogen technology, 'The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA. 'To facilitate efficient technology development on HTGR and nuclear hydrogen by the IS process, an information exchange meeting was held at the Oarai Research and Development Center of JAEA on August 28-30, 2006 under Program 13th of the JAEA/KAERI Implementation, 'Development of HTGR and Nuclear Hydrogen Technology'. JAEA and KAERI mutually showed the status and future plan of the HTTR (High-Temperature Engineering Test Reactor) project in Japan and of the NHDD (Nuclear Hydrogen Development and Demonstration) project in Korea, respectively, and discussed collaboration items. This proceedings summarizes all materials of presented technical discussions on HTGR and hydrogen production technology as well as the meeting briefing including collaboration items. (author)

  13. Air ingress behavior during a primary-pipe rupture accident of HTGR

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki

    1997-11-01

    The inherent properties of a HTGR facilitates the design with high degree of passive safe performances, compared to other type. However, it is still not clear if the present HTGR can maintain a passive safe function during a primary-pipe rupture accident, or what would be design criteria to guarantee the HTGR with the high degree of passive safe performances during the accident. To investigate safe characteristics, the study has been performed experimentally and analytically on the air ingress behavior during the accident. It was indicated that there are two stages in the accident of the HTGR having a reverse U-shaped channel. In the first stage, an air ingress process limits molecular diffusion and natural circulation of the gas mixture having a very slow velocity. In the second stage, the air ingress process limits the ordinary natural circulation of air throughout the reactor. A numerical calculation code has been developed to analyze thermal-hydraulic behavior during the first stage. This code provides a numerical method for analyzing a transport phenomena in a multi-component gas system by solving one-dimensional basic equations and using a flow network model. It was possible to predict or analyze the air ingress process regarding the density of the gas mixture, concentration of each gas species and duration of the first stage of the accident. It was indicated that the safe characteristics of the HTGR from the present experiment as follows. The safety cooling rate that the air ingress process terminates during the first stage exists in the HTGR having the reverse U-shaped channel. Moreover, the ordinary natural circulation of air can not produce in the second stage by injecting helium from the bottom of the pressure vessel corresponding the low-temperature side channel. Therefore, it was found that the idea of helium injection is one of useful methods for the prevention of air ingress and of graphite corrosion in the future HTGRs. (J.P.N.). 74 refs

  14. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  15. Recent activities on the HTGR for its commercialization in the 21st century

    International Nuclear Information System (INIS)

    Minatsuki, I.; Uchida, S.; Nomura, S.; Yamada, S.

    1997-01-01

    Currently, the greatest concern about energy is the need to rapidly increase the energy supply, while also conserving energy reserves and protecting the worldwide environment in the coming century. Furthermore, the direct use of thermal energy from nuclear reactors is an effective way to widen the application of nuclear energy. From this standpoint, Mitsubishi Heavy Industries (MHI) has been continuing the various activities related to the High Temperature Gas Cooled Reactor (HTGR). At present, MHI is participating in the High Temperature Engineering Test Reactor (HTTR) project, which is under construction at Oarai promoted by the Japan Atomic Energy Research Institute, as the primary fabricator. Moreover MHI has been conducting research and development to investigate the feasibility of HTGR commercialization in future. In this paper, the results of various studies are summarized to introduce our HTGR activities

  16. Selection of LEU/Th reference fuel for the HTGR-SC/C lead plant

    International Nuclear Information System (INIS)

    Turner, R.F.; Neylan, A.J.; Baxter, A.M.; McEachern, D.W.; Stansfield, O.M.

    1983-05-01

    This paper describes the reference fuel materials for the high-temperature gas-cooled reactor (HTGR) plant for steam cycle/cogeneration (SC/C). A development and testing program carried out in 1978 through 1982 led to the selection of coated fuel particles of uranium-oxycarbide (UCO) for fissile materials and thorium oxide (ThO 2 ) for fertiel materials. Low-enriched uranium (LEU) is the enrichment basis for the HTGR-SC/C application. While UC 2 and UO 2 would also meet the essential criteria for fissile fuel, the UCO, alternative was selected on the basis of improved performance, economics, and process conditions

  17. Proceedings of the 2nd JAERI symposium on HTGR technologies October 21 ∼ 23, 1992, Oarai, Japan

    International Nuclear Information System (INIS)

    1993-01-01

    The Japan Atomic Energy Research Institute (JAERI) held the 2nd JAERI Symposium on HTGR Technologies on October 21 to 23, 1992, at Oarai Park Hotel at Oarai-machi, Ibaraki-ken, Japan, with support of International Atomic Energy Agency (IAEA), Science and Technology Agency of Japan and the Atomic Energy Society of Japan on the occasion that the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, is now being proceeded smoothly. In this symposium, the worldwide present status of research and development (R and D) of the HTGRs and the future perspectives of the HTGR development were discussed with 47 papers including 3 invited lectures, focusing on the present status of HTGR projects and perspectives of HTGR Development, Safety, Operation Experience, Fuel and Heat Utilization. A panel discussion was also organized on how the HTGRs can contribute to the preservation of global environment. About 280 participants attended the symposium from Japan, Bangladesh, Germany, France, Indonesia, People's Republic of China, Poland, Russia, Switzerland, United Kingdom, United States of America, Venezuela and the IAEA. This paper was edited as the proceedings of the 2nd JAERI Symposium on HTGR Technologies, collecting the 47 papers presented in the oral and poster sessions along with 11 panel exhibitions on the results of research and development associated to the HTTR. (author)

  18. Shaking table qualification tests of mechanical and electrical components

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1993-01-01

    This presentation covers the experience of the Institute of Earthquake Engineering and Engineering Seismology, Skopje, Republic of Macedonia in seismic qualification of mechanical components by shaking table testing. The characteristics of the biaxial seismic and single component shaking tables used at the Institute are given. Some examples of the experience from performed test for reactor components are included

  19. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  20. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  1. HTGR fuel particle crusher design evaluation

    International Nuclear Information System (INIS)

    Johanson, N.W.

    1978-10-01

    This report describes an evaluation of the design of the existing engineering-scale fuel particle crushing system for the HTGR reprocessing cold pilot plant at General Atomic Company (GA). The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Reference Facility (HRRF) particle crushing system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for an upgraded design incorporating improvements in bearing and seal arrangement, housing construction, and control of roll gap thermal expansion. 23 figures, 6 tables

  2. Irradiation experience with HTGR fuels in the Peach Bottom Reactor

    International Nuclear Information System (INIS)

    Scheffel, W.J.; Scott, C.B.

    1974-01-01

    Fuel performance in the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) is reviewed, including (1) the driver elements in the second core and (2) the test elements designed to test fuel for larger HTGR plants. Core 2 of this reactor, which is operated by the Philadelphia Electric Company, performed reliably with an average nuclear steam supply availability of 85 percent since its startup in July 1970. Core 2 had accumulated a total of 897.5 equivalent full power days (EFPD), almost exactly its design life-time of 900 EFPD, when the plant was shut down permanently on October 31, 1974. Gaseous fission product release and the activity of the main circulating loop remained significantly below the limits allowed by the technical specifications and the levels observed during operation of Core 1. The low circulating activity and postirradiation examination of driver fuel elements have demonstrated the improved irradiation stability of the coated fuel particles in Core 2. Irradiation data obtained from these tests substantiate the performance predictions based on accelerated tests and complement the fuel design effort by providing irradiation data in the low neutron fluence region

  3. Computer simulation of HTGR fuel microspheres using a Monte-Carlo statistical approach

    International Nuclear Information System (INIS)

    Hedrick, C.E.

    1976-01-01

    The concept and computational aspects of a Monte-Carlo statistical approach in relating structure of HTGR fuel microspheres to the uranium content of fuel samples have been verified. Results of the preliminary validation tests and the benefits to be derived from the program are summarized

  4. Recent evolution of HTGR instrumentation in the USA

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1982-06-01

    The reactor instrumentation system for the 2240 MW(t) HTGR includes ex-core neutron detectors for automatic nuclear power control, separate ex-core neutron detectors for automatic protection purposes (reactor trip), reactor core outlet thermocouples that measure the temperature of the primary coolant (helium) as it exits the nuclear core, cold helium thermocouples that measure the temperature of the primary coolant as it enters the core, external pressure differential gages that measure primary coolant flow, in-core fission chambers that are utilized to map neutron flux, and ex-core primary coolant moisture monitors. All of these subsystems, except for the in-core flux mapping units, are also part of the Fort St. Vrain HTGR, which has provided significant experience for the design of the new system. In-core flux mapping is not necessary at FSV for normal operation because its relatively small core is fairly ''visible'' from the location of the ex-core instruments. However, temporary in-core fission couples, microphones, and displacement sensors, as well as sensitive ex-core accelerometers were utilized to identify periodic core block lateral movement and measure neutron flux and primary coolant temperatures. A search for in-core sensors to facilitate mapping neutron flux distributions in the larger core of the 2240 MW(t) HTGR has led to the selection of a high temperature fission chamber, which has been tested up to 1000 deg. C at General Atomic. The chamber shows adequate signal to noise ratio and repeatability. Other reactor instruments planned for the 2240 MW(t) are of the FSV type (i.e. thermocouples) or improved versions of the FSV design (i.e. moisture monitors). New concepts such as acoustic thermometers are also being considered

  5. Regulatory Framework of Safety for HTGR

    International Nuclear Information System (INIS)

    Huh, Chang Wook; Suh, Nam Duk

    2011-01-01

    Recent accident in Fukushima Daiichi plant in Japan makes big impacts on the future of nuclear business. Many countries are changing their nuclear projects and increased safety of nuclear plants is asked for from the public. Without providing safety the society accepts, it might be almost impossible to build new plants further. In this sense high temperature gas-cooled reactor (HTGR) which is under development needs to be licensed reflecting this new expectation regarding safety. It means we should have higher level of safety goal and a systematic regulatory framework to assure the safety. In our previous paper, we evaluated the current safety goal and design practice in view of this new safety expectation after Fukushima accident. It was argued that a top-down approach starting from safety goal is necessary to develop safety requirements or to assure safety. Thus we need to propose an ultimate safety goal public accepts and then establish a systematic regulatory framework. In this paper we are going to provide a conceptual regulatory framework to guarantee the safety of HTGR. Section 2 discusses the recent trend of IAEA safety requirements and then summarize the HTGR design approach. Incorporating these discussions, we propose a conceptual framework of regulation for safety of HTGR

  6. FY1983 HTGR summary level program plan

    International Nuclear Information System (INIS)

    1983-01-01

    The major focus and priority of the FY1983 HTGR Program is the development of the HTGR-SC/C Lead Project through one of the candidate lead utilities. Accordingly, high priority will be given to work described in WBS 04 for site and user specific studies toward the development of the Lead Project. Asessment of advanced HTGR systems will continue during FY1983 in accordance with the High Temperature Process Heat (HTPH) Concept Evaluation Plan. Within the context of that plan, the assessment of the monolithic HTPH concepts has been essentially completed in FY1982 and FY1983 activities and will be limited to documentation only. the major advanced HTGR systems efforts in FY1983 will be focused on the further definition of the Modular Reactor Systems concepts in both the reforming (MRS-R) and Steam Cycle/Cogeneration 9MRS-SC/C) configurations in WBS 41. The effort will concentrate upon key technical issues and trade studies oriented to reduction in expected cost and schedule duration. With regard to the latter, the most significant will be trade study addressing the degree of modularization of reactor plant structures. particular attention will be given to the confinement building which currently defines the critical path for construction

  7. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  8. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  9. FY 1981 HTGR program summary-level program outline (revision 1/30/81)

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of the DOE HTGR Program is the development of technology for the most important HTGR applications. Through this support, DOE seeks to encourage private sector initiatives which will lead to the development of commercially attractive HTGR applications that concurrently support national energy goals. Currently perceived as important to national energy goals are applications that primarily address the process heat market with a view toward reduction of national requirements for oil, natural gas and coal. A high priority during FY 1981, therefore, will be to further identify and define the details of the Technology Program so as to assure that it is both necessary and sufficient to provide the required support. In the establishment of a supportive Technology Program, key elements which will be addressed are as follows: studies will be conducted to further identify and characterize important unique HTGR applications and to evaluate their potential in the context of market opportunities, utility/user interest, and national objectives to develop new energy supply options; based upon the configurations and operating characteristics projected for selected applications, Technology Program requirements must be identified to support development, verification, and ultimately licensing of components and systems comprising the facilities of interest; and in the context of limited resources, sufficient analysis and evaluation must be accomplished so as to prioritize technology elements in accordance with appropriately developed criteria

  10. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  11. Initial Start-Up and Testing of the Fort St. Vrain HTGR – Lessons Learned which May Be Useful for the HTR-PM

    International Nuclear Information System (INIS)

    Brey, H.L.

    2014-01-01

    Although the activities presented in this paper occurred 40 years ago, there are many observations and lessons associated with Fort St. Vrain (FSV) which may be beneficial in support of the start-up, testing and licensing of the HTR-PM. This report includes a review of the FSV NPP design including an overview of the requirements and testing program utilized to bring the plant from initial start-up to full power. A sampling of the test results as well as a comparison of the plant design characteristics to actual values achieved at 100% power along with selected overall experiences gained through operation of this plant is also included. (author)

  12. NUCLEBRAS' installations for tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Horta, J.A.L.; Avelar Esteves, F. de; Pinheiro, R.B.

    1983-05-01

    The reasons for NUCLEBRAS' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufacturers, giving to them the means for performing functional tests of industrial products, are presented. A brief description of the facilities under construction: the Components Test Loop and the Facility for Testing N.P.P. Components under Accident Conditions, and of other already in operation, is given, as well as its objectives and main technical characteristics. Some test results already obtained are also presented. (Author) [pt

  13. Nuclebras' installations for performance tests of nuclear power plants components

    International Nuclear Information System (INIS)

    Vasconcelos Paiva, I.P. de; Avelar Esteves, F. de; Horta, J.A.L.; Resende, M.F.R.; Pinheiro, R.B.

    1984-01-01

    The reasons for Nuclebras' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufactures, giving to them the means for performing functional tests of industrial products, are presented. A brief description of facilities under construction: the components Test Loop and Facility for Testing N.P.P. components under Accident conditions, and other already in operation, as well as its objectives and main technical characteristics. Some test results had already obtained are also presented. (Author) [pt

  14. Empirical usability testing in a component-based environment : improving test efficiency with component-specific usability measures

    NARCIS (Netherlands)

    Brinkman, W.P.; Haakma, R.; Bouwhuis, D.G.; Bastide, R.; Palanque, P.; Roth, J.

    2005-01-01

    This paper addresses the issue of usability testing in a component-based software engineering environment, specifically measuring the usability of different versions of a component in a more powerful manner than other, more holistic, usability methods. Three component-specific usability measures are

  15. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  16. An introduction to our activities supporting HTGR developments in Japan

    International Nuclear Information System (INIS)

    An, S.; Hayashi, T.; Tsuchie, Y.

    1997-01-01

    On the view point the most important for the HTGR development promotion now in Japan is to have people know about HTGR, the Research Association of HTGR Plants(RAHP) has paid the best efforts for making an appealing report for the past two years. The outline of the report is described with an introduction of some basic experiments done on the passive decay heat removal as one of the activities carried out in a member of the association. (author)

  17. Characteristic test technology for PWR fuel and its components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho; Jeong, Yong Hwan; Park, Sang Yoon; Kim, Kyeng Ho; Nam, Cheol; Baek, Jong Hyuk; Lee, Myung Ho; Choi, Byoung Kwon; Song, Kun Woo; Kang, Ki Won; Kim, Keon Sik; Kim, Jong Hun; Kim, Young Min; Yang, Jae Ho; Song, Kee Nam; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Chun, Tae Hyun; In, Wang Kee; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Characteristic tests of fuel assembly and its components being developed in the Advanced LWR Fuel Development Project supported by the mid-long term nuclear R and D program are described in this report. Performance verification of fuel and its components by the characteristic tests are essential to their development. Fuel components being developed in the Advanced LWR Fuel Development Project are zirconium alloy cladding, UO{sub 2} and burnable absorber pellets, spacer grid and top and bottom end pieces. Detailed test plans for those fuel components are described in this report, and test procedures of cladding and pellet are also described in the Appendix. Examples of the described tests are in- and out-of- pile corrosion and mechanical tests such as creep and burst tests for the cladding, in-pile capsule and ramp tests for the pellet, mechanical tests such as strength and vibration, and thermal-hydraulic tests such as pressure drop and critical heat flux for the spacer grid and top and bottom end pieces. It is expected that this report could be used as the standard reference for the performance verification tests in the development of LWR fuel and its components. 11 refs., 9 figs., 2 tabs. (Author)

  18. Creep and fatigue properties of Incoloy 800H in a high-temperature gas-cooled reactor (HTGR) helium environment

    International Nuclear Information System (INIS)

    Chow, J.G.Y.; Soo, P.; Epel, L.

    1978-01-01

    A mechanical test program to assess the effects of a simulated HTGR helium environment on the fatigue and creep properties of Incoloy 800H and other primary-circuit metals is described. The emphasis and the objectives of this work are directed toward obtaining information to assess the integrity and safety of an HTGR throughout its service life. The helium test environment selected for study contained 40 μ atm H 2 O, 200 μ atm H 2 , 40 μ atm CO, 10 μ atm CO 2 , and 20 μ atm CH 4 . It is believed that this ''wet'' environment simulates that which could exist in a steam-cycle HTGR containing some leaking steam-generator tubes. A recirculating helium loop operating at about 4 psi in which impurities can be maintained at a constant level, has been constructed to supply the desired environment for fatigue and creep testing

  19. Fiber Laser Component Testing for Space Qualification Protocol Development

    Science.gov (United States)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  20. Manufacturing and testing experience for FFTF major safety related components

    International Nuclear Information System (INIS)

    Peckinpaugh, C.L.

    1976-01-01

    Experience with FFTF Heat Transport System components during design, manufacturing, and prototype testing is dscussed. Specifically the special design features and the results of the testing performed to assure that the designs provide for safe operation are outlined. Particular emphasis is placed on the full size prototype testing programs and the valuable experience gained

  1. Developmental assessment of the Fort St. Vrain version of the Composite HTGR Analysis Program (CHAP-2)

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1980-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences

  2. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  3. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  4. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  5. Review of tritium behavior in HTGR systems

    International Nuclear Information System (INIS)

    Gainey, B.W.

    1976-01-01

    The available experimental evidence from laboratory and reactor studies pertaining to tritium production, capture, release, and transport within an HTGR leading to release to the environment is reviewed. Possible mechanisms for release, capture, and transport are considered and a simple model was used to calculate the expected tritium release from HTGRs. Comparison with Federal regulations governing tritium release confirm that expected HTGR releases will be well within the allowable release limits. Releases from HTGRs are expected to be somewhat less than from LWRs based on the published LWR operating data. Areas of research deserving further study are defined but it is concluded that a tritium surveillance at Fort St. Vrain is the most immediate need

  6. Safety criteria for advanced HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, W.

    1989-01-01

    It is commonly agreed that advanced HTGR concepts must be licensable, which means that they must fulfil existing regulatory requirements. Furthermore, it is necessary to improve their public acceptance and they must even be suitable for urban sites. Therefore, they should be 'safer' than existing plants, which mainly means with respect to low-frequency or beyond-design severe accidents. Last but not least, the realization of advanced HTGR would be easier if commonly shared safety principles could be stated ensuring this further increased level of safety internationally. These qualitative statements need to be cast into quantitative guidelines which can be used as a rationale for safety evaluation. This paper tries to describe the status reached and to stimulate international activities. (author). 12 refs, 4 figs, 3 tabs

  7. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  8. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  9. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  10. TREFF: Reflectometer and instrument component test beamline at MLZ

    Directory of Open Access Journals (Sweden)

    Peter Link

    2017-11-01

    Full Text Available TREFF is a high resolution polarized neutron reflectometer and instrument component test beamline resulting in a highly modular instrument providing a flexible beam line for various applications.

  11. HTGR programme in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The HTGR is being developed by the US Department of Energy within the Division of HTGRs is reported. Fuel design, development and demonstration activities are being conducted by General Atomics and Oak Ridge National Laboratory. During FY-1990 the US continued work in cooperative projects with the KFA-Forschungszentrum Juelich and the Japan Atomic Energy Research Institute on post irradiation examination of fuel capsules and continued the Fission Product Transport Test Program with the French Commissariat a l'Energie Atomique in the COMEDIE in-pile loop at the SILOE reactor at Grenoble. Other activities included installation of the high temperature core-conduction-cooldown test furnace at ORNL which will be used for testing of irradiated fuel compacts under accident conditions. Finally, the US fuel performance experts participated in the MHTGR Cost Reduction Study which is a major effort within the US commercial MHTGR program. 1 tab

  12. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  13. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  14. HTGR experience, programs, and future applications

    International Nuclear Information System (INIS)

    Moore, R.A.; Kantor, M.E.; Brey, H.L.; Olson, H.G.

    1982-01-01

    This paper reviews the current status of the programs for the development of high-temperature gas-cooled reactors (HTGRs) in the major industrial countries of the world. Existing demonstration plants and facilities are briefly described, and national programs for exploiting the unique high-temperature capabilities of the HTGR for commercial production of electricity and in process steam/heat application are discussed. (orig.)

  15. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  16. Time-dependent high-temperature low-cycle fatigue behavior of nickel-base heat-resistant alloys for HTGR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Kondo, Tatsuo

    1988-06-01

    A series of strain controlled low-cycle fatigue tests at 900 deg C in the simulated HTGR helium environment were conducted on Hastelloy X and its modified version, Hastelloy XR in order to examine time-dependent high-temperature low-cycle fatigue behavior. In the tests with the symmetric triangular strain waveform, decreasing the strain rate led to notable reductions in the fatigue life. In the tests with the trapezoidal strain waveform with different holding types, the fatigue life was found to be reduced most effectively in tensile hold-time experiments. Based on the observations of the crack morphology the strain holding in the compressive side was suggested to play the role of suppressing the initiation and the growth of internal cracks or cavities, and to cause crack branching. When the frequency modified fatigue life method and/or the prediction of life by use of the ductility were applied, both the data obtained with the symmetric triangular strain waveform and those with the tensile hold-time experiments lay on the straight line plots. The data, however, obtained with the compressive and/or both hold-time experiments could not be handled satisfactorily by those methods. When the cumulative damage rule was applied, it was found that the reliability of HTGR components was ensured by limiting the creep-fatigue damage fraction within the value of 1. (author)

  17. Survey on the activities in Switzerland in the field of HTGR-development

    International Nuclear Information System (INIS)

    Sarlos, G.; Brogli, R.; Mathews, D.; Bucher, K.H.; Helbling, W.

    1991-01-01

    The activities of the Swiss industry and of the ''Paul Scherrer Institute'' in the development and production of components and systems for the nuclear industry are reviewed. For the HTGR, major programs include the German HTR-500 project, the gas-cooled district heating reactor (GHR), and the PROTEUS critical experiments. The experiments are being performed in the framework of an IAEA coordinated research program. (author)

  18. Generation of a Broad-Group HTGR Library for Use with SCALE

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Lee, Deokjung; Wiarda, Dorothea; Williams, Mark L.; Mertyurek, Ugur

    2012-01-01

    With current and ongoing interest in high temperature gas reactors (HTGRs), the U.S. Nuclear Regulatory Commission (NRC) anticipates the need for nuclear data libraries appropriate for use in applications for modeling, assessing, and analyzing HTGR reactor physics and operating behavior. The objective of this work was to develop a broad-group library suitable for production analyses with SCALE for HTGR applications. Several interim libraries were generated from SCALE fine-group 238- and 999-group libraries, and the final broad-group library was created from Evaluated Nuclear Data File/B Version ENDF/B-VII Release 0 cross-section evaluations using new ORNL methodologies with AMPX, SCALE, and other codes. Furthermore, intermediate resonance (IR) methods were applied to the HTGR broadgroup library, and lambda factors and f-factors were incorporated into the library s nuclear data files. A new version of the SCALE BONAMI module named BONAMI-IR was developed to process the IR data in the new library and, thus, eliminate the need for the CENTRM/PMC modules for resonance selfshielding. This report documents the development of the HTGR broad-group nuclear data library and the results of test and benchmark calculations using the new library with SCALE. The 81-group library is shown to model HTGR cases with similar accuracy to the SCALE 238-group library but with significantly faster computational times due to the reduced number of energy groups and the use of BONAMI-IR instead of BONAMI/CENTRM/PMC for resonance self-shielding calculations.

  19. Components and system tests on the RFX toroidal power supply

    International Nuclear Information System (INIS)

    Toigo, V.; Zanotto, L.; Gaio, E.; Perna, M.; Bordignon, P.; Coffetti, A.; Novaro, R.; Bertolotto, P.; Rinaldi, E.; Villa, G.

    2005-01-01

    The paper deals with the component and system tests performed on the new toroidal power supply system of the RFX experiment. The high technological innovation of the system required a deep experimental characterization and validation campaign; special factory tests were performed on prototypes of single components aimed at verifying the most critical design aspects. Consequently an articulated series of tests were performed, based on a step-by-step approach to achieve the desired coordinate operation of the whole system. The test procedures and the most significant results are described in the paper

  20. Exergy analysis of HTGR-GT

    International Nuclear Information System (INIS)

    Cao Jianhua; Wang Jie; Yang Xiaoyong; Yu Suyuan

    2005-01-01

    The High Temperature Gas-cooled Reactor (HTGR) coupled with gas turbine for high efficiency in electricity production is supposed to be one of the candidates for the future nuclear power plants. The HTGR gas turbine cycle is theoretically based on the Brayton cycle with recuperated, intercooled and precooled sub-processes. In this paper, an exergy analysis of the Brayton Cycle on HTGR is presented. The analyses were done for four typical reactor outlet temperatures and the exergy loss distribution and exergy loss ratio of each sub-process was quantified. The results show that more than a half of the exergy loss takes place in the reactor, while the low pressure compressor (LPC), the high pressure compressor (HPC) and the intercooler denoted by compress system together, play a much small role in the contribution of exergy losses. With the rise of the reactor outlet temperature, both the exergy loss and exergy loss ratio of the reactor can be greatly cut down, so is the total exergy loss of the cycle; while the exergy loss ratios of the recuperator and precooler have a small rise. The total exergy efficiency of the cycle is quite high (50% more or less). (authors)

  1. Testing on air cleaning systems: Testing of the components in-place tests

    International Nuclear Information System (INIS)

    Billard, F.; Brion, J.

    1967-01-01

    The reliability of air cleaning systems is dependent on testing they are submitted to. Although in-place tests are the most important as they act as final tests upon achieved plants, component tests are necessary too. They allow detection of defective units before they are installed, partition of unit defects from mounting defects and they are more sensitive. For similar reasons, material teats are most useful. The various tests are described, about aerosol filters for one part, iodine trap for the other. The checked features are: materials nature, units sizes, efficiency, air resistance, flammability, humidity resistance, temperature resistance, adsorbent friability, etc... On iodine trapping systems, small check traps, working by-pass with the main trap are periodically subjected to efficiency test. This control allow to cut down the in-place tests frequency, particularly when poisoning from organic vapours is to be feared. (authors) [fr

  2. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  3. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  4. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  5. HTGR plant availability and reliability evaluations. Volume I. Summary of evaluations

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Hannaman, G.W.; Jacobsen, F.K.; Stokely, R.J.

    1976-12-01

    The report (1) describes a reliability assessment methodology for systematically locating and correcting areas which may contribute to unavailability of new and uniquely designed components and systems, (2) illustrates the methodology by applying it to such components in a high-temperature gas-cooled reactor [Public Service Company of Colorado's Fort St. Vrain 330-MW(e) HTGR], and (3) compares the results of the assessment with actual experience. The methodology can be applied to any component or system; however, it is particularly valuable for assessments of components or systems which provide essential functions, or the failure or mishandling of which could result in relatively large economic losses

  6. HTGR plant availability and reliability evaluations. Volume I. Summary of evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, G.J.; Hannaman, G.W.; Jacobsen, F.K.; Stokely, R.J.

    1976-12-01

    The report (1) describes a reliability assessment methodology for systematically locating and correcting areas which may contribute to unavailability of new and uniquely designed components and systems, (2) illustrates the methodology by applying it to such components in a high-temperature gas-cooled reactor (Public Service Company of Colorado's Fort St. Vrain 330-MW(e) HTGR), and (3) compares the results of the assessment with actual experience. The methodology can be applied to any component or system; however, it is particularly valuable for assessments of components or systems which provide essential functions, or the failure or mishandling of which could result in relatively large economic losses.

  7. PASLINK and dynamic outdoor testing of building components

    NARCIS (Netherlands)

    Baker, P.H.; Dijk, H.A.L. van

    2008-01-01

    The PASLINK test facilities and analysis procedures aim to obtain the thermal and solar characteristics of building components under real dynamic outdoor conditions. Both the analysis and the test methodology have evolved since the start of the PASSYS Project in 1985. A programme of upgrading the

  8. High power rf component testing for the NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    1998-09-01

    In the Next Linear Collider (NLC), the high power rf components must be capable of handling peak rf power levels in excess of 600 MW. In the current view of the NLC, even the rectangular waveguide components must transmit at least 300 MW rf power. At this power level, peak rf fields can greatly exceed 100 MV/m. The authors present recent results of high power tests performed at the Accelerator Structure Test Area (ASTA) at SLAC. These tests are designed to investigate the rf breakdown limits of several new components potentially useful for the NLC. In particular, the authors tested a new TE 01 --TE 10 circular to rectangular wrap-around mode converter, a modified (internal fin) Magic Tee hybrid, and an upgraded flower petal mode converter

  9. Experimental determination of the Koo fuel temperature coefficient for an HTGR lattice

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, P.; Benedetti, F.; Brighenti, G.; Chiodi, P. L.; Dell' Oro, P.; Giuliani, C.; Tassan, S.

    1974-10-15

    This paper describes temperature-dependent k-infinity measurements conducted using an assembly of loose HTGR coated particles in the BR-2 reactor by means of null reactivity oscillating method comparing the effect of poisoned and unpoisoned lattices like tests performed in the Physical Constants Test Reactor (PCTR) at Hanford. The RB-2 reactor was the property of the Italian firm AGIP NUCLEARE and operated at the Montecuccolino Center in Bologna.

  10. Test facility for the evaluation of microwave transmission components

    International Nuclear Information System (INIS)

    Fong, C.G.; Poole, B.R.

    1985-01-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE 01 , TE 02 , or TE 03 launched at power levels of 1/2 milliwatt. The propagation of the rf as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE 10 to circular TE 01 mode transducer, mode filter, circular TE 01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE 01 to TE 03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test

  11. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  12. Abrasion Testing of Critical Components of Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska; Ali, Muhammad [Ohio University; Ravens, Tom [University of Alaska Anchorage

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  13. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  14. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  15. Data acquisition and control for LMFBR component testing

    International Nuclear Information System (INIS)

    Turner, G.E.

    1983-01-01

    Liquid Metal Fast Breeder Reactor components such as pumps, steam generators, and piping components are tested for their ability to withstand expected thermal transients of up to 25 0 F/s (14 0 C/s). The Energy Technology Engineering Center performs these tests in facilities specifically designed for that purpose. Although much of the instrumentation and controls for these test facilities are similar to those used in conventional process plants, the requirement to produce, control, and measure the effects of rapid thermal transients results in some not-so-conventional data acquisition and control system design criteria. This paper describes a typical data-acquisition system used at one of the ETEC test facilities and how the thermal transients are produced and controlled in the pump and steam-generator test facilities

  16. Testing Header Component of Electricity Power Industry Boiler

    International Nuclear Information System (INIS)

    Soedardjo, S.A; Andryansyah, B; Artahari, Dewi; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2000-01-01

    Testing of header component of Suralaya Unit II electricity power by replication method has been carried out. That header component is cross over pipe which interconnection between Primary and Superheater Outlet Header Secondary Superheater Outlet Header with the operation time over 14 years. The main composition of cross over pipe is 2 1/4 Cr 1 Mo or frequently specified as ferritique steel. The replication testing shown that the damage classification on those cross over pipe in A class based on failure classification from Neubauer and Wedel. Simple calculation in favor of cross over pipe remaining lifetime is about 16.5 years moreover

  17. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  18. Present activity of the feasibility study of HTGR-GT system

    International Nuclear Information System (INIS)

    Muto, Y.; Miyamoto, Y.; Shiozawa, S.

    2001-01-01

    In JAERI a feasibility study of the High Temperature Gas-cooled Reactor-Gas Turbine (HTGR-GT) system has been carried out since January, 1997 as an assigned work by the Science and Technology Agency. The study aims at obtaining a promising concept of HTGR-GT system that yields a high thermal efficiency and at the same time is economically competitive. Designs of a few candidate systems will be undertaken and their power generation costs will be evaluated in parallel with design works, some experimental works such as the fabrication of a plate-fin type heat exchanger core and material tests will be carried out. The study will be continued till 2000 fiscal year. In 1997 fiscal year, a preliminary design of a direct cycle plant of 600 MWt was developed. A reactor inlet gas temperature of 460 deg. C, a reactor outlet gas temperature of 850 deg. C and a helium gas pressure of 6MPa were selected. Some advanced technologies were adopted such as a monolithic fuel compact and a control rod sheath made of carbon/carbon composite material. They were very effective to enhance the heat transfer of fuel and to reduce the core bypass flow. As a result, a power density of 6MW/m 3 and the maximum burnup of 10 5 MWD/ton were achieved. A single-shaft horizontal turbomachine of 3600 rpm was selected to ease the mechanical design of the rotor supported by magnetic bearings. The turbine, two compressors, a generator and six units of intercooler were placed in a turbine vessel, Plate-fin type recuperator and precooler are installed in a vertical heat exchanger vessel. By this design, a net thermal efficiency of 45.7% is expected to be achieved. To develop a high performance plate-fin recuperator, a core model of W200 mm x L200 mm x H200 mm with small fin size of 1.15 mm height was fabricated and as a result of tests, leak tightness, component strength and bonding appearance were found to be satisfactory. In 1998 fiscal year, a design of a direct cycle plant of 300 MWt is undertaken. The

  19. Dynamic response of a multielement HTGR core

    International Nuclear Information System (INIS)

    Reich, M.; Bezler, P.; Koplik, B.; Curreri, J.; Goradia, H.; Lasker, L.

    1977-01-01

    One of the primary factors in determining the structural integrity and consequently the safety of a High Temperature Gas-Cooled Reactor (HTGR) is the dynamic response of the core when subjected to a seismic excitation. The HTGR core under consideration consists of several thousands of hexagonal elements arranged in vertical stacks containing about eight elements per stack. There are clearance gaps between adjacent elements, which can change substantially due to radiation effects produced during their active lifetime. Surrounding the outer periphery of the core are reflector blocks and restraining spring-pack arrangements which bear against the reactor vessel structure (PCRV). Earthquake input motions to this type of core arrangement will result in multiple impacts between adjacent elements as well as between the reflector blocks and the restraining spring packs. The highly complex nonlinear response associated with the multiple collisions across the clearance gaps and with the spring packs is the subject matter of this paper. Of particular importance is the ability to analyze a complex nonlinear system with gaps by employing a model with a reduced number of masses. This is necessary in order to obtain solutions in a time-frame and at a cost which is not too expensive. In addition the effect of variations in total clearance as well as the initial distribution of clearances between adjacent elements is of primary concern. Both of these aspects of the problem are treated in the present analysis. Finally, by constraining the motion of the reflector blocks, a more realistic description of the dynamic response of the multi-element HTGR core is obtained

  20. LEDA RF distribution system design and component test results

    International Nuclear Information System (INIS)

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-01-01

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here

  1. HTGR fuel particle crusher: Mark 2 design

    International Nuclear Information System (INIS)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power

  2. Quantitative HTGR safety and forced outage goals

    International Nuclear Information System (INIS)

    Houghton, W.J.; Parme, L.L.; Silady, F.A.

    1985-05-01

    A key step in the successful implementation of the integrated approach is the definition of the overall plant-level goals. To be effective, the goals should provide clear statements of what is to be achieved by the plant. This can be contrasted to the current practice of providing design-prescriptive criteria which implicitly address some higher-level objective but restrict the designer's flexibility. Furthermore, the goals should be quantifiable in such a way that satisfaction of the goal can be measured. In the discussion presented, two such plant-level goals adopted for the HTGR and addressing the impact of unscheduled occurrences are described. 1 fig

  3. HTGR fuel particle crusher: Mark 2 design

    Energy Technology Data Exchange (ETDEWEB)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power.

  4. Selection of JAERI'S HTGR-GT concept

    International Nuclear Information System (INIS)

    Muto, Y.; Ishiyama, S.; Shiozawa, S.

    2001-01-01

    In JAERI, a feasibility study of HTGR-GT has been conducted as an assigned work from STA in Japan since January 1996. So far, the conceptual or preliminary designs of 600, 400 and 300 MW(t) power plants have been completed. The block type core and pebble-bed core have been selected in 600 MW(t) and 400/300 MW(t), respectively. The gas-turbine system adopts a horizontal single shaft rotor and then the power conversion vessel is separated into a turbine vessel and a heat exchanger vessel. In this paper, the issues related to the selection of these concepts are technically discussed. (author)

  5. Evaluation of Integrated High Temperature Component Testing Needs

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  6. 16 CFR 1509.6 - Component-spacing test method.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6 Section 1509.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... applied to the wedge perpendicular to the plane of the crib side. ...

  7. HTGR Application Economic Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  8. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    International Nuclear Information System (INIS)

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  9. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  10. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  11. Design and Testing of Improved Spacesuit Shielding Components

    International Nuclear Information System (INIS)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-01-01

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs

  12. Effect of fission product interactions on the corrosion and mechanical properties of HTGR alloys

    International Nuclear Information System (INIS)

    Aronson, S.; Chow, J.G.Y.; Soo, P.; Friedlander, M.

    1978-01-01

    Preliminary experiments have been carried out to determine how fission product interactions may influence the mechanical integrity of reference HTGR structural metals. In this work Type 304 stainless steel, Incoloy 800 and Hastelloy X were heated to 550 to 650 0 C in the presence of CsI. It was found that no corrosion of the alloys occurred unless air or oxygen was also present. A mechanism for the observed behavior is proposed. A description is also given of some long term exposures of HTGR materials to more prototypic, low concentrations of I 2 , Te 2 and CsI in the presence of low partial pressures of O 2 . These samples are scheduled for mechanical bend tests after exposure to determine the degree of embrittlement

  13. ORNL facilities for testing first-wall components

    International Nuclear Information System (INIS)

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10 18 cm -2 .s -1 , and heat fluxes of approx.1 kW/cm 2 CW to approx.100 kW/cm 2 transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm 2 , particle fluxes of approx.10 18 cm -2 .s -1 , and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed

  14. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  15. The HTTR project as the world leader of HTGR research and development

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

    2005-01-01

    As a next generation type nuclear system which will expand nuclear energy use area with high temperature nuclear heat utilization and improve economic competitiveness greatly, High Temperature Gas-cooled Reactor (HTGR) has become the R and D item of prime importance at home as well as abroad to establish hydrogen society to cope with global environmental problems. JAERI has conducted R and D on HTGR as the world leader such as to achieve a reactor outlet coolant temperature of 950 degC in the HTTR (High Temperature Engineering Test Reactor) in April 2004 as the world's first and also to succeed in continuous hydrogen production with a bench-scale apparatus of closed cycle iodine-sulfur (IS) process for six and half hours in August 2003 as the world's first. Overview and present status of HTTR program were presented in details with background and main R and D results as well as international trend of HTGR development and future program on pilot tests facilities for hydrogen production demonstration in Japan. (T. Tanaka)

  16. Patch tests with fragrance mix II and its components.

    Science.gov (United States)

    Pónyai, Györgyi; Németh, Ilona; Altmayer, Anita; Nagy, Gabriella; Irinyi, Beatrix; Battyáni, Zita; Temesvári, Erzsébet

    2012-01-01

    Fragrance mix II (FM II) was initiated to detect contact hypersenstitivity (CH) to fragrances that could not have been identified previously. The aim of this multicenter study was to map the frequency of CH to FM II and its components in Hungary. Six centers participated in the survey from 2009 to 2010. A total off 565 patients (434 women and 131 men) with former skin symptoms provoked by scented products were patch tested. The tests were performed with Brial GmbH D-Greven allergens. In the environmental patch test series, FM II, FM I, Myroxylon pereirae, colophonium, wood-tar mix, propolis, and sesquiterpene lactone mix were tested as fragrance allergens. The FM II components (citral, farnesol, coumarin, citronellol, α-hexyl-cinnamaldehyde, and hydroxy-isohexyl-3-cyclohexene-carboxaldehyde [Lyral]) were also tested. Contact hypersenstitivity to any fragrances was detected in 28.8%, to FM II in 17.2% of the patients. Contact hypersenstitivity to hydroxy-isohexyl-3-cyclohexene-carboxaldehyde was observed in 7.3%, to coumarin in 5.1%, to α-hexyl-cinnamaldehyde in 3.5%, to citral in 3.4%, to farnesol in 2.5%, and to citronellol in 1.2%. Of the FM II-positive cases, 48.4% showed isolated CH reaction. The frequency of CH to FM II is 17.2% in the tested, selected Hungarian population. The CH to FM II and its components could not have been revealed without the present test materials.

  17. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  18. HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.; Cramer, G.T.

    1978-06-01

    Reprocessing of high-temperature gas-cooled reactor fuel requires development of a fuel element size reduction system. This report describes pilot plant testing of crushing equipment designed for this purpose. The test program, the test results, the compatibility of the components, and the requirements for hot reprocessing are discussed

  19. Risk Management Program Application for the Component Test Capability

    International Nuclear Information System (INIS)

    Stephanie L. Austad; Jeffrey D. Bryan

    2009-01-01

    This paper documents the application of the risk management program requirements to Component Test Capability (CTC) Project activities for each CTC alternative. In particular, DOE O 413.3A, 'Program and Project Management for the Acquisition of Capital Assets,' and DOE G 413.3-7, 'Risk Management Guide for Project Management,' will apply in the event that Alternative 4, Single, Standalone Component Test Facility (CTF), is selected and approved. As such, it is advisable to begin planning to meet the associated Department of Energy (DOE) requirements and guidance as early in the acquisition process as practicable. This white paper is intended to assist in this planning and to support associated decision-making activities. Nontechnical risks associated with each alternative will be identified to support the Next Generation Nuclear Plant (NGNP) CTC alternatives analysis. Technical risks are assumed to be addressed through the Technology Development Risk Management modeling process and are inherent to the alternatives

  20. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Matt [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States); Hamilton, Chris [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States)

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  1. Multigroup Moderation Test in Generalized Structured Component Analysis

    Directory of Open Access Journals (Sweden)

    Angga Dwi Mulyanto

    2016-05-01

    Full Text Available Generalized Structured Component Analysis (GSCA is an alternative method in structural modeling using alternating least squares. GSCA can be used for the complex analysis including multigroup. GSCA can be run with a free software called GeSCA, but in GeSCA there is no multigroup moderation test to compare the effect between groups. In this research we propose to use the T test in PLS for testing moderation Multigroup on GSCA. T test only requires sample size, estimate path coefficient, and standard error of each group that are already available on the output of GeSCA and the formula is simple so the user does not need a long time for analysis.

  2. Dynamic analysis and qualification test of nuclear components

    International Nuclear Information System (INIS)

    Kim, B.K.; Lee, C.H.; Park, S.H.; Kim, Y.M.; Kim, B.S.; Kim, I.G.; Chung, C.W.; Kim, Y.M.

    1981-01-01

    This report contains the study on the dynamic characteristics of Wolsung fuel rod and on the dynamic balancing of rotating machinery to evaluate the performance of nuclear reactor components. The study on the dynamic characteristics of Wolsung fuel rod was carried out by both experimental and theoretical methods. Forced vibration testing of actual Wolsung fuel rod using sine sweep and sine dwell excitation was conducted to find the dynamic and nonlinear characteristics of the fuel rod. The data obtained by the test were used to analyze the nonlinear impact characteristics of the fuel rod which has a motion-constraint stop in the center of the rod. The parameters used in the test were the input force level of the exciter, the clearance gap between the fuel rod and the motion constraints, and the frequencies. Test results were in good agreement with the analytical results

  3. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  4. HTGR safety research program. Progress report, April--June 1975

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1975-09-01

    Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

  5. Status of the United States National HTGR program

    International Nuclear Information System (INIS)

    1981-01-01

    The HTGR continues to appear as an increasingly attractive option for application to US energy markets. To examine that potential, a program is being pursued to examine the various HTGR applications and to provide information to decision-makers in both the public and private sectors. To date, this effort has identified a substantial technical and economic potential for Steam Cycle/Cogeneration applications. Advanced HTGR systems are currently being evaluated to determine their appropriate role and timing. The encouraging results which have been obtained lead to heightened anticipation that a role for the HTGR will be found in the US energy market and that an initiative culminating in a lead project will be evolved in the forseeable future. The US Program can continue to benefit from international cooperative activities to develop the needed technologies. Expansion of these cooperative activities will be actively pursued

  6. GCRA perspective on the HTGR-GT plant configuration

    International Nuclear Information System (INIS)

    1979-06-01

    Design specifications for the HTGR type reactor and gas turbine combination are presented concerning the turbomachinery; generator and isophase bus duct; PCRV and internals; heat exchangers; operability; maintenance; safety and licensing; core design; and fuel design

  7. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  8. Volume 2. Probabilistic analysis of HTGR application studies. Supporting data

    International Nuclear Information System (INIS)

    1980-09-01

    Volume II, Probabilistic Analysis of HTGR Application Studies - Supporting Data, gives the detail data, both deterministic and probabilistic, employed in the calculation presented in Volume I. The HTGR plants and the fossil plants considered in the study are listed. GCRA provided the technical experts from which the data were obtained by MAC personnel. The names of the technical experts (interviewee) and the analysts (interviewer) are given for the probabilistic data

  9. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  10. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  11. HTGR high temperature process heat design and cost status report

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes the status of the studies conducted on the 850 0 C ROT indirect cycle and the 950 0 C ROT direct cycle through the end of Fiscal Year 1981. Volume I provides summaries of the design and optimization studies and the resulting capital and product costs, for the HTGR/thermochemical pipeline concept. Additionally, preliminary evaluations are presented for coupling of candidate process applications to the HTGR system

  12. Assessment of the licensing aspects of HTGR in Yugoslavia

    International Nuclear Information System (INIS)

    Varazdinec, Z.

    1990-01-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  13. Assessment of the licensing aspects of HTGR in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Varazdinec, Z [Institut za Elektroprivredu-Zagreb, Zagreb (Yugoslavia)

    1990-07-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  14. Application of HOLOSAFT for nondestructive testing of reactor components

    International Nuclear Information System (INIS)

    Schmitz, V.; Mueller, W.; Schaefer, G.; Graeber, B.; Hoppstaedter, K.

    1985-01-01

    The aim of the project was to develop a superimposed ultrasonic test process, or to combine existing ones, so that a classification and three dimensional representation of defects is made possible. Two analytic test processes - ultrasonic holography and SAFT (synthetic aperture focussing technique) are combined, using identical hardware components and developing common software packages to create an imaging process called HOLOSAFT. The high possible lateral resolution of ultrasonic holography parallel to the test sample surface is used, together with the high possible axial resolution of the SAFT process at right angles to the surface, in order to make measurement of defects possible in three coordinate directions. The development of the process is described in detail, where, based on physical-mathematical bases, the equipment and software developed for pulse echo and tandem arrangements are discussed. The possible resolution is examined in laboratory experiments as a function of the test head diameter, the picture is examined as a function of the aperture length and the picture quality is examined as a function of the ultrasonic devices and defect orientation. Other chapters are concerned with measuring the defect depth, the determination of inclined positions, multi-angle sounding and examination of components with curved surfaces. The results show the great capacity for analysis of the HOLOSAFT process and its suitability for application in nuclear power stations. (orig./HP) [de

  15. Test Driven Development of a Parameterized Ice Sheet Component

    Science.gov (United States)

    Clune, T.

    2011-12-01

    Test driven development (TDD) is a software development methodology that offers many advantages over traditional approaches including reduced development and maintenance costs, improved reliability, and superior design quality. Although TDD is widely accepted in many software communities, the suitability to scientific software is largely undemonstrated and warrants a degree of skepticism. Indeed, numerical algorithms pose several challenges to unit testing in general, and TDD in particular. Among these challenges are the need to have simple, non-redundant closed-form expressions to compare against the results obtained from the implementation as well as realistic error estimates. The necessity for serial and parallel performance raises additional concerns for many scientific applicaitons. In previous work I demonstrated that TDD performed well for the development of a relatively simple numerical model that simulates the growth of snowflakes, but the results were anecdotal and of limited relevance to far more complex software components typical of climate models. This investigation has now been extended by successfully applying TDD to the implementation of a substantial portion of a new parameterized ice sheet component within a full climate model. After a brief introduction to TDD, I will present techniques that address some of the obstacles encountered with numerical algorithms. I will conclude with some quantitative and qualitative comparisons against climate components developed in a more traditional manner.

  16. Studies of cooling tower components on the Mistral test bench

    International Nuclear Information System (INIS)

    Legrand, G.

    1992-07-01

    The conception of a humid air cooling tower with natural or forced draught, requires the knowledge of the thermal and aerodynamic exchange surfaces performances. Several points, among which the distribution nozzles and drift eliminators efficiencies, or the mechanical behavior of the components, should be considered. In order to be able to test this type of equipment and analyse its behavior, ELECTRICITE DE FRANCE set up in 1987 of a large dimensions test bench: MISTRAL. The investigations performed over the 3000 working hours of MISTRAL concern mainly the optimization of the counterflow and crossflow exchange surfaces proposed by the industrial cooling tower equipment suppliers. The quality of the experimental results is assured by the implementation of an extensive instrumentation on the air and water circuits, and by a severe control of the tests conditions

  17. Free-piston Stirling component test power converter

    Science.gov (United States)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  18. Volume 1. Probabilistic analysis of HTGR application studies. Technical discussion

    International Nuclear Information System (INIS)

    May, J.; Perry, L.

    1980-01-01

    The HTGR Program encompasses a number of decisions facing both industry and government which are being evaluated under the HTGR application studies being conducted by the GCRA. This report is in support of these application studies, specifically by developing comparative probabilistic energy costs of the alternative HTGR plant types under study at this time and of competitive PWR and coal-fired plants. Management decision analytic methodology was used as the basis for the development of the comparative probabilistic data. This study covers the probabilistic comparison of various HTGR plant types at a commercial development stage with comparative PWR and coal-fired plants. Subsequent studies are needed to address the sequencing of HTGR plants from the lead plant to the commercial plants and to integrate the R and D program into the plant construction sequence. The probabilistic results cover the comparison of the 15-year levelized energy costs for commercial plants, all with 1995 startup dates. For comparison with the HTGR plants, PWR and fossil-fired plants have been included in the probabilistic analysis, both as steam electric plants and as combined steam electric and process heat plants

  19. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  20. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  1. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  2. Leak testing of cryogenic components — problems and solutions

    Science.gov (United States)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  3. Data and information needs for WPP testing and component modeling

    International Nuclear Information System (INIS)

    Kuhn, W.L.

    1987-01-01

    The modeling task of the Waste Package Program (WPP) is to develop conceptual models that describe the interactions of waste package components with their environment and the interactions among waste package components. The task includes development and maintenance of a database of experimental data, and statistical analyses to fit model coefficients, test the significance of the fits, and propose experimental designs. The modeling task collaborates with experimentalists to apply physicochemical principles to develop the conceptual models, with emphasis on the subsequent mathematical development. The reason for including the modeling task in the predominantly experimental WPP is to keep the modeling of component behavior closely associated with the experimentation. Whenever possible, waste package degradation processes are described in terms of chemical reactions or transport processes. The integration of equations for assumed or calculated repository conditions predicts variations with time in the repository. Within the context of the waste package program, the composition and rate of arrival of brine to the waste package are environmental variables. These define the environment to be simulated or explored during waste package component and interactions testing. The containment period is characterized by rapid changes in temperature, pressure, oxygen fugacity, and salt porosity. Brine migration is expected to be most rapid during this period. The release period is characterized by modest and slowly changing temperatures, high pressure, low oxygen fugacity, and low porosity. The need is to define the scenario within which waste package degradation calculations are to be made and to quantify the rate of arrival and composition of the brine. Appendix contains 4 vugraphs

  4. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  5. Screening of synfuel processes for HTGR application

    International Nuclear Information System (INIS)

    1981-02-01

    The aim of this study is to select for further study, the several synfuel processes which are the most attractive for application of HTGR heat and energy. In pursuing this objective, the Working Group identified 34 candidate synfuel processes, cut the number of processes to 16 in an initial screening, established 11 prime criteria with weighting factors for use in screening the remaining processes, developed a screening methodology and assumptions, collected process energy requirement information, and performed a comparative rating of the processes. As a result of this, three oil shale retorting processes, two coal liquefaction processes and one coal gasification process were selected as those of most interest for further study at this time

  6. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  7. The acoustic environment in large HTGR's

    International Nuclear Information System (INIS)

    Burton, T.E.

    1979-01-01

    Well-known techniques for estimating acoustic vibration of structures have been applied to a General Atomic high-temperature gas-cooled reactor (HTGR) design. It is shown that one must evaluate internal loss factors for both fluid and structure modes, as well as radiation loss factors, to avoid large errors in estimated structural response. At any frequency above 1350 rad/s there are generally at least 20 acoustic modes contributing to acoustic pressure, so statistical energy analysis may be employed. But because the gas circuit consists mainly of high-aspect-ratio cavities, reverberant fields are nowhere isotropic below 7500 rad/s, and in some regions are not isotropic below 60 000 rad/s. In comparison with isotropic reverberant fields, these anistropic fields enhance the radiation efficiencies of some structural modes at low frequencies, but have surprisingly little effect at most frequencies. The efficiency of a dipole sound source depends upon its orientation. (Auth.)

  8. HTGR strategy for reduced proliferation potential

    International Nuclear Information System (INIS)

    Stewart, H.B.; Dahlberg, R.C.

    1978-01-01

    The HTGR stratregy for reduced proliferation potential is one aspect of a potential broader nuclear strategy aimed primarily toward a transition nuclear period between today's uranium-consumption reactors and the long-range balanced system of breeder and advanced near-breeder reactors. In particular, the normal commerce of U-233 could be made acceptable by: (a) dependence on the gamma radiation from U-232 daughter products, (b) enhancement of that radioactivity by incomplete fission-product decontamination of the bred-fuel, or (c) denaturing of the U-233 with U-238. These approaches would, of course, supplement institutional initiatives to improve proliferation resistance such as the collocation of facilities and the establishment of secure energy centers. 6 refs

  9. Calorimetric assay of HTGR fuel samples

    International Nuclear Information System (INIS)

    Allen, E.J.; McNeany, S.R.; Jenkins, J.D.

    1979-04-01

    A calorimeter using a neutron source was designed and fabricated by Mound Laboratory, according to ORNL specifications. A calibration curve of the device for HTGR standard fuel rods was experimentally determined. The precision of a single measurement at the 95% confidence level was estimated to be +-0.8 μW. For a fuel sample containing 0.3 g 235 U and a neutron source containing 691 μg 252 Cf, this represents a relative standard deviation of 0.5%. Measurement time was approximately 5.5 h per sample. Use of the calorimeter is limited by its relatively poor precision, long measurement time, manual sample changing, sensitivity to room environment, and possibility of accumulated dust blocking water flow through the calorimeter. The calorimeter could be redesigned to resolve most of these difficulties, but not without significant development work

  10. Operating experience of gas bearing helium circulators in HTGR development facility

    International Nuclear Information System (INIS)

    Shimomura, H.; Kawaji, S.; Fujisaki, K.; Ihizuka, T.

    1988-01-01

    The large scale helium gas test facility (HENDEL) has been constructed and operated since March 1982 at the Japan Atomic Energy Research Institute to develop HTGR components. The five electric driven gas circulators with dynamic gas bearings are used to circulate the helium gas of 4MPa and 400 deg. C in loops for their compactness, gas tightness, easy maintenance and free from gas contamination. All of these circulators are variable speed types of 3,000 to 12,000 rpm and have the same gas bearings and electric motors. The four machines among them are equipped with centrifugal impeller and one other machine has regenerative type, and the weight of both type rotors are nearly the same. After the troubles and repairing, both type of circulators were tested and the vibration characteristics were measured as preventing maintenance. From the test and measurements of the circulators, it was presumed that the first trouble on regenerative type was caused from excess unbalance force by falling off of a small pin from the rotating part and the second severe trouble on it was caused by the whipping in gas bearing. The static load on tilting pads indicated close relations to occurrence of the whirling through the measurements. It is recognized that fine balancing of the rotors and delicate clearance adjustment of the bearings are very important for the rotor stability and that the mechanism should be designed and machined so precise as to be adjustable. As the gas bearing would be damaged in an instantaneously short time, the monitoring technique for it should be so fast and predictive as to prevent serious damage. Through the tests, the vibration spectrum monitoring method seems to be predictive and useful for early detection of the shaft instability. It will be concluded that the gas bearing machine is an excellent system in its design philosophy, however, it also needs highly precise machining and delicate maintenance technique. 4 refs, 10 figs, 1 tab

  11. Oxidation parameters of nuclear graphite for HTGR air-ingress

    International Nuclear Information System (INIS)

    Kim, E.S.; No, H.C.

    2004-01-01

    In order to investigate chemical behaviors of the graphite during an air-ingress accident in HTGR, the kinetic tests on nuclear graphite IG-110 were performed in chemical reaction dominant regime. In the present experiment, inlet gas flow rate ranged between 8 and 18 SLPM, graphite temperatures and oxygen mole fraction ranged from 540 to 630degC and from 3 to 30% respectively. The test section was made of a quartz tube having 75 mm diameter and 750 mm length and the test specimen machined to the size of 21 mm diameter and 30 mm length was supported at the center of it by the alumina rod. The 15 kW induction heater was installed around the outside of test section to heat the specimen and its temperature was measured by 2 infrared thermometers. The oxidation rate was calculated from the gas concentration analysis between inlet and outlet using NDIR (non-dispersive infrared) gas analyzer. As a result the activation energy (Ea) and the order of reaction (n) were determined within 95% confidence level and the qualitative characteristics of the two parameters were also widely investigated by experimental and analytical methods. (author)

  12. A test system for electronics components of the PANDA MVD

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Alessandra; Stockmanns, Tobias; Ritman, James [Forschungszentrum Juelich (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA experiment is one of the main devices at the upcoming Facility for Antiproton and Ion Research(FAIR), under construction in Darmstadt, Germany. This fixed target experiment will study the transition region between perturbative and non-perturbative QCD in the energy regime of the charmonium. The innermost sub-detector system of the target spectrometer of the PANDA experiment is the Micro Vertex Detector(MVD). Two types of silicon detectors will be used: pixel detectors and double-sided strip detectors. Two front-end chips are required: the Torino Pixel ASIC(ToPix) and the PANDA Strip ASIC(PASTA). Both are designed to transmit data at a rate of several hundred Megabits per second and are capable of handling the expected hit rate in hot spots of the detector. One key component in the development of new front-end electronics is a test system capable to handle these high rates. It should be flexible enough to test different kinds of front-end electronics and it should be easy to adapt to new prototypes. Therefore, an FPGA-based system is the ideal candidate. For this test system suitable firmware and a software framework are needed. Such a system is under development at the Forschungszentrum Juelich. The main component of the Juelich Digital Readout System(JDRS) is a Virtex 6 FPGA on a development board from Xilinx. In this talk, the mentioned read-out system are introduced, and lab tests with the front-end electronics of the MVD are presented.

  13. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  14. Fuel behavior and fission product release under HTGR accident conditions

    International Nuclear Information System (INIS)

    Fukuda, K.; Hayashi, K.; Shiba, K.

    1990-01-01

    In early 1989 a final decision was made over construction of a 30 MWth HTGR called the High Temperature Engineering Test Reactor, HTTR, in Japan in order to utilize it for high temperature gas engineering tests and various nuclear material tests. The HTTR fuel is a pin-in-block type fuel element which is composed of a hexagonal graphite block with dimension of 580 mm in length and 360 mm in face-to-face distance and about 30 of the fuel rods inserted into the coolant channels drilled in the block. The TRISO coated fuel particles for HTTR are incorporated with graphite powder and phenol resin into the fuel compacts, 19 of which are encased into a graphite sleeve as a fuel rod. It is necessary for the HTTR licensing to prove the fuel stability under predicted accidents related to the high temperature events. Therefore, the release of the fission products and the fuel failure have been investigated in the irradiation---and the heating experiments simulating these conditions at JAERI. This report describes the HTTR fuel behavior at extreme temperature, made clear in these experiments

  15. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  16. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  17. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  18. CHAP: a composite nuclear plant simulation program applied to the 3000 MW(t) HTGR

    International Nuclear Information System (INIS)

    Secker, P.A.; Bailey, P.G.; Gilbert, J.S.; Willcutt, G.J.E. Jr.; Vigil, J.C.

    1977-01-01

    The Composite HTGR Analysis Program (CHAP) is a general systems analysis program which has been developed at LASL. The program is being used for simulating large HTGR nuclear power plant operation and accident transients. The general features and analytical methods of the CHAP program are discussed. Features of the large HTGR model and results of model transients are also presented

  19. Present status of HTGR projects and their heat applications in Russia

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Glushkov, E.S.; Kukharkin, N.E.; Ponomarev-Stepnoi, N.N.

    1996-01-01

    This paper describes the main technical decision and parameters of the HTGR of different power and considers a few schemes of HTGR plants with a gas turbine cycle. Also, the future prospects on heat utilization of HTGR in Russia is presented. (J.P.N.)

  20. Irradiation Performance of HTGR Fuel in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Ueta, Shohei; Sakaba, Nariaki; Shaimerdenov, Asset; Gizatulin, Shamil; Chekushina, Lyudmila; Chakrov, Petr; Honda, Masaki; Takahashi, Masashi; Kitagawa, Kenichi

    2014-01-01

    A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO_2 (less than 10 % of "2"3"5U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel. (author)

  1. Development and verification test of integral reactor major components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability.

  2. Development and verification test of integral reactor major components

    International Nuclear Information System (INIS)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability

  3. Critical mm-wave components for synthetic automatic test systems

    CERN Document Server

    Hrobak, Michael

    2015-01-01

    Michael Hrobak studied hybrid integrated front end modules for high frequency measurement equipment and especially for synthetic automatic test systems. Recent developments of innovative, critical millimeter-wave components like frequency multipliers, directional couplers, filters, triple balanced mixers and power detectors are illustrated by the author separately and in combination.  Contents Synthetic Instruments Resistive Diode Frequency Multipliers Planar Directional Couplers and Filters Triple Balanced Mixers Zero Bias Schottky Power Detectors Integrated Front End Assemblies  Target Groups Scientists and students in the field of electrical engineering with main emphasis on high frequency technology Engineers and Practitioners dealing with the development of micro- and millimeter-wave measurement instruments  About the Author Dr. Michael Hrobak is with the Microwave Department of the Ferdinand-Braun-Institut (FBH), Berlin, Germany, where he is involved in the development and measurement of monolithic i...

  4. Static Feed Water Electrolysis Subsystem Testing and Component Development

    Science.gov (United States)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  5. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  6. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-7 and -8

    International Nuclear Information System (INIS)

    Valentine, K.H.; Homan, F.J.; Long, E.L. Jr.; Tiegs, T.N.; Montgomery, B.H.; Hamner, R.L.; Beatty, R.L.

    1977-05-01

    The HRB-7 and -8 experiments were designed as a comprehensive test of mixed thorium-uranium oxide fissile particles with Th:U ratios from 0 to 8 for HTGR recycle application. In addition, fissile particles derived from Weak-Acid Resin (WAR) were tested as a potential backup type of fissile particle for HTGR recycle. These experiments were conducted at two temperatures (1250 and 1500 0 C) to determine the influence of operating temperature on the performance parameters studied. The minor objectives were comparison of advanced coating designs where ZrC replaced SiC in the Triso design, testing of fuel coated in laboratory-scale equipment with fuel coated in production-scale coaters, comparison of the performance of 233 U-bearing particles with that of 235 U-bearing particles, comparison of the performance of Biso coatings with Triso coatings for particles containing the same type of kernel, and testing of multijunction tungsten-rhenium thermocouples. All objectives were accomplished. As a result of these experiments the mixed thorium-uranium oxide fissile kernel was replaced by a WAR-derived particle in the reference recycle design. A tentative decision to make this change had been reached before the HRB-7 and -8 capsules were examined, and the results of the examination confirmed the accuracy of the previous decision. Even maximum dilution (Th/U approximately equal to 8) of the mixed thorium-uranium oxide kernel was insufficient to prevent amoeba of the kernels at rates that are unacceptable in a large HTGR. Other results showed the performance of 233 U-bearing particles to be identical to that of 235 U-bearing particles, the performance of fuel coated in production-scale equipment to be at least as good as that of fuel coated in laboratory-scale coaters, the performance of ZrC coatings to be very promising, and Biso coatings to be inferior to Triso coatings relative to fission product retention

  7. Irradiation performance of HTGR fuel in HFIR experiment HRB-13

    International Nuclear Information System (INIS)

    Tiegs, T.N.

    1982-03-01

    Irradiation capsule HRB-13 tested High-Temperature Gas-Cooled Reactor (HTGR) fuel under accelerated conditions in the High Flux Isotope Reactor (HFIR) at ORNL. The ORNL part of the capsule was designed to provide definitive results on how variously misshapen kernels affect the irradiation performance of weak-acid-resin (WAR)-derived fissile fuel particles. Two batches of WAR fissile fuel particles were Triso-coated and shape-separated into four different fractions according to their deviation from spericity, which ranged from 9.6 to 29.7%. The fissile particles were irradiated for 7721 h. Heavy-metal burnups ranged from 80 to 82.5% FIMA (fraction of initial heavy-metal atoms). Fast neutron fluences (>0.18 MeV) ranged from 4.9 x 10 25 neutrons/m 2 to 8.5 x 10 25 neutrons/m 2 . Postirradiation examination showed that the two batches of fissile particles contained chlorine, presumably introduced during deposition of the SiC coating

  8. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  9. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  10. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    1980-01-01

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  11. Subharmonic excitation in an HTGR core

    International Nuclear Information System (INIS)

    Bezler, P.; Curreri, J.R.

    1977-01-01

    The occurrence of subharmonic resonance in a series of blocks with clearance between blocks and with springs on the outer most ends is the subject of this paper. This represents an HTGR core response to an earthquake input. An analytical model of the cross section of this type of core is a series of blocks arranged horizontally between outer walls. Each block represents many graphite hexagonal core elements acting in unison as a single mass. The blocks are of unequal size to model the true mass distribution through the core. Core element elasticity and damping characteristics are modeled with linear spring and viscous damping units affixed to each block. The walls and base represent the core barell or core element containment structure. For forced response calculations, these boundaries are given prescribed motions. The clearance between each block could be the same or different with the total clearance duplicating that of the entire core. Spring packs installed between the first and last block and the boundaries model the boundary elasticity. The system non-linearity is due to the severe discontinuity in the interblock elastic forces when adjacent blocks collide. A computer program using a numerical integration scheme was developed to solve for the response of the system to arbitrary inputs

  12. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  13. Steam generator design considerations for modular HTGR plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; DeFur, D.D.

    1986-01-01

    Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the U.S

  14. Immunogenicity test of tetanus component in adsorbed vaccines by toxin binding inhibition test

    Directory of Open Access Journals (Sweden)

    Denise Cristina Souza Matos

    2002-09-01

    Full Text Available Samples from 20 lots of diphtheria-tetanus (adult use dT vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.

  15. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  16. Utilization of HTGR on active carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukitaka, E-mail: yukitaka@nr.titech.ac.jp

    2014-05-01

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO{sub 2} hydrogen reduction was candidate. CO{sub 2} direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO{sub 2} electrolysises, and CO{sub 2} hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO{sub 2} emission.

  17. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  18. Fast Flux Test Facility (FFTF) feedback reactivity components

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1988-04-01

    The static tests conducted during Cycle 8A (1986) of the FFTF have allowed, for the first time, the experimental determination of each of the feedback reactivities caused by the following mechanisms: fuel axial expansion, control rod repositioning, core radial expansion, and subassembly bowing. A semiempirical equation was obtained to describe each of these feedback components that depended only on the relevant reactor temperature (bowing was presented in a tabular form). The Doppler and sodium density reactivities were calculated using existing mechanistic methods. Although they could also be fitted with closed-form equations depending only on temperatures, these equations are not needed in transient analyses using whole core safety computer codes, which use mechanistic methods. The static feedback reactivity model was extended to obtain a dynamic model via the concept of ''time constants.'' Besides being used for transient analyses in the FFTF, these feedback equations constitute a database for the validation and/or calibration of mechanistic feedback reactivity models. 2 refs., 6 tabs

  19. Mechanical testing of PHWR components at different fabrication stages

    International Nuclear Information System (INIS)

    Saibaba, N.

    2007-01-01

    Zirconium alloys are extensively used for reactor structural and cladding components for PHWRs and BWRs due to their low neutron absorption cross-section, corrosion resistance to high temperature aqueous environments, adequate mechanical properties and resistance to radiation damage. The coolant tube fabrication route consists of a series of intermediate process steps. The working parameters of each process have a definite bearing on the final properties of these tubes. In order to ascertain the effect of these parameters, mechanical testing is carried out at intermediate stage of coolant tube fabrication. The mechanical properties of the products can be correlated with process parameters and reflect the quality of the product to a great extent. These properties at intermediate stages can serve as process controlling parameters. This paper discusses the correlation of mechanical properties of pressure tubes between the intermediate stage and final stage. The effect of process parameters like annealing temperature, honing, sand blasting pressure and eccentricity on the final mechanical properties was highlighted. (author)

  20. HELCZA-High heat flux test facility for testing ITER EU first wall components.

    Czech Academy of Sciences Publication Activity Database

    Prokůpek, J.; Samec, K.; Jílek, R.; Gavila, P.; Neufuss, S.; Entler, Slavomír

    2017-01-01

    Roč. 124, November (2017), s. 187-190 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : HELCZA * High heat flux * Electron beam testing * Test facility * Plasma facing components * First wall * Divertora Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 www.sciencedirect.com/science/article/pii/S0920379617302818

  1. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  2. Development of a pneumatic transfer system for HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Mack, J.E.; Johnson, D.R.

    1978-02-01

    In support of the High-Temperature Gas-Cooled Reactor (HTGR) Fuel Refabrication Development Program, an experimental pneumatic transfer system was constructed to determine the feasibility of pneumatically conveying pyrocarbon-coated fuel particles of Triso and Biso designs. Tests were conducted with these particles in each of their nonpyrophoric forms to determine pressure drops, particle velocities, and gas flow requirements during pneumatic transfer as well as to evaluate particle wear and breakage. Results indicated that the material can be pneumatically conveyed at low pressures without excessive damage to the particles or their coatings

  3. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  4. Fission product behavior in HTGR fuel particles made from weak-acid resins

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Henson, T.J.

    1979-04-01

    Fission product retention and behavior are of utmost importance in HTGR fuel particles. The present study concentrates on particles made from weak-acid resins, which can vary in composition from 100% UO 2 plus excess carbon to 100% UC 2 plus excess carbon. Five compositions were tested: UC 4 58 O 2 04 , UC 3 68 O 0 01 , UC 4 39 O 1 72 , UC 4 63 O 0 97 , and UC 4 14 O 1 53 . Metallographically sectioned particles were examined with a shielded electron microprobe. The distributions of the fission products were determined by monitoring characteristic x-ray lines while scanning the electron beam over the particle surface

  5. HTGR-GT and electrical load integrated control

    International Nuclear Information System (INIS)

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant

  6. HTGR containment design options: an application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1977-08-01

    Through the use of probabilistic risk assessment (PRA), it is possible to quantitatively evaluate the radiological risk associated with a given reactor design and to place such risk into perspective with alternative designs. The merits are discussed for several containment alternatives for the HTGR from the viewpoints of economics and licensability, as well as public risk. The quantification of cost savings and public risk indicates that presently acceptable public risk can be maintained and cost savings of $40 million can result from use of a vented confinement for the HTGR

  7. HTGR structural-materials efforts in the US

    International Nuclear Information System (INIS)

    Rittenhouse, P.L.; Roberts, D.I.

    1982-07-01

    The status of ongoing structural materials programs being conducted in the US to support development and deployment of the high-temperature gas-cooled reactor (HTGR) is described. While the total US program includes work in support of all variants of this reactor system, the emphasis of this paper is on the work aimed at support of the steam cycle/cogeneration (SC/C) version of the HTGR. Work described includes activities to develop design and performance prediction data on metals, ceramics, and graphite

  8. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  9. Routine testing on protective and safety systems and components

    International Nuclear Information System (INIS)

    Rysy, W.

    1977-01-01

    1) In-process inspection, tests during commissioning. 2) Tests during reactor operation. 2.1) Reactor protection system, for example: continuous auto-testing by a dynamic system, check of the output signals; 2.2) safety features: selected examples: functional tests on the ECCS, trial operation of the emergency diesels. 3) Tests during refuelling phase. 3.1) Containment: Leakage rate tests, leak testing; 3.2) coolant system: selected examples: inservice inspections of the pressure vessel, eddy current testing of the steam generator, functional tests of safety valves. (orig./HP) [de

  10. Horizon Expansion of Thermal-Hydraulic Activities into HTGR Safety Analysis Including Gas-Turbine Cycle and Hydrogen Plant

    International Nuclear Information System (INIS)

    No, Hee Cheon; Yoon, Ho Joon; Kim, Seung Jun; Lee, Byeng Jin; Kim, Ji Hwan; Kim, Hyeun Min; Lim, Hong Sik

    2009-01-01

    We present three nuclear/hydrogen-related R and D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the through flow calculation with a Newton- Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data

  11. Evaluation, Comparison and Optimization of the Compact Recuperator for the High Temperature Gas-Cooled Reactor (HTGR) Helium Turbine System

    International Nuclear Information System (INIS)

    Hao Haoran; Yang Xiaoyong; Wang Jie; Ye Ping; Yu Xiaoli; Zhao Gang

    2014-01-01

    Helium turbine system is a promising method to covert the nuclear power generated by the High Temperature Gas Cooled Reactor (HTGR) into electricity with inherent safety, compact configuration and relative high efficiency. And the recuperator is one of the key components for the HTGR helium turbine system. It is used to recover the exhaust heat out of turbine and pass it to the helium from high pressure compressor, and hence increase the cycle’s efficiency dramatically. On the other hand, the pressure drop within the recuperator will reduce the cycle efficiency, especially on low pressure side of recuperator. It is necessary to optimize the design of recuperator to achieve better performance of HTGR helium turbine system. However, this optimization has to be performed with the restriction of the size of the pressure vessel which contains the power conversion unit. This paper firstly presents an analysis to investigate the effects of flow channel geometry, recuperator’s power and size on heat transfer and pressure drop. Then the relationship between the recuperator design and system performance is established with an analytical model, followed by the evaluations of the current recuperator designs of GT-MHR, GTHTR300 and PBMR, in which several effective technical measures to optimize the recuperator are compared. Finally it is found that the most important factors for optimizing recuperator design, i.e. the cross section dimensions and tortuosity of flow channel, which can also be extended to compact intermediate heat exchangers. It turns out that a proper optimization can increase the cycle’s efficiency by 1~2 percentage, which could also raise the economy and competitiveness of future commercial HTGR plants. (author)

  12. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  13. Nondestructive evaluation of the oxidation and strength of the Fort Saint Vrain HTGR support block

    International Nuclear Information System (INIS)

    Tingey, G.L.; Posakony, G.J.; Morgan, W.C.; Prince, J.M.; Hill, R.W.; Lessor, D.L.

    1982-04-01

    Non-destructive detection of changes in the strength of graphite support structures in a HTGR appears to be feasible using sonic velocity measurements where access for through transmission is possible. Therefore, future HTGR designs should consider providing such access. Where access is not available, strength changes can be correlated with oxidation profiles in the support member. These oxidation profiles can be determined non-destructively by a combination of eddy current measurements to detect near surface oxidation and sonic backscattering measurements designed to determine oxidation in depth. The Fort Saint Vrain reactor provides an operating reactor to test the applicability of the eddy current and sonic backscattering techniques for determination of oxidation in a support block. Furthermore, such tests in Fort Saint Vrain will supply base line data which will be useful in assuring an adequate strength of the support structure for the lifetime of the reactor. Equipment is, therefore, being developed for tests to be conducted during the next major refueling of the reactor

  14. Safety and licensing analyses for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The Oak Ridge National Laboratory (ORNL) safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident

  15. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, J.M.

    1980-01-01

    A control algorithm has been derived for an HTGR Fuel Rod Fabrication Process utilizing the method of G.E.P. Box and G.M. Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented. 1 ref

  16. Proceedings of the 1st JAERI symposium on HTGR technologies

    International Nuclear Information System (INIS)

    1990-07-01

    This report was edited as the Proceedings of the 1st JAERI Symposium on HTGR Technologies, - Design, Licensing Requirements and Supporting Technologies -, collecting the 21 papers presented in the Symposium. The 19 of the presented papers are indexed individually. (J.P.N.)

  17. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.J.

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented

  18. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  19. Design and thermal dynamic analyses on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, M.; Mizuno, M.; Ito, M.; Urabe, S.

    1986-01-01

    The intermediate heat exchanger (IHX), one of the most important components in the high temperature gas cooled reactor (HTGR), is a high performance helium/helium (He/He) heat exchanger operated at a very high temperature above 900 0 C to transmit the nuclear heat from the reactor core to the nuclear heat utilization systems such as the chemical plant. Having to meet, in addition, the requirement of the pressure boundary as the Class-1 it demands the accurate estimation of thermal performance and analytical prediction of thermal behaviors to secure its integrity throughout the service life. In the present works, the newly-developed analytical codes carry out designing thermal performance and analyzing dynamic thermal behaviors of the IHX. These codes have been developed on a great deal of data and studies related to the research and development on the 1.5 MWt- and the 25 MWt-IHXs. This paper shows the design on the IHX, the results of the dynamic analyses on the 1.5 MWt-IHX with the comparison to the experimental data and the analytical predictions of the dynamic thermal behaviors on the 25 MWt-IHX. The results calculated are in fairly good agreement with the experimental data on the 1.5 MWt-IHX, the fact that has verified the analytical codes to be reasonable and much useful for the thermal design of the IHX. These presented results and data are available for the design of the IHX of HTGR

  20. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Shimizu, Akira; Uchida, Shoji

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO 2 emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO 2 emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  1. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo; Shimizu, Akira [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tanihira, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Uchida, Shoji [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO{sub 2} emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO{sub 2} emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  2. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl, E-mail: k.verfondern@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Xhonneux, André, E-mail: xhonneux@lrst.rwth-aachen.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Nabielek, Heinz, E-mail: heinznabielek@me.com [Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Allelein, Hans-Josef, E-mail: h.j.allelein@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, Chair for Reactor Safety and Reactor Technology, 52072 Aachen (Germany)

    2014-07-01

    Highlights: • HFR-EU1 irradiation test demonstrates high quality of HTGR spherical fuel elements. • Irradiation performance is in good agreement with German fuel performance modeling. • International benchmark exercise expected first particle to fail at ∼13–17% FIMA. • EOL silver release is predicted to be in the percentage range. • EOL cesium and strontium are expected to remain at a low level. - Abstract: Various countries engaged in the development and fabrication of modern HTGR fuel have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under HTGR operating and accident conditions. Verification and validation studies are conducted by code-to-code benchmarking and code-to-experiment comparisons as part of international exercises. The methodology developed in Germany since the 1980s represents valuable and efficient tools to describe fission product release from spherical fuel elements and TRISO fuel performance, respectively, under given conditions. Continued application to new results of irradiation and accident simulation testing demonstrates the appropriateness of the models in terms of a conservative estimation of the source term as part of interactions with HTGR licensing authorities. Within the European irradiation testing program for HTGR fuel and as part of the former EU RAPHAEL project, the HFR-EU1 irradiation experiment explores the potential for high performance of the presently existing German and newly produced Chinese fuel spheres under defined conditions up to high burnups. The fuel irradiation was completed in 2010. Test samples are prepared for further postirradiation examinations (PIE) including heatup simulation testing in the KÜFA-II furnace at the JRC-ITU, Karlsruhe, to be conducted within the on-going ARCHER Project of the European Commission. The paper will describe the application of the German computer models to the HFR-EU1 irradiation test and

  3. Components of Program for Analysis of Spectra and Their Testing

    Directory of Open Access Journals (Sweden)

    Ivan Taufer

    2013-11-01

    Full Text Available The spectral analysis of aqueous solutions of multi-component mixtures is used for identification and distinguishing of individual componentsin the mixture and subsequent determination of protonation constants and absorptivities of differently protonated particles in the solution in steadystate (Meloun and Havel 1985, (Leggett 1985. Apart from that also determined are the distribution diagrams, i.e. concentration proportions ofthe individual components at different pH values. The spectra are measured with various concentrations of the basic components (one or severalpolyvalent weak acids or bases and various pH values within the chosen range of wavelengths. The obtained absorbance response area has to beanalyzed by non-linear regression using specialized algorithms. These algorithms have to meet certain requirements concerning the possibility ofcalculations and the level of outputs. A typical example is the SQUAD(84 program, which was gradually modified and extended, see, e.g., (Melounet al. 1986, (Meloun et al. 2012.

  4. Public acceptance of HTGR technology - HTR2008-58218

    International Nuclear Information System (INIS)

    Hannink, R.; Kuhr, R.; Morris, T.

    2008-01-01

    Nuclear energy projects continue to evoke strong emotional responses from the general public throughout the world. High Temperature Gas-Cooled Reactor (HTGR) technology offers improved safety and performance characteristics that should enhance public acceptance but is burdened with demonstrating a different set of safety principles. This paper summarizes key issues impacting public acceptance and discusses the importance of openly engaging the public in the early stages of new HTGR projects. The public gets information about new technologies through schools and universities, news and entertainment media, the internet, and other forms of information exchange. Development of open public forums, access to information in understandable formats, participation of universities in preparing and distributing educational materials, and other measures will be needed to support widespread public confidence in the improved safety and performance characteristics of HTGR technology. This confidence will become more important as real projects evolve and participants from outside the nuclear industry begin to evaluate the real and perceived risks, including potential impacts on public relations, branding, and shareholder value when projects are announced. Public acceptance and support will rely on an informed understanding of the issues and benefits associated with HTGR technology. Major issues of public concern include nuclear safety, avoidance of greenhouse gas emissions, depletion of natural gas resources, energy security, nuclear waste management, local employment and economic development, energy prices, and nuclear proliferation. Universities, the media, private industry, government entities, and other organizations will all have roles that impact public acceptance, which will likely play a critical role in the future markets, siting, and permitting of HTGR projects. (authors)

  5. Investigations of postulated accident sequences for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Hatta, M.; Sanders, J.P.

    1978-01-01

    The systems analysis capability of the ORNL HTGR Safety analysis research program includes a family of computer codes: an overall plant NSSS simulation (ORTAP), and detailed component codes for investigating core neutronic accidents (CORTAP), shutdown emergency-cooling accidents via a 3-dimensional core model (ORECA), and once-through steam generator transients (BLAST). The component codes can either be run independently or in the overall NSSS code. Verification efforts have consisted primarily of using existing Fort St. Vrain reactor dynamics data to compare against code predictions. Comparisons of core thermal conditions made for reactor scrams from power levels between 30 and 50% showed good agreement. An optimization program was used to rationalize the difference between the predicted and measured refueling region outlet temperatures, and, in general, excellent agreement was attained by adjustment of models and parameters within their uncertainty ranges. However, more work is required to establish a unique and valid set of models

  6. Development of THYDE-HTGR: computer code for transient thermal-hydraulics of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hirano, Masashi; Hada, Kazuhiko

    1990-04-01

    The THYDE-HTGR code has been developed for transient thermal-hydraulic analyses of high-temperature gas-cooled reactors, based on the THYDE-W code. THYDE-W is a code developed at JAERI for the simulation of Light Water Reactor plant dynamics during various types of transients including loss-of-coolant accidents. THYDE-HTGR solves the conservation equations of mass, momentum and energy for compressible gas, or single-phase or two-phase flow. The major code modification from THYDE-W is to treat helium loops as well as water loops. In parallel to this, modification has been made for the neutron kinetics to be applicable to helium-cooled graphite-moderated reactors, for the heat transfer models to be applicable to various types of heat exchangers, and so forth. In order to assess the validity of the modifications, analyses of some of the experiments conducted at the High Temperature Test Loop of ERANS have been performed. In this report, the models applied in THYDE-HTGR are described focusing on the present modifications and the results from the assessment calculations are presented. (author)

  7. Development and test of prototype components for ITER

    International Nuclear Information System (INIS)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David

    2015-08-01

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  8. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  9. HTGR technology development in Japan advances so much. Leading world technology to global standards

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Hino, Ryutaro; Kunitomi, Kazuhiko; Onuki, Kaoru; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Sawa, Kazuhiro

    2007-01-01

    The JAEA has conducted research and development of HTGR for hydrogen production since 1969 and attained the operation of 950degC at reactor coolant outlet of the HTTR in 2004. This article describes present status and future plan of R and D in the area of HTGR technology and high temperature heat utilization and also introduces the design of the commercial HTGR cogeneration system based on R and D results leading to world standards. (T. Tanaka)

  10. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  11. Simulation of thermal response of the 250 MWT modular HTGR during hypothetical uncontrolled heatup accidents

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ball, S.J.

    1985-01-01

    One of the central design features of the 250 MWT modular HTGR is the ability to withstand uncontrolled heatup accidents without severe consequences. This paper describes calculational studies, conducted to test this design feature. A multi-node thermal-hydraulic model of the 250 MWT modular HTGR reactor core was developed and implemented in the IBM CSMP (Continuous System Modeling Program) simulation language. Survey calculations show that the loss of forced circulation accident with loss of steam generator cooling water and with accidental depressurization is the most severe heatup accident. The peak hot-spot fuel temperature is in the neighborhood of 1600 0 C. Fuel failure and fission product releases for such accidents would be minor. Sensitivity studies show that code input assumptions for thermal properties such as the side reflector conductivity have a significant effect on the peak temperature. A computer model of the reactor vessel cavity concrete wall and its surrounding earth was developed to simulate the extremely unlikely and very slowly-developing heatup accident that would take place if the worst-case loss of forced primary coolant circulation accident were further compounded by the loss of cooling water to the reactor vessel cavity liner cooling system. Results show that the ability of the earth surrounding the cavity to act as a satisfactory long-term heat sink is very sensitive to the assumed rate of decay heat generation and on the effective thermal conductivity of the earth

  12. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  13. Measurement of Weight of Kernels in a Simulated Cylindrical Fuel Compact for HTGR

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Young Min; Kim, Yeon Ku; Eom, Sung Ho; Jeong, Kyung Chai; Cho, Moon Sung; Cho, Hyo Jin; Kim, Joo Hee

    2011-01-01

    The TRISO-coated fuel particle for the high temperature gas-cooled reactor (HTGR) is composed of a nuclear fuel kernel and outer coating layers. The coated particles are mixed with graphite matrix to make HTGR fuel element. The weight of fuel kernels in an element is generally measured by the chemical analysis or a gamma-ray spectrometer. Although it is accurate to measure the weight of kernels by the chemical analysis, the samples used in the analysis cannot be put again in the fabrication process. Furthermore, radioactive wastes are generated during the inspection procedure. The gamma-ray spectrometer requires an elaborate reference sample to reduce measurement errors induced from the different geometric shape of test sample from that of reference sample. X-ray computed tomography (CT) is an alternative to measure the weight of kernels in a compact nondestructively. In this study, X-ray CT is applied to measure the weight of kernels in a cylindrical compact containing simulated TRISO-coated particles with ZrO 2 kernels. The volume of kernels as well as the number of kernels in the simulated compact is measured from the 3-D density information. The weight of kernels was calculated from the volume of kernels or the number of kernels. Also, the weight of kernels was measured by extracting the kernels from a compact to review the result of the X-ray CT application

  14. Analysis of components from drip tests with ATM-10 glass

    International Nuclear Information System (INIS)

    Fortner, J.A.; Bates, J.K.; Gerding, T.J.

    1996-09-01

    Waste package assemblies consisting of actinide-doped West Valley ATM-10 reference glass and sensitized 304L stainless steel have been reacted with simulated repository groundwater using the Unsaturated Test Method. Analyses of surface corrosion and reaction products resulting from tests that were terminated at scheduled intervals between 13 and 52 weeks are reported. Analyses reveal complex interactions between the groundwater, the sensitized stainless steel waste form holder, and the glass. Alteration phases form that consist mainly of smectite clay, brockite, and an amorphous thorium iron titanium silicate, the latter two incorporating thorium, uranium, and possibly transuranics. The results from the terminated tests, combined with data from tests that are still ongoing, will help determine the suitability of glass waste forms in the proposed high-level repository at the Yucca Mountain Site

  15. Approach to testing fusion components in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Longhurst, G.R.; Masson, L.S.; Kulcinski, G.L.

    1980-01-01

    The concept presented makes use of the fast spectrum in the Engineering Test Reactor (ETR) at the Idaho National Engineering Laboratory (INEL). Preliminary results show that an asymmetric, nuclear test environment with particle and radiant energy fluxes impinging on a first wall/blanket or divertor surface appears feasible in a neutron/gamma field not greatly different from that seen by a representative first wall/blanket module

  16. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  17. US HTGR Deployment Challenges and Strategies HTR 2014 Conference Proceedings

    International Nuclear Information System (INIS)

    Shahrokhi, Farshid; Lommers, Lewis; Mayer, John III; Southworth, Finis

    2014-01-01

    The NGNP Industry Alliance (NIA), LLC (www.NGNPAliance.org), is a consortium of high temperature gas-cooled reactor (HTGR) designers, utility plant owner/operators, critical plant hardware suppliers, and end-user groups. The NIA is promoting the design and commercialization of a HTGR for industrial process heat applications and electricity generation. In 2012, NIA selected the AREVA Steam Cycle HTGR (SC-HTGR) as its primary reactor design choice for its first implementation in mid -2020s. The SC-HTGR can produce 625 MWth of process steam at 550°C or 275 MWe of electricity in a co-generation configuration. The standard plant is a four-pack of 625MWth modules providing steam and electricity co-generation. The safety characteristics of the HTGR technology allows close colocation of the nuclear plant and the industrial end-user. The plant design also allows the process steam used for the industrial applications to be completely segregated and separate from primary Helium coolant and the secondary nuclear steam supply systems. The process steam at temperatures up to 550°C is provided for a variety of direct or indirect applications. End-user requirements are met for a wide range of steam flow, pressure and temperature conditions. Very high reliability (>99.99%) is maintained by the use of multi-reactor modules and conventional gas-fired back-up. Intermittent steam loads can also be efficiently met through co-generation of electricity for internal use or external distribution and sale. The NIA technology development and deployment challenges are met with strategies that provide investment and partnerships opportunities for plant design and equipment supply, and by cooperative government research, sovereign or private investment, and philanthropic opportunities. Our goal is to create intellectual property (IP) and investor value as the design matures and a license is obtained. The strategy also includes involvement of the initial customer in sharing the value created in

  18. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  19. A review of DOE HEPA filter component test activities

    Energy Technology Data Exchange (ETDEWEB)

    Slawski, J.W.; Bresson, J.F. [Informatics Corp., Inc., Albuquerque, NM (United States); Scripsick, R.C. [Los Alamos National Lab., NM (United States)

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  20. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  1. Scalable Power-Component Models for Concept Testing

    Science.gov (United States)

    2011-08-17

    motor speed can be either positive or negative dependent upon the propelling or regenerative braking scenario. The simulation provides three...the machine during generation or regenerative braking . To use the model, the user modifies the motor model criteria parameters by double-clicking... SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN

  2. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  3. Tritium test of the tritium processing components under the Annex III US-Japan Collaboration

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Naruse, Yuji; Binning, K.E.; Carlson, R.V.; Bartlit, J.R.; Anderson, J.L.

    1993-03-01

    The process ready components for Fuel Cleanup System were tested at the TSTA under the US-Japan Collaboration program. Palladium diffuser for tritium purification and Ceramic Electrolysis Cell for decomposition of tritiated water respectively were tested with pure tritium for years. The characteristics of the components with hydrogen isotopes, effects of impurities, and long-term reliability of the components were studied. It was concluded that these components are suitable and attractive for fusion fuel processing systems. (author)

  4. Telemetry component tests in the FN tandem terminal

    International Nuclear Information System (INIS)

    Bicek, J.J.; Billquis, P.J.; Yntema, J.L.

    1977-01-01

    When an electrostatic tandem accelerator is used primarily for heavy ion acceleration, numerous communication channels with the high voltage terminal are desirable. The ANL FN tandem operates at a tank pressure of 100 psi SF 6 at terminal voltages up to 9.5 MeV. A low powered He-Ne laser with 15 percent modulation has been successfully tested in the terminal under normal operating conditions. Such a system allows the transmission of information without the use of light guides. Multistranded light guides did not withstand voltage gradients as low as 0.4 MV/m. Single core light guides with a diameter of 0.5 mm have been successfully operated at voltage gradients in excess of 1.7 MV/m. In addition to the laser a microprocessor has also been tested in the tandem terminal. With suitable protection, an 8080 microprocessor and a programmable ROM operated successfully for several weeks under normal operating conditions

  5. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  6. Evaluation of the significance of inverse oxidation for HTGR graphites

    International Nuclear Information System (INIS)

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  7. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  8. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  9. Is there a chance for commercializing the HTGR in Indonesia?

    International Nuclear Information System (INIS)

    Arbie, B.; Akhmad, Y.R.

    1997-01-01

    Indonesia is one of the developing countries in Asia-Pacific regions that actively improving or at least continuously maintain its economic growth. For this purpose, to fulfill a domestic energy demand is a vital role to achieve the goals of Indonesian development. Pertamina, the state-owned oil company, has recently called for a significant increase in domestic gas consumption in a bid to delay Indonesia becoming a net oil importer. Therefore, there is good chance for gas industry to increase their roles in generating electricity and producing automotive fuels. The latter is an interesting field of study to be correlated with the utilization of HTGR technology where the heat source could be used in the reforming process to convert natural gas into syngas as feed material in producing automotive fuels. Since the end of 1995 National Atomic Energy Agency of Indonesia (BATAN) has made an effort to increase its role in the national energy program and Batan is also able to revolve in the Giant Natuna Project or the other natural gas field projects to promote syngas production applying HTGR technology. A series of meeting with Pertamina and BPPT (the Agency for the Assessment and Application of Technology) had been performed to promote utilization of HTGR technology in the Natuna Project. In this paper governmental policy for natural gas production that may closely relate to syngas production and preliminary study for production of syngas at the Natuna Project will be discussed. It is concluded that to gain the possibility of the HTGR acceptance in the project a scenario for production and distribution should be arranged in other to achieve the break even point for automotive fuel price at about 10 US$/GJ (fuel price in 1996) in Indonesia. (author)

  10. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  11. Study of air ingress accident of an HTGR

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1995-01-01

    Inherent properties of high temperature gas cooled reactors (HTGR) facilitate the design of HTGRs with high degree of passive safety performances. In this context, it is very important to establish a design criteria for a passive safe function for the air ingress accident. However, it is absolutely necessary to investigate the air ingress behavior during the accident before exploring the design criteria. The present paper briefly describes major activities and results of the air ingress research in our laboratory. (author)

  12. Passive afterheat removal in the HTGR with the liner cooling system as a heat sink

    International Nuclear Information System (INIS)

    Rehm, W.; Jahn, W.; Verfondern, K.

    1984-09-01

    The report deals with the transients of temperature and system pressure and the fission product behaviour in the primary circuit of an HTGR during passive afterheat removal, where the liner cooling system of the PCRV serves as a heat sink. The analysis has been made for the PNP-500-reactor representing nuclear plants with medium thermal power. The investigations show that the liner cooling system is able to control a core heatup. High temperature loads are encountered in the upper core region. In the case of a reactor under pressure the fuel elements and the primary circuit remain intact as the first and second barriers for fission products. In the case of a depressurized primary circuit the liner cooling system also keeps the PCRV at normal operating temperatures. The effects of a core heatup on component damage and release of fission products are thus limited. (orig.) [de

  13. Irradiation tests of optoelectronic components for LHC inner-detectors

    International Nuclear Information System (INIS)

    Dawson, I.; Oglesby, S.J.; Dowell, J.D.; Homer, R.J.; Kenyon, I.R.; Shaylor, H.R.; Wilson, J.A.

    1997-01-01

    Two kinds of optical-link technologies have been investigated for the readout of data at LHC experiments; one based on LEDs and the other on Multi-Quantum-Well modulators. Presented in this paper are the results of irradiating LEDs and MQW modulators with 1 MeV-equivalent neutrons and 24 GeV protons. The devices were biased and the performances of the optical links were monitored throughout the tests. The fluences achieved were ∝5 x 10 14 n cm -2 and ∝6 x 10 13 p cm -2 . (orig.)

  14. Operational, control and protective system transient analyses of the closed-cycle GT-HTGR power plant

    International Nuclear Information System (INIS)

    Openshaw, F.L.; Chan, T.W.

    1980-07-01

    This paper presents a description of the analyses of the control/protective system preliminary designs for the gas turbine high-temperature gas-cooled reactor (GT-HTGR) power plant. The control system is designed to regulate reactor power, control electric load and turbine speed, control the temperature of the helium delivered to the turbines, and control thermal transients experienced by the system components. In addition, it provides the required control programming for startup, shutdown, load ramp, and other expected operations. The control system also handles conditions imposed on the system during upset and emergency conditions such as loop trip, reactor trip, or electrical load rejection

  15. Development of a surveillance robot for dimensional and visual inspection of fuel and reflector elements from the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Marsh, N.I.; Miller, C.M.; Saurwein, J.J.; Smith, T.L.

    1979-11-01

    A robotic device has been developed for dimensional and visual inspection of irradiated HTGR core components. The robot consists of a rotary table and a two-finger probe, driven by stepping motors, and four remotely controlled television cameras. Automated operation is accomplished via minicomputer control. A total of 51 irradiated fuel and reflector elements were inspected at a fraction of the time and cost required for conventional methods

  16. GTOROTO: a simulation system for HTGR core seismic behavior

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nakamura, Yasuhiro; Onuma, Yoshio

    1980-07-01

    One of the most important design of HTGR core is its aseismic structure. Therefore, it is necessary to predict the forces and motion of the core blocks. To meet the requirement, many efforts to develop analytical methods and computer programs are made. A graphic simulation system GTOROTO with a CRT graphic display and lightpen was developed to analyze the HTGR core behavior in seismic excitation. Feature of the GTOROTO are as follows: (1) Behavior of the block-type HTGR core during earthquake can be shown on the CRT-display. (2) Parameters of the computing scheme can be changed with the lightpen. (3) Routines of the computing scheme can be changed with the lightpen and an alteration switch. (4) Simulation pictures are shown automatically. Hardcopies are available by plotter in stopping the progress of simulation pictures. Graphic representation can be re-start with the predetermined program. (5) Graphic representation informations can be stored in assembly language on a disk for rapid representation. (6) A computer-generated cinema can be made by COM (Computer Output Microfilming) or filming directly the CRT pictures. These features in the GTOROTO are provided in on-line conversational mode. (author)

  17. Management feature of transuranic for HTGR and LWR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Long-lived actinides from spent fuels can cause potential long-term environ- mental hazards. The generation and incineration of transuranic in different closed fuel cycles were studied. U and Pu were recycled from spent fuel in the 250 MW high-temperature gas-cooled reactor-pebble-bed-module (HTR-PM) U-Pu fuelled core, and then PuO 2 and MOX fuel elements were designed based on this recycled U and Pu. These fuel elements were used to build up a new PuO 2 or MOX fuelled core with the same geometry of the original reactor. Characteristics of transuranic incineration with HTGR open and closed fuel cycles were studied with VSOP code, and the corresponding results from the light water reactor were compared and analyzed. The transuranic generation with HTGR open fuel cycle is almost half of the corresponding result of the light water reactor. Thus, HTGR closed fuel cycles can effectively burn transuranic. (authors)

  18. SC-HTGR Performance Impact for Arid Sites

    International Nuclear Information System (INIS)

    Lommers, L.; Geschwindt, J.; Southworth, F.; Shahrokhi, F.

    2014-01-01

    The SC-HTGR provides high temperature steam which can support industrial process heat applications as well as high efficiency electricity generation. The increased generating efficiency resulting from using high steam temperature provides greater plant output than lower temperature concepts, and it also reduces the fraction of waste heat which must be rejected. This capability is particularly attractive for sites with little or no water for heat rejection. This high temperature capability provides greater flexibility for these sites, and it results in a smaller performance penalty than for lower temperature systems when dry cooling must be used. The performance of the SC-HTGR for a conventional site with wet cooling is discussed first. Then the performance for arid sites is evaluated. Dry cooling performance is evaluated for both moderately arid sites and very hot sites. Offdesign performance of the dry cooling system under extreme conditions is also considered. Finally, operating strategies are explored for sites where some cooling water may be available but only in very limited quantities. Results of these assessments confirm that the higher operating temperatures of the SC-HTGR are very beneficial for arid sites, providing significant advantages for both gross and net power generation. (author)

  19. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  20. Component unavailability versus inservice test (IST) interval: Evaluations of component aging effects with applications to check valves

    International Nuclear Information System (INIS)

    Vesely, W.E.; Poole, A.B.

    1997-07-01

    Methods are presented for calculating component unavailabilities when inservice test (IST) intervals are changed and when component aging is explicitly included. The methods extend usual approaches for calculating unavailability and risk effects of changing IST intervals which utilize Probabilistic Risk Assessment (PRA) methods that do not explicitly include component aging. Different IST characteristics are handled including ISTs which are followed by corrective maintenances which completely renew or partially renew the component. ISTs which are not followed by maintenance activities needed to renew the component are also handled. Any downtime associated with IST, including the test downtime and the following maintenance downtime, is included in the unavailability evaluations. A range of component aging behaviors is studied including both linear and nonlinear aging behaviors. Based upon evaluations completed to date, pooled failure data on check valves show relatively small aging (e.g., less than 7% per year). However, data from some plant systems could be evidence for larger aging rates occurring in time periods less than 5 years. The methods are utilized in this report to carry out a range of sensitivity evaluations to evaluate aging effects for different possible applications. Based on the sensitivity evaluations, summary tables are constructed showing how optimal IST interval ranges for check valves can vary relative to different aging behaviors which might exist. The evaluations are also used to identify IST intervals for check valves which are robust to component aging effects. General insights on aging effects are also extracted. These sensitivity studies and extracted results provide useful information which can be supplemented or be updated with plant specific information. The models and results can also be input to PRAs to determine associated risk implications

  1. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  2. Optimal test intervals of standby components based on actual plant-specific data

    International Nuclear Information System (INIS)

    Jones, R.B.; Bickel, J.H.

    1987-01-01

    Based on standard reliability analysis techniques, both under testing and over testing affect the availability of standby components. If tests are performed too often, unavailability is increased since the equipment is being used excessively. Conversely if testing is performed too infrequently, the likelihood of component unavailability is also increased due to the formation of rust, heat or radiation damage, dirt infiltration, etc. Thus from a physical perspective, an optimal test interval should exist which minimizes unavailability. This paper illustrates the application of an unavailability model that calculates optimal testing intervals for components with a failure database. (orig./HSCH)

  3. Association test based on SNP set: logistic kernel machine based test vs. principal component analysis.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the linear kernel machine based test (LKM and principal components analysis based approach (PCA using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage disequilibrium (LD structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the PCA with a small number of principal components (PCs and the LKM with kernel of linear or identical-by-state function are valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets extracted from an actual GWAS dataset on non-small cell lung cancer.

  4. Estimation of component failure probability from masked binomial system testing data

    International Nuclear Information System (INIS)

    Tan Zhibin

    2005-01-01

    The component failure probability estimates from analysis of binomial system testing data are very useful because they reflect the operational failure probability of components in the field which is similar to the test environment. In practice, this type of analysis is often confounded by the problem of data masking: the status of tested components is unknown. Methods in considering this type of uncertainty are usually computationally intensive and not practical to solve the problem for complex systems. In this paper, we consider masked binomial system testing data and develop a probabilistic model to efficiently estimate component failure probabilities. In the model, all system tests are classified into test categories based on component coverage. Component coverage of test categories is modeled by a bipartite graph. Test category failure probabilities conditional on the status of covered components are defined. An EM algorithm to estimate component failure probabilities is developed based on a simple but powerful concept: equivalent failures and tests. By simulation we not only demonstrate the convergence and accuracy of the algorithm but also show that the probabilistic model is capable of analyzing systems in series, parallel and any other user defined structures. A case study illustrates an application in test case prioritization

  5. Assessment of effects of Fort St. Vrain HTGR primary coolant on Alloy 800. Final report

    International Nuclear Information System (INIS)

    Trester, P.W.; Johnson, W.R.; Simnad, M.T.; Burnette, R.D.; Roberts, D.I.

    1982-08-01

    A comprehensive review was conducted of primary helium coolant chemistry data, based on current and past operating histories of helium-cooled, high-temperature reactors (HTGRs), including the Fort St. Vrain (FSV) HTGR. A reference observed FSV reactor coolant environment was identified. Further, a slightly drier expected FSV coolant chemistry was predicted for reactor operation at 100% of full power. The expected environment was compared with helium test environments used in the US, United Kingdom, Germany, France, and Japan. Based on a comprehensive review and analysis of mechanical property data reported for Alloy 800 tested in controlled-impurity helium environments (and in air when appropriate for comparison), an assessment was made of the effect of FSV expected helium chemistry on material properties of alloy 800, with emphasis on design properties of the Alloy 800 material utilized in the FSV steam generators

  6. Ecological, psychological, and cognitive components of reading difficulties: testing the component model of reading in fourth graders across 38 countries.

    Science.gov (United States)

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the differences in student difficulty occurred at the country (61%) and classroom (30%) levels (ecological), with less than 9% at the student level (cognitive and psychological). All three components were negatively associated with reading difficulties: cognitive (student's early literacy skills), ecological (family characteristics [socioeconomic status, number of books at home, and attitudes about reading], school characteristics [school climate and resources]), and psychological (students' attitudes about reading, reading self-concept, and being a girl). These results extend the CMR by demonstrating the importance of multiple levels of factors for reading deficits across diverse cultures.

  7. Estimation of the common cause failure probabilities on the component group with mixed testing scheme

    International Nuclear Information System (INIS)

    Hwang, Meejeong; Kang, Dae Il

    2011-01-01

    Highlights: ► This paper presents a method to estimate the common cause failure probabilities on the common cause component group with mixed testing schemes. ► The CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing. ► There are many CCCGs with specific mixed testing schemes in real plant operation. ► Therefore, a general formula which is applicable to both alternate periodic testing scheme and train level mixed testing scheme was derived. - Abstract: This paper presents a method to estimate the common cause failure (CCF) probabilities on the common cause component group (CCCG) with mixed testing schemes such as the train level mixed testing scheme or the alternate periodic testing scheme. In the train level mixed testing scheme, the components are tested in a non-staggered way within the same train, but the components are tested in a staggered way between the trains. The alternate periodic testing scheme indicates that all components in the same CCCG are tested in a non-staggered way during the planned maintenance period, but they are tested in a staggered way during normal plant operation. Since the CCF probabilities are dependent on the testing schemes such as staggered testing or non-staggered testing, CCF estimators have two kinds of formulas in accordance with the testing schemes. Thus, there are general formulas to estimate the CCF probability on the staggered testing scheme and non-staggered testing scheme. However, in real plant operation, there are many CCCGs with specific mixed testing schemes. Recently, Barros () and Kang () proposed a CCF factor estimation method to reflect the alternate periodic testing scheme and the train level mixed testing scheme. In this paper, a general formula which is applicable to both the alternate periodic testing scheme and the train level mixed testing scheme was derived.

  8. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Michael, E-mail: Michael.schroeder@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Biedermann, Christoph; Vilbrandt, Reinhard [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: The study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. The results show, that the PT application on components for use under vacuum conditions can in general be allowed. The test surface should have a simple geometry. No gaps or holes. An efficient cleaning after PT is necessary. If PT is foreseen TIG should used as the welding procedure. PT tested components should be baked out after the cleaning in a vacuum chamber at min 150 °C. -- Abstract: The penetrant testing (PT) is a common non-destructive procedure for the testing of components and in particular of welds. With PT it is possible to detect surface imperfections (e.g. cracks) which have a special potential to lead to the failure of the component or of the weld. PT is substantially more sensitive than a purely visual examination. Because the complicated geometries of fusion experiments make the accessibility for repairs during the operation extremely difficult, very high efforts on testing with sensitive procedures, for instance with dye penetrant testing during assembly is required. In contrast to this desire for widespread penetrant testing, however, is the general fear that dye penetrant tested components or welds, which are used in the vacuum, are contaminated by the dye in such a way that they do not fulfill the cleanliness requirements for vacuum components. Therefore dye penetrant testing of such vacuum components is usually considered problematic. This study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. Recommendations are formulated concerning the PT procedure of vacuum components and the cleaning procedures for penetrant tested areas under vacuum necessary after a dye penetrant test.

  9. Major advances in testing of dairy products: milk component and dairy product attribute testing.

    Science.gov (United States)

    Barbano, D M; Lynch, J M

    2006-04-01

    Milk component analysis is relatively unusual in the field of quantitative analytical chemistry because an analytical test result determines the allocation of very large amounts of money between buyers and sellers of milk. Therefore, there is high incentive to develop and refine these methods to achieve a level of analytical performance rarely demanded of most methods or laboratory staff working in analytical chemistry. In the last 25 yr, well-defined statistical methods to characterize and validate analytical method performance combined with significant improvements in both the chemical and instrumental methods have allowed achievement of improved analytical performance for payment testing. A shift from marketing commodity dairy products to the development, manufacture, and marketing of value added dairy foods for specific market segments has created a need for instrumental and sensory approaches and quantitative data to support product development and marketing. Bringing together sensory data from quantitative descriptive analysis and analytical data from gas chromatography olfactometry for identification of odor-active compounds in complex natural dairy foods has enabled the sensory scientist and analytical chemist to work together to improve the consistency and quality of dairy food flavors.

  10. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    International Nuclear Information System (INIS)

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers

  11. HTGR gas turbine program. Semiannual progress report, April 1-September 30, 1978

    International Nuclear Information System (INIS)

    1979-12-01

    This report describes work performed under the gas turbine HTGR (HTGR-GT) program, Department of Energy Contract DE-AT03-76-SF70046, during the period April 1, 1978 through September 30, 1978. The work reported covers the demonstration and commercial plant concept studies including plant layout, heat exchanger studies, turbomachine studies, systems analysis, and reactor core engineering

  12. Results of Koo measurements of HTGR lattice by oscillated zero reactivity technique using the AGIP-NUCLEARE RB-2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, F; Brighenti, G.; Chiodi, P. L.; Ghilardotti, G.; Giuliani, C.

    1974-10-15

    This paper describes k-infinity measurements conducted using an assembly of loose HTGR coated particles in the BR-2 reactor by means of null reactivity oscillating method comparing the effect of poisoned and unpoisoned lattices like tests performed in the Physical Constants Test Reactor (PCTR) at Hanford. The RB-2 reactor was the property of the Italian firm AGIP NUCLEARE and operated at the Montecuccolino Center in Bologna.

  13. Review of seismic tests for qualification of components and validation of methods

    International Nuclear Information System (INIS)

    Buland, P.; Gantenbein, F.; Gibert, R.J.; Hoffmann, A.; Queval, J.C.

    1988-01-01

    Seismic tests are performed in CEA-DEMT since many years in order: to demonstrate the qualification of components, to give an experimental validation of calculation methods used for seismic design of components. The paper presents examples of these two types of tests, a description of the existing facilities and details about the new facility TAMARIS under construction. (author)

  14. Review of seismic tests for qualification of components and validation of methods

    Energy Technology Data Exchange (ETDEWEB)

    Buland, P; Gantenbein, F; Gibert, R J; Hoffmann, A; Queval, J C [CEA-CEN SACLAY-DEMT, Gif sur Yvette-Cedex (France)

    1988-07-01

    Seismic tests are performed in CEA-DEMT since many years in order: to demonstrate the qualification of components, to give an experimental validation of calculation methods used for seismic design of components. The paper presents examples of these two types of tests, a description of the existing facilities and details about the new facility TAMARIS under construction. (author)

  15. Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems

    Science.gov (United States)

    Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard

    Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.

  16. Study on the inspection item and inspection method of HTGR fuel

    International Nuclear Information System (INIS)

    Na, Sang Ho; Kim, Y. K.; Jeong, K. C.; Oh, S. C.; Cho, M. S.; Kim, Y. M.; Lee, Y. W.

    2006-01-01

    The type of HTGR(High Temperature Gas-cooled Reactor) fuel is different according to the reactor type. Generally the HTGR fuel has two types. One is a block type, which is manufactured in Japan or America. And the other is a pebble type, which is manufactured in China. Regardless of the fuel type, the fuel manufacturing process started from the coated particle, which is consisted of fuel kernel and the 4 coating layers. Korea has a plan to fabricate a HTGR fuel in near future. The appropriate quality inspection standards are requested to produce a sound and reliable coated particle for HTGR fuel. Therefore, the inspection items and the inspection methods of HTGR fuel between Japan and China, which countries have the manufacturing process, are investigated to establish a proper inspection standards of our product characteristics

  17. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  18. Methodology to identify risk-significant components for inservice inspection and testing

    International Nuclear Information System (INIS)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues

  19. Conceptual design of small-sized HTGR system (4). Plant design and technical feasibility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing L.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

    2013-09-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2020s. HTR50S was designed for steam supply and electricity generation by the steam turbine with the reactor outlet temperature of 750degC as a reference plant configuration. On the other hand, the intermediate heat exchanger (IHX) will be installed in the primary loop to demonstrate the electricity generation by the helium gas turbine and hydrogen production by thermochemical water splitting by utilizing the secondary helium loop with the reactor outlet temperature of 900degC as a future plant configuration. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750degC to 900degC and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems (i.e., reactor internal components, reactor pressure vessel, vessel cooling system, shutdown cooling system, steam generator (SG), gas circulator, SG isolation and drainage system, reactor containment vessel, steam turbine and heat supply system) satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S. (author)

  20. Heavy metals in the ecosystem components at 'Degelen' testing ground of the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Yankauskas, A.B.; Lukashenko, S.N.; Amirov, A.A.; Govenko, P.V.

    2012-01-01

    The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and nonradiative factors. There were investigated near-portal areas of the tunnels with water seepage at 'Degelen' site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel number 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10 -5 -n*10 -7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238 U in the studied waters lie in the range of n*10 -4 - n*10 -6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor. The analysis of complex data obtained showed that the elevated concentrations of heavy metals in the soils of the areas under study, as a rule, are a consequence of the carry-over of these metals by water flows and their subsequent deposition in the sediments. (authors)

  1. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  2. Evaluation of temperature coefficients of reactivity for 233U--thorium fueled HTGR lattices. Final report

    International Nuclear Information System (INIS)

    Newman, D.F.; Leonard, B.R. Jr.; Trapp, T.J.; Gore, B.F.; Kottwitz, D.A.; Thompson, J.K.; Purcell, W.L.; Stewart, K.B.

    1977-05-01

    A comparison of calculated and measured neutron multiplication factors as a function of temperature was made for three graphite-moderated lattices in the High Temperature Lattice Test Reactor (HTLTR) using 233 UO 2 --ThO 2 fuels in varying amounts and configurations. Correlation of neutronic analysis methods and cross section data with the experimental measurements forms the basis for assessing the accuracy of the methods and data and developing confidence in the ability to predict the temperature coefficient of reactivity for various High Temperature Gas-Cooled Reactor (HTGR) conditions in which 233 U and thorium are present in the fuel. The calculated values of k/sub infinity/(T) were correlated with measured values using two least-squares-fitted correlation coefficients: (1) a normalization factor, and (2) a temperature coefficient bias factor. These correlations indicate the existence of a negative (nonconservative) bias in temperature coefficients of reactivity calculated using ENDF/B-IV cross section data

  3. Verification and validation of the THYTAN code for the graphite oxidation analysis in the HTGR systems

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Isaka, Kazuyoshi; Nomoto, Yasunobu; Seki, Tomokazu; Ohashi, Hirofumi

    2014-12-01

    The analytical models for the evaluation of graphite oxidation were implemented into the THYTAN code, which employs the mass balance and a node-link computational scheme to evaluate tritium behavior in the High Temperature Gas-cooled Reactor (HTGR) systems for hydrogen production, to analyze the graphite oxidation during the air or water ingress accidents in the HTGR systems. This report describes the analytical models of the THYTAN code in terms of the graphite oxidation analysis and its verification and validation (V and V) results. Mass transfer from the gas mixture in the coolant channel to the graphite surface, diffusion in the graphite, graphite oxidation by air or water, chemical reaction and release from the primary circuit to the containment vessel by a safety valve were modeled to calculate the mass balance in the graphite and the gas mixture in the coolant channel. The computed solutions using the THYTAN code for simple questions were compared to the analytical results by a hand calculation to verify the algorithms for each implemented analytical model. A representation of the graphite oxidation experimental was analyzed using the THYTAN code, and the results were compared to the experimental data and the computed solutions using the GRACE code, which was used for the safety analysis of the High Temperature Engineering Test Reactor (HTTR), in regard to corrosion depth of graphite and oxygen concentration at the outlet of the test section to validate the analytical models of the THYTAN code. The comparison of THYTAN code results with the analytical solutions, experimental data and the GRACE code results showed the good agreement. (author)

  4. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  5. Study on practical of eddy current testing of core and core support graphite components in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  6. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  7. HTGR-Integrated Coal To Liquids Production Analysis

    International Nuclear Information System (INIS)

    Gandrik, Anastasia M.; Wood, Rick A.

    2010-01-01

    As part of the DOE's Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to 'shift' the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700 C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: (1) 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66

  8. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  9. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  10. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  11. Recent developments in graphite. [Use in HTGR and aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  12. A reactivity accidents simulation of the Fort Saint Vrain HTGR

    International Nuclear Information System (INIS)

    Fainer, Gerson

    1980-01-01

    A reactivity accidents analysis of the Fort Saint Vrain HTGR was made. The following accidents were analysed 1) A rod pair withdrawal accident during normal operation, 2) A rod pair ejection accident, 3) A rod pair withdrawal accident during startup operations at source levels and 4) Multiple rod pair withdrawal accident. All the simulations were performed by using the BLOOST-6 nuclear code The steady state reactor operation results obtained with the code were consistent with the design reactor data. The numerical analysis showed that all accidents - except the first one - cause particle failure. (author)

  13. Treatment of operator actions in the HTGR risk assessment study

    International Nuclear Information System (INIS)

    Fleming, K.N.; Silady, F.A.; Hannaman, G.W.

    1979-12-01

    Methods are presented for the treatment of operator actions, developed in the AIPA risk assessment study. Some examples are given of how these methods were applied to the analysis of potential HTGR accidents. Realistic predictions of accident risks required a balanced treatment of both beneficial and detrimental actions and responses of human operators and maintenance crews. Th essential elements of the human factors methodology used in the AIPA study include event tree and fault tree analysis, time-dependent operator response and repair models, a method for quantifying common cause failure probabilities, and synthesis of relevant experience data for use in these models

  14. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  15. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  16. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  17. Measurements of integrated components' parameters versus irradiation doses gamma radiation (60Co) dosimetry-methodology-tests

    International Nuclear Information System (INIS)

    Fuan, J.

    1991-01-01

    This paper describes the methodology used for the irradiation of the integrated components and the measurements of their parameters, using Quality Insurance of dosimetry: - Measurement of the integrated dose using the competences of the Laboratoire Central des Industries Electriques (LCIE): - Measurement of irradiation dose versus source/component distance, using a calibrated equipment. - Use of ALANINE dosimeters, placed on the support of the irradiated components. - Assembly and polarization of components during the irradiations. Selection of the irradiator. - Measurement of the irradiated components's parameters, using the competences of the societies: - GenRad: GR130 tests equipement placed in the DEIN/SIR-CEN SACLAY. - Laboratoire Central des Industries Electriques (LCIE): GR125 tests equipment and this associated programmes test [fr

  18. Approach to the HTGR core outlet temperature measurements in the United States

    International Nuclear Information System (INIS)

    Franklin, R.; Rodriguez, C.

    1982-06-01

    The High Temperature Gas-Cooled Reactor (HTGR) constructed at Fort St. Vrain Colorado (330 MWe) used Geminol thermocouples to measure the primary coolant temperature at the core outlet. The primary coolant (helium) is heated by the graphite core to temperatures in the range of 700 deg. to 750 deg. C. The combination of the high temperature, high flow rate and radiation at the core outlet area makes it difficult to obtain accurate temperature measurements. The Geminol thermocouples installed in the Fort St. Vrain reactor have provided accurate data for several years of power operation without any failures. The indicated temperature of the core outlet thermocouples agrees with a ''traversing'' thermocouple measurement to within +-2 deg. C. The Geminol thermocouple wire was provided by the Driver-Harris Company and is similar to the chromel versus alumel thermocouple. Geminol wire is no longer distributed and on future designs, chromel versus alumel wire will be used. The next large HTGR design, which is being performed with funding support from the United States Department of Energy, will incorporate replaceable thermocouples. The thermocouples used in the Fort St. Vrain reactor were permanently installed and large in diameter (6.35 mm) to insure good reliability. The replaceable thermocouples to be used in the next large reactor will be smaller in diameter (3.18 mm). These replaceable thermocouples will be inserted into the core outlet area through long curved guide tubes that are permanently installed. These guide tubes are as long as 18 meters and must be curved to reach the core outlet regions. Tests were conducted to prove that the thermocouples could be inserted and removed through the long curved guide tubes. (author)

  19. Analysis and discussion on several problems when testing the thickness of reinforcement cover of concrete component

    Science.gov (United States)

    Zhanhua, Zhang; Guiling, Ji; Lijie; Zhaobo, Zhang; Na, Han; Jing, Zhao; Tan, Li; Zhaorui, Liu

    2018-03-01

    Reinforcement cover of concrete component plays a very important role to ensure the durability of various types of structures and the effective anchorage between steel reinforcement and concrete. This paper discusses and analyzes the problems occurred when testing the thickness of reinforcement cover of concrete component, so as to provide reference and help for related work.

  20. Usability testing of interaction components: taking the message exchange as a measure of usability

    NARCIS (Netherlands)

    Brinkman, W.P.; Haakma, R.; Bouwhuis, D.G.; Jacob, R.J.K.; Limbourg, Q; Vanderdonckt, J.

    2004-01-01

    Component-based Software Engineering (CBSE) is concerned with the development of systems from reusable parts (components), and the development and maintenance of these parts. This study addresses the issue of usability testing in a CBSE environment, and specifically automatically measuring the

  1. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  2. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  3. Restrictions on the Ratio of Normal to Tangential Field Components in Magnetic Rubber Testing

    National Research Council Canada - National Science Library

    Burke, S. K; Ibrahim, M. E

    2007-01-01

    Magnetic Rubber Testing (MRT) is an extremely sensitive method for deteckng surface-breaking cracks in ferromagnetic materials, and is used extensively in critical inspections for D6ac steel components of the F-111 aircraft...

  4. HTGR technology development: status and direction

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas

  5. Analytical evaluation on loss of off-side electric power simulation of the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Nakagawa, Shigeaki; Tachibana, Yukio; Takada, Eiji; Kunitomi, Kazuhiko

    2000-03-01

    A rise-to-power test of the high temperature engineering test reactor (HTTR) started on September 28 in 1999 for establishing and upgrading the technological basis for the high temperature gas-cooled reactor (HTGR). A loss of off-site electric power test of the HTTR from the normal operation under 15 and 30 MW thermal power will be carried out in the rise-to-power test. Analytical evaluations on transient behaviors of the reactor and plant during the loss of off-site electric power were conducted. These estimations are proposed as benchmark problems for the IAEA coordinated research program on 'Evaluation of HTGR Performance'. This report describes an event scenario of transient during the loss of off-site electric power, the outline of major components and system, detailed thermal and nuclear data set for these problems and pre-estimation results of the benchmark problems by an analytical code 'ACCORD' for incore and plant dynamics of the HTGR. (author)

  6. CONTEMPT-G computer program and its application to HTGR containments

    International Nuclear Information System (INIS)

    Macnab, D.I.

    1976-03-01

    The CONTEMPT-G computer program has been developed by General Atomic Company to simulate the temperature-pressure response of a containment atmosphere to postulated depressurization of High-Temperature Gas-Cooled Reactor (HTGR) primary or secondary coolant circuits. The mathematical models currently used in the code are described, and applications of the code in examples of the atmospheric response of a representative containment to a variety of postulated HTGR accident conditions are presented. In particular, maximum containment temperature and pressure, equilibrated long-term prestressed concrete reactor vessel and containment pressures, and peak containment conditions following steam pipe ruptures are examined for a representative 770-MW(e) HTGR

  7. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  8. Effects of the HTGR-gas turbine on national reactor strategies

    International Nuclear Information System (INIS)

    Ligon, D.M.; Brogli, R.H.

    1979-11-01

    A specific role for the HTGR in a national energy strategy is examined. The issue is addressed in two ways. First, the role of the HTGR-GT Binary cycle plant is examined in a national energy strategy based on symbiosis between fast breeder and advanced converter reactors utilizing the thorium U233 fuel cycle. Second, the advantages of the HTGR-GT dry-cooled plant operating in arid regions is examined and compared with a dry-cooled LWR. An event tree analysis of potential benefits is applied

  9. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  10. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  11. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  12. Estimation of the common cause failure probabilities of the components under mixed testing schemes

    International Nuclear Information System (INIS)

    Kang, Dae Il; Hwang, Mee Jeong; Han, Sang Hoon

    2009-01-01

    For the case where trains or channels of standby safety systems consisting of more than two redundant components are tested in a staggered manner, the standby safety components within a train can be tested simultaneously or consecutively. In this case, mixed testing schemes, staggered and non-staggered testing schemes, are used for testing the components. Approximate formulas, based on the basic parameter method, were developed for the estimation of the common cause failure (CCF) probabilities of the components under mixed testing schemes. The developed formulas were applied to the four redundant check valves of the auxiliary feed water system as a demonstration study for their appropriateness. For a comparison, we estimated the CCF probabilities of the four redundant check valves for the mixed, staggered, and non-staggered testing schemes. The CCF probabilities of the four redundant check valves for the mixed testing schemes were estimated to be higher than those for the staggered testing scheme, and lower than those for the non-staggered testing scheme.

  13. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  14. ORNL's NRC-sponsored HTGR safety and licensing analysis activities for Fort St. Vrain and advanced reactors

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.

    1985-01-01

    The ORNL safety analysis program for the HTGR was established in 1974 to provide technical assistance to the USNRC on licensing questions for both Fort St. Vrain and advanced plant concepts. The emphasis has been on development of major component and system dynamic simulation codes, and use of these codes to analyze specific licensing-related scenarios. The program has also emphasized code verification, using Fort St. Vrain data where applicable, and comparing results with industry-generated codes. By the use of model and parameter adjustment routines, safety-significant uncertainties have been identified. A major part of the analysis work has been done for the Fort St. Vrain HTGR, and has included analyses of FSAR accident scenario re-evaluations, the core block oscillation problem, core support thermal stress questions, technical specification upgrade review, and TMI action plan applicability studies. The large, 2240-MW(t) cogeneration lead plant design was analyzed in a multi-laboratory cooperative effort to estimate fission product source terms from postulated severe accidents

  15. The coupled code system TORT-TD/ATTICA3D for 3-D transient analysis of pebble-bed HTGR

    International Nuclear Information System (INIS)

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Laurien, E.; Bader, J.; EnBW Kernkraft GmbH, Philippsburg

    2012-01-01

    This paper describes the time-dependent 3-D discrete-ordinates based coupled code system TORT-TD/ATTICA3D and its application to HTGR of pebble bed type. TORT-TD/ATTICA3D is represented by a single executable and adapts the so-called internal coupling approach. Three-dimensional distributions of temperatures from ATTICA3D and power density from TORT-TD are efficiently exchanged by direct memory access of array elements via interface routines. Applications of TORT-TD/ATTICA3D to three transients based on the PBMR-400 benchmark (total and partial control rod withdrawal and cold helium ingress) and the full power steady state of the HTR-10 are presented. For the partial control rod withdrawal, 3-D effects of local neutron flux redistributions are clearly identified. The results are very promising and demonstrate that the coupled code system TORT-TD/ATTICA3D may represent a key component in a future comprehensive 3-D code system for HTGR of pebble bed type. (orig.)

  16. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    International Nuclear Information System (INIS)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang

    2006-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  17. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won; Cho, Seungyon

    2014-01-01

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity

  18. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  19. Technique for ultrasonic testing of austenitic steel weldments of NPP components

    International Nuclear Information System (INIS)

    Lantukh, V.M.; Grebennik, V.S.; Kordinov, E.V.; Kesler, N.A.; Shchedrin, I.F.

    1987-01-01

    Special literature on ultrasonic testing of weldments of austenitic steel is analysed. Technique for ultrasonic testing of the ring and longitudinal butt welded joints of NPP components without reinforcing bead removal is described. Special converter design and fabrication practice are described. Results of experimental check of the developed testing technology and its application during NNPs' mounting and operation are presented. Results of ultrasonic and X-ray testing are compared

  20. Efficient testing of the homogeneity, scale parameters and number of components in the Rayleigh mixture

    International Nuclear Information System (INIS)

    Stehlik, M.; Ososkov, G.A.

    2003-01-01

    The statistical problem to expand the experimental distribution of transverse momenta into Rayleigh distribution is considered. A high-efficient testing procedure for testing the hypothesis of the homogeneity of the observed measurements which is optimal in the sense of Bahadur is constructed. The exact likelihood ratio (LR) test of the scale parameter of the Rayleigh distribution is proposed for cases when the hypothesis of homogeneity holds. Otherwise the efficient procedure for testing the number of components in the mixture is also proposed

  1. Ultrasonic testing of pre-turned contours for large components made of ductile iron

    International Nuclear Information System (INIS)

    Schmitte, Till; Chichkov, Nikolai; Nemitz, Oliver; Orth, Thomas; Hocks, Heinrich Jr.; Rusche, Sascha; Opalla, Dirk; Frank, Joerg

    2015-01-01

    In the ultrasonic testing of large, thick-walled components made of ductile iron partial acoustic paths of several meters are needed. Considered here are cylindrical components such as the body of CASTOR containers with diameters 2-3 m, a height of up to 6 m and a wall thickness of 500 mm. So far, an automated technique for this is not available, therefore such components are checked in a complex and lengthy process by manual ultrasonic testing. The development and design of the testing by means of simulations and the realization as a mobile testing device are topics of this paper. Measurements on a reference body with test reflectors in different depths are presented and discussed. [de

  2. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1992-08-01

    This report briefly describes the progress of the construction of the High Temperature Engineering Test Reactor (HTTR), Research and Development (R and D) on the advanced technologies for the High Temperature Gas-cooled Reactors (HTGRs) and international cooperation in the Japan Atomic Energy Research Institute (JAERI) in 1991. (J.P.N.)

  3. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    Science.gov (United States)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  4. Under sodium reliability tests on core components and in-core instrumentation

    International Nuclear Information System (INIS)

    Ruppert, E.; Stehle, H.; Vinzens, K.

    1977-01-01

    A sodium test facility for fast breeder core components (AKB), built by INTERATOM at Bensberg, has been operating since 1971 to test fuel dummies and blanket elements as well as absorber elements under simulated normal and extreme reactor conditions. Individual full-scale fuel or blanket elements and arrays of seven elements, modelling a section of the SNR-300 reactor core, have been tested under a wide range of sodium mass flow and isothermal test conditions up to 925K as well as under cyclic changed temperature transients. Besides endurance testing of the core components a special sodium and high-temperature instrumentation is provided to investigate thermohydraulic and vibrational behaviour of the test objects. During all test periods the main subassembly characteristics could be reproduced and the reliability of the instrumentation could be proven. (orig.) [de

  5. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1991-04-01

    The HTTR is a test reactor with thermal output of 30MW and outlet coolant temperature of 950degC, employing the pin-in-block type fuel, and has the capability to demonstrate nuclear process heat utilization using an intermediate heat exchanger. The official construction of the HTTR facility is scheduled to start on March 15, 1991. This publication summarizes the present status of R and D of high temperature gas cooled reactors in JAERI. (J.P.N.)

  6. Selected studies in HTGR reprocessing development

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-03-01

    Recent work at ORNL on hot cell studies, off-gas cleanup, and waste handling is reviewed. The work includes small-scale burning tests with irradiated fuels to study fission product release, development of the KALC process for the removal of 85 Kr from a CO 2 stream, preliminary work on a nonfluidized bed burner, solvent extraction studies including computer modeling, characterization of reprocessing wastes, and initiation of a development program for the fixation of 14 C as CaCO 3

  7. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  8. Determination of chlorinated hydrocarbons in single and multi component test gases

    Energy Technology Data Exchange (ETDEWEB)

    Giese, U.; Stenner, H. (Paderborn Univ. (Gesamthochschule) (Germany, F.R.). Angewandte Chemie); Ludwig, E.; Kettrup, A. (Paderborn Univ. (Gesamthochschule) (Germany, F.R.). Angewandte Chemie Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Oekologische Chemie)

    1990-11-01

    For comparing the efficiency of active and diffusive sampling methods two diffusive samplers with different properties were used to determine chlorinated hydrocarbons (CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}) in single and multi component test gas mixtures. One of the chosen diffusive samplers can also be used for active sampling. In general, good correlations of all tested methods could be observed in the direct comparison of active and diffusive sampling and in the determination of the efficiencies. During the application of active and diffusive sampling methods in multi component test gases of the analytes possible interferences could not be ascertained. (orig.).

  9. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Bird, F.; Aston, D.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Nagamine, T.; Pavel, T.; Muller, D.; Williams, S.; Bienz, T.; Dolinsky, S.; Solodov, E.; Coyle, P.; Cavalli-Sforza, M.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.

    1990-01-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. This paper reports on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, the authors report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime

  10. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-10-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating systems and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime. 16 refs., 12 figs

  11. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  12. Development of HTGR plant dynamics simulation code

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.

    1987-01-01

    Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)

  13. Analysis of some accident conditions in confirmation of the HTGR safety

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Grishanin, E.I.; Kukharkin, N.E.; Mikhailov, P.V.; Pinchuk, V.V.; Ponomarev-Stepnoy, N.N.; Fedin, G.I.; Shilov, V.N.; Yanushevich, I.V.

    1981-01-01

    This report concerns some accident conditions for the HTGR-50 demonstrational reactor which along with the safety features common to the typical HTGR differs in design. The analyses carried out on the accident situations showed that due to the high heat capacity of the graphite core and negative temperature effect of the reactivity the HTGR-50 reactor is effectively selfcontrolled at different perturbations of the reactivity and has low sensitivity to the failure of the core cooling. The primary circuit depressurization accident should be thoroughly studied because of the dangerous consequences i.e. the core overheating and the reactivity release into the environment. As a whole, the studies now in progress show that the problem of the HTGR safety can be successfully solved

  14. Granular effect on the effective cross sections in the HTGR type reactors

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de.

    1975-01-01

    Effective cross section of bars for HTGR is studied from the point of view of heterogeneity. Microscopical heterogeneity due to grains is represented by a self-shielding factor, which is well determined [pt

  15. Application of the lines-of-protection concept to the HTGR-SC/C

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this document is to present a method for structuring the safety related design and development plans for the HTGR. This method centers on and develops the concept that the HTGR inherently (and by design) provides independent and successive LOPs against potential core related accidents and any resulting public harm. To exemplify the LOP concept and its application to the HTGR, this document identifies some key bases and assumptions, describes the four LOPs selected for the HTGR, identifies the associated safety goals and plant success criteria, and establishes methods for safety research and development prioritization. A task breakdown structure is then described, which in a complete hierarchial fashion can be used to catalog all safety related tasks necessary to demonstrate LOP success as well as catalog safety research areas which cannot be conveniently grouped under the LOPs

  16. Analysis of some accident conditions in confirmation of the HTGR safety

    Energy Technology Data Exchange (ETDEWEB)

    Grebennik, V. N.; Grishanin, E. I.; Kukharkin, N. E.; Mikhailov, P. V.; Pinchuk, V. V.; Ponomarev-Stepnoy, N. N.; Fedin, G. I.; Shilov, V. N.; Yanushevich, I. V. [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1981-01-15

    This report concerns some accident conditions for the HTGR-50 demonstrational reactor which along with the safety features common to the typical HTGR differs in design. The analyses carried out on the accident situations showed that due to the high heat capacity of the graphite core and negative temperature effect of the reactivity the HTGR-50 reactor is effectively selfcontrolled at different perturbations of the reactivity and has low sensitivity to the failure of the core cooling. The primary circuit depressurization accident should be thoroughly studied because of the dangerous consequences i.e. the core overheating and the reactivity release into the environment. As a whole, the studies now in progress show that the problem of the HTGR safety can be successfully solved.

  17. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  18. GfW-handbook for irradiation test guidelines for radiation hardness of electronic components

    International Nuclear Information System (INIS)

    Braeunig, D.; Wulf, F.; Gaebler, W.; Boden, A.

    1982-12-01

    The purpose of the report is to propose irradiation test methods so that a standardized application of the methods can lead to a better comparison of test results. The interaction of different radiation species with matter - ionization and displacement - is described. Application of appropriate radiation sources, dosimetry problems, and shielding for simulating space radiation effects by laboratory testing is discussed. The description and characteristics of the irradiation sources are presented. Flowcharts of the planning and running of irradiation tests are given. Guidelines for running the tests are established, test methods and test circuits are proposed. The test system offers the capability of measuring devices also of high complexity up to microprocessors. The test results are collected regularly and are published in GfW-Handbook TN53/08, 'Data Compilation of Irradiation Tested Electronic Components'. (orig./HP) [de

  19. Production control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.

    1979-06-01

    Purpose of this report was (1) to determine which techniques (Kalman Filter, weighted least squares, Shewhart control chart) are capable of detecting drift or step changes earliest in a manufacturing process, and (2) what method would work well in maintaining the manufacturing process at an acceptable level of quality. To solve part (1) simulation studies were performed for various test cases of interest. No single technique was superior in all of these cases, but the Kalman Filter appeared to be more robust to various process changes. The weighted least squares did a good job when the weight was near unity (0.9977) and failed when the weight was small (0.63). The Shewhart control chart is better for detecting step changes than for trends. Several methods wre compared to try to answer part (2). In this report the model building and forecasting was done using the methods of Box and Jenkins

  20. Research on solvent extraction process for reprocessing of Th-U fuel from HTGR

    International Nuclear Information System (INIS)

    Bao Borong; Wang Gaodong; Qian Jun

    1992-05-01

    The unique properties of spent fuel from HTGR (high temperature gas cooled reactor) have been analysed. The single solvent extraction process using 30% TBP for separation and purification of Th-U fuel has been studied. In addition, the solvent extraction process for second uranium purification is also investigated to meet different needs of reprocessing and reproduction of Th-U spent fuel from HTGR

  1. HTGR [High Temperature Gas-Cooled Reactor] ingress analysis using MINET

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs

  2. Need and trends of volumetric tests in recurring inspection of pressurized components in pressurized water reactors

    International Nuclear Information System (INIS)

    Bergemann, W.

    1982-01-01

    On the basis of the types of stress occurring in nuclear power plants and of practical results it has been shown that cracks in primary circuit components arise due to operating stresses in both the materials surfaces and the bulk of the materials. For this reason, volumetric materials testing is necessary in addition to surface testing. An outlook is given on the trends of volumetric testing. (author)

  3. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  4. Wind pressure testing of tornado safe room components made from wood

    Science.gov (United States)

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  5. Importance Analysis of In-Service Testing Components for Ulchin Unit 3

    International Nuclear Information System (INIS)

    Dae-Il Kan; Kil-Yoo Kim; Jae-Joo Ha

    2002-01-01

    We performed an importance analysis of In-Service Testing (IST) components for Ulchin Unit 3 using the integrated evaluation method for categorizing component safety significance developed in this study. The importance analysis using the developed method is initiated by ranking the component importance using quantitative PSA information. The importance analysis of the IST components not modeled in the PSA is performed through the engineering judgment, based on the expertise of PSA, and the quantitative and qualitative information for the IST components. The PSA scope for importance analysis includes not only Level 1 and 2 internal PSA but also Level 1 external and shutdown/low power operation PSA. The importance analysis results of valves show that 167 (26.55%) of the 629 IST valves are HSSCs and 462 (73.45%) are LSSCs. Those of pumps also show that 28 (70%) of the 40 IST pumps are HSSCs and 12 (30%) are LSSCs. (authors)

  6. Safety prediction for basic components of safety critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2001-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  7. Radiation Effects and Component Hardening testing program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Draper, J.V.; Weil, B.S.; Chesser, J.B.

    1993-01-01

    This paper describes Phase II of the Radiation Effects and Component Hardening (REACH) testing program, performed as part of the joint collaborative agreement between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, Components and materials were submitted to 10 5 R/hr gamma radiation fields for 10,000 hr, producing accumulated doses of 10 9 R; most performed as expected

  8. Tests and Confidence Intervals for an Extended Variance Component Using the Modified Likelihood Ratio Statistic

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund; Frydenberg, Morten; Jensen, Jens Ledet

    2005-01-01

    The large deviation modified likelihood ratio statistic is studied for testing a variance component equal to a specified value. Formulas are presented in the general balanced case, whereas in the unbalanced case only the one-way random effects model is studied. Simulation studies are presented......, showing that the normal approximation to the large deviation modified likelihood ratio statistic gives confidence intervals for variance components with coverage probabilities very close to the nominal confidence coefficient....

  9. Safety prediction for basic components of safety-critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2000-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  10. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, S.; Yoshida, H.; Naruse, Y.; Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L.

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, ''JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing

  11. Process heat utilization from HTGR type reactors

    International Nuclear Information System (INIS)

    1985-01-01

    Work performed by the Special Research Unit 163 to supplement industrial development projects in the subject field was devoted to specific problems. The major goal was to analyse available industrial developments for potential improvements in terms of process design and engineering in line with the latest know-how, in order to enhance the economic efficiency of available techniques and methods. So research into coal gasification by nuclear processes concentrated on the potentials of a method allowing significantly higher gasification temperatures due to the use of a so-called high-temperature heat pump operating on the basis of the gas turbine principle. Exergetic analyses were made for the processes using nuclear heat in order to optimise their energy consumption. Major steps in these processes are gas purification and gas separation. Especially for the latter step, novel techniques were studied and tested on lab scale, results being used for development towards technical scale application. One novel technique is a method for separating hydrogen from methane and carbon monoxide by means of a gas turbine process step, another research task resulted in a novel absorption technique in the liquid phase. Further, alternative solutions were studied which, other than the conventional gasification processes, comprise electrochemical and other chemical process steps. The important research topic concerned with the kinetics of coal gasification was made part of a special research program on the level of fundamental research. (orig./GL) [de

  12. Advanced Fuel UCO Preparation Technology for HTGR (Characteristics of Carbon Black)

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Oh, S. C.; Kim, Y. K.; Cho, M. S.; Kim, W. K.; Kim, Y. M.; Lee, Y. W.; Cho, H. J.; Shin, E. J.

    2010-06-01

    NGNP program for high specification of HTGR nuclear fuel through the GEN IV study is be progressed. Furthermore, because the NGNP program have a highly focused goal like UCO kernel, kernel fabrication and coating types varied which made selection of a US reference fabrication process. In this study, it was evaluated from the reviews on the UO2 and UCO kernel fabrication technologies and its particle characteristics. For improving the UCO qualities, first it was improved the kernel fabrication processes and carbon dispersion method also. New method for carbon dispersion in broth solution was developed, and its characteristics was evaluated from the AGR irradiation tests used the UCO kernel. In fabrication process, also process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment

  13. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  14. Irradiation tests of critical components for remote handling in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Henjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1994-08-01

    Since the fusion power core of a D-T fusion reactor will be highly activated once it starts operation, personnel access will be prohibited so that assembly and maintenance of the components in the reactor core will have to be totally conducted by remote handling technology. Fusion experimental reactors such as ITER require unprecedented remote handling equipments which are tolerable under gamma radiation of more than 10 6 R/h. For this purpose, the Japan Atomic Energy Research Institute (JAERI) has been developing radiation hard components for remote handling purpose and a number of key components have been tested over 10 9 rad at a radiation dose rate of around 10 6 R/h, using Gamma Ray Radiation Test Facility in JAERI-Takasaki Establishment. This report summarizes the irradiation test results and the latest status of AC servo motor, potentiometer, optical elements, lubricant, sensors and cables, which are key elements of the remote handling system. (author)

  15. Preseason Functional Movement Screen Component Tests Predict Severe Contact Injuries in Professional Rugby Union Players.

    Science.gov (United States)

    Tee, Jason C; Klingbiel, Jannie F G; Collins, Robert; Lambert, Mike I; Coopoo, Yoga

    2016-11-01

    Tee, JC, Klingbiel, JFG, Collins, R, Lambert, MI, and Coopoo, Y. Preseason Functional Movement Screen component tests predict severe contact injuries in professional rugby union players. J Strength Cond Res 30(11): 3194-3203, 2016-Rugby union is a collision sport with a relatively high risk of injury. The ability of the Functional Movement Screen (FMS) or its component tests to predict the occurrence of severe (≥28 days) injuries in professional players was assessed. Ninety FMS test observations from 62 players across 4 different time periods were compared with severe injuries sustained during 6 months after FMS testing. Mean composite FMS scores were significantly lower in players who sustained severe injury (injured 13.2 ± 1.5 vs. noninjured 14.5 ± 1.4, Effect Size = 0.83, large) because of differences in in-line lunge (ILL) and active straight leg raise scores (ASLR). Receiver-operated characteristic curves and 2 × 2 contingency tables were used to determine that ASLR (cut-off 2/3) was the injury predictor with the greatest sensitivity (0.96, 95% confidence interval [CI] = 0.79-1.0). Adding the ILL in combination with ASLR (ILL + ASLR) improved the specificity of the injury prediction model (ASLR specificity = 0.29, 95% CI = 0.18-0.43 vs. ASLR + ILL specificity = 0.53, 95% CI = 0.39-0.66, p ≤ 0.05). Further analysis was performed to determine whether FMS tests could predict contact and noncontact injuries. The FMS composite score and various combinations of component tests (deep squat [DS] + ILL, ILL + ASLR, and DS + ILL + ASLR) were all significant predictors of contact injury. The FMS composite score also predicted noncontact injury, but no component test or combination thereof produced a similar result. These findings indicate that low scores on various FMS component tests are risk factors for injury in professional rugby players.

  16. Testing of ceramic gas turbine components under service-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Siebmanns, W [Motoren- und Turbinen-Union G.m.b.H., Muenchen (Germany, F.R.)

    1978-08-01

    If all gas turbine components which are in contact with hot gas are manufactured from special ceramics (silicon nitride, silicon carbide), cycle and component temperatures can be increased up to 1600/sup 0/K. MTU is developing various components, such as combustor and turbine wheel, step by step until they are ready for service. At present, combustors are surviving comprehensive service-like cyclic tests in hot gas at atmospheric pressure (1000 h, 1000 starts per component) without damage. Tests above atmospheric pressure (5 bar) are underway. At MTU, a rotor wheel variant consisting of a metallic hub with inserted single blades is being constructed. The step to aerodynamically contoured airfoils will follow, as soon as the stress problems encountered in connection with the blade root are fully under control. The program will be completed in 1980 with a test run of a prototype turbine made from ceramic components developed by various companies under the leadership of the DFVLR (Aerospace Research and Testing Institute).

  17. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  18. Review of fatigue criteria development for HTGR core supports

    International Nuclear Information System (INIS)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10 3 cycles) for mutiaxial fatigue effects

  19. Application of modern control theory to HTGR-plant

    International Nuclear Information System (INIS)

    Izaki, Makoto; Kubo, Hiroaki; Yamazaki, Eiji; Suzuki, Katsuo.

    1988-01-01

    The classical control theory approach to the multivariate control problem is to decouple the system intentionally and to treat each loop independently. As a result, final control system design is limited in complexity by the available mathematical techniques limitation and it's control performance is insufficient in many cases. The modern control theory approach based on the state variables to the problem provides far more powerful methods and more design flexibility than the classical control theory approach by the new mathematical formulation about the problem. The state variable feedback in formulating as an optimal regulator is the most effective way to obtain the desired control performance. In this report, some results of optimal regulator application to High Temperature Gas Cooled Reactor (HTGR) are shown. (author)

  20. Derivation of criteria for primary circuit activity in an HTGR

    International Nuclear Information System (INIS)

    Su, S.D.; Barsell, A.W.

    1980-11-01

    This paper derives specific criteria for the circulating and plateout activity in the primary circuit for a 2170-MW(t) high temperature gas-cooled reactor-gas turbine (HTGR-GT) plant. Results show that for a design basis, (1) the circulating activity should be limited to 14,000 Ci Kr-88 (a principal nuclide) to meet both offsite dose and containment access constraint during normal operation and depressurization accidents, and (2) the plateout inventories for those important nuclides affecting shutdown maintenance should not exceed 10,000 Ci Ag-110m, 45,000 Ci Cs-134 and 130,000 Ci Cs-137. This paper presents bases and methodology for deriving such criteria and compares them with light water reactors. 5 tables

  1. Utilization of plutonium in HTGR and its actinide production

    International Nuclear Information System (INIS)

    Karin, S.; Brogli, R.; Lefler, W.; Nordheim, L.

    1976-01-01

    The HTGR is a potential plutonium consumer. In this function it would burn plutonium, produce electricity and the valuable fissile isotope U-233. The advantages of this concept are discussed but particular attention is given to the production and the destruction of the higher actinides due to the high burnup achievable in such a system. The presence of the strong resonances in the plutonium isotopes demanded an extension of the methods for evaluation of self-shielding factors, a different structure for broad groups, and the adaptation of the reactor codes to these changes. Specifications for coated plutonium particles were developed. Also procedures were determined to evaluate the alpha ray and neutron emission rates of the actinide nuclides. First cycle calculations were carried out to establish in detail the characteristics of the plutonium reactors and their results are given

  2. Evaluation of a blender for HTGR fuel particles

    International Nuclear Information System (INIS)

    Johnson, D.R.

    1977-03-01

    An experimental blender for mixing HTGR fuel particles prior to molding the particles into fuel rods was evaluated. The blender consists of a conical chamber with an air inlet in the bottom. A pneumatically operated valve provides for discharge of the particles out of the bottom of the cone. The particles are mixed by periodically levitating with pulses of air. The blender has provision for regulating the air flow rate and the number and duration of the air flow pulses. The performance of the blender was governed by the particle blend being mixed, the air flow rate, and the pulse time. Adequately blended fuel rods can be made, if the air flow rate and pulse time are carefully controlled for each fuel rod composition

  3. 131I release from a HTGR during the LOFC accident

    International Nuclear Information System (INIS)

    Foley, J.E.

    1975-03-01

    The time-dependent release of 131 I from both the core and the containment building of a high temperature gas-cooled (HTGR) reactor during the loss of forced coolant (LOFC) accident is studied. A simplified core release model is combined with a containment building release model so that the total amount of the isotope released to the environment can be calculated. The time-dependent release of 131 I from the core during the LOFC accident is primarily a function of the time-dependent core temperatures and the failed fuel release constants. The most important factor in calculating the amount of the isotope released to the environment is the total amount released into the containment building. (U.S.)

  4. Chemical thermodynamics of iodine species in the HTGR fuel particle

    International Nuclear Information System (INIS)

    Lindemer, T.B.

    1982-09-01

    The iodine-containing species in an intact fuel particle in the high-temperature gas-cooled reactor (HTGR) have been calculated. Assumptions include: (1) attainment of chemical thermodynamic equilibrium among all species in the open porosity of the particle, primarily in the buffer layer; and (2) fission-product concentrations in proportion to their yields. The primary gaseous species is calculated to be cesium iodide; in carbide-containing fuels, gaseous barium iodide may exhibit equivalent pressures. The condensed iodine-containing phase is usually cesium iodide, but in carbide-containing fuels, barium iodide may be stable instead. Absorption of elemental iodine on the carbon in the particle appears to be less than or equal to 10 -4 μg I/g C. The fission-product-spectra excess of cesium over iodine would generally be adsorbed on the carbon, but may form Cs 2 MoO 4 under some circumstances

  5. Ways to increase efficiency of the HTGR coupled with the gas-turbine power conversion unit - HTR2008-58274

    International Nuclear Information System (INIS)

    Golovko, V. F.; Kodochigov, N. G.; Vasyaev, A. V.; Shenoy, A.; Baxi, C. B.

    2008-01-01

    reactor plants with highly recuperative steam cycle with supercritical heat parameters, the net efficiency of electricity generation reaches 50-55%. There are three methods of Brayton cycle carnotization: regeneration, helium cooldown during compression, and heat supply during expansion. These methods can be used both separately and in combination, which gives a total of seven complex heat flow diagrams. Besides, there are ways to increase helium temperature at the reactor inlet and outlet, to reduce hydraulic losses in the helium path, to increase the turbomachine (TM) rotation speed in order to improve the turbine and compressor efficiency, to reduce helium leaks in the circulation path, etc. The analysis of GT-MHR, PBMR and GTHTR-300 development experience allows identification of the main ways of increasing the efficiency by selecting optimal parameters and design solutions for the reactor and power conversion unit. The paper estimates the probability of reaching the maximum electricity generation efficiency in reactor plants with the HTGR and gas turbine cycle with account of the up-to-date development status of major reactor plant components (reactor, vessels, turbo-compressor (TC), generator, heat exchange equipment, and structural materials). (authors)

  6. Status, results and usefulness of risk analyses for HTGR type reactors of different capacity accessory to planning

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.

    1985-01-01

    As regards system-inherent risks, HTGR type reactors are evaluated with reference to the established light-water-moderated reactor types. Probabilistic HTGR risk analyses have shown modern HTGR systems to possess a balanced safety concept with a risk remaining distinctly below legally accepted values. Inversely, the development and optimization of the safety concepts have been (and are being) essentially co-determined by the probabilistic analyses, as it is technically sensible and economically necessary to render the specific safety-related HTGR properties eligible for licensing. (orig./HP) [de

  7. Qualification methodologies for mechanical component, I and C, piping using test lab

    International Nuclear Information System (INIS)

    Ichikawa, Toshio

    2001-01-01

    There are many methods of verifying the intensity of a structure, a function, a vibration characteristics, etc. The seismic test which verifies the function during the earthquake of a components simple substance (seismic test which checks durability according to components types). How to verify the analysis technique by the scale model and to check the intensity of plant operating conditions by the scale model results. The model of the same size as the actual plant is created and there is a method of verifying intensity and the function directly. A seismic test is restrained by the frequency of an evaluation objective, and the capability of actuator equipment, and is carried out. Moreover, otherwise, restrictions are the size of a table, actuation power, environment, etc. Here, further examples are introduced, such as evaluation by the examination that combined analysis, experimental test use and analysis, and the experimental test, and the method of proving only by test, and have the seismic check method by test learned in this lecture. Typical examples are explained. Based on the seismic test result carried out with experimental research equipment, how to verify that the required function to components, such as a structure of reactor internals, is maintained at the time of an earthquake is explained. In this case, differences of the simulation environment of the model in. a test, earthquake conditions simulated by shaker table of test conditions and actual plant conditions are important for the evaluation method determination. In nuclear equipment, there is what is required to achieve the static function to hold pressure boundary to the high temperature inside apparatus piping - high-pressure flow, and dynamic functions, such as insertion of a valve, a pump, and a control rod. Moreover, in order to maintain and carry out the safe stop of the safe operation, there is I and C for controlling - supervising these components. In order for this functional maintenance

  8. Mechanical testing - designers need: a view at component design and operations stages

    International Nuclear Information System (INIS)

    Shrivastava, S.K.

    2007-01-01

    Mechanical design of any component requires knowledge of values of various material properties which designer(s) make(s) use in designing the component. In design of nuclear power plant components, it assumes even greater importance in view of degree of precision and accuracy with which the values of various properties are required. This is in turn demands, high accuracy in testing machines and measuring methods. In this paper, attempt has been made to bring out that even from conventional tension test, how designer today looks for availability of engineering stress-strain diagram preferably through digitally acquired data points during the test from which he can derive values of Ramberg-Osgood parameters for use in fracture mechanics based analysis. Attempt has been also made to provide account of some of important fracture mechanics related tests which have been evolved in last two decades and designers need for evolution of simple test techniques to measure many more fracture mechanics related parameters as well as cater to constraints such as shape and size of material available from the components. Nuclear power plant has been primarily kept in view and ASME. Section III NB, ASME Section XI and relevant ASTM Standards have been taken as standard references. Further pressure retaining materials of pressure vessels/Reactor Pressure Vessels have been kept in view. (author)

  9. Time dependent unavailability analysis of nuclear safety systems considering periodically tested components

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de Araujo

    1988-01-01

    It is of utmost importance to have a computer code in order to analyze how different parameters (like test duration time) affect the unavailability of safety systems of nuclear. In this context, a study was performed in order to evaluate the model employed by the FRANTIC computer code, which performs detailed calculations on the contribution to the system unavailability originated by hardware failures, component tests and repairs, aiming at considering the influence of different test schemes on the system unavailability. It was shown, by means of the results attained that the numerical model used by the FRANTIC code and the analytical model proposed by APOSTOLAKIS and CHU (4) give unavailability values much similar when the component tests are supposed to be perfect. When a test is supposed to be imperfect (that is, when it may induce a test is supposed to be imperfect (that is, when it may induce a failure on the component being tested), the analytical model presents more conservative results. (author)

  10. Developing standard performance testing procedures for MC and A components at a site

    International Nuclear Information System (INIS)

    Scherer, Carolynn

    2010-01-01

    The condition of a nuclear material control and accountability system (MC and A) and its individual components, as with any system combining technical elements, documentation and the human factor, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC and A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following elements and subsystems or components for a material control and accountability system: (1) MC and A Elements: Information subsystem, Measurement subsystem, NM access subsystem, including a tamper-indicating device (TID) program, and Automated information-gathering subsystem; and (2) Detecting NM Loses Elements: Inventory differences, Shipper/receiver differences, Confirmatory measurements and differences with accounting data, and TID or seal violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems (from the list above). Additionally this work includes a review of the status of regulatory requirements for the MC and A system components and potential criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC and A performance-testing procedures were the basis for a pilot Guide for MC and A Performance Testing at the MBAs of SSC RF IPPE.

  11. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  12. GfW-handbook for data compilation of irradiation tested electronic components. Vol. 3

    International Nuclear Information System (INIS)

    Wulf, F.; Braeunig, D.; Boden, A.

    1984-05-01

    The 2nd edition is a continuation of the 1st edition and is published as a loose-leaf handbook. The 1st edition contained 190 test reports. In the volume 1 and volume 2 of the 2nd edition 120 test reports have been published so far. The present volume 3 of the 2nd edition provides further 53 test reports. These test reports of currently in space projects used electronic components have a standardized format. The results are given in a comprehensive but easily to handle graphical and tabular presentation. Statistical values are given in order to facilitate the components life time evaluation in a radiative environment. (orig./HP) [de

  13. Creep crack growth verification testing in alloy 800H tubular components

    International Nuclear Information System (INIS)

    Hunter, C.P.; Hurst, R.C.

    1992-01-01

    A method for determining the creep crack growth, CCG, and stress rupture behaviour of Alloy 800H tubular components containing longitudinal notches at 800deg C is described. The presence of the notch is found to systematically weaken the tube, the degree of weaking dependent upon the notch length and depth. The creep crack growth rates, determined from a specially adapted potential drop technique are compared with those obtained from conventional compact tension type specimens. Using the stress intensity factor, K 1 , and the C * parameter as the basis of comparison it is found that the latter gives excellent correlation between the specimen and component behaviour. Finally attention is drawn to the potential dangers of predicting the component creep crack growth behaviour from the data obtained using conventional specimens for a structure sensitive material such as Alloy 800H and conversely to the advantages of the component type CCG tests developed in the present work. (orig.)

  14. Computed tomography (CT) as a nondestructive test method used for composite helicopter components

    Science.gov (United States)

    Oster, Reinhold

    1991-09-01

    The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.

  15. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  16. GfW-handbook for data compilation of irradiation tested electronic components

    International Nuclear Information System (INIS)

    Wulf, F.; Braeunig, D.; Gaebler, W.

    1981-06-01

    The present 2. edition of the Data Compilation of Irradiation Tested Electronic Components represents a continuation of the 1. edition and is published as a loose-leaf handbook. In addition to the 190 reports provided in the 1. issue the present handbook contains further 44 test reports of currently used semiconductor devices in a comprehensive but easily to handle graphical and tabular presentation. Statistical values are given in order to facilitate the parts life time evaluation in a radiative environment. (orig.) [de

  17. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Minashkin, V F; Shalyugin, A N

    1999-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and $gamma$-doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (kapton and copper strips) as a measure of the bonding agent irradiation hardness are also reported.

  18. Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    Leroy, C.; Cheplakov, A.; Golikov, V.; Golubykh, S.; Kukhtin, V.; Kulagin, E.; Lushchikov, V.; Minashkin, V.; Shalyugin, A.

    2000-01-01

    Various readout chain components of the ATLAS liquid argon calorimeters have been exposed to high neutron fluences and γ doses at the irradiation test facility of the IBR-2 reactor of JINR, Dubna. Results of the capacitance and impedance measurements of coaxial cables are presented. Results of peeling tests of PC board samples (carton and copper strips) as a measure of the bonding agent irradiation hardness are also reported

  19. Bank lending, expenditure components and inflation in South Africa: assessment from bounds testing approach

    Directory of Open Access Journals (Sweden)

    Emmanuel Ziramba

    2011-09-01

    Full Text Available This empirical study examines the long-run relationship between inflation and its determinants in South Africa. Three models of inflation involving money supply, bank credit and expenditure components are tested using the unrestricted error correction models of Pesaran et al. (2001. Unlike other existing studies on the subject, one of the models in the present study considers various components of real income as determinants. The disaggregated components are final consumption expenditure, expenditure on investment goods and exports. Based on ‘bounds’ testing, the presence of a long-run equilibrium relationship between inflation and its determinants is confirmed for all three models. The study found that the major causes of inflation in South Africa are import prices, real income, and final consumption expenditure. The relationship is elastic for import prices and final consumption expenditure. Monetary variables, money supply and bank credit are found to have an indirect effect on inflation.

  20. Reliability demonstration test for load-sharing systems with exponential and Weibull components.

    Directory of Open Access Journals (Sweden)

    Jianyu Xu

    Full Text Available Conducting a Reliability Demonstration Test (RDT is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

  1. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Owen, M.B.

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR

  2. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

    NARCIS (Netherlands)

    Rajesh Ramaneti; Francois Krummenacher; Fritz Falk; Naser Khosropour; Björn Eisenhawer; Cees van Rijn; Giorgos Fagas; Ran Yu; Adrian M. Ionescu; Ing. Erik Puik; Montserrat Fernández-Bolaños Badia; Nikolay Petkov; Hien Duy Tong; Rik Lafeber; John C De Mello; Olan Lotty; Adrian M. Nightingale; Yordan M. Georgiev; Elizabeth Buitrago; Frank van der Bent; Michael Nolan; Justin D. Holmes; Annett Gawlik; Maher Kayal; Guobin Jia

    2014-01-01

    From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials

  3. Components of Spatial Thinking: Evidence from a Spatial Thinking Ability Test

    Science.gov (United States)

    Lee, Jongwon; Bednarz, Robert

    2012-01-01

    This article introduces the development and validation of the spatial thinking ability test (STAT). The STAT consists of sixteen multiple-choice questions of eight types. The STAT was validated by administering it to a sample of 532 junior high, high school, and university students. Factor analysis using principal components extraction was applied…

  4. TRANTHAC-1: transient thermal-hydraulic analysis code for HTGR core of multi-channel model

    International Nuclear Information System (INIS)

    Sato, Sadao; Miyamoto, Yoshiaki

    1980-08-01

    The computer program TRANTHAC-1 is for predicting thermal-hydraulic transient behavior in HTGR's core of pin-in-block type fuel elements, taking into consideration of the core flow distribution. The program treats a multi-channel model, each single channel representing the respective column composed of fuel elements. The fuel columns are grouped in flow control regions; each region is provided with an orifice assembly. In the region, all channels are of the same shape except one channel. Core heat is removed by downward flow of the control through the channel. In any transients, for given time-dependent power, total core flow, inlet coolant temperature and coolant pressure, the thermal response of the core can be determined. In the respective channels, the heat conduction in radial and axial direction are represented. And the temperature distribution in each channel with the components is calculated. The model and usage of the program are described. The program is written in FORTRAN-IV for computer FACOM 230-75 and it is composed of about 4,000 cards. The required core memory is about 75 kilowords. (author)

  5. Thermal cycle efficiency of the indirect combined HTGR-GT power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    High thermal efficiency of 50% could be expected in a power generation system coupling a high temperature gas-cooled reactor(HTGR) with a closed cycle gas turbine(GT). There are three candidate systems such as a direct cycle(DC), an indirect cycle(ICD) and an indirect combined cycle(IDCC). The IDCC could solve many problems in both the DC and the IDC and consists of a primary circuit and a secondary circuit where a topping cycle is a Brayton cycle and a bottoming cycle is a steam cycle. In this report, the thermal cycle efficiency of the IDCC is examined regarding configurations of components and steam pressure. It has been shown that there are two types of configurations, that is, a perfect cascade type and a semi-cascade one and the latter can be further classified into Case A, Case B and Case C. The conditions achieving the maximum thermal cycle efficiency were revealed for these cases. In addition, the optimum system configurations were proposed considering the thermal cycle efficiency, safety and plant arrangement. (author).

  6. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  7. Design of performance and analysis of dynamic and transient thermal behaviors on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, Michitsugu; Mizuno, Minoru; Itoh, Mitsuyoshi; Urabe, Shigemi

    1985-01-01

    The intermediate heat exchanger (IHX) is designed as the high temperature heat exchanger for HTGR (High Temperature Gas-cooled Reactor), which transmits the primary coolant helium's heat raised up to about 950 0 C in the reactor core to the secondary helium or the nuclear heat utilization. Having to meet, in addition, the requirement of the primary coolant pressure boundary as the Class-1 component, it must be secured integrity throughout the service life. This paper will show (1) the design of the thermal performance; (2) the results of the dynamic analyses of the 1.5 MWt-IHX with its comparison to the experimental data; (3) the analytical predictions of the dynamic thermal behaviors under start-up and of the transient thermal behaviors during the accident on the 25 MWt-IHX. (author)

  8. Experimental study on fundamental phenomena in HTGR small break air-ingress accident

    International Nuclear Information System (INIS)

    Kim, Jae Soon; Hwang, Jin-Seok; Kim, Eung Soo; Kim, Byung Jun; Oh, Chang Ho

    2016-01-01

    Highlights: • Air-ingress phenomena on the small break in a HTGR are experimentally investigated. • Experiment is investigated for various break sizes, angles, and density ratios. • Maximum air-ingress rate is observed at 120° in break angle. • This study reveals that air-ingress in the small break is governed by; buoyancy and flow inertia. • A non-dimensional parameter is newly proposed to determine the air-ingress flow regimes. • Newly proposed parameter is based on buoyancy versus inertia force. - Abstract: This study experimentally investigates fundamental phenomena in the HTGR small break air-ingress accident. Several important parameters including density ratio, break angle, break size, and main flow velocity are considered in the measurement and the analysis. The test-section is made of a circular pipe with small holes drilled around the surface and it is installed in the helium/air flow circulation loop. Oxygen concentrations and flow rates are recorded during the tests with fixed break angles, break sizes, and flow velocities for measurement of the air-ingress rates. According to the experimental results, the higher density difference leads to the higher rates of air-ingress with large sensitivity of the break angles. It is also found that the break angle significantly affects the air-ingress rates, which is gradually increased from 0° to 120° and suddenly decreased to 180°. The minimum air ingress rate is found at 0° and the maximum, at 110°. The air-ingress rate increases with the break size due to the increased flow-exchange area. However, it is not directly proportional to the break area due to the complexity of the phenomena. The increased flow velocity in the channel inside enhances the air-ingress process. However, among all the parameters, the main flow velocity exhibits the lowest effect on this process. In this study, the Froude Number relevant to the small break air-ingress conditions are newly defined considering both heavy

  9. Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality

    Science.gov (United States)

    Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.

    2018-03-01

    This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For

  10. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  11. Fast neutron radiography testing for components of launch vehicles by a baby-cyclotron

    International Nuclear Information System (INIS)

    Ikeda, Y.; Ohkubo, K.; Matsumoto, G.; Nakamura, T.; Nozaki, Y.; Wakasa, S.; Toda, Y.; Kato, T.

    1990-01-01

    Recently, neutron radiography (NR) has become an important means of nondestructive testing (NDT) in Japan. Especially thermal neutron radiography testing (NRT) has been used for the NDT of various explosive devices of launch vehicles, which are developed as a H-series program by the National Space Development Agency (NASDA) of Japan. The NRT for launch vehicles has been carried out at the NR facility of a baby-cyclotron. In the NRT a conventional film method based on silver-halide emulsion has been exclusively employed to inspect various testing objects including components, and many valuable results have been obtained so far successfully. However, recently, the launch vehicles to be shot up have become much larger. With larger launch vehicles, the parts used in them have also become larger and thicker. One main disadvantage of the NRT by thermal neutrons is somewhat weak penetrability through objects because the energy is small. With the conventional thermal neutron radiography (TNR), steel objects being thicker than 40 to 50 mm are difficult to test through them because scattered neutrons obstruct real image of the object. Consequently a new method of NRT should be developed instead of TNR and applied to the new components of H-2 launch vehicles. In order to cope with the requirement, fast neutron radiography (FNR) has been studied for testing the new components of H-2, such as large separation bolts

  12. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; D'Oliveira, A.; Johnson, R.A.; Martinez, J.L.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1991-02-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid C 6 F 14 and on the effects of CRID construction materials on electron lifetime. 9 refs., 11 figs

  13. Probabilistic fatigue life prediction methodology for notched components based on simple smooth fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Dept.of Engineering Mechanics, Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing (China); Hu, X. T.; Xin, P. P.; Song, Y. D. [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2017-01-15

    The methodology of probabilistic fatigue life prediction for notched components based on smooth specimens is presented. Weakestlink theory incorporating Walker strain model has been utilized in this approach. The effects of stress ratio and stress gradient have been considered. Weibull distribution and median rank estimator are used to describe fatigue statistics. Fatigue tests under different stress ratios were conducted on smooth and notched specimens of titanium alloy TC-1-1. The proposed procedures were checked against the test data of TC-1-1 notched specimens. Prediction results of 50 % survival rate are all within a factor of two scatter band of the test results.

  14. The research on x-ray nondestructive testing and image processing technology of explosive components

    International Nuclear Information System (INIS)

    Shi, C.; Zhai, X.; Liu, Z.; Lin, H.

    2004-01-01

    The explosive components will inevitably produce defects such as impurity, crack and degumming during production and storage, therefore the inside substance of the explosive components must be examined and the findings concerned must be identified and estimated in order to ensure the quality and service life of the explosive components. Firstly, some analyses are conducted on the usual X-ray NDT system theory, and the simulation explosive component is made with some pre-built defects such as debonding, cracks, blow holes, impurities, and non-uniform density. The image testing system most fit for the explosive components is established. Secondly, the ways of X-ray digital image processing are discussed; the obtained images are enhanced and restored through the self-accommodating build-up arithmetic and proper restoring methods. By means of the results of the overall comparison and analysis of the digital image processing technology, it is clearly indicated that it is feasible to use X-ray digital-imaging ways to carry out the NDT of explosive components and identify the inside defects. (author)

  15. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Science.gov (United States)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  16. On the classification of structures, systems and components of nuclear research and test reactors

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2009-01-01

    The classification of structures, systems and components of nuclear reactors is a relevant issue related to their design because it is directly associated with their safety functions. There is an important statement regarding quality standards and records that says Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. The definition of the codes, standards and technical requirements applied to the nuclear reactor design, fabrication, inspection and tests may be seen as the main result from this statement. There are well established guides to classify structures, systems and components for nuclear power reactors such as the Pressurized Water Reactors but one can not say the same for nuclear research and test reactors. The nuclear reactors safety functions are those required to the safe reactor operation, the safe reactor shutdown and continued safe conditions, the response to anticipated transients, the response to potential accidents and the control of radioactive material. So, it is proposed in this paper an approach to develop the classification of structures, systems and components of these reactors based on their intended safety functions in order to define the applicable set of codes, standards and technical requirements. (author)

  17. The Effect of Multidimensional Motivation Interventions on Cognitive and Behavioral Components of Motivation: Testing Martin's Model

    Directory of Open Access Journals (Sweden)

    Fatemeh PooraghaRoodbarde

    2017-04-01

    Full Text Available Objective: The present study aimed at examining the effect of multidimensional motivation interventions based on Martin's model on cognitive and behavioral components of motivation.Methods: The research design was prospective with pretest, posttest, and follow-up, and 2 experimental groups. In this study, 90 students (45 participants in the experimental group and 45 in the control group constituted the sample of the study, and they were selected by available sampling method. Motivation interventions were implemented for fifteen 60-minute sessions 3 times a week, which lasted for about 2 months. Data were analyzed using repeated measures multivariate variance analysis test.Results: The findings revealed that multidimensional motivation interventions resulted in a significant increase in the scores of cognitive components such as self-efficacy, mastery goal, test anxiety, and feeling of lack of control, and behavioral components such as task management. The results of one-month follow-up indicated the stability of the created changes in test anxiety and cognitive strategies; however, no significant difference was found between the 2 groups at the follow-up in self-efficacy, mastery goals, source of control, and motivation.Conclusions: The research evidence indicated that academic motivation is a multidimensional component and is affected by cognitive and behavioral factors; therefore, researchers, teachers, and other authorities should attend to these factors to increase academic motivation.

  18. A discrimination-association model for decomposing component processes of the implicit association test.

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio; Vianello, Michelangelo; Anselmi, Pasquale

    2013-06-01

    A formal model is proposed that decomposes the implicit association test (IAT) effect into three process components: stimuli discrimination, automatic association, and termination criterion. Both response accuracy and reaction time are considered. Four independent and parallel Poisson processes, one for each of the four label categories of the IAT, are assumed. The model parameters are the rate at which information accrues on the counter of each process and the amount of information that is needed before a response is given. The aim of this study is to present the model and an illustrative application in which the process components of a Coca-Pepsi IAT are decomposed.

  19. Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience

    International Nuclear Information System (INIS)

    Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L.

    2004-01-01

    The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator

  20. Evaluation and development of measurement components for a catalytic converter test system

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    1997-08-01

    The purpose of this research and development project was to evaluate and configure the components of a test system designed for the analysis of full-scale vehicle-aged automobile catalytic converters. The components tested included an exhaust gas analyzer for measuring hydrocarbon, CO, CO{sub 2} and O{sub 2} contents and a chemiluminescence detector (CLD) for measuring NO{sub x}, as well as thermocouples and pressure meters. A software package (TestPoint vers.2.Ob, Capital Equipment) was used to develop a computer-based data sampling and acquisition interface with the components and sensors connected to the test system. Tests of the Sun MGA-1200, a non-dispersive infrared (NDIR) analyzer, with CO, CO{sub 2} and various hydrocarbons (propane and octane) revealed sensitivity to large pressure changes (greater than 500 mbar). There was no significant cross-sensitivity between the gases except for the slight response of the hydrocarbon (HC) register to water vapor and CO. However, the low range of HC(5-30 vppm) expected in car exhaust after the converter means any cross-sensitivity could have an effect on the measurement, depending on measurement conditions. Tests of the EcoPhysics CLD 700 NO{sub x} meter also indicated sensitivity to pressure. An executable TestPoint run-time application was created to allow near real-time monitoring of the test system using a desktop computer. Nine channels of analog data are fed to a desktop computer via an A/D board and seven exhaust gas parameters through an RS-232C interface with the MGA-1200 23 refs, 32 figs, 10 tabs. Examination paper

  1. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    Science.gov (United States)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses

  2. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  3. Development of an Automated LIBS Analytical Test System Integrated with Component Control and Spectrum Analysis Capabilities

    International Nuclear Information System (INIS)

    Ding Yu; Tian Di; Chen Feipeng; Chen Pengfei; Qiao Shujun; Yang Guang; Li Chunsheng

    2015-01-01

    The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy expandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data. (paper)

  4. Testing of high heat flux components manufactured by ENEA for ITER divertor

    International Nuclear Information System (INIS)

    Visca, Eliseo; Escourbiac, F.; Libera, S.; Mancini, A.; Mazzone, G.; Merola, M.; Pizzuto, A.

    2009-01-01

    ENEA is involved in the International Thermonuclear Experimental Reactor (ITER) R and D activities and in particular in the manufacturing of high heat flux plasma-facing components, such as the divertor targets. During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and HIPping. A new manufacturing process that combines two main techniques PBC (Pre-Brazed Casting) and the HRP (Hot Radial Pressing) has been set up and widely tested. A full monoblock medium scale vertical target, having a straight CFC armoured part and a curved W armoured part, was manufactured using this process. The ultrasonic method was used for the non-destructive examinations performed during the manufacturing of the component, from the monoblock preparation up to the final mock-up assembling. The component was also examined by thermography on SATIR facility (CEA, France), afterwards it was thermal fatigue tested at FE200 (200 kW electron beam facility, CEA/AREVA France). The successful results of the thermal fatigue testing performed according the ITER requirements (10 MW/m 2 , 3000 cycles of 10 s on both CFC and W part, then 20/15 MW/m 2 , 2000 cycles of 10 s on CFC/W part, respectively) have confirmed that the developed process can be considerate a candidate for the manufacturing of monoblock divertor components. Furthermore, a 35-MW/m 2 Critical Heat Flux was measured at relevant thermal-hydraulics conditions at the end of the testing campaign. This paper reports the manufacturing route, the thermal fatigue testing results, the pre and post non-destructive examination and the destructive examination performed on the ITER vertical target medium scale mock-up. These activities were performed in the frame of EFDA contracts (04-1218 with CEA, 93-851 JN with AREVA and 03-1054 with ENEA).

  5. Study of the mechanical properties of the electric power station components: the punch test

    International Nuclear Information System (INIS)

    Isselin, J.

    2003-03-01

    The aging of the electric production park implies an increasing need of knowledge concerning the evolution of the mechanical properties of its components. With regard to this problem, the availability in material is more and more small. This work proposes to characterize these properties through a mechanical test called Punch test. The main characteristic of this test is to use very small volume samples. The development of this test has been carried out by the study of a 15 MDV 4-05 steel coming from a steam drum of a thermal power plant after 145000 hours of service. At first, we have measured the influence of the parameters of this test. Then, the study has dealt more particularly on the transition temperature of the material. With the finite element simulation method, the strain hardening coefficient of the material has been determined. (O.M.)

  6. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  7. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  8. Radiation safety aspects during nondestructive testing of reactor shielding components by gamma radiometry

    International Nuclear Information System (INIS)

    Viswanathan, S.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    In nuclear facilities, effective shielding of radioactive components and structures are essential to ensure radiation protection to operating personnel. The shield structures are made of lead, steel and concrete with varying thickness of up to 1200 mm. It needs to be verified for shielding integrity, presence of voids, blowholes and defects to avoid exposure to workers and to public at large. Radiometry using gamma source serves as excellent tool for non-destructive examination of such structures and components. Gamma sources of high activity up to 50 Curies (gamma camera type) depending on the thickness of component have to be used. During the testing exposure to the operating personnel needs to be minimized, this requires certain safety procedures to be followed. This paper focuses the methodology to be adapted by means of selection of source, effective training of personnel, compliance with safety requirements and maintenance of source devices

  9. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  10. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  11. Development of processes and equipment for the refabrication of HTGR fuels

    International Nuclear Information System (INIS)

    Sease, J.D.; Lotts, A.L.

    1976-06-01

    Refabrication is in the step in the HTGR thorium fuel cycle that begins with a nitrate solution containing 238 U and culminates in the assembly of this material into fuel elements for use in an HTGR. Refabrication of HTGR fuel is essentially a manufacturing operation and consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and SiC, preparation of fuel rods, and assembly of fuel rods in fuel elements. All the equipment for refabrication of 238 U-containing fuel must be designed for completely remote operation and maintenance in hot cell facilities. This paper describes the status of processes and equipment development for the remote refabrication of HTGR fuels. The feasibility of HTGR refabrication processes has been proven by laboratory development. Engineering-scale development is now being performed on a unit basis on the majority of the major equipment items. Engineering-scale equipment described includes full-scale resin loading equipment, a 5-in.-dia (0.13-m) microsphere coating furnace, a fuel rod forming machine, and a cure-in-place furnace

  12. Uncertainties in HTGR neutron-physical characteristics due to computational errors and technological tolerances

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Grebennik, V.N.; Davidenko, V.G.; Kosovskij, V.G.; Smirnov, O.N.; Tsibul'skij, V.F.

    1991-01-01

    The paper is dedicated to the consideration of uncertainties is neutron-physical characteristics (NPC) of high-temperature gas-cooled reactors (HTGR) with a core as spherical fuel element bed, which are caused by calculations from HTGR parameters mean values affecting NPC. Among NPC are: effective multiplication factor, burnup depth, reactivity effect, control element worth, distribution of neutrons and heat release over a reactor core, etc. The short description of calculated methods and codes used for HTGR calculations in the USSR is given and evaluations of NPC uncertainties of the methodical character are presented. Besides, the analysis of the effect technological deviations in parameters of reactor main elements such as uranium amount in the spherical fuel element, number of neutron-absorbing impurities in the reactor core and reflector, etc, upon the NPC is carried out. Results of some experimental studies of NPC of critical assemblies with graphite moderator are given as applied to HTGR. The comparison of calculations results and experiments on critical assemblies has made it possible to evaluate uncertainties of calculated description of HTGR NPC. (author). 8 refs, 8 figs, 6 tabs

  13. Verification test of advanced LWR fuel components of Westinghouse type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2004-08-01

    The purpose of this project is to independently conduct the performance test of the spacer grids and the cladding material of the 16x16 and 17x17 advanced fuels for Westinghouse type plants, and to improve the relevant test technology. Major works and results of the present research are as follows. 1. The design and structural features of the spacer grids were investigated, especially the finally determined I-spring was thoroughly analyzed in the point of the mechanical damage and characteristic. 2. As for the mechanical tests of the space grids, the characterization, the impact and the fretting wear tests were carried out. The block as well as the in-grid tests were conducted for the spring/dimple characterization, from which a simple method was developed that simulated the boundary conditions of the assembled grid straps. The impact tester was modified and improved to accommodate a full size grid assembly. The impact result showed that the grid assembly fulfilled the design criteria. As for the fretting wear tests, a sliding test under the room temperature air/water, a sliding/impact test under the room temperature air and a sliding/impact tests under the high temperature and pressure environments were carried out. To this end, a high temperature and pressure fretting wear tester was newly developed. The wear characteristic and the resistibility of the advanced grid spring/dimple were analyzed in detail. The test results were verified through comparing those with the test results by the Westinghouse company. 3. The properties and performance of the newly adopted material for the cladding, Low Sn Zirlo was investigated by a room and high temperature tensile tests and a corrosion tests under the environments of 360 .deg. C water, 400 steam and 360 .deg. C 70ppm LiOH. Through the present project, all the test equipment and technologies for the fuel components were procured, which will be used for future domestic development of a new fuel

  14. Irradiation tests of critical components for remote handling system in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1996-03-01

    This report covers the gamma ray irradiation tests according to the Agreement of ITER R and D Task (T35) in 1994 and describes radiation hardness of the standard components for the ITER remote handling system which are categorized into the robotics (Subtask-1), the viewing system (Subtask-2) and the common components (Subtask-3). The gamma ray irradiation tests have been conducted using No.2 and No.3 cells at the cobalt building of Takasaki Establishment in JAERI. The radiation source is cobalt sixty (Co-60), and the maximum dose rate of No.2 and No.3 cells is about 1x10 6 R/h and 2x10 6 R/h, respectively. The environmental conditions of the irradiation tests are described below and all of components excepting electrical wires have been tested in the No.2 cell. [No.2 cell : Atmosphere and ambient temperature No.3 cell : Nitrogen gas and 250degC] As a whole, many of components have been irradiated up to the rated dose of around 1x10 10 rads and the following main results are obtained. The developed AC servo motor and periscope for radiation use have shown excellent durability with the radiation hardness tolerable for more than 10 9 rads. An electrical connector compatible with remote operation has also shown no degradation of electrical characteristics after the irradiation of 10 10 rads. As for polyimide insulated wires, the mechanical and electrical characteristics are not degradated after the irradiation of 10 9 rads and more radiation hardness can be expected than the anticipation. On the contrary, standard position sensors such as rotary encoder show extremely low radiation hardness and further efforts have to be made for improvements. (J.P.N.)

  15. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); O' Brien, James E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  16. Design and component test performance of an efficient 4 W, 130 K sorption refrigerator

    International Nuclear Information System (INIS)

    Alvarez, J.; Ryba, E.; Sywulka, P.; Wade, L.

    1990-01-01

    A recent advance in sorption cooler technology has resulted in cryocooler designs offering high performance and the promise of long-life operation. A 4-W, 130 K sorption refrigeration stage which incorporates the advanced concept design is presently being constructed. Powdered charcoal is used as the sorbent, and methane is used as the refrigerant. Expansion is accomplished using a passive Joule-Thomson expansion valve. The design details of this cooler and the component performance test results are discussed. 5 refs

  17. Preliminary cleaning tests on candidate materials for APS beamline and front end UHV components

    International Nuclear Information System (INIS)

    Nielsen, R.; Kuzay, T.M.

    1992-01-01

    Comparative cleaning tests have been done on four candidate materials for use in APS beamline and front-end vacuum components. These materials are 304 SS, 304L SS, OFHC copper, and Glidcop* (Cu-Al 2 O 3 )- Samples of each material were prepared and cleaned using two different methods. After cleaning, the sample surfaces were analyzed using ESCA (Electron Spectography for Chemical Analysis). Uncleaned samples were used as a reference. The cleaning methods and surface analysis results are further discussed

  18. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  19. Service-cycle component-feature specimen TMF testing of steam turbine rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljevic, M.; Holdsworth, S.R. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Mazza, E. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland); Grossmann, P.; Ripamonti, L. [ALSTOM Power (Switzerland) Ltd., Baden (Switzerland)

    2010-07-01

    This paper reviews the methodology adopted in a Swiss Research Collaboration to devise a component-feature representative specimen geometry and the TMF cycle parameters necessary to closely simulate arduous steam turbine operating duty. Implementation of these service-like experimental conditions provides a practical indication of the effectiveness of deformation and crack initiation endurance predictions. Comprehensive post test inspection provides evidence to demonstrate the physical realism of the laboratory simulations in terms of the creep-fatigue damage generated during the benchmark tests. Mechanical response results and physical damage observations are presented and their practical implications discussed for the example of a 2%CrMoNiWV rotor service cycle. (orig.)

  20. Distribution of 60Co and 54Mn in graphite material of irradiated HTGR fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Kobayashi, Fumiaki; Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-05-01

    Distribution of 60 Co and 54 Mn was measured in the graphite sleeves and blocks of the third and fourth HTGR fuel assemblies irradiated in the Oarai Gas Loop-1 (OGL-1), which is a high temperature inpile gas loop installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Axial and circumferential profiles were obtained by gamma spectrometry, and radial profiles by lathe sectioning with gamma spectrometry. Distribution of 60 Co is in good agreement with that of thermal neutron flux, and the Co content in the graphite is estimated to be -- 1 x 10 -9 in weight fraction. Concentration of 54 Mn decreases toward the axial center in its axial profile, and radially is almost uniform inside and appreciably higher at free surfaces. An estimated Fe content of --10 -8 in wight fraction is smaller by two orders of magnitude than that from chemical analysis. Higher concentraion of 60 Co and 54 Mn at the free surfaces suggests the importance of transportation process of these nuclides in the coolant loop. (author)