WorldWideScience

Sample records for hst wide field

  1. Calibration of BVRI Photometry for the Wide Field Channel of the HST Advanced Camera for Surveys

    Science.gov (United States)

    Saha, Abhijit; Shaw, Richard A.; Claver, Jennifer A.; Dolphin, Andrew E.

    2011-04-01

    We present new observations of two Galactic globular clusters, PAL4 and PAL14, using the Wide Field Channel of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and reanalyze archival data from a third, NGC2419. We matched our photometry of hundreds of stars in these fields from the ACS images to existing ground-based photometry of faint sequences that were calibrated on the standard BVRI system of Landolt. These stars are significantly fainter than those generally used for HST calibration purposes and therefore are much better matched to supporting precision photometry of ACS science targets. We were able to derive more accurate photometric transformation coefficients for the commonly used ACS broadband filters, compared with those published by Sirianni et al., due to the use of a factor of several more calibration stars that span a greater range of color. We find that the inferred transformations from each cluster individually do not vary significantly from the average, except for a small offset of the photometric zero point in the F850LP filter. Our results suggest that the published prescriptions for the time-dependent correction of CCD charge transfer efficiency appear to work very well over the ˜3.5 yr interval that spans our observations of PAL4 and PAL14 and the archived images of NGC2419.

  2. Removing cosmic-ray hits from multiorbit HST Wide Field Camera images

    Science.gov (United States)

    Windhorst, Rogier A.; Franklin, Barbara E.; Neuschaefer, Lyman W.

    1994-01-01

    We present an optimized algorithm that removes cosmic rays ('CRs') from multiorbit Hubble Space Telescope (HST) Wide Field/Planetary Camera ('WF/PC') images. It computes the image noise in every iteration from the WF/PC CCD equation. This includes all known sources of random and systematic calibration errors. We test this algorithm on WF/PC stacks of 2-12 orbits as a function of the number of available orbits and the formal Poissonian sigma-clipping level. We find that the algorithm needs greater than or equal 4 WF/PC exposures to locate the minimal sky signal (which is noticeably affected by CRs), with an optimal clipping level at 2-2.5 x sigma(sub Poisson). We analyze the CR flux detected on multiorbit 'CR stacks,' which are constructed by subtracting the best CR filtered images from the unfiltered 8-12 orbit average. We use an automated object finder to determine the surface density of CRS as a function of the apparent magnitude (or ADU flux) they would have generated in the images had they not been removed. The power law slope of the CR 'counts' (gamma approximately = 0.6 for N(m) m(exp gamma)) is steeper than that of the faint galaxy counts down to V approximately = 28 mag. The CR counts show a drop off between 28 less than or approximately V less than or approximately 30 mag (the latter is our formal 2 sigma point source sensitivity without spherical aberration). This prevents the CR sky integral from diverging, and is likely due to a real cutoff in the CR energy distribution below approximately 11 ADU per orbit. The integral CR surface density is less than or approximately 10(exp 8)/sq. deg, and their sky signal is V approximately = 25.5-27.0 mag/sq. arcsec, or 3%-13% of our NEP sky background (V = 23.3 mag/sq. arcsec), and well above the EBL integral of the deepest galaxy counts (B(sub J) approximately = 28.0 mag/sq. arcsec). We conclude that faint CRs will always contribute to the sky signal in the deepest WF/PC images. Since WFPC2 has approximately 2.7x

  3. 3D-HST: A wide-field grism spectroscopic survey with the Hubble Space Telescope

    CERN Document Server

    Brammer, Gabriel; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn; Fan, Xiaohui; Schreiber, Natascha Förster; Illingworth, Garth; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles; Tal, Tomer; Wake, David; Whitaker, Katherine; Williams, Anna

    2012-01-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the processes that shape galaxies in the distant Universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1HST will cover 3/4 (625 sq.arcmin) of the CANDELS survey area with two orbits of primary WFC3/G141 grism coverage and two to four parallel orbits with the ACS/G800L grism. In the IR these exposure times yield a continuum signal-to-noise of ~5 per resolution element at H~23.1 and a 5sigma emission line sensitivity of 5x10-17 erg/s/cm2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1-1.6 um at a spatial resolution...

  4. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    Science.gov (United States)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  5. 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts and Stellar Masses

    CERN Document Server

    Skelton, Rosalind E; Momcheva, Ivelina G; Brammer, Gabriel B; van Dokkum, Pieter G; Labbe, Ivo; Franx, Marijn; van der Wel, Arjen; Bezanson, Rachel; Da Cunha, Elisabete; Fumagalli, Mattia; Schreiber, Natascha Foerster; Kriek, Mariska; Leja, Joel; Lundgren, Britt F; Magee, Daniel; Marchesini, Danilo; Maseda, Michael V; Nelson, Erica J; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G; Price, Sedona; Rix, Hans-Walter; Tal, Tomer; Wake, David A; Wuyts, Stijn

    2014-01-01

    The 3D-HST and CANDELS programs have obtained WFC3 and ACS spectroscopy and imaging over five fields, comprising a total area of ~900 sq. arcmin: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3um -8um. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point spread function into account. A total of 147 distinct imaging datasets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determin...

  6. A complete census of Herschel-detected infrared sources within the HST Frontier Fields

    CERN Document Server

    Rawle, T D; Egami, E; Pérez-González, P G; Boone, F; Clement, B; Ivison, R J; Richard, J; Rujopakarn, W; Valtchanov, I; Walth, G; Weiner, B; Blain, A W; Dessauges-Zavadsky, M; Kneib, J -P; Lutz, D; Rodighiero, G; Schaerer, D; Smail, I

    2015-01-01

    We present a complete census of all 263 Herschel-detected sources within the HST Frontier Fields (HFF), a deep multi-filter HST programme covering six massive lensing clusters. We provide a robust legacy catalogue of Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey (HLS) and PEP/HerMES Key Programmes. Photometry is derived via a simultaneous PSF-fit using priors from archival Spitzer imaging. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying optical counterparts to gain source redshifts. Hence for each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of HST morphologies for the IR-bright population. In particular we briefly describe the highest redshift (z>2.5)...

  7. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields

    Science.gov (United States)

    Schmidt, Kasper B.; Schmidt

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores with the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8-1.7μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches intrinsic spectroscopic 1σ flux limits of roughly 10-18erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS which are, I) exploring the universe at the epoch of reionization, II) describe how metals cycle in and out of galaxies, and III) asses the environmental dependence of galaxy evolution. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey, including improving cluster lens modeling and searches for supernovae. Here we present the survey and the GLASS data releases, which are continuously being made available to the community through https://archive.stsci.edu/prepds/glass/. For further information we refer to Schmidt et al. (2014), Treu et al. (2015), and http://glass.physics.ucsb.edu.

  8. 3D-HST Data Release v3.0: Extremely Deep Spectra in the UDF and WFC3 Mosaics in the 3D-HST/CANDELS Fields

    CERN Document Server

    van Dokkum, Pieter; Momcheva, Ivelina; Skelton, Rosalind E; Whitaker, Katherine E

    2013-01-01

    3D-HST is a 248-orbit Treasury program to provide WFC3 and ACS grism spectroscopy over four extra-galactic fields (AEGIS, COSMOS, GOODS-South, and UDS), augmented with previously obtained data in GOODS-North. We present a new data release of the 3D-HST survey, version v3.0. This release follows the initial v0.5 release that accompanied the survey description paper (Brammer et al. 2012). The new v3.0 release includes the deepest near-IR HST grism spectra currently in existence, extracted from the 8-17 orbit depth observations in the Hubble Ultra Deep Field. Contamination-corrected 2D and 1D spectra, as well as derived redshifts, are made available for >250 objects in this 2'x2'field. The spectra are of extraordinary quality, and show emission features in many galaxies as faint as F140W=26-27, absorption features in quiescent galaxies at z~2, and several active galactic nuclei. In addition to these extremely deep grism data we provide reduced WFC3 F125W, F140W, and F160W image mosaics of all five 3D-HST/CANDELS...

  9. In-Flight Performance of Wide Field Camera 3

    Science.gov (United States)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  10. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields.

    Science.gov (United States)

    Borello Schmidt, Kasper

    2015-08-01

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores in the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8 - 1.7 μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches excellent spectroscopic limits of ˜10-18 erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS, which are: I) Use the hundreds of spectra of galaxies at z>6 to shed light on the epoch of reionization, the role galaxies play in reionizing the universe, and the Lyα escape fraction at the cosmic dawn. II) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines at z˜2. III) Explore the environmental dependence of galaxy evolution using the first comprehensive census of spatially resolved star formation in dense environments, i.e., the cluster cores as well as the cluster infall regions. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey. One particularly interesting example is the search for supernovae in the more than 40 GLASS visits, which resulted in the detection of the first multiple imaged supernova, SN Refsdal. I will present the survey, give an update on the current science results, in particular on the GLASS galaxies at the epoch of reionization, and provide a status report on the GLASS data releases, which are continuously being made available to the community.

  11. A new HST/Herschel deep field at the North Ecliptic Pole: preparing the way for JWST, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen; Burgarella, Denis; Clements, Dave; De Zotti, Gianfranco; Goto, Tomo; Hatsukade, Bunyo; Hopwood, Rosalind; Hwang, Narae; Inami, Hanae; Jeong, Woong-Seob; Kim, Seong Jin; Krumpe, Mirko; Lee, Myung Gyoon; Malkan, Matt; Matsuhara, Hideo; Miyaji, Takamitsu; Oyabu, Shinki; Pearson, Chris; Takeuchi, Tsutomu; Vaccari, Mattia; Valtchanov, Ivan; van der Werf, Paul; Wada, Takehiko; White, Glenn

    2012-01-01

    We propose a co-ordinated multi-observatory survey at the North Ecliptic Pole. This field is the natural extragalactic deep field location for most space observatories (e.g. containing the deepest Planck, WISE and eROSITA data), is in the continuous viewing zones for e.g. Herschel, HST, JWST, and is a natural high-visibility field for the L2 halo orbit of SPICA with deep and wide-field legacy surveys already planned. The field is also a likely deep survey location for the forthcoming Euclid mission. It is already a multi-wavelength legacy field in its own right (e.g. AKARI, LOFAR, SCUBA-2): the outstanding and unparalleled continuous mid-IR photometric coverage in this field and nowhere else enables a wide range of galaxy evolution diagnostics unachievable in any other survey field, by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN hot dust. We argue from the science needs of Euclid and JWST, and from the comparative multiwavelength depths, that the logical ...

  12. Wide field of view telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  13. The LOFT wide field monitor

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2012-01-01

    class large area detector (LAD) with a field of view and a wide field monitor (WFM) instrument based on the coded mask principle, providing coverage of more than 1/3 of the sky. The LAD will provide an effective area ~20 times larger than any previous mission and will by timing studies...... be able to address fundamental questions about strong gravity in the vicinity of black holes and the equation of state of nuclear matter in neutron stars. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, with its wide field of view and good energy...... resolution of field of the Galactic Center. The high duty...

  14. Far-Ultraviolet Imaging of the Field Star Population in the Large Magellanic Cloud with HST

    CERN Document Server

    Brosch, N; MacKenty, J W; Zurek, D R; McLean, B J; Brosch, Noah; Shara, Michael; Kenty, John Mac; Zurek, David; Lean, Brian Mc

    1999-01-01

    We present an analysis of the deepest pure-UV observations with the highest angular resolution ever performed, a set of 12 exposures with the HST WFPC2 and F160BW filter obtained in parallel observing mode, which cover $\\sim$12 square arcminutes in the LMC, North of the bar and in the ``general field'' regime of the LMC. The 341 independent measurements of 198 objects represent an accumulated exposure of $\\geq 2 10^4$ sec and reveal stars as faint as m$_{UV}\\simeq$22 mag. The observations show that $\\sim 2/3$ of the UV emission from the LMC is emitted by our HST-detected UV stars in the field, i.e., not in clusters or associations. We identified optical counterparts in the ROE/NRL photometric catalog for $\\sim 1/3$ of the objects. The results are used to discuss the nature of these UV sources, to estimate the diffuse UV emission from the LMC as a prototype of dwarf galaxies, and to evaluate the contamination by field stars of UV observations of globular and open clusters in the LMC. We find that the projected...

  15. The LOFT Wide Field Monitor

    CERN Document Server

    Brandt, S; Alvarez, L; Azzarello, P; Barret, D; Bozzo, E; Budtz-Jørgensen,; Campana, R; del Monte, E; Donnarumma, I; Evangelista, Y; Feroci, M; Sanchez, J L Galvez; Götz, D; Hansen, F; Herder, J W den; Hudec, R; Huovelin, J; Karelin, D; Korpela, S; Lund, N; Orleanski, P; Pohl, M; Rachevski, A; Santangelo, A; Schanne, S; Schmid, C; Suchy, S; Tenzer, C; Vacchi, A; Wilms, J; Zampa, G; Zampa, N; Zand, J in't; Zdziarski, A

    2012-01-01

    LOFT (Large Observatory For x-ray Timing) is one of the four missions selected in 2011 for assessment study for the ESA M3 mission in the Cosmic Vision program, expected to be launched in 2024. The LOFT mission will carry two instruments with their prime sensitivity in the 2-30 keV range: a 10 m^2 class large area detector (LAD) with a <1{\\deg} collimated field of view and a wide field monitor (WFM) instrument based on the coded mask principle, providing coverage of more than 1/3 of the sky. The LAD will provide an effective area ~20 times larger than any previous mission and will by timing studies be able to address fundamental questions about strong gravity in the vicinity of black holes and the equation of state of nuclear matter in neutron stars. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, with its wide field of view and good energy resolution of <300 eV, the WFM will be an excellent monitoring instrument to study long term variability of many cl...

  16. The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    C. R. Subrahmanya; P. K. Manoharan; Jayaram N. Chengalur

    2017-03-01

    We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a frequency of 326.5 (or $z \\sim 3.35$ for the HI 21-cm line). The telescope has been constructed on a North–South hill slope whose gradient is equal to the latitude of the hill, making it effectively equatorially mounted. The feed consists of an array of 1056 dipoles. The key feature of this upgrade is the digitization and cross-correlation of the signals of every set of 4-dipoles. This converts the ORT into a 264 element interferometer with a field-of-view of $ 2^{\\circ} \\times 27.4^{\\circ} \\cos(\\delta)$. This upgraded instrument is called the Ooty Wide Field Array (OWFA). This paper briefly describes the salient features of the upgrade, as well as its main science drivers. There are three main science drivers viz. (1) observations of the large scale distribution of HI in the post-reionization era, (2) studies of the propagation of plasma irregularities through the inner heliosphere and (3) blind surveys for transient sources. More details on the upgrade, as well as on the expected science uses can be found in other papers in this special issue.

  17. Galaxy environment in the 3D-HST fields. Witnessing the onset of satellite quenching at z ~ 1-2

    CERN Document Server

    Fossati, M; Mendel, J T; Saglia, R P; Galametz, A; Beifiori, A; Bender, R; Chan, J C C; Fabricius, M; Bandara, K; Brammer, G B; Davies, R; Schreiber, N M Förster; Genzel, R; Hartley, W; Kulkarni, S K; Lang, P; Momcheva, I G; Nelson, E J; Skelton, R; Tacconi, L J; Tadaki, K; Übler, H; van Dokkum, P G; Wisnioski, E; Whitaker, K E; Wuyts, E; Wuyts, S

    2016-01-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-HST/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multi wavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than $JH_{140} < 24$ mag in the redshift range $0.5HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that is a central or a satellite galaxy. The same procedure is applied to a $z=0$ sample selected from SDSS. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, w...

  18. Chemical abundances in Orion protoplanetary discs: integral field spectroscopy and photoevaporation models of HST 10

    CERN Document Server

    Tsamis, Y G; Henney, W J; Walsh, J R; Mesa-Delgado, A

    2012-01-01

    Photoevaporating protoplanetary discs (proplyds) in the vicinity of hot massive stars, such as those found in Orion, are important objects of study for the fields of star formation, early disc evolution, planetary formation, and H II region astrophysics. Their element abundances are largely unknown, unlike those of the main-sequence stars or the host Orion nebula. We present a spectroscopic analysis of the Orion proplyd HST 10, based on integral field observations with the Very Large Telescope/FLAMES fibre array at a resolution of 0.31" x 0.31". The proplyd and its vicinity are imaged in a variety of emission lines across a 6.6" x 4.2" area. The reddening, electron density and temperature are mapped out from various line diagnostics. The abundances of helium, and eight heavy elements are measured relative to hydrogen using the direct method based on the [O III] electron temperature. The abundance ratios of O/H and S/H are derived without resort to ionization correction factors. We construct dynamic photoevapo...

  19. CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields

    CERN Document Server

    Jouvel, S; Lahav, O; Seitz, S; Molino, A; Coe, D; Postman, M; Moustakas, L; Benìtez, N; Rosati, P; Balestra, I; Grillo, C; Bradley, L; Fritz, A; Kelson, D; Koekemoer, A M; Lemze, D; Medezinski, E; Mercurio, A; Moustakas, J; Nonino, M; Scodeggio, M; Zheng, W; Zitrin, A; Bartelmann, M; Bouwens, R; Broadhurst, T; Donahue, M; Ford, H; Graves, G; Infante, L; Jimenez-Teja, Y; Lazkoz, R; Melchior, P; Meneghetti, M; Merten, J; Ogaz, S; Umetsu, K

    2013-01-01

    The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy clusters. CLASH observations are carried out in 16 bands from UV to NIR to derive accurate and reliable estimates of photometric redshifts. We present the CLASH photometric redshifts and study the photometric redshift accuracy of the arcs in more detail for the case of MACS1206.2-0847. We use the publicly available Le Phare and BPZ photometric redshift codes on 17 CLASH galaxy clusters. Using Le Phare code for objects with StoN>=10, we reach a precision of 3%(1+z) for the strong lensing arcs, which is reduced to 2.4%(1+z) after removing outliers. For galaxies in the cluster field the corresponding values are 4%(1+z) and 3%(1+z). Using mock galaxy catalogues, we show that 3%(1+z) precision is what one would expect from the CLASH photometry when taking into account extinction from dust, emission lines and the finite range of SEDs included in the photo-z templa...

  20. A New Method for Wide-Field Near-IR Imaging with the Hubble Space Telescope

    CERN Document Server

    Momcheva, Ivelina G; van der Wel, Arjen; Brammer, Gabriel B; Mackenty, John; Nelson, Erica J; Leja, Joel; Muzzin, Adam; Franx, Marijn

    2016-01-01

    We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 seconds between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this "drift and shift" (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 $H_{160}$ pointings in 57 orbits, covering an area of 0.6 degree$^2$ in the COSMOS field down to $H_{160} ...

  1. A New Method for Wide-field Near-IR Imaging with the Hubble Space Telescope

    Science.gov (United States)

    Momcheva, Ivelina G.; van Dokkum, Pieter G.; van der Wel, Arjen; Brammer, Gabriel B.; MacKenty, John; Nelson, Erica J.; Leja, Joel; Muzzin, Adam; Franx, Marijn

    2017-01-01

    We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. The method presented here allows us to observe mosaics of eight independent WFC3-IR pointings in a single orbit by utilizing the fact that HST drifts by only a very small amount in the 25 s between non-destructive reads of unguided exposures. By shifting the reads and treating them as independent exposures the full resolution of WFC3 can be restored. We use this “drift and shift” (DASH) method in the Cycle 23 COSMOS-DASH program, which will obtain 456 WFC3 H 160 pointings in 57 orbits, covering an area of 0.6 degree in the COSMOS field down to H 160 = 25. When completed, the program will more than triple the area of extra-galactic survey fields covered by near-IR imaging at HST resolution. We demonstrate the viability of the method with the first four orbits (32 pointings) of this program. We show that the resolution of the WFC3 camera is preserved, and that structural parameters of galaxies are consistent with those measured in guided observations.

  2. Stereoscopic wide field of view imaging system

    Science.gov (United States)

    Prechtl, Eric F. (Inventor); Sedwick, Raymond J. (Inventor); Jonas, Eric M. (Inventor)

    2011-01-01

    A stereoscopic imaging system incorporates a plurality of imaging devices or cameras to generate a high resolution, wide field of view image database from which images can be combined in real time to provide wide field of view or panoramic or omni-directional still or video images.

  3. Through the Looking GLASS: HST Spectroscopy of Faint Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745

    Science.gov (United States)

    Schmidt, K. B.; Treu, T.; Brammer, G. B.; Bradač, M.; Wang, X.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.; Vulcani, B.

    2014-02-01

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z >~ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z >~ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ~5 × 10-18 erg s-1 cm-2. Taking lensing magnification into account, our flux sensitivity reaches ~0.2-5 × 10-18 erg s-1cm-2. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  4. THROUGH THE LOOKING GLASS: HST SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K. B.; Treu, T.; Wang, X.; Jones, T. A.; Mason, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Brammer, G. B.; Stiavelli, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bradač, M.; Hoag, A. [Department of Physics, University of California, Davis, CA 95616 (United States); Dijkstra, M. [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, 0858 Oslo (Norway); Dressler, A. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Fontana, A.; Pentericci, L. [INAF—Osservatorio Astronomico di Roma Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Gavazzi, R. [Institute d' Astrophysique de Paris, CNRS, 98bis Boulevard Arago, F-75014 Paris (France); Henry, A. L. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Kelly, P. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Malkan, M. A. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Poggianti, B. [INAF-Astronomical Observatory of Padova (Italy); Trenti, M. [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Von der Linden, A., E-mail: kschmidt@physics.ucsb.edu [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen Juliane Maries Vej 30, 2100 Copenhagen Ø (Denmark); and others

    2014-02-20

    The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and z ≳ 6 galaxy candidates obtained from the first 7 orbits out of 14 targeting the core of the Frontier Fields cluster MACSJ0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7 μm, we confirm four strongly lensed systems by detecting emission lines in each of the images. For the 9 z ≳ 6 galaxy candidates clear from contamination, we do not detect any emission lines down to a 7 orbit 1σ noise level of ∼5 × 10{sup –18} erg s{sup –1} cm{sup –2}. Taking lensing magnification into account, our flux sensitivity reaches ∼0.2-5 × 10{sup –18} erg s{sup –1}cm{sup –2}. These limits over an uninterrupted wavelength range rule out the possibility that the high-z galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background—and with the assistance of lensing magnification—interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.

  5. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    Science.gov (United States)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  6. HST Frontier Fields: WFC3/IR data processing, persistence, time-variable background

    Science.gov (United States)

    Khandrika, Harish G.; Koekemoer, Anton M.; Lotz, Jennifer M.; Mack, Jennifer; Robberto, Massimo; Hilbert, Bryan; Sabbi, Elena; Hubble Frontier Fields Pipeline Team, WFC3 Team

    2016-06-01

    The Hubble Space Telescope Frontier Fields (HFF) pipeline and WFC3 teams discuss the specialized procedures for processing IR data for the Frontier Fields program. Frontier Fields is a Director's Discretionary program that uses ultra-deep imaging to observe lensing galaxy clusters in an effort to search for the most distant observable galaxy. The program uses both the Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3/IR) observing the prime and parallel areas of each field simultaneously. The WFC3/IR data are processed through a pipeline which performs calibrations not included in the standard CalWF3 software including persistence correction, Time-Variable-Background (TVB) correction, and scripts used to create satellite trail masks. Here the HFF pipeline team present the individual methods that perform the corrections and showcase the results of these corrections on sample data of Abell 370, Abell S1063 and others.

  7. IOT Overview: Wide-Field Imaging

    Science.gov (United States)

    Selman, F. J.

    The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.

  8. AGN Surveys via Optical Variability, X-ray, and mid-IR Detection in HST Fields

    Directory of Open Access Journals (Sweden)

    V. L. Sarajedini

    2008-01-01

    Full Text Available En los campos de imágen profunda del Hubble (HST, los núcleos activos de galaxias (AGN son seleccionados usando diversas técnicas en diferentes longitudes de onda. Este trabajo compara las muestras de AGN seleccionadas de los campos del Hubble a través de la variabilidad óptica, de los rayos-X y del mediano infrarrojo. Resultados recientes del campo HST-GOODS-South muestran que el 57% de los AGN seleccionados por su emsión conjunta en los rayos-X y en el mediano infrarrojo, varían en la región del óptico. Algunos AGN seleccionados sólo en rayos-X y unos cuantos de los seleccionados sólo del mediano infrarrojo también son variables en el óptico. Investigamos la naturaleza de los AGN que hemos identificado y el papel que juega el oscurecimiento al utilizar estas diferentes técnicas de selección.

  9. Wide-field TCSPC: methods and applications

    Science.gov (United States)

    Hirvonen, Liisa M.; Suhling, Klaus

    2017-01-01

    Time-correlated single photon counting (TCSPC) is a widely used, robust and mature technique to measure the photon arrival time in applications such as fluorescence spectroscopy and microscopy, LIDAR and optical tomography. In the past few years there have been significant developments with wide-field TCSPC detectors, which can record the position as well as the arrival time of the photon simultaneously. In this review, we summarise different approaches used in wide-field TCSPC detection, and discuss their merits for different applications, with emphasis on fluorescence lifetime imaging.

  10. The Wide Field Imaging Interferometry Testbed

    CERN Document Server

    Zhang, X; Leisawitz, D T; Leviton, D B; Martino, A J; Mather, J C; Zhang, Xiaolei; Feinberg, Lee; Leisawitz, Dave; Leviton, Douglas B.; Martino, Anthony J.; Mather, John C.

    2001-01-01

    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range ...

  11. The LOFT wide field monitor simulator

    DEFF Research Database (Denmark)

    Donnarumma, I.; Evangelista, Y.; Campana, R.

    2012-01-01

    We present the simulator we developed for the Wide Field Monitor (WFM) aboard the Large Observatory For Xray Timing (LOFT) mission, one of the four ESA M3 candidate missions considered for launch in the 2022–2024 timeframe. The WFM is designed to cover a large FoV in the same bandpass as the Large...

  12. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    Science.gov (United States)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  13. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    Science.gov (United States)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  14. The HST Frontier Fields: Complete High-Level Science Data Products for All 6 Clusters

    Science.gov (United States)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-01-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  15. The Spitzer Deep, Wide-Field Survey

    CERN Document Server

    Ashby, M L N; Brodwin, M; Griffith, R; Eisenhardt, P; Kozlowski, S; Kochanek, C S; Bock, J J; Borys, C; Brand, K; Brown, M J I; Cool, R; Cooray, A R; Croft, S; Dey, A; Eisenstein, D; González, A H; Gorjian, V; Grogin, N A; Ivison, R J; Jacob, J; Jannuzi, B T; Mainzer, A; Moustakas, L A; Röttgering, H J A; Seymour, N; Smith, H A; Stanford, S A; Stauffer, J R; Sullivan, I; Van Breugel, W; Willner, S P; Wright, E L

    2009-01-01

    The Spitzer Deep, Wide-Field Survey (SDWFS) is a four-epoch infrared survey of ten square degrees in the Bootes field of the NOAO Deep Wide-Field Survey using the IRAC instrument on the Spitzer Space Telescope. SDWFS, a Cycle four Spitzer Legacy project, occupies a unique position in the area-depth survey space defined by other Spitzer surveys. The four epochs that make up SDWFS permit -- for the first time -- the selection of infrared-variable and high proper motion objects over a wide field on timescales of years. Because of its large survey volume, SDWFS is sensitive to galaxies out to z~3 with relatively little impact from cosmic variance for all but the richest systems. The SDWFS datasets will thus be especially useful for characterizing galaxy evolution beyond z~1.5. This paper explains the SDWFS observing strategy and data processing, presents the SDWFS mosaics and source catalogs, and discusses some early scientific findings. The publicly-released, full-depth catalogs contain 6.78, 5.23, 1.20, and 0.9...

  16. UV Luminosity Functions at z~4, 5, and 6 from the HUDF and other Deep HST ACS Fields: Evolution and Star Formation History

    CERN Document Server

    Bouwens, Rychard J; Franx, Marijn; Ford, Holland

    2007-01-01

    We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the wide-area GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B, V, and i dropouts, respectively, and reach to extremely low luminosities (0.01-0.04 L* or M(UV)~-16 to -17), allowing us to determine the rest-frame UV luminosity function (LF) and faint-end slope alpha at z~4-6 to high accuracy. We find faint-end slopes alpha of -1.73+/-0.05 at z~4, -1.66+/-0.09 at z~5, and -1.74+/-0.16 at z~6 -- suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*(UV) brightens considerably in the 0.7 Gyr from z~6 to z~4 (by ~0.7 mag from M*=-20.24+/-0.19 to M*=-20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function -- suggesting that the observed evolution is likely due to the hierarchi...

  17. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  18. Athena Wide Field Imager Key Science Drivers

    CERN Document Server

    Rau, Arne; Aird, James; Comastri, Andrea; Dauser, Thomas; Merloni, Andrea; Pratt, Gabriel W; Reiprich, Thomas H; Fabian, Andy C; Georgakakis, Antonis; Güdel, Manuel; Różańska, Agata; Sanders, Jeremy S; Sasaki, Manami; Vaughan, Simon; Wilms, Jörn; Meidinger, Norbert

    2016-01-01

    The Wide Field Imager (WFI) is one of two instruments for the Advanced Telescope for High-ENergy Astrophysics (Athena). In this paper we summarise three of the many key science objectives for the WFI - the formation and growth of supermassive black holes, non-gravitational heating in clusters of galaxies, and spin measurements of stellar mass black holes - and describe their translation into the science requirements and ultimately instrument requirements. The WFI will be designed to provide excellent point source sensitivity and grasp for performing wide area surveys, surface brightness sensitivity, survey power, and absolute temperature and density calibration for in-depth studies of the outskirts of nearby clusters of galaxies and very good high-count rate capability, throughput, and low pile-up, paired with very good spectral resolution, for detailed explorations of bright Galactic compact objects.

  19. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  20. Astro-WISE processing of wide-field images and other data

    CERN Document Server

    Buddelmeijer, Hugo; McFarland, John P; Belikov, Andrey

    2011-01-01

    Astro-WISE is the Astronomical Wide-field Imaging System for Europe. It is a scientific information system which consists of hardware and software federated over about a dozen institutes throughout Europe. It has been developed to exploit the ever increasing avalanche of data produced by astronomical surveys and data intensive scientific experiments in general. The demo explains the architecture of the Astro-WISE information system and shows the use of Astro-WISE interfaces. Wide-field astronomical images are derived from the raw image to the final catalog according to the user's request. The demo is based on the standard Astro-WISE guided tour, which can be accessed from the Astro-WISE website. The typical Astro-WISE data processing chain is shown, which can be used for data handling for a variety of different instruments, currently 14, including OmegaCAM, MegaCam, WFI, WFC, ACS/HST, etc.

  1. Imaging spectrometer wide field catadioptric design

    Science.gov (United States)

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  2. Reconstructing HST Images of Asteroids

    Science.gov (United States)

    Storrs, A. D.; Bank, S.; Gerhardt, H.; Makhoul, K.

    2003-12-01

    We present reconstructions of images of 22 large main belt asteroids that were observed by Hubble Space Telescope with the Wide-Field/Planetary cameras. All images were restored with the MISTRAL program (Mugnier, Fusco, and Conan 2003) at enhanced spatial resolution. This is possible thanks to the well-studied and stable point spread function (PSF) on HST. We present some modeling of this process and determine that the Strehl ratio for WF/PC (aberrated) images can be improved to 130 ratio of 80 We will report sizes, shapes, and albedos for these objects, as well as any surface features. Images taken with the WFPC-2 instrument were made in a variety of filters so that it should be possible to investigate changes in mineralogy across the surface of the larger asteroids in a manner similar to that done on 4 Vesta by Binzel et al. (1997). Of particular interest are a possible water of hydration feature on 1 Ceres, and the non-observation of a constriction or gap between the components of 216 Kleopatra. Reduction of this data was aided by grant HST-GO-08583.08A from the Space Telescope Science Institute. References: Mugnier, L.M., T. Fusco, and J.-M. Conan, 2003. JOSA A (submitted) Binzel, R.P., Gaffey, M.J., Thomas, P.C., Zellner, B.H., Storrs, A.D., and Wells, E.N. 1997. Icarus 128 pp. 95-103

  3. Gemini Frontier Fields: Wide-field Adaptive Optics $K_s$-band Imaging of the Galaxy Cluster MACS J0416.1-2403

    CERN Document Server

    Schirmer, Mischa; Pessev, Peter; Garrel, Vincent; Winge, Claudia; Neichel, Benoit; Vidal, Fabrice

    2014-01-01

    The Hubble Space Telescope (HST) Frontier Fields Campaign targets six massive clusters of galaxies, exploiting the strong gravitational lensing effect to study the distant Universe. At Gemini South we observe the three southern-most clusters in Ks-band, overcoming HST/WFC3's sensitivity cut-off redwards of 1.7 microns. We use the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI), delivering near diffraction-limited images on arcminute scales. In this paper we describe our public release of 100"x110" wide images of the first target, MACS J0416.1-2403. We have achieved an angular resolution of 0.07"-0.10", twice as high as HST/WFC3, with only one natural guide star. With a $5\\sigma$ depth of Ks=23.8 mag for extended sources our images are shallower than the HST/WFC3 images. The data were distortion corrected and registered with sub-pixel accuracy despite only a few low-S/N extended sources are visible in the individual exposures. This is a demonstration tha...

  4. Wide-Field Infrared Survey Telescope (WFIRST) Interim Report

    Science.gov (United States)

    Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.; Perlmutter, S.; Rauscher, B.; Rhodes, J.; Roellig, T.; Stern, D.; Sumi, T.; Gerhels, N.; Sambruna, R.; Barry, R. K.; Content, D.; Grady, K; Jackson, C.; Kruk, J.; Melton, M.; Rioux, N.

    2011-01-01

    The New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey prioritized the community consensus for ground-based and space-based observatories. Recognizing that many of the community s key questions could be answered with a wide-field infrared survey telescope in space, and that the decade would be one of budget austerity, WFIRST was top ranked in the large space mission category. In addition to the powerful new science that could be accomplished with a wide-field infrared telescope, the WFIRST mission was determined to be both technologically ready and only a small fraction of the cost of previous flagship missions, such as HST or JWST. In response to the top ranking by the community, NASA formed the WFIRST Science Definition Team (SDT) and Project Office. The SDT was charged with fleshing out the NWNH scientific requirements to a greater level of detail. NWNH evaluated the risk and cost of the JDEM-Omega mission design, as submitted by NASA, and stated that it should serve as the basis for the WFIRST mission. The SDT and Project Office were charged with developing a mission optimized for achieving the science goals laid out by the NWNH re-port. The SDT and Project Office opted to use the JDEM-Omega hardware configuration as an initial start-ing point for the hardware implementation. JDEM-Omega and WFIRST both have an infrared imager with a filter wheel, as well as counter-dispersed moderate resolution spectrometers. The primary advantage of space observations is being above the Earth's atmosphere, which absorbs, scatters, warps and emits light. Observing from above the atmosphere enables WFIRST to obtain precision infrared measurements of the shapes of galaxies for weak lensing, infrared light-curves of supernovae and exoplanet microlensing events with low systematic errors, and infrared measurements of the H hydrogen line to be cleanly detected in the 1interim report describes progress as of June 2011 on developing a requirements

  5. Mapping stellar kinematics across the Galactic bar : HST measurements of proper motions in 35 fields

    NARCIS (Netherlands)

    Kozlowski, S.; Wozniak, P. R.; Mao, S.; Smith, M. C.; Sumi, T.; Vestrand, W. T.; Wyrzykowski, L.

    2006-01-01

    We present a proper motion mini-survey of 35 fields in the vicinity of Baade window, (l, b) = (1 degrees, -4 degrees), sampling roughly a 5 x 2.5-deg(2) region of the Galactic bar. Our second epoch observations collected with the Advanced Camera for Surveys/High Resolution Channel instrument onboard

  6. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  7. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    Science.gov (United States)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  8. Deepest Wide-Field Colour Image in the Southern Sky

    Science.gov (United States)

    2003-01-01

    January 1999 when the WFI instrument was first installed (cf. ESO PR 02/99 ) and ending in October 2002. Altogether, nearly 50 hours of exposure were collected in the three filters combined here, cf. the technical information below. Although it is possible to identify more than 100,000 galaxies in the image - some of which are shown in PR Photo 02b/03 - it is still remarkably "empty" by astronomical standards. Even the brightest stars in the field (of visual magnitude 9) can hardly be seen by human observers with binoculars. In fact, the area density of bright, nearby galaxies is only half of what it is in "normal" sky fields. Comparatively empty fields like this one provide an unsually clear view towards the distant regions in the universe and thus open a window towards the earliest cosmic times . Research projects in the Chandra Deep Field South ESO PR Photo 02c/03 ESO PR Photo 02c/03 [Preview - JPEG: 400 x 513 pix - 112k] [Normal - JPEG: 800 x 1026 pix - 1.2M] [Full-Res - JPEG: 1717 x 2201 pix - 5.5M] ESO PR Photo 02d/03 ESO PR Photo 02d/03 [Preview - JPEG: 400 x 469 pix - 112k] [Normal - JPEG: 800 x 937 pix - 1.0M] [Full-Res - JPEG: 2545 x 2980 pix - 10.7M] Caption : PR Photo 02c-d/03 shows two sky fields within the WFI image of CDF-S, reproduced at full (pixel) size to illustrate the exceptional information richness of these data. The subfields measure 6.8 x 7.8 arcmin 2 (1717 x 1975 pixels) and 10.1 x 10.5 arcmin 2 (2545 x 2635 pixels), respectively. North is up and East is left. Technical information is available below. Astronomers from different teams and disciplines have been quick to join forces in a world-wide co-ordinated effort around the Chandra Deep Field South. Observations of this area are now being performed by some of the most powerful astronomical facilities and instruments. They include space-based X-ray and infrared observations by the ESA XMM-Newton , the NASA CHANDRA , Hubble Space Telescope (HST) and soon SIRTF (scheduled for launch in a few

  9. The Fifteen-Year Attitude History of the Wide Field Planetary Camera 2 Radiator and Collection Efficiencies for Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.

    2010-01-01

    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.

  10. The LOFT Wide Field Monitor simulator

    CERN Document Server

    Donnarumma, I; Campana, R; Zand, J in't; Feroci, M; Lund, N; Brandt, S; Wilms, J; Schmid, C

    2012-01-01

    We present the simulator we developed for the Wide Field Monitor (WFM) aboard the Large Observatory For X-ray Timing (LOFT) mission, one of the four ESA M3 candidate missions considered for launch in the 2022-2024 timeframe. The WFM is designed to cover a large FoV in the same bandpass as the Large Area Detector (LAD, almost 50% of its accessible sky in the energy range 2-50 keV), in order to trigger follow-up observations with the LAD for the most interesting sources. Moreover, its design would allow to detect transient events with fluxes down to a few mCrab in 1-day exposure, for which good spectral and timing resolution would be also available (about 300 eV FWHM and 10 {\\mu}s, respectively). In order to investigate possible WFM configurations satisfying these scientific requirements and assess the instrument performance, an end-to-end WFM simulator has been developed. We can reproduce a typical astrophysical observation, taking into account both mask and detector physical properties. We will discuss the WF...

  11. Identification of Active Galactic Nuclei through HST optical variability in the GOODS South field

    Science.gov (United States)

    Pouliasis, Ektoras; Georgantopoulos; Bonanos, A.; HCV Team

    2016-08-01

    This work aims to identify AGN in the GOODS South deep field through optical variability. This method can easily identify low-luminosity AGN. In particular, we use images in the z-band obtained from the Hubble Space Telescope with the ACS/WFC camera over 5 epochs separated by ~45 days. Aperture photometry has been performed using SExtractor to extract the lightcurves. Several variability indices, such as the median absolute deviation, excess variance, and sigma were applied to automatically identify the variable sources. After removing artifacts, stars and supernovae from the variable selected sample and keeping only those sources with known photometric or spectroscopic redshift, the optical variability was compared to variability in other wavelengths (X-rays, mid-IR, radio). This multi-wavelength study provides important constraints on the structure and the properties of the AGN and their relation to their hosts. This work is a part of the validation of the Hubble Catalog of Variables (HCV) project, which has been launched at the National Observatory of Athens by ESA, and aims to identify all sources (pointlike and extended) showing variability, based on the Hubble Source Catalog (HSC, Whitmore et al. 2015). The HSC version 1 was released in February 2015 and includes 80 million sources imaged with the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR cameras.

  12. Deep IRAC1,2 Imaging of the Extended Tidal Debris Fields for the Complete HST-GOALS Sample of (U)LIRGs

    Science.gov (United States)

    Sanders, David; Armus, Lee; Barnes, Josh; Chan, Ben; Evans, Aaron; Frayer, David; Howell, Justin; Kewley, Lisa; Koda, Jin; Lord, Steve; Mazzarella, Joseph; Surace, Jason; U, Vivian

    2010-06-01

    We propose to obtain IRAC1,2 observations (~1400 sec) of a flux-limited sample of 88 luminous infrared galaxies (LIRGs) originally selected from the IRAS Revised Bright Galaxy Survey, in order to measure the full extent and internal structure of the large tidal debris fields that have recently been revealed (~70-130 kpc diameter) in deep optical imaging of these objects using the Subaru 8m Telescope on Mauna Kea. Our 88 targets are part of the Great Observatories All-Sky LIRGs Survey (GOALS), for which we are obtaining both spacecraft and ground-based data at a wide range of wavelengths (radio thru X-Rays). All of our targets have previous shallow (~150 sec) IRAC observations, which are insufficient for detecting all but the brightest, and much less extended tidal features. Our deeper IRAC observations will allow us to better characterize the history, geometry and morphology of the interaction for comparison with new sets of model calculations using 'IDENTIKIT' (Barnes & Hibbard, 2009). We also plan to combine our new IRAC1,2 data with deep optical (Subaru and VLT) and NIR (HST-NIC, -WFC3) data to determine spectral energy distributions, and to measure stellar masses as well as detect warm dust in these extended features. These new data will also allow us for the first time to obtain a clearer picture of the possible interrelatedness of nearby objects (e.g. putative tidal dwarf galaxies, and other previously disconnected arms, shells, etc.) to the merger history of this complete sample of local (U)LIRGs.

  13. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea E.; Tenzer, Chris; Wilms, Jörn

    2014-07-01

    The "Hot and Energetic Universe" has been selected as the science theme for ESA's L2 mission, scheduled for launch in 2028. The proposed Athena X-ray observatory provides the necessary capabilities to achieve the ambitious goals of the science theme. The X-ray mirrors are based on silicon pore optics technology and will have a 12 m focal length. Two complementary camera systems are foreseen which can be moved in and out of the focal plane by an interchange mechanism. These instruments are the actively shielded micro-calorimeter spectrometer X-IFU and the Wide Field Imager (WFI). The WFI will combine an unprecedented survey power through its large field of view of 40 arcmin with a high countrate capability (approx. 1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 keV to 15 keV during the entire mission lifetime (e.g. FWHM performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size matching the angular resolution of 5 arcsec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. The signal electrons generated by an X-ray photon are collected in a so-called internal gate below the transistor channel. The resulting change of the conductivity of the transistor channel is proportional to the number of electrons and thus a measure for the photon energy. DEPFETs have already been developed for the "Mercury Imaging X-ray Spectrometer" on-board of ESA's BepiColombo mission. For Athena we develop enhanced sensors with integrated electronic shutter and an additional analog storage area in each pixel. These features improve the peak-to-background ratio of the spectra and minimize dead time. The sensor will be read out with a new, fast, low-noise multi-channel analog signal processor with integrated sequencer and serial analog output. The architecture of sensor and readout ASIC allows readout in

  14. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array

  15. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    Science.gov (United States)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; hide

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  16. Lessons Learned from the Wide Field Camera 3 TV1 Test Campaign and Correlation Effort

    Science.gov (United States)

    Peabody, Hume; Stavley, Richard; Bast, William

    2007-01-01

    In January 2004, shortly after the Columbia accident, future servicing missions to the Hubble Space Telescope (HST) were cancelled. In response to this, further work on the Wide Field Camera 3 instrument was ceased. Given the maturity level of the design, a characterization thermal test (TV1) was completed in case the mission was re-instated or an alternate mission found on which to fly the instrument. This thermal test yielded some valuable lessons learned with respect to testing configurations and modeling/correlation practices, including: 1. Ensure that the thermal design can be tested 2. Ensure that the model has sufficient detail for accurate predictions 3. Ensure that the power associated with all active control devices is predicted 4. Avoid unit changes for existing models. This paper documents the difficulties presented when these recommendations were not followed.

  17. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  18. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2

    Science.gov (United States)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}∼ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}ȯ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f∼ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  19. LOFAR calibration and wide-field imaging

    NARCIS (Netherlands)

    Tasse, Cyril; van Diepen, Ger; van der Tol, Sebastiaan; van Weeren, Reinout J.; van Zwieten, Joris E.; Batejat, Fabien; Bhatnagar, Sanjay; van Bemmel, Ilse; Birzan, Laura; Bonafede, Annalisa; Conway, John; Ferrari, Chiara; De Gasperin, Francesco; Golap, Kumar; Heald, George; Jackson, Neal; Macario, Giulia; McKean, John; Mohan, Niruj; Orru, Emanuela; Pizzo, Roberto; Rafferty, David; Rau, Urvashi; Rottgering, Huub; Shulevski, Aleksandar

    2012-01-01

    LOFAR is a revolutionary instrument, operating at low frequencies (nu less than or similar to 240 MHz). It will drive major breakthroughs in the area of observational cosmology, but its use requires the development of challenging techniques and algorithms. Since its field of view and sensitivity are

  20. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    Science.gov (United States)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  1. Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2011-07-01

    Full Text Available We determine the field-aligned mapping of Saturn's auroras into the magnetosphere by combining UV images of the southern dayside oval obtained by the Hubble Space Telescope (HST with a global model of the magnetospheric magnetic field. The model is tailored to simulate prevailing conditions in the interplanetary medium, corresponding to high solar wind dynamic pressure and variable interplanetary magnetic field (IMF strength and direction determined from suitably lagged field data observed just upstream of Saturn's dayside bow shock by the Cassini spacecraft. Two out of four images obtained in February 2008 when such simultaneous data are available are examined in detail, exemplifying conditions for northward and southward IMF. The model field structure in the outer magnetosphere and tail is found to be very different in these cases. Nevertheless, the dayside UV oval is found to have a consistent location relative to the field structure in each case. The poleward boundary of the oval is located close to the open-closed field boundary and thus maps to the vicinity of the magnetopause, consistent with previous results. The equatorward boundary of the oval then maps typically near the outer boundary of the equatorial ring current appropriate to the compressed conditions prevailing. Similar results are also found for related images from the January 2004 HST data set. These new results thus show that the mapped dayside UV oval typically spans the outer magnetosphere between the outer part of the ring current and the magnetopause. It does not encompass the region of primary corotation flow breakdown within the inner Enceladus torus.

  2. Limits on the LyC signal from z~3 sources with secure redshift and HST coverage in the E-CDFS field

    CERN Document Server

    Guaita, L; Grazian, A; Vanzella, E; Nonino, M; Giavalisco, M; Zamorani, G; Bongiorno, A; Cassata, P; Castellano, M; Garilli, B; Gawiser, E; Brun, V Le; Fevre, O Le; Lemaux, B C; Maccagni, D; Merlin, E; Santini, P; Tasca, L A M; Thomas, R; Zucca, E; De Barros, S; Hathi, N P; Amorin, R; Bardelli, S; Fontana, A

    2016-01-01

    Aim: We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Method: We selected a sample of about 200 sources at z~3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Lya emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 A rest frame (3.11

  3. Frontier Fields : Combining HST, VLT and Spitzer data to explore the $z$$\\sim$8 Universe behind the lensing cluster MACS0416$-$2403

    CERN Document Server

    Laporte, N; Kim, S; Pelló, R; Bauer, F E; Bina, D; Brammer, G; De Leo, M A; Infante, L; Pérez-Fournon, I

    2014-01-01

    (Abridged) The HST Frontier Fields project started at the end of 2013 with the aim of providing extremely deep images of 6 massive galaxy clusters. One of the main goals of this program is to push several telescopes to their limits in order to provide the best current view of the earliest stages of the Universe. We present a detailed analysis of $z$$\\sim$8 objects behind the HFFs lensing cluster, MACS0416-2403, combining 0.3-1.6 $\\mu$m imaging from HST, ground-based $K_s$ imaging from VLT HAWK-I, and 3.6 $\\mu$m and 4.5 $\\mu$m Spitzer Space Telescope. We apply the classical Lyman Break technique, combining non-detection criteria and color-selection. In order to avoid contamination by mid-$z$ interlopers, we require a strong break between optical and near infrared data. The luminosity function at $z$$\\sim$8 is computed using a MC method taking advantage of the SED-fitting results. A piece of cautionary information is gleaned from new deep optical photometry of a previously identified $z$$\\sim$8 galaxy in this c...

  4. Michelson wide-field stellar interferometry: principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in t

  5. Unravelling the Structure of Aspherical Protoplanetary Nebulae I. HST Imaging and OH Maser-Line Observations of Roberts 22

    Science.gov (United States)

    Sahai, R.; Zijlstra, A.; Bujarrabal, V.; Hekkert, P. L.

    1998-01-01

    We have obtained high-resolution wide-band, narrow-band and polarimetric images of the bipolar protoplanetary nebula Roberts 22 with the Wide-Field & Planetary Camera 2 on HST. OH maser-line emission has also been observed using the Australia Telescope Compact Array.

  6. A Panchromatic Catalog of Early-type Galaxies at Intermediate Redshift in the Hubble Space Telescope Wide Field Camera 3 Early Release Science Field

    Science.gov (United States)

    Rutkowski, M. J.; Cohen, S. H.; Kaviraj, S.; O'Connell, R. W.; Hathi, N. P.; Windhorst, R. A.; Ryan, R. E., Jr.; Crockett, R. M.; Yan, H.; Kimble, R. A.; Silk, J.; McCarthy, P. J.; Koekemoer, A.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Paresce, F.; Saha, A.; Trauger, J. T.; Walker, A. R.; Whitmore, B. C.; Young, E. T.

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 lsim z lsim 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 1011 publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  7. A Panchromatic Catalog of Early-Type Galaxies at Intermediate Redshift in the Hubble Space Telescope Wide Field Camera 3 Early Release Science Field

    CERN Document Server

    Rutkowski, M J; Kaviraj, S; O'Connell, R W; Hathi, N P; Windhorst, R A; Ryan, R E; Crockett, R M; Yan, H; Kimble, R A; Silk, J; McCarthy, P J; Koekemoer, A; Balick, B; Bond, H E; Calzetti, D; Disney, M J; Dopita, M A; Frogel, J A; Hall, D N B; Holtzman, J A; Paresce, F; Saha, A; Trauger, J T; Walker, A R; Whitmore, B C; Young, E T

    2012-01-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually-selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 < z < 1.5, with each redshift spectroscopically-confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and ACS GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broad-band photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass ...

  8. An airborne pushbroom hyperspectral imager with wide field of view

    Institute of Scientific and Technical Information of China (English)

    Peixin Hu; Qirnin Lu; Rong Shu; Jianyu Wang

    2005-01-01

    @@ An airborne pushbroom hyperspectral imager (APHI) with wide field (42° field of view) is presented.It is composed of two 22°field of view (FOV) imagers and can provide 1304 pixels in spatial dimension,124 bands in spectral dimension in one frame. APHI has a bandwidth ranging from 400 to 900 nm.

  9. Wide-Field Detected Fourier Transform CARS Microscopy

    Science.gov (United States)

    Duarte, Alex Soares; Schnedermann, Christoph; Kukura, Philipp

    2016-11-01

    We present a wide-field imaging implementation of Fourier transform coherent anti-Stokes Raman scattering (wide-field detected FT-CARS) microscopy capable of acquiring high-contrast label-free but chemically specific images over the full vibrational ‘fingerprint’ region, suitable for a large field of view. Rapid resonant mechanical scanning of the illumination beam coupled with highly sensitive, camera-based detection of the CARS signal allows for fast and direct hyperspectral wide-field image acquisition, while minimizing sample damage. Intrinsic to FT-CARS microscopy, the ability to control the range of time-delays between pump and probe pulses allows for fine tuning of spectral resolution, bandwidth and imaging speed while maintaining full duty cycle. We outline the basic principles of wide-field detected FT-CARS microscopy and demonstrate how it can be used as a sensitive optical probe for chemically specific Raman imaging.

  10. Wide-Field, Deep UV Raman Hyperspectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, proposes a revolutionary wide-field Raman hyperspectral imaging system capable of...

  11. ACS after SM4: On-orbit Verification of the HST Advanced Camera for Surveys Repair

    Science.gov (United States)

    Golimowski, David A.; Cheng, E. S.; Loose, M.; Sirianni, M.; Lupie, O. L.; Smith, L. J.; Arslanian, S.; Boyce, K. R.; Chapman, G.; Chiaberge, M.; Desjardins, T.; Dye, D.; Ellis, T.; Grogin, N. A.; Lim, P.; Lucas, R. A.; Maybhate, A.; Mil, K. J.; Mutchler, M.; Ricardo, R.; Scott, B.; Serrano, B.; Suchkov, A.; Waczynski, A.; Welty, A. D.; Wheeler, T.; Wilson, E.

    2010-01-01

    The newly replaced CCD electronics box (CEB-R) of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) features a programmable SIDECAR ASIC manufactured by Teledyne. The CEB-R not only restores the functionality of the ACS Wide Field Camera (WFC), but it allows optimization of the WFC's imaging performance via on-orbit adjustment of CCD bias and clock voltages and serial-data transmission timing. We describe the strategy, preparation, execution, and results of the ACS Optimization Campaign, an unprecedented on-orbit extension of ground-based integration and testing that was conducted during the HST Servicing Mission Observatory Verification period.

  12. Foregrounds in Wide-Field Redshifted 21 cm Power Spectra

    CERN Document Server

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, Han-Seek; Kittiwisit, P; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2015-01-01

    Detection of 21 cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffu...

  13. O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror

    Science.gov (United States)

    McNamara, Karen M.; Hughes, D. W.; Lauer, H. V.; Burkett, P. J.; Reed, B. B.

    2011-01-01

    Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer.

  14. Parallax Beyond a Kiloparsec from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope

    CERN Document Server

    Riess, Adam G; Anderson, Jay; Mackenty, John; Filippenko, Alexei V

    2014-01-01

    We use a newly developed observing mode on the Hubble Space Telescope (HST) and Wide Field Camera 3 (WFC3), spatial scanning, to increase source sampling a thousand-fold and measure changes in source positions to a precision of 20--40 microarcseconds, more than an order of magnitude better than attainable in pointed observations. This observing mode can usefully measure the parallaxes of bright stars at distances of up to 5 kpc, a factor of ten farther than achieved thus far with HST. Long-period classical Cepheid variable stars in the Milky Way, nearly all of which reside beyond 1 kpc, are especially compelling targets for parallax measurements from scanning, as they may be used to anchor a determination of the Hubble constant to ~1%. We illustrate the method by measuring to high precision the parallax of a classical Cepheid, SY Aurigae, at a distance of more than 2 kpc, using 5 epochs of spatial-scan data obtained at intervals of 6 months. Rapid spatial scans also enable photometric measurements of bright M...

  15. The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts from 0.2-2 microns wavelength

    CERN Document Server

    Windhorst, Rogier A; Hathi, Nimish P; McCarthy, Patrick J; Ryan, Russell E; Jr.,; Yan, Haojing; Baldry, Ivan K; Driver, Simon P; Frogel, Jay A; Hill, David T; Kelvin, Lee S; Koekemoer, Anton M; Mechtley, Matt; O'Connell, Robert W; Robotham, Aaron S G; Rutkowski, Michael J; Seibert, Mark; Tuffs, Richard J; Balick, Bruce; Bond, Howard E; Bushouse, Howard; Calzetti, Daniela; Crockett, Mark; Disney, Michael J; Dopita, Michael A; Hall, Donald N B; Holtzman, Jon A; Kaviraj, Sugata; Kimble, Randy A; MacKenty, John W; Mutchler, Max; Paresce, Francesco; Saha, Abihit; Silk, Joseph I; Trauger, John; Walker, Alistair R; Whitmore, Bradley C; Young, Erick

    2010-01-01

    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the mid-UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098W (\\Ys), F125W (J), and F160W (H) in 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BVi'z' filters, these panchromatic 10-band ERS data cover 40-50 square arcmin from from 0.2-1.7 \\mum\\ in wavelength at 0\\arcspt 07-0\\arcspt 15 FWHM resolution and 0\\arcspt 090 multidrizzled pixels to depths of AB\\cle 26.0-27.0 mag (5-sigma) for point sources, and AB\\cle 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the ...

  16. Science with a wide-field UV transient explorer

    CERN Document Server

    Sagiv, I; Ofek, E O; Waxman, E; Aharonson, O; Nakar, E; Maoz, D; Trakhtenbrot, B; Kulkarni, S R; Phinney, E S; Topaz, J; Beichman, C; Murthy, J; Worden, S P

    2013-01-01

    The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. Numerous high-energy space missions take advantage of the dark Gamma-ray and X-ray sky and utilize very wide field detectors to provide almost continuous monitoring of the entire celestial sphere. In visible light, new wide-field ground-based surveys cover wide patches of sky with ever decreasing cadence, progressing from monthly-weekly time scale surveys to sub-night sampling. In the radio, new powerful instrumentation offers unprecedented sensitivity over wide fields of view, with pathfinder experiments for even more ambitious programs underway. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our pred...

  17. A wide angle tail radio galaxy in the COSMOS field: evidence for cluster formation

    CERN Document Server

    Smolcic, V; Finoguenov, A; Sakelliou, I; Carilli, C L; Botzler, C S; Brusa, M; Scoville, N Z; Ajiki, M; Capak, P; Guzzo, L; Hasinger, G; Impey, C; Jahnke, K; Kartaltepe, J S; McCracken, H J; Mobasher, B; Murayama, T; Sasaki, S S; Shioya, Y; Taniguchi, Y; Trump, J R

    2006-01-01

    We have identified a complex galaxy cluster system in the COSMOS field via a wide angle tail (WAT) radio galaxy consistent with the idea that WAT galaxies can be used as tracers of clusters. The WAT galaxy, CWAT-01, is coincident with an elliptical galaxy resolved in the HST-ACS image. Using the COSMOS multiwavelength data set, we derive the radio properties of CWAT-01 and use the optical and X-ray data to investigate its host environment. The cluster hosting CWAT-01 is part of a larger assembly consisting of a minimum of four X-ray luminous clusters within ~2 Mpc distance. We apply hydrodynamical models that combine ram pressure and buoyancy forces on CWAT-01. These models explain the shape of the radio jets only if the galaxy's velocity relative to the intra-cluster medium (ICM) is in the range of about 300-550 km/s which is higher than expected for brightest cluster galaxies (BCGs) in relaxed systems. This indicates that the CWAT-01 host cluster is not relaxed, but is possibly dynamically young. We argue t...

  18. The SLUGGS Survey: Wide Field Imaging of the Globular Cluster System of NGC 4278

    CERN Document Server

    Usher, Christopher; Spitler, Lee R; Brodie, Jean P; Romanowsky, Aaron J; Strader, Jay; Woodley, Kristin A

    2013-01-01

    We use multi-pointing HST ACS and wide field Subaru Suprime-Cam imaging to study the globular cluster system of the L* elliptical galaxy NGC 4278. We have also obtained a handful of new globular cluster spectra with Keck/DEIMOS. We determine the globular cluster surface density profile and use it to calculate the total number of globular clusters, finding the system to be slightly more populous than average for galaxies of its luminosity. We find clear evidence for bimodality in the globular cluster colour distribution and for a colour-magnitude relation in the blue subpopulation (a 'blue tilt'). We also find negative radial colour gradients in both colour subpopulations of equal strength which are similar in strength to those reported in other galaxies. The sizes of NGC 4278's globular clusters decrease with redder colours and increase with galactocentric radius. The ratio of the sizes of blue to red globular clusters is independent of galactocentric radius demonstrating that internal effects are responsible...

  19. Wide-Field InfraRed Survey Telescope (WFIRST) slitless spectrometer: design, prototype, and results

    Science.gov (United States)

    Gong, Qian; Content, David A.; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; Whipple, Arthur

    2016-07-01

    The slitless spectrometer plays an important role in the WFIRST mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies1. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  20. The Hubble Space Telescope Medium Deep Survey with the Wide Field and Planetary Camera. 1: Methodology and results on the field near 3C 273

    Science.gov (United States)

    Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Casertano, S.; Im, M.; Wyckoff, E. W.; Ellis, R. S.; Gilmore, G. F.; Elson, R. A. W.; Glazebrook, K.

    1994-01-01

    We present results from the Medium Deep Survey (MDS), a Key Project using the Hubble Space Telescope (HST). Wide Field Camera (WFC) images of random fields have been taken in 'parallel mode' with an effective resolution of 0.2 sec full width at half maximum (FWHM) in the V(F555W) and I(F785LP) filters. The exposures presented here were targeted on a field away from 3C 273, and resulted in approximately 5 hr integration time in each filter. Detailed morphological structure is seen in galaxy images with total integrated magnitudes down to V approximately = 22.5 and I approximately = 21.5. Parameters are estimated that best fit the observed galaxy images, and 143 objects are identified (including 23 stars) in the field to a fainter limiting magnitude of I approximately = 23.5. We outline the extragalactic goals of the HST Medium Deep Survey, summarize our basic data reduction procedures, and present number (magnitude) counts, a color-magnitude diagram for the field, surface brightness profiles for the brighter galaxies, and best-fit half-light radii for the fainter galaxies as a function of apparent magnitude. A median galaxy half-light radius of 0.4 sec is measured, and the distribution of galaxy sizes versus magnitude is presented. We observe an apparent deficit of galaxies with half-light radii between approximately 0.6 sec and 1.5 sec, with respect to standard no-evolution or mild evolution cosmological models. An apparent excess of compact objects (half-light radii approximately 0.1 sec) is also observed with respect to those models. Finally, we find a small excess in the number of faint galaxy pairs and groups with respect to a random low-redshift field sample.

  1. Proceedings of the "Wide Field X-ray Telescope" workshop

    CERN Document Server

    Rosati, Piero; Gilli, Roberto; Paolillo, Maurizio; Tozzi, Paolo

    2010-01-01

    We list here the contents of the Proceedings of the "Wide Field X-ray Telescope" conference held in Bologna, Italy on 25-26 Nov 2009. The conference highlighted the scientific potential and discovery space provided by an X-ray mission concept characterized by a wide field-of-view (1 sq.deg.), large effective area (1 sq.mt.) and approximately constant PSF (~5 arcsec HEW) across the whole FOV. The index is in html form with clickable links to the individual contributions.

  2. Wide-Field Sky Monitoring - Optical and X-rays

    Science.gov (United States)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  3. Wide-field lensfree imaging of tissue slides

    Science.gov (United States)

    Morel, Sophie Nhu An; Delon, Antoine; Blandin, Pierre; Bordy, Thomas; Cioni, Olivier; Hervé, Lionel; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2015-07-01

    We developed a new imaging tool that can help pathologists in recording wide-field images of tissue slides. We present a simple cost-effective lens-free imaging method to record 2-4μm resolution wide-field (10 mm2 - 6 cm2) images of stained and unstained tissue slides. To our knowledge, our method is the first technique that enables fast (less than 5 minutes) wide-field lens-free imaging of such dense samples. Multiple holograms are recorded with different wavelength illumination, and a multispectral algorithm is used to retrieve both amplitude and phase. Our method can be used to retrieve images of stained tissue slides. For such absorbing object, the useful information is included in the modulus of the reconstructed complex field. Our method can also be applied to retrieve images of unstained tissue slides, where the useful information is in the retrieved phase. This technique is much cheaper and compact than a conventional microscope and could be made portable. Moreover, it enables wide field unstained tissue slides imaging, which could quickly provide useful information, for example on frozen section biopsies, when a rapid diagnosis is needed during surgery.

  4. Wide-field Raman imaging of dental lesions.

    Science.gov (United States)

    Yang, Shan; Li, Bolan; Akkus, Anna; Akkus, Ozan; Lang, Lisa

    2014-06-21

    Detection of dental caries at the onset remains as a great challenge in dentistry. Raman spectroscopy could be successfully applied towards detecting caries since it is sensitive to the amount of Raman active mineral crystals, the most abundant component of enamel. Effective diagnosis requires full examination of a tooth surface via Raman mapping. Point-scan Raman mapping is not clinically relevant (feasible) due to lengthy data acquisition time. In this work, a wide-field Raman imaging system was assembled based on a high-sensitivity 2D CCD camera for imaging the mineralization status of teeth with lesions. Wide-field images indicated some lesions to be hypomineralized and others to be hypermineralized. The observations of wide-field Raman imaging were in agreement with point-scan Raman mapping. Therefore, sound enamel and lesions can be discriminated by Raman imaging of the mineral content. In conclusion, wide-field Raman imaging is a potentially useful tool for visualization of dental lesions in the clinic.

  5. Limits on the LyC signal from z ~ 3 sources with secure redshift and HST coverage in the E-CDFS field

    Science.gov (United States)

    Guaita, L.; Pentericci, L.; Grazian, A.; Vanzella, E.; Nonino, M.; Giavalisco, M.; Zamorani, G.; Bongiorno, A.; Cassata, P.; Castellano, M.; Garilli, B.; Gawiser, E.; Le Brun, V.; Le Fèvre, O.; Lemaux, B. C.; Maccagni, D.; Merlin, E.; Santini, P.; Tasca, L. A. M.; Thomas, R.; Zucca, E.; De Barros, S.; Hathi, N. P.; Amorin, R.; Bardelli, S.; Fontana, A.

    2016-03-01

    Context. Determining the strength of the Lyman continuum (LyC) and the fraction of LyC escape have implications for the properties of the emitting sources at any redshift, but also for the re-ionization of the Universe at z > 6. Aims: We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Methods: We selected a sample of about 200 sources at z ~ 3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Lyα emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 Å rest frame (3.11 models, we assume an average intrinsic Lν(1400 Å)/Lν(900 Å) ratio of 5 as the representative value for our sample. With this value and an average treatment of the lines of sight of the inter-galactic medium, we estimate the LyC escape fraction relative to the intrinsic value (fescrel(LyC)). We do not directly detect ionizing radiation from any individual SFG, but we are able to set a 1(2)σ upper limit of fescrel(LyC) < 12(24)%. This result is consistent with other non-detections published in the literature. No meaningful limits can be calculated for the sub-sample of Lyα emitters. We obtain one significant direct detection for an AGN at z = 3.46, with fescrel(LyC) = (72 ± 18)%. Conclusions: Our upper limit on fescrel(LyC) implies that the SFGs studied here do not present either the physical properties or the geometric conditions suitable for efficient LyC-photon escape. Based on data obtained with the European Southern Observatory Very Large

  6. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    Science.gov (United States)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  7. The Development of WIFIS: a Wide Integral Field Infrared Spectrograph

    CERN Document Server

    Sivanandam, Suresh; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N; Eisner, Joshua

    2012-01-01

    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9-1.8 um range and is most sensitive in the 0.9-1.35 um range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.5" x 12" integral field at a 10-meter class telescope (or 20" x 50" at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensiona...

  8. Automatic detection of asteroids and meteoroids. A Wide Field Survey

    Science.gov (United States)

    Vereš, P.; Tóth, J.; Jedicke, R.; Tonry, J.; Denneau, L.; Wainscoat, R.; Kornoš, L.; Šilha, J.

    2014-07-01

    We propose a low-cost robotic optical survey aimed at 1-300 m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily accessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving-trailed-asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-effectiveicient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids -- A Wide Field Survey) systems to be built around the world.

  9. Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey

    CERN Document Server

    Vereš, P; Jedicke, R; Tonry, J; Denneau, L; Wainscoat, R; Kornoš, L; Šilha, J

    2014-01-01

    We propose a low-cost robotic optical survey aimed at $1-300$ m Near Earth Objects (NEO) based on four state-of-the-art telescopes having extremely wide field of view. The small Near-Earth Asteroids (NEA) represent a potential risk but also easily accessible space resources for future robotic or human space in-situ exploration, or commercial activities. The survey system will be optimized for the detection of fast moving - trailed - asteroids, space debris and will provide real-time alert notifications. The expected cost of the system including 1-year development and 2-year operation is 1,000,000 EUR. The successful demonstration of the system will promote cost-efficient ADAM-WFS (Automatic Detection of Asteroids and Meteoroids - A Wide Field Survey) systems to be built around the world.

  10. High-Resolution, Wide-Field-of-View Scanning Telescope

    Science.gov (United States)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  11. Extreme multiplex spectroscopy at wide-field 4-m telescopes

    CERN Document Server

    Content, Robert

    2008-01-01

    We describe the design and science case for a spectrograph for the prime focus of classical 4-m wide-field telescopes that can deliver at least 4000 MOS slits over a 1 degree field. This extreme multiplex capability means that 25000 galaxy redshifts can be measured in a single night, opening up the possibilities for large galaxy redshift surveys out to z~0.7 and beyond for the purpose of measuring the Baryon Acoustic Oscillation (BAO) scale and for many other science goals. The design features four cloned spectrographs and exploits the exclusive possibility of tiling the focal plane of wide-field 4-m telescopes with CCDs for multi-object spectroscopic purposes. In ~200 night projects, such spectrographs have the potential to make galaxy redshift surveys of ~6 million galaxies over a wide redshift range and thus may provide a low-cost alternative to other survey routes such as WFMOS and SKA. Two of these extreme multiplex spectrographs are currently being designed for the AAT (NG1dF) and Calar Alto (XMS) 4-m c...

  12. Wide-Field MAXI: soft X-ray transient monitor

    CERN Document Server

    Arimoto, Makoto; Yatsu, Yoichi; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Mihara, Tatehiro; Serino, Motoko; Morii, Mikio; Tsunemi, Hiroshi; Yoshida, Atsumasa; Sakamoto, Takanori; Kohmura, Takayoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Tsuboi, Yohko; Ebisawa, Ken

    2015-01-01

    Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., which are expected to be directly detected for the first time in late 2010's by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.

  13. The development of WIFIS: a wide integral field infrared spectrograph

    Science.gov (United States)

    Sivanandam, Suresh; Chou, Richard C. Y.; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S.; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N.; Eisner, Joshua

    2012-09-01

    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9 - 1.8 μm range and is most sensitive in the 0.9 - 1.35 μ,m range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.511x 1211 integral field at a 10-meter class telescope (or 2011 x 5011 at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensional spectroscopy such as the study of merging galaxies at moderate redshift and nearby star/planet-forming regions and supernova remnants. We discuss the final optical design of WIFIS, and its predicted on-sky performance on two reference telescope platforms: the 2.3-m Steward Bok telescope and the 10.4-m Gran Telescopio Canarias. We also present the results from our laboratory characterization of FISICA. IFU properties such as magnification, field-mapping, and slit width along the entire slit length were measured by our tests. The construction and testing of WIFIS is expected to be completed by early 2013. We plan to commission the instrument at the 2.3-m Steward Bok telescope at Kitt Peak, USA in Spring 2013.

  14. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Science.gov (United States)

    Libralato, M.; Bellini, A.; Bedin, L. R.; Piotto, G.; Platais, I.; Kissler-Patig, M.; Milone, A. P.

    2014-03-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8 m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field (in the Large Magellanic Cloud). We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2 m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields. Catalogs, fortran code, and distortion maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A80Based on observations with the 8 m VLT ESO telescope.

  15. HST/ACS Morphology of Lyman Alpha Emitters at Redshift 5.7 in the COSMOS Field

    CERN Document Server

    Taniguchi, Y; Scoville, N Z; Sasaki, S S; Nagao, T; Shioya, Y; Saitô, T; Ideue, Y; Nakajima, A; Matsuoka, K; Sanders, D B; Mobasher, B; Aussel, H; Capak, P; Salvato, M; Koekemoer, A; Carilli, C; Cimatti, A; Ellis, Richard S; Garilli, B; Giavalisco, M; Ilbert, O; Impey, C D; Kitzbichler, M G; Le Fèvre, O; McCracken, H J; Scarlata, C; Schinnerer, E; Smolcic, V; Tribiano, S; Trump, J R

    2009-01-01

    We present detailed morphological properties of Lyman alpha emitters (LAEs) at z~ 5.7 in the COSMOS field, based on {\\it Hubble Space Telescope} Advanced Camera for Surveys (ACS) data. The ACS imaging in the F814W filter covered 85 LAEs of the 119 LAEs identified in the full two square degree field, and 47 LAEs of them are detected in the ACS images. Nearly half of them are spatially extended with a size larger than 0.15 arcsec (~0.88 kpc at z=5.7) up to 0.4 arcsec (~2.5 kpc at z=5.7). The others are nearly unresolved compact objects. Two LAEs show double-component structures, indicating interaction or merging of building components to form more massive galaxies. By stacking the ACS images of all the detected sources, we obtain a Sersic parameter of n~0.7 with a half-light radius of 0.13 arcsec (0.76 kpc), suggesting that the majority of ACS detected LAEs have not spheroidal-like but disk-like or irregular light profiles. Comparing ACS F814W magnitudes (I_814) with Subaru/Suprime-Cam magnitudes in the NB816, ...

  16. The Wide-Field Imager for Solar Probe Plus (WISPR)

    Science.gov (United States)

    Vourlidas, Angelos; Howard, Russell A.; Plunkett, Simon P.; Korendyke, Clarence M.; Thernisien, Arnaud F. R.; Wang, Dennis; Rich, Nathan; Carter, Michael T.; Chua, Damien H.; Socker, Dennis G.; Linton, Mark G.; Morrill, Jeff S.; Lynch, Sean; Thurn, Adam; Van Duyne, Peter; Hagood, Robert; Clifford, Greg; Grey, Phares J.; Velli, Marco; Liewer, Paulett C.; Hall, Jeffrey R.; DeJong, Eric M.; Mikic, Zoran; Rochus, Pierre; Mazy, Emanuel; Bothmer, Volker; Rodmann, Jens

    2016-12-01

    The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95∘ radial by 58∘ transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K × 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first `local' imager providing a crucial link between the large-scale corona and the in-situ measurements.

  17. Deployment of the Hobby-Eberly Telescope wide field upgrade

    Science.gov (United States)

    Hill, Gary J.; Drory, Niv; Good, John; Lee, Hanshin; Vattiat, Brian; Kriel, Herman; Bryant, Randy; Elliot, Linda; Landriau, Martin; Leck, Ron; Perry, David; Ramsey, Jason; Savage, Richard; Allen, Richard D.; Damm, George; DePoy, D. L.; Fowler, Jim; Gebhardt, Karl; Haeuser, Marco; MacQueen, Phillip; Marshall, J. L.; Martin, Jerry; Prochaska, Travis; Ramsey, Lawrence W.; Rheault, Jean-Philippe; Shetrone, Matthew; Schroeder Mrozinski, Emily; Tuttle, Sarah E.; Cornell, Mark E.; Booth, John; Moreira, Walter

    2014-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror optical corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will substantially increase the pupil size to 10 meters (from 9.2 m) and the field of view to 22 arcminutes (from 4 arcminutes) by replacing the corrector, tracker, and prime focus instrument package. In addition to supporting existing instruments, and a new low resolution spectrograph, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§). The upgrade is being installed and this paper discusses the current status.

  18. Wide-Field Surveys from the SNAP Mission

    CERN Document Server

    Kim, A

    2002-01-01

    The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/near-infrared (NIR) imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. For 16 months each, two 7.5 square-degree fields will be observed every four days to a magnitude depth of AB=27.7 in each of the SNAP filters, spanning 3500-17000\\AA. Co-adding images over all epochs will give AB=30.3 per filter. In addition, a 300 square-degree field will be surveyed to AB=28 per filter, with no repeated temporal sampling. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data will support a broad range of auxiliary science programs.

  19. The Wide Field Spectrograph (WiFeS)

    Science.gov (United States)

    Dopita, Michael; Hart, John; McGregor, Peter; Oates, Patrick; Bloxham, Gabe; Jones, Damien

    2007-08-01

    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320 950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  20. Science with a wide-field UV transient explorer

    Energy Technology Data Exchange (ETDEWEB)

    Sagiv, I.; Gal-Yam, A.; Ofek, E. O.; Waxman, E.; Trakhtenbrot, B.; Topaz, J. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Aharonson, O. [Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, 76100 Rehovot (Israel); Kulkarni, S. R.; Phinney, E. S. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Nakar, E.; Maoz, D. [School of Physics and Astronomy, Tel Aviv University, 93387 Tel Aviv (Israel); Beichman, C. [Division of Geophysics and Planetary Science, California Institute of Technology, Pasadena, CA 91105 (United States); Murthy, J. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Worden, S. P. [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-04-01

    The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by supermassive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.

  1. High-Redshift Extremely Red Objects in the HST Ultra Deep Field Revealed by the GOODS IRAC Observations

    CERN Document Server

    Yan, H; Eisenhardt, P R M; Ferguson, H C; Grogin, N A; Paolillo, M; Chary, R R; Casertano, S; Stern, D; Reach, W T; Moustakas, L A; Fall, S M; Yan, Haojing; Dickinson, Mark; Eisenhardt, Peter R. M.; Ferguson, Henry C.; Grogin, Norman A.; Paolillo, Maurizio; Chary, Ranga-Ram; Casertano, Stefano; Stern, Daniel; Reach, William T.; Moustakas, Leonidas A.

    2004-01-01

    Using early data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope, taken for the Great Observatories Origins Deep Survey (GOODS), we identify and study objects that are well-detected at 3.6um, but are very faint (and in some cases, invisible) in the Hubble Ultra Deep Field (HUDF) ACS and NICMOS images and in very deep VLT Ks-band imaging. We select a sample of 17 objects with f_nu(3.6um)/f_nu(z_{850})>20. The analysis of their spectral energy-distributions (SEDs) from 0.4 to 8.0um shows that the majority of these objects cannot be satisfactorily explained without a well-evolved stellar population. We find that most of them can be well fitted by a simple two-component model, where the primary component represents a massive, old population that dominates the strong IR emission, while the secondary component represents a low amplitude, on-going star-formation process that accounts for the weak optical fluxes. Their estimated photometric redshifts (z_p) range from 1.6 to 2.9, with the median a...

  2. HARMONI: a single-field wide-band integral-field spectrograph for the European ELT

    NARCIS (Netherlands)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    2010-01-01

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectr

  3. HARMONI : A single-field wide-band integral-field spectrograph for the European ELT

    NARCIS (Netherlands)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    2010-01-01

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectr

  4. The Wide Field Spectrograph (WiFeS)

    CERN Document Server

    Dopita, Michael; McGregor, Peter; Oates, Patrick; Bloxham, Gabe; Jones, Damien

    2007-01-01

    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-950 nm wavelength region. It provides a 25x38 arcsec. field with 0.5 arcsec. sampling along each of twenty five 38X1 arcsec slitlets. The output format is optimized to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is c...

  5. Metrology systems of Hobby-Eberly Telescope wide field upgrade

    Science.gov (United States)

    Lee, Hanshin; Hill, Gary J.; Cornell, Mark E.; Vattiat, Brian L.; Perry, Dave M.; Rafferty, Tom H.; Taylor, Trey; Hart, Michael; Rafal, Marc D.; Savage, Richard D.

    2012-09-01

    The Hobby-Eberly Telescope (HET) Wide-Field Upgrade (WFU) will be equipped with new closed-loop metrology systems to actively control the optical alignment of the new four-mirror Wide-Field Corrector (WFC) as it tracks sidereal motion with respect to the fixed primary mirror. These systems include a tip/tilt camera (TTCam), distance measuring interferometers (DMI), guide probes (GP), and wavefront sensors (WFS). While the TTCam and DMIs are to monitor the mechanical alignment of the WFC, the WFSs and GPs will produce direct measurement of the optical alignment of the WFC with respect to the HET primary mirror. Together, these systems provide fully redundant alignment and pointing information for the telescope, thereby keeping the WFC in focus and suppressing alignment driven field aberrations. In addition to these closed-loop metrology systems, we will have a pupil viewing camera (PVCam) and a calibration wavefront sensor (CWFS). The PVCam will be used for occasional reflectance measurement of the HET primary mirror segments in the standard R,G,B colors. The CWFS will provide the reference wavefront signal against which the other two WFS are calibrated. We describe the current snapshot of these systems and discuss lab/on-sky performance test results of the systems.

  6. The Case for Deep, Wide-Field Cosmology

    CERN Document Server

    Scranton, Ryan; Caldwell, Robert; Cooray, Asantha; Dore, Olivier; Habib, Salman; Heavens, Alan; Heitmann, Katrin; Jain, Bhuvnesh; Knox, Lloyd; Newman, Jeffrey A; Serra, Paolo; Song, Yong-Seon; Strauss, Michael; Tyson, Tony; Verde, Licia; Zhan, Hu

    2009-01-01

    Much of the science case for the next generation of deep, wide-field optical/infrared surveys has been driven by the further study of dark energy. This is a laudable goal (and the subject of a companion white paper by Zhan et al.). However, one of the most important lessons of the current generation of surveys is that the interesting science questions at the end of the survey are quite different than they were when the surveys were being planned. The current surveys succeeded in this evolving terrain by being very general tools that could be applied to a number of very fundamental measurements. Likewise, the accessibility of the data enabled the broader cosmological and astronomical community to generate more science than the survey collaborations could alone. With that in mind, we should consider some of the basic physical and cosmological questions that surveys like LSST and JDEM-Wide will be able to address.

  7. Non-mydriatic, wide field, fundus video camera

    Science.gov (United States)

    Hoeher, Bernhard; Voigtmann, Peter; Michelson, Georg; Schmauss, Bernhard

    2014-02-01

    We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.

  8. Stellar Populations of Lyman Break Galaxies at z=1-3 in the HST/WFC3 Early Release Science Observations

    OpenAIRE

    Hathi, N. P.; Cohen, S H; Ryan Jr, R. E.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H; Koekemoer, A M; Rutkowski, M. J.; O'Connell, R.W.; Straughn, A. N.; Balick, B.; Bond, H.E.; Calzetti, D; Disney, M. J.

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z=1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 sq. arcmin in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z=1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED m...

  9. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  10. Wide Field Imager in Space for Dark Energy and Planets

    CERN Document Server

    Gould, Andrew

    2009-01-01

    A wide-field imager in space could make remarkable progress in two very different frontiers of astronomy: dark energy and extra-solar planets. Embedding such an imager on a much larger and more complicated DE mission would be a poor science-approach under any circumstances and is a prescription for disaster in the present fiscal climate. The 2010 Decadal Committee must not lead the lemming stampede that is driving toward a DE mega-mission, but should stand clearly in its path.

  11. Wide-field optical nanoprofilometry using structured illumination.

    Science.gov (United States)

    Wang, Chun-Chieh; Lee, Kuang-Li; Lee, Chau-Hwang

    2009-11-15

    We combine the differential height measurement concept with structured illumination microscopy to develop wide-field optical nanoprofilometry. Sub-diffraction-limit lateral resolution and axially sectioning imaging are achieved with structured illumination using a liquid-crystal spatial light modulator. As the sample surface is placed into the linear region of the sectioning axial response curve, the signal change owing to topographic variations provides nanometer depth sensitivity. The lateral resolution and the depth profiling accuracy are about 0.3 wavelengths and 6 nm, respectively. Depth profiling on solid-state specimens and label-free superresolution imaging of living cells are demonstrated.

  12. Wide-field, high-resolution Fourier ptychographic microscopy

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.

  13. Development of stable monolithic wide-field Michelson interferometers

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-01

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10-6/° C near 550nm, which corresponds to ˜800m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.

  14. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.

  15. The design of the wide field monitor for LOFT

    CERN Document Server

    Brandt, S; Alvarez, L; Argan, A; Artigues, B; Azzarello, P; Barret, D; Bozzo, E; Budtz-Jørgensen,; Campana, R; Cros, A; del Monte, E; Donnarumma, I; Evangelista, Y; Feroci, M; Sanchez, J L Galvez; Götz, D; Hansen, F; Herder, J W den; Hudec, R; Huovelin, J; Karelin, D; Korpela, S; Lund, N; Michalska, M; Olsen, P; Orleanski, P; Pedersen, S; Pohl, M; Rachevski, A; Santangelo, A; Schanne, S; Schmid, C; Suchy, S; Tenzer, C; Vacchi, A; Walton, D; Wilms, J; Zampa, G; Zampa, N; Zand, J int; Zane, S; Zdziarski, A; Zwart, F

    2014-01-01

    LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions were completed at the end of 2013. LOFT is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a <1{\\deg} collimated FoV and a wide field monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky c...

  16. Wide-Field-of-View, High-Resolution, Stereoscopic Imager

    Science.gov (United States)

    Prechtl, Eric F.; Sedwick, Raymond J.

    2010-01-01

    A device combines video feeds from multiple cameras to provide wide-field-of-view, high-resolution, stereoscopic video to the user. The prototype under development consists of two camera assemblies, one for each eye. One of these assemblies incorporates a mounting structure with multiple cameras attached at offset angles. The video signals from the cameras are fed to a central processing platform where each frame is color processed and mapped into a single contiguous wide-field-of-view image. Because the resolution of most display devices is typically smaller than the processed map, a cropped portion of the video feed is output to the display device. The positioning of the cropped window will likely be controlled through the use of a head tracking device, allowing the user to turn his or her head side-to-side or up and down to view different portions of the captured image. There are multiple options for the display of the stereoscopic image. The use of head mounted displays is one likely implementation. However, the use of 3D projection technologies is another potential technology under consideration, The technology can be adapted in a multitude of ways. The computing platform is scalable, such that the number, resolution, and sensitivity of the cameras can be leveraged to improve image resolution and field of view. Miniaturization efforts can be pursued to shrink the package down for better mobility. Power savings studies can be performed to enable unattended, remote sensing packages. Image compression and transmission technologies can be incorporated to enable an improved telepresence experience.

  17. Wide-field-of-view (WFOV) night vision goggle

    Science.gov (United States)

    Isbell, Wayne; Estrera, Joseph P.

    2003-09-01

    The United States' armed forces continue to be presented with increased challenges in adverse operational environments with increasing risk and complexity - especially at night. To ensure continued operational success and battlefield superiority during darkness, our armed forces must be equipped with night vision (NV) systems providing increased situational awareness. Doing so will significantly enhance threat detection and engagement, as well as survivability, thus ensuring greater mission success. Northrop Grumman Electro-Optical Systems (EOS) continues to develop its Wide Field of View (WFOV) image intensification (I2) night vision system for ground forces. This system will provide a significant increase in visual coverage enabling US forces to continue "to own the night". Until now, NV systems have typically been limited to a 40-degree field of view (FOV), vertically and horizontally. This limited FOV reduces off-axis detection, restricts an individual soldier's recognition and engagement capabilities and hinders added peripheral vision. To counter this operational deficiency, EOS proposes the Wide Field of View (WFOV) night vision binocular. The WFOV system will have a 70-degree horizontal FOV, with a 55-degree vertical FOV. The increased FOV will result in increased situational awareness of soldiers' surrounding environment (including terrain, hazards, threat, etc) during normal night operations. It will also allow for rapid and safer movement, especially in MOUT operations. Additionally, the increased visual coverage of large areas will enable soldiers to detect and engage targets faster and with greater reliability. The WFOV binocular will significantly enhance survivability, threat detection and engagement, and hence, greater mission success rate.

  18. Design of wide field and high resolution video lens

    Science.gov (United States)

    Xiao, Ze-xin; Zhan, Binzhou; Han, Haimei

    2009-11-01

    Online detecting is increasingly used in industrial process for the requirement of product quality improving. It is a trend that the "machine detecting" with "machine version + computer intelligence" as new method replaces traditional manual "eye observation". The essential of "machine detecting" is that image of object being collected with high resolution video lens on sensor panel of photoelectric (CCD ,CMOS) and detecting result being automatically gained by computer after the image saved and processed. "Machine detecting" is developing rapidly with the universal reception by enterprises because of its fine accurateness, high efficiency and the real time. Video lens is one of the important components of machine version system. Requirements of wide field and high resolution enlarged the complexity of video lens design. In this paper a design case used in visible light with field diameter Φ32mm, β=-0.25× and NA'=0.15. We give design parameters of the video lens which obtained with theoretically calculating and Oslo software optimization: MTF>0.3 in full field and 215lp/mm, distortion <0.05%.This lens has an excellent optic performance to match with 1.3 million pixels 1/2"CCD, and a high performance price ratio for being consist of only 7 single lens in the way of 5 units.

  19. Mining the HST Survey of the Orion Nebula Cluster

    Science.gov (United States)

    Robberto, Massimo; Da Rio, Nicola

    2013-07-01

    The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instrument in 11 filters ranging from the U-band to the H-band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster IMF, age spread, mass accretion, binarity and circumstellar disk evolution. The scanning pattern allowed to cover a contiguous field of approximately 600 square arcmin with both ACS and WFPC2 reaching a photometric depth AB(F435W)=25.8 and AB(F775W)=25.2 with 0.2 magnitudes of photometric error. The paper Robberto et al. (2013, ApJSS 207, 10) describes the observations, data reduction and data products, including images, source catalogs and tools for quick look preview. In particular, source catalogs provide ACS photometry for 3399 stars, most of them detected at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in the U-band, and NICMOS JH photometry for 2117 stars. The paper also summarize the early science results already published. The final set of images and the photometric catalogs are now publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute. Here is a graphic description of how to access the data.

  20. HST/WFC3 Observations of Uranus' 2014 Storm Clouds

    Science.gov (United States)

    Irwin, Patrick Gerard Joseph; Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Toledo, Daniel

    2016-10-01

    In November 2014 Uranus was observed with the Wide Field Camera 3 (WFC3) instrument of the Hubble Space Telescope as part of the Hubble 2020: Outer Planet Atmospheres Legacy program, OPAL. OPAL annually maps Jupiter, Uranus and Neptune (and also Saturn from 2018) in several visible/near-IR wavelength filters. The Uranus 2014 OPAL observations were made on the 8 – 9th November at a time when a huge convective storm system, first observed by amateur astronomers, was present at 30 – 40°N. The entire visible atmosphere, including the storm system, was imaged in seven filters spanning 467 – 924 nm, capturing variations in the coloration of Uranus' clouds and also vertical distribution due to wavelength dependent changes in Rayleigh scattering and methane absorption. Here we analyse these new HST observations with the NEMESIS radiative-transfer and retrieval code, in multiple-scattering mode, to determine the vertical cloud structure in and around the convective storm cloud system.The same storm system was also observed in the H-band (1.4 – 1.9 µm) with the SINFONI Integral Field Unit Spectrometer on the Very Large Telescope (VLT) on 31st October and 11th November (Irwin et al., 2016, 10.1016/j.icarus.2015.09.010). To constrain better the cloud particle sizes and scattering properties over a wide wavelength range we also conducted a limb-darkening analysis of the background cloud structure in the 30 – 40°N latitude band by simultaneously fitting: a) these HST/OPAL observations at a range of zenith angles; b) the VLT/SINFONI observations at a range of zenith angles; and c) IRTF/SpeX observations of this latitude band made in 2009 at a single zenith angle of 23°, spanning the wavelength range 0.8 – 1.8 µm (Irwin et al., 2015, 10.1016/j.icarus.2014.12.020).We find that the HST observations and the combined HST/VLT/IRTF observations are well modeled with a three-component cloud comprised of: 1) a thin 'deep' cloud at a pressure of ~2 bars; 2) a methane

  1. Marginalising instrument systematics in HST WFC3 transit lightcurves

    CERN Document Server

    Wakeford, H R; Evans, T; Deming, D; Mandell, A

    2016-01-01

    Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared observations at 1.1-1.7$\\mu$m probe primarily the H$_2$O absorption band at 1.4$\\mu$m, and has provided low resolution transmission spectra for a wide range of exoplanets. We present the application of marginalisation based on Gibson (2014) to analyse exoplanet transit lightcurves obtained from HST WFC3, to better determine important transit parameters such as R$_p$/R$_*$, important for accurate detections of H$_2$O. We approximate the evidence, often referred to as the marginal likelihood, for a grid of systematic models using the Akaike Information Criterion (AIC). We then calculate the evidence-based weight assigned to each systematic model and use the information from all tested models to calculate the final marginalised transit parameters for both the band-integrated, and spectroscopic lightcurves to construct the transmission spectrum. We find that a majority of the highest weight models contain a correction for a linear trend in time, as ...

  2. Data Reduction Algorithm for Optical Wide Field Patrol (OWL)

    Science.gov (United States)

    Park, S.; Park, Y.; Yim, H.; Jo, J.; Moon, H.; Bae, Y.; Lim, Y.; Choi, J.; Choi, Y.; Park, J.; Son, J.

    2014-09-01

    OWL (Optical Wide-field Patrol) has a detector system which has the chopper which consists of 4 blades in front of the CCD camera to acquire efficiently the position and time information of moving objects such as artificial satellites. Using this system, it is possible to get more position data by splitting the streaks of the moving object into many pieces with fast rotating blades during tracking. At the same time, the time data of the rotating chopper can be acquired by the time tagger connected to the photo diode. In order to derive the orbits of the targets, we need a sequential data reduction procedure including the calculation of WCS (World Coordinate System) solution to transform the positions into equatorial coordinate systems, and the combination of the time data from the time tagger and the position data. We present such a data reduction procedure and the preliminary results after applying this procedure to the observation images.

  3. Flexible focal plane arrays for UVOIR wide field instrumentation

    CERN Document Server

    Hugot, Emmanuel; Chambion, Bertrand; Moulin, Gaid; Nikitushkina, Liubov; Gaschet, Christophe; Henry, David; Getin, Stéphane; Ferrari, Marc; Gaeremynck, Yann

    2016-01-01

    LAM and CEA-LETI are developing the technology of deformable detectors, for UV, VIS or NIR applications. Such breakthrough devices will be a revolution for future wide field imagers and spectrographs, firstly by improving the image quality with better off-axis sharpness, resolution, brightness while scaling down the optical system, secondly by overcoming the manufacturing issues identified so far and by offering a flexibility and versatility in optical design. The technology of curved detectors can benefit of the developments of active and deformable structures, to provide a flexibility and a fine tuning of the detectors curvature by thinning down the substrate without modifying the fabrication process of the active pixels. We present studies done so far on optical design improvements, the technological demonstrators we developed and their performances as well as the future five-years roadmap for these developments.

  4. Wide Field X-Ray Telescope Mission Concept Study Results

    Science.gov (United States)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  5. GravityCam: Higher Resolution Visible Wide-Field Imaging

    CERN Document Server

    Mackay, Craig; Steele, Iain

    2016-01-01

    The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically ~1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant...

  6. Instrumental and scientific simulations of the LOFT Wide Field Monitor

    CERN Document Server

    Evangelista, Y; Campana, R; Schmid, C; Feroci, M

    2014-01-01

    The Large Observatory for X-ray Timing (LOFT) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024). It is specifically designed to exploit the diagnostics of very rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. The LOFT scientific payload is composed of the Large Area Detector (LAD), devoted to spectral-timing observation, and the Wide Field Monitor (WFM), whose primary goal it is to monitor the X-ray sky for transient events that need to be followed up with the LAD, and to measure the long-term variability of galactic X-ray sources and localize gamma-ray bursts. Here we describe the simulations carried out to optimize the WFM design and to characterize the instrument response to both isolated sources and crowded fields in the proximity of the galactic bulge.

  7. The Receiver System for the Ooty Wide Field Array

    Indian Academy of Sciences (India)

    C. R. Subrahmanya; P. Prasad; B. S. Girish; R. Somashekar; P. K. Manoharan; A. K. Mittal

    2017-03-01

    The legacy Ooty Radio Telescope (ORT) is being reconfigured as a 264-element synthesis telescope, called the Ooty Wide Field Array (OWFA). Its antenna elements are the contiguous 1.92 m sections of the parabolic cylinder. It will operate in a 38-MHz frequency band centred at 326.5 MHz and will be equipped with a digital receiver including a 264-element spectral correlator with a spectral resolution of 48 kHz. OWFA is designed to retain the benefits of equatorial mount, continuous 9-hour tracking ability and large collecting area of the legacy telescope and use of modern digital techniques to enhance the instantaneous field-of-view by more than an order of magnitude. OWFA has unique advantages for contemporary investigations related to large scale structure, transient events and space weather watch. In this paper, we describe the RF subsystems, digitizers and fibre optic communication of OWFA and highlight some specific aspects of the system relevant for the observations planned during the initial operation.

  8. Wide field-of-view fluorescence imaging of coral reefs.

    Science.gov (United States)

    Treibitz, Tali; Neal, Benjamin P; Kline, David I; Beijbom, Oscar; Roberts, Paul L D; Mitchell, B Greg; Kriegman, David

    2015-01-13

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

  9. Parallax of Galactic Cepheids from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope: The Case of SS Canis Majoris

    CERN Document Server

    Casertano, Stefano; Anderson, Richard I; Bowers, J Bradley; Clubb, Kelsey I; Cukierman, Aviv R; Filippenko, Alexei V; Graham, Melissa L; MacKenty, John W; Melis, Carl; Tucker, Brad E; Upadhya, Gautam

    2016-01-01

    We present a high-precision measurement of the parallax for the 12-day Cepheid SS Canis Majoris, obtained via spatial scanning with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Spatial scanning enables astrometric measurements with a precision of 20-40 muas, an order of magnitude better than pointed observations. SS CMa is the second Cepheid targeted for parallax measurement with HST, and is the first of a sample of eighteen long-period >~ 10 days) Cepheids selected in order to improve the calibration of their period-luminosity relation and eventually permit a determination of the Hubble constant H_0 to better than 2%. The parallax of SS CMa is found to be 348 +/- 38 muas, corresponding to a distance of 2.9 +/- 0.3 kpc. We also present a refinement of the static geometric distortion of WFC3 obtained using spatial scanning observations of calibration fields, with a typical magnitude <~0.01 pixels on scales of 100 pixels.

  10. Texas Supernova Search: A Wide Field Search for Nearby SNe

    Science.gov (United States)

    Quimby, R. M.; Castro, F.; Gerardy, C. L.; Hoeflich, P.; Kannappan, S. J.; Mondol, P.; Sellers, M.; Wheeler, J. C.

    2005-12-01

    ROTSE-IIIb is one four robotic telescopes built by the University of Michigan to observe the prompt optical afterglows associated with gamma-ray bursts. At just 0.45m in diameter, it is the smallest research telescope at McDonald, but its 1.85 x 1.85 deg field of view and autonomous operation make it an excellent survey instrument for rare transient phenomena. We have been using ROTSE-IIIb for the past year to search for supernovae in nearby galaxy clusters such as the Virgo, Coma, and Ursa Major clusters. ROTSE-IIIb's wide field of view allows us to search the thousands of galaxies in these clusters, which cover hundreds of square degrees on the sky, in just a few tens of exposures. We can therefore observe all of these fields in a single night, and repeat the search every night. When we identify a new supernova candidate, we invoke our target of opportunity time on the neighboring 9.2m Hobby-Eberly Telescope (HET) the following night to obtain a spectrum. Because of the rolling search and the quick spectral turn-around possible with the HET, we are able to capture spectra of the earliest phases of the explosion. By combining this information with spectra taken at later epochs, we can construct a complete description of the explosion. Through this work we aim to better understand the physical conditions of supernova explosions, identify any systematic effects that may affect how Type Ia supernovae are calibrated as standard candles and used to probe cosmology, and also to better calibrate Type II supernovae as standard candles.

  11. WiFeS: the wide field spectrograph

    Science.gov (United States)

    Dopita, Michael A.; Waldron, Liam E.; McGregor, Peter; Conroy, Peter; Doolan, Matthew C.; Zhelem, Ross; Bloxham, Gabe; Saunders, Will; Jones, Damien; Pfitzner, Lee

    2004-09-01

    WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, precision spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-1000 nm wavelength region. It is currently under construction at the Research School of Astronomy and Astrophysics of the Australian National University (ANU), and will be mounted on the ANU 2.3m telescope at Siding Spring Observatory. It will provide a 25x31 arc sec field with 0.5 arc sec sampling along each of twenty five 31x1.0 arc sec slitlets. The output format is arranged to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions modes of 3000 and 7000 will be provided. The full spectral range is covered in a single exposure in the R=3000 mode, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope and atmosphere) that peaks above 30%. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize the scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.

  12. The SLUGGS Survey: The globular cluster systems of three early-type galaxies using wide-field imaging

    CERN Document Server

    Kartha, Sreeja S; Spitler, Lee R; Romanowsky, Aaron J; Arnold, Jacob A; Brodie, Jean P

    2013-01-01

    We present the results from a wide-field imaging study of globular cluster (GC) systems in three early-type galaxies. Combinations of Subaru/Suprime-Cam, CFHT/MegaCam and HST/WFPC2/ACS data were used to determine the GC system properties of three highly flattened galaxies NGC 720, NGC 1023 and NGC 2768. This work is the first investigation of the GC system in NGC 720 and NGC 2768 to very large galactocentric radius ($\\sim$ 100 kpc). The three galaxies have clear blue and red GC subpopulations. The radial surface densities of the GC systems are fitted with Sersic profiles, and detected out to 15, 8 and 10 galaxy effective radii respectively. The total number of GCs and specific frequency are determined for each GC system. The ellipticity of the red subpopulation is in better agreement with the host galaxy properties than is the blue subpopulation, supporting the traditional view that metal-rich GCs are closely associated with the bulk of their host galaxies' field stars, while metal-poor GCs reflect a distinct...

  13. Fluorescent Nanowire Ring Illumination for Wide-Field Far-Field Subdiffraction Imaging

    Science.gov (United States)

    Liu, Xiaowei; Kuang, Cuifang; Hao, Xiang; Pang, Chenlei; Xu, Pengfei; Li, Haifeng; Liu, Ying; Yu, Chao; Xu, Yingke; Nan, Di; Shen, Weidong; Fang, Yue; He, Lenian; Liu, Xu; Yang, Qing

    2017-02-01

    Here we demonstrate an active method which pioneers in utilizing a combination of a spatial frequency shift and a Stokes frequency shift to enable wide-field far-field subdiffraction imaging. A fluorescent nanowire ring acts as a localized source and is combined with a film waveguide to produce omnidirectional illuminating evanescent waves. Benefitting from the high wave vector of illumination, the high spatial frequencies of an object can be shifted to the passband of a conventional imaging system, contributing subwavelength spatial information to the far-field image. A structure featuring 70-nm-wide slots spaced 70 nm apart has been resolved at a wavelength of 520 nm with a 0.85 numerical aperture standard objective based on this method. The versatility of this approach has been demonstrated by imaging integrated chips, Blu-ray DVDs, biological cells, and various subwavelength 2D patterns, with a viewing area of up to 1 0 0 0 μ m2 , which is one order of magnitude larger than the previous far-field and full-field nanoscopy methods. This new resolving technique is label-free, is conveniently integrated with conventional microscopes, and can potentially become an important tool in cellular biology, the on-chip industry, as well as other fields requiring wide-field nanoscale visualization.

  14. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  15. Rotation Periods of Wide Binaries in the Kepler Field

    Science.gov (United States)

    Janes, K. A.

    2017-01-01

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period–color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.

  16. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.; /Washington U., Seattle, Astron. Dept.; Cooray, Asantha R.; /UC, Irvine; Covey, Kevin R.; /Harvard U.; Csabai, Istvan; /Eotvos U.; Ferguson, Henry C.; /Baltimore, Space Telescope Sci.; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Kantor, Jeffrey; /LSST Corp.; Kent, Stephen M.; /Fermilab; Knapp, G.R.; /Princeton U.; Myers, Steven T.; /NRAO, Socorro; Neilsen, Eric H., Jr.; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Harish-Chandra Res. Inst. /Caltech, IPAC /Potsdam, Max Planck Inst. /Harvard U. /Hawaii U. /UC, Berkeley, Astron. Dept. /Baltimore, Space Telescope Sci. /NOAO, Tucson /Carnegie Mellon U. /Chicago U., Astron. Astrophys. Ctr.

    2011-11-14

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  17. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.

    2009-03-01

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  18. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  19. PANGU: a wide field gamma-ray imager and polarimeter

    Science.gov (United States)

    Wu, X.; Walter, R.; Su, M.; Ambrosi, G.; Azzarello, P.; Böttcher, M.; Chang, J.; Chernyakova, M.; Fan, Y.; Farnier, C.; Gargano, F.; Grenier, I.; Hajdas, W.; Mazziotta, M. N.; Pearce, M.; Pohl, M.; Zdziarski, A.

    2016-07-01

    PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope with a wide field of view optimized for spectro-imaging, timing and polarization studies. It will map the gamma-ray sky from 10 MeV to a few GeV with unprecedented spatial resolution. This window on the Universe is unique to detect photons produced directly by relativistic particles, via the decay of neutral pions, or the annihilation or decay light from anti-matter and the putative light dark matter candidates. A wealth of questions can be probed among the most important themes of modern physics and astrophysics. The PANGU instrument is a pair-conversion gamma-ray telescope based on an innovative design of a silicon strip tracker. It is light, compact and accurate. It consists of 100 layers of silicon micro-strip detector of 80 x 80 cm2 in area, stacked to height of about 90 cm, and covered by an anticoincidence detector. PANGU relies on multiple scattering effects for energy measurement, reaching an energy resolution between 30-50% for 10 MeV - 1 GeV. The novel tracker will allow the first polarization measurement and provide the best angular resolution ever obtained in the soft gamma ray and GeV band.

  20. FRB Event Rate Predictions for the Ooty Wide Field Array

    Indian Academy of Sciences (India)

    Siddhartha Bhattacharyya; Apurba Bera; Somnath Bharadwaj; N. D. Ramesh Bhat; Jayaram N. Chengalur

    2017-03-01

    We developed a generic formalism to estimate the event rate and the redshift distribution of Fast Radio Bursts (FRBs) in our previous publication (Bera et al. 2016), considering FRBs are of an extragalactic origin. In this paper, we present (a) the predicted pulse widths of FRBs by considering two different scattering models, (b) the minimum total energy required to detect events, (c) the redshift distribution and (d) the detection rates of FRBs for the Ooty Wide Field Array (OWFA). The energy spectrum of FRBs is modelled as a power law with an exponent $-\\alpha$ and our analysis spans a range $-3\\leq \\alpha \\leq 5$. We find that OWFA will be capable of detecting FRBs with $\\alpha\\geq 0$. The redshift distribution and the event rates of FRBs are estimated by assuming two different energy distribution functions; a Delta function and a Schechter luminosity function with an exponent $-2\\le \\gamma \\le 2$. We consider an empirical scattering model based on pulsar observations (model I) as well as a theoretical model (model II) expected for the intergalactic medium. The redshift distributions peak at a particular redshift $z_p$ for a fixed value of α, which lie in the range $0.3\\leq z_p \\leq 1$ for the scattering model I and remain flat and extend up to high redshifts ($z\\lesssim 5$) for the scattering model II.

  1. Rotation Periods of Wide Binaries in the Kepler Field

    CERN Document Server

    Janes, K A

    2016-01-01

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period-color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapi...

  2. VizieR Online Data Catalog: HST and Magellan observations of Haumea system (Hastings+, 2016)

    Science.gov (United States)

    Hastings, D. M.; Ragozzine, D.; Fabrycky, D. C.; Burkhart, L. D.; Fuentes, C.; Margot, J.-L.; Brown, M. E.; Holman, M.

    2017-01-01

    The Hubble Space Telescope (HST) observations of the Haumea system comprised five HST orbits' worth of 100s exposures of the Wide Field Planetary Camera 2 from 2009 February 4 (Program 11971) and 10 HST orbits' worth of 44s exposures of the Wide Field Camera 3 from 2010 June 28 (Program 12243). This system was also observed on the night of UT 2009 June 2 with the Magellan Baade telescope at Las Campanas Observatory in Chile. We used the Raymond and Beverly Sackler Magellan Instant Camera (MagIC). Observations were taken from the beginning of the night until it was unobservable, for a total of ~5hr. We centered the system on one of the four quadrants defined by the instrument's four amplifiers. The seeing was constant during the observations and consistently close to 0.5'', smaller than Hi'iaka's separation of 1.4''. The SITe CCD detector has a pixel scale of 0.069''/pixel. We set the exposure times at 120s to avoid saturation and optimize readout time. The filter selected was Johnson-Cousins R. Standard calibrations were taken at the beginning and end of the night. The telescope guiding system ensured that the pointing was constant to within an FWHM over the course of the observations. Table1 presents the relative normalized photometry inferred from our observations. (1 data file).

  3. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kaviraj, S.; Crockett, R. M.; Silk, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Hathi, N. P.; McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Kimble, R. A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Disney, M. J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Physics and Astronomy, The Australian National University, ACT 2611 (Australia); Frogel, J. A. [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  4. HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385

    Science.gov (United States)

    Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2017-06-01

    We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.

  5. Stray-field-induced Faraday contributions in wide-field Kerr microscopy and -magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Markó, D.; Soldatov, I. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany); Tekielak, M. [Institute of Experimental Physics, University of Bialystok, Lipowa 41, Bialystok 15-424 Poland (Poland); Schäfer, R., E-mail: r.schaefer@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany)

    2015-12-15

    The magnetic domain contrast in wide-field Kerr microscopy on bulk specimens can be substantially distorted by non-linear, field-dependent Faraday rotations in the objective lens that are caused by stray-field components emerging from the specimen. These Faraday contributions, which were detected by Kerr-magnetometry on grain-oriented iron–silicon steel samples, are thoroughly elaborated and characterized. They express themselves as a field-dependent gray-scale offset to the domain contrast and in highly distorted surface magnetization curves if optically measured in a wide field Kerr microscope. An experimental method to avoid such distortions is suggested. In the course of these studies, a low-permeability part in the surface magnetization loop of slightly misoriented (110)-surfaces in iron–silicon sheets was discovered that is attributed to demagnetization effects in direction perpendicular to the sheet surface. - Highlights: • Magnetizing a finite sample in a Kerr microscope leads to sample-generated stray-fields. • They cause non-linear, field- and position-dependent Faraday rotations in the objective. • This leads to a modulation of the Kerr contrast and to distorted MOKE loops. • A method to compensate these Faraday rotations is presented.

  6. WISH: Wide-field Imaging Durvayor for High-redshift

    Science.gov (United States)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  7. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    CERN Document Server

    Kazemzadeh, Farnoud

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. Nanoscopy is often synonymous with high equipment costs and limited FOV. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images with resolving power below the pixel pitch of the sensor array as well as the wavelength of the probing light source, beyond the diffraction limit. Experimental results demonstrate, for the first time, a lensfree on-chip instrument successfully detecting 500 nm nanoparticles without any specialized or intricate sample preparation or the use of synthetic aperture- or lateral shift-based t...

  8. Wide-field telescopes with a Mangin mirror

    CERN Document Server

    Terebizh, V Yu

    2007-01-01

    Two all-spherical catadioptric optical systems with a Mangin mirror are described. The design A (aperture 500 mm, f/2.0) has flat field of view of 7 deg in diameter; the design B (aperture 1000 mm, f/1.7) has 10-deg flat field. Both designs show near-diffraction-limited images. The D_80 diameter for the design A in the integral waveband 0.45-0.85 mcm varies from 1''.3 on the optical axis up to 2''.2 at the edge of the field (6.2-10.7 mcm); the corresponding range of the D_80 diameter for the design B is 1''.5-1''.9 (12.4-16.2 mcm). The designs include simple glass types, mainly Schott N-BK7 and fused silica. In case of need, better images could be attained by a choice of other glass, aspherisation of some surfaces, etc.

  9. Characterizing the Atmospheres of the HR8799 Planets with HST/WFC3

    CERN Document Server

    Rajan, Abhijith; Soummer, Remi; Hagan, J Brendan; Patience, Jennifer L; Pueyo, Laurent; Choquet, Elodie; Konopacky, Quinn; Macintosh, Bruce; Marois, Christian

    2015-01-01

    We present results from a Hubble Space Telescope (HST) program characterizing the atmospheres of the outer two planets, in the HR8799 system. The images were taken over 15 orbits in three near-infrared medium-band filters - F098M, F127M and F139M - using the Wide Field Camera 3. One of the three filters is sensitive to water absorption band inaccessible from ground-based observations, providing a unique probe of the thermal emission from the atmospheres of these young giant planets. The observations were taken at 30 different spacecraft rolls to enable angular differential imaging, and the full data set was analyzed with the Karhunen-Loeve Image Projection (KLIP) routine, an advanced image processing algorithm adapted to work with HST data. To achieve the required high contrast at sub arcsecond resolution, we utilized the pointing accuracy of HST in combination with an improved pipeline designed to combine the dithered, angular differential imaging data with an algorithm designed to both improve the image res...

  10. Fiber Assignment in Next-generation Wide-field Spectrographs

    OpenAIRE

    Morales, Isaac; Montero-Dorta, Antonio D.; Azzaro, Marco; Prada, Francisco; Sanchez, Justo; Becerril, Santiago

    2011-01-01

    We present an optimized algorithm for assigning fibers to targets in next-generation fiber-fed multi-object spectrographs. The method, that we named draining algorithm, ensures that the maximum number of targets in a given target field is observed in the first few tiles. Using randomly distributed targets and mock galaxy catalogs we have estimated that the gain provided by the draining algorithm as compared to a random assignment can be as much as 2% for the first tiles. This would imply for ...

  11. Chip-based wide field-of-view nanoscopy

    Science.gov (United States)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  12. A purely reflective large wide-field telescope

    CERN Document Server

    Terebizh, V Yu

    2007-01-01

    The design of a fast three-mirror telescope with flat field of view 3 degree in diameter is proposed. The telescope does not include auxiliary lenses. As an example, we consider an f/1.25 reflector with the 8.4-m entrance pupil diameter and 6.5-m effective aperture. The RMS diameter of a star image varies from 0''.13 on the optical axis up to 0''.19 at the edge of the field (6.7-9.8 mcm); the corresponding range of the D_80 diameter is 0''.18-0''.27 (9.3-13.5 mcm). All three mirrors are even aspheres of low orders (6th for the primary and tertiary mirrors, and 8th -- for the secondary mirror) with zero conic constant. Deviations of the optical surfaces from the nearest (in some sense) spheres are 1.73 mm, 0.07 mm, and 0.55 mm for the primary, secondary and tertiary mirrors, respectively. The length of the telescope is 7.34 m.

  13. High-Speed and Wide-Field Photometry with TORTORA

    Directory of Open Access Journals (Sweden)

    G. Greco

    2010-01-01

    Full Text Available We present the photometric analysis of the extended sky fields observed by the TORTORA optical monitoring system. The technology involved in the TORTORA camera is based on the use of a fast TV-CCD matrix with an image intensifier. This approach can both significantly reduce the readout noise and shorten the focal length following to monitor relatively large sky regions with high temporal resolution and adequate detection limit. The performance of the system has been tested using the relative magnitudes of standard stars by means of long image sequences collected at different airmasses and at various intensities of the moon illumination. As expected from the previous laboratory measurements, artifact sources are negligible and do not affect the photometric results. The following analysis is based on a large sample of images acquired by the TORTORA instrument since July 2006.

  14. Towards wide-field high-resolution retinal imaging

    CERN Document Server

    Kellerer, Aglae

    2015-01-01

    Adaptive optical correction is an efficient technique to obtain high-resolution images of the retinal surface. A main limitation of adaptive optical correction, however, is the small size of the corrected image. For medical purposes it is important to increase the size of the corrected images. This can be done through composite imaging, but a major difficulty is then the introduction of reconstruction artifacts. Another approach is multi-conjugate adaptive optics. MCAO comes in two flavors. The star- oriented approach has been demonstrated on the eye and allows to increase the diameter of the corrected image by a factor of approximately 2-3. Difficulties in the tomographic reconstruction precludes the correction of larger fields. Here we have investigate the possibility to apply a layer-oriented MCAO approach to retinal imaging.

  15. HST image of Saturn's 'white spot'

    Science.gov (United States)

    1990-01-01

    Saturn's 'white spot' or cloud believed to be ammonia ice crystals recorded by the Hubble Space Telescope (HST) planetary camera in blue and infrared light. HST data was computer-processed improving the image sharpness.

  16. Fiber Assignment in Next-generation Wide-field Spectrographs

    CERN Document Server

    Morales, Isaac; Azzaro, Marco; Prada, Francisco; Sanchez, Justo; Becerril, Santiago

    2011-01-01

    We present an optimized algorithm for assigning fibers to targets in next-generation fiber-fed multi-object spectrographs. The method, that we named draining algorithm, ensures that the maximum number of targets in a given target field is observed in the first few tiles. Using randomly distributed targets and mock galaxy catalogs we have estimated that the gain provided by the draining algorithm as compared to a random assignment can be as much as 2% for the first tiles. This would imply for a survey like BigBOSS saving for observation several hundred thousand objects or, alternatively, reducing the covered area in ~350 sq. deg. An important advantage of this method is that the fiber collision problem can be solved easily and in an optimal way. We also discuss additional optimizations of the fiber positioning process. In particular, we show that allowing for rotation of the focal plane can improve the efficiency of the process in ~3.5-4.5% even if only small adjustments are permitted (up to 2 deg). For instru...

  17. Wide-field Raman imaging for bone detection in tissue.

    Science.gov (United States)

    Papour, Asael; Kwak, Jin Hee; Taylor, Zach; Wu, Benjamin; Stafsudd, Oscar; Grundfest, Warren

    2015-10-01

    Inappropriate bone growth in soft tissue can occur after trauma to a limb and can cause a disruption to the healing process. This is known as Heterotopic Ossification (HO) in which regions in the tissue start to mineralize and form microscopic bone-like structures. These structures continue to calcify and develop into large, non-functional bony masses that cause pain, limit limb movement, and expose the tissue to reoccurring infections; in the case of open wounds this can lead to amputation as a result of a failed wound. Both Magnetic Resonance Imaging (MRI) and X-ray imaging have poor sensitivity and specificity for the detection of HO, thus delaying therapy and leading to poor patient outcomes. We present a low-power, fast (1 frame per second) optical Raman imaging system with a large field of view (1 cm(2)) that can differentiate bone tissue from soft tissue without spectroscopy, this in contrast to conventional Raman microscopy systems. This capability may allow for the development of instrumentation which permits bedside diagnosis of HO.

  18. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and Latest Data on the Remaining Clusters

    Science.gov (United States)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Grogin, Norman A.; Robberto, Massimo; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-01-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including a total of 24 separate cumulative-depth data releases during each epoch, as well as full-depth version 1.0 releases at the end of each completed epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The resulting high-level science products are delivered via the Mikulski Archive for Space Telescopes (MAST) to the community on a rapid timescale to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  19. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and for the Last 2 Clusters Currently in Progress

    Science.gov (United States)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Sunnquist, Ben; Grogin, Norman A.; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-06-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress, with the first epoch for each having been completed. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth v0.5 data releases during each epoch, as well as full-depth version 1.0 releases after the completion of each epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the

  20. Fibre assignment in next-generation wide-field spectrographs

    Science.gov (United States)

    Morales, Isaac; Montero-Dorta, Antonio D.; Azzaro, Marco; Prada, Francisco; Sánchez, Justo; Becerril, Santiago

    2012-01-01

    We present an optimized algorithm for assigning fibres to targets in next-generation fibre-fed multi-object spectrographs. The method, which we have called the draining algorithm, ensures that the maximum number of targets in a given target field is observed in the first few tiles. Using randomly distributed targets and mock galaxy catalogues, we have estimated that the gain provided by the draining algorithm, compared to a random assignment, can be as much as 2 per cent for the first tiles. For a survey such as the Baryon Oscillation Spectroscopic Survey (BigBOSS), this would imply saving for observation several hundred thousand objects or, alternatively, reducing the covered area in ˜350 deg2. An important advantage of this method is that the fibre collision problem can be solved easily and in an optimal way. We also discuss the additional optimizations of the fibre-positioning process. In particular, we show that if we allow for the rotation of the focal plane, we can improve the efficiency of the process by ˜3.5-4.5 per cent, even if only small adjustments are permitted (up to 2°). For instruments that allow large rotations of the focal plane, the expected gain increases to ˜5-6 per cent. Therefore, these results strongly support the use of focal plane rotation in future spectrographs, as far as the efficiency of the fibre-positioning process is concerned. Finally, we discuss the implications of our optimizations and provide some basic hints for an optimal survey strategy, based on the number of targets per positioner.

  1. WISE: The Wide-field Infrared Survey Explorer

    Science.gov (United States)

    Eisenhardt, Peter R.; Wright, E. L.; Benford, D.; Blain, A.; Cohen, M.; Cutri, R.; Gautier, T. N.; Jarrett, T.; Kirkpatrick, J. D.; Leisawitz, D.; Lonsdale, C.; Mainzer, A.; Mather, J.; McLean, I.; McMillan, R.; Mendez, B.; Padgett, D.; Ressler, M.; Skrutskie, M.; Stanford, S. A.; Walker, R.

    2009-01-01

    WISE will map the entire sky at 3.3, 4.7, 12 and 23 microns with sensitivities of 0.12, 0.16. 0.65, and 2.6 mJy. WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and detect most main belt asteroids larger than 3 km. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 rocket, rotating at a constant rate while a scan mirror freezes the line of sight during each exposure, covering the sky in 6 months following a one month checkout. Orbit to orbit overlap provides 8 or more exposures at each location. The instrument, provided by the Space Dynamics Laboratory, includes an all-reflective aluminum telescope with a 40 cm primary built by SSG-Tinsley, a solid hydrogen cryostat built by Lockheed-Martin's Advanced Technology Center, and 1024x1024 pixel Si:As and HgCdTe arrays built by DRS and Teledyne. Dichroic beamsplitters allow simultaneous images in the four bands over a 47'x47' field of view with 5" resolution to be obtained every 11 seconds. Ball Aerospace is providing the spacecraft, including a 500W fixed solar array, Li-ion battery, two star trackers, reaction wheels, and torque rods. The 50 GB per day of images are losslessly compressed, stored in flash memory, and downlinked at 100 Mbps four times per day using a fixed antenna and TDRSS satellites. The Infrared Processing and Analysis Center will process the data and deliver the image atlas and source catalog, with a preliminary release 6 months after the survey, and a final release 2 years after the survey. JPL manages the project for UCLA PI Ned Wright, and conducts mission operations. Education and Public Outreach is provided by UC Berkeley's Space Science Laboratory. WISE hardware is presently being integrated and tested, with launch scheduled in November 2009.

  2. UVUDF: Ultraviolet Imaging of the Hubble Ultradeep Field with Wide-field Camera 3

    CERN Document Server

    Teplitz, Harry I; Kurczynski, Peter; Bond, Nicholas A; Grogin, Norman; Koekemoer, Anton M; Atek, Hakim; Brown, Thomas M; Coe, Dan; Colbert, James W; Ferguson, Henry C; Finkelstein, Steven L; Gardner, Jonathan P; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J; Lee, Kyoung-Soo; de Mello, Duilia F; Ravindranath, Swara; Ryan, Russell E; Siana, Brian D; Scarlata, Claudia; Soto, Emmaris; Voyer, Elysse N; Wolfe, Arthur M

    2013-01-01

    We present an overview of a 90-orbit Hubble Space Telescope treasury program to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (i) Investigate the episode of peak star formation activity in galaxies at 1

  3. VI HST photometry of VV124 = UGC4879 (Bellazzini+, 2011)

    NARCIS (Netherlands)

    Bellazzini, M.; Perina, S.; Galleti, S.; Oosterloo, T.

    Magnitudes (in the ACS-WFC VEGAMAG system), positions and crowding parameter (CRO) for 69795 stars in the considered HST ACS-WFC field (dwarf galaxy VV124). In the paper the analysis is limited to the subsample of 44894 stars having CRO

  4. Evolution of Normal Galaxies HST Morphologies and Deep Spectroscopy

    CERN Document Server

    Ellis, R

    1996-01-01

    I review progress in understanding the evolution of normal field and cluster galaxies through the combination of HST imaging and ground-based spectroscopy. These data suggest that the bulk of the star formation producing the present-day galaxy population occurred at accessible redshifts, $z$1 Universe. Some possible approaches are briefly discussed.

  5. Optical Design of the WFIRST Phase-A Wide Field Instrument

    Science.gov (United States)

    Pasquale, Bert A.; Marx, Catherine T.; Gao, Guangjun; Armani, Nerses; Casey, Thomas

    2017-01-01

    The WFIRST Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq degrees FOV at 0.11” pixel scale to the Wide Field Instrument, operating between 0.48-2.0 micrometers, including a spectrograph mode (1.0-2.0 micrometers). An Integral Field Channel provides 2-D discrete spectroscopy at 0.15” & 0.3” sampling.

  6. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    Energy Technology Data Exchange (ETDEWEB)

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Atek, Hakim [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Giavalisco, Mauro [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Gronwall, Caryl [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Ravindranath, Swara, E-mail: hit@ipac.caltech.edu [Inter-University Centre for Astronomy and Astrophysics, Pune (India); and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  7. High Resolution HST Images of Pluto and Charon

    Science.gov (United States)

    1994-05-01

    the physical properties of the two bodies, first of all their composition, surface structure and possible atmospheres. The analysis of data from a facility as complex as the Hubble Space Telescope is very demanding, and involves experts in many different fields: planetary astronomy, instrument technology, numerical image restoration, and spacecraft engineering. It is therefore not surprising that this investigation is expected to last a long time yet. However, while still in its preliminary stages, it already now appears to indicate the presence of areas of different reflectivity on the surface of Pluto. By a comparison of HST images obtained at two different wavelengths (i.e., in ultraviolet and visual light), the team members hope that it will become possible to construct rough maps of the planetary surface and perhaps also to answer the long-standing question of whether or not there is an atmosphere around Pluto. Notes: [1] This investigation is carried out at the Space Telescope European Coordinating Facility, which is located at the European Southern Observatory as part of a collaboration with the European Space Agency, and also involves other institutes in Europe and the U.S.A. The team of astronomers is headed by Rudolf Albrecht (ST-ECF), and includes Hans-Martin Adorf and Richard Hook (ST-ECF), Alessandra Gemmo and Olivier Hainaut (ESO), Cesare Barbieri and Gabriele Corrain (Osservatorio Astronomico di Padova, Italy), Chris Blades, Perry Greenfield and William Sparks (Space Telescope Science Institute, Baltimore, Maryland, U.S.A.) and David Tholen (Institute for Astronomy, University of Hawaii, U.S.A.). [2] The photo is available to the media from the ESO Information Service (address below) as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. Figure Caption Hubble Portrait of the "Double Planet" Pluto & Charon This is the clearest view yet of the distant

  8. HST Observations of the Moon

    Science.gov (United States)

    Storrs, A. D.; Garner, C. J.; McIntosh, C. M.; Landis, R. R.; Schultz, A. B.

    2005-12-01

    Hubble Space Telescope (HST) observed the Moon in August 2005, using the High Resolution Camera (HRC) of the Advanced Camera for Surveys (ACS) (proposal ID 10719, PI Garvin). Three sites were observed: the Apollo 15 and 17 landing sites, and Aristarchus crater. Four filters were used: the F658N in the red, the F502N in the visible, the F344N in the UV, and the F250W in the vacuum UV. HST affords spatial resolution of about 100m on the Moon, as well as access to the vacuum UV, which are impossible from ground based observations. Tracking was necessarily done under gyro control and so some image drift occurred between and during exposures. We present HST data that has been processed to remove instrumental distortion and drift during the exposures. We use the MISTRAL image restoration algorithm (Mugnier et al. 2004) and a trailed point spread function to minimize the effects of image motion. We will make mosaics of data in individual filters and where there is spatial overlap between the mosaics, present maps showing both the relative age of the surface material, as well as its overall composition. Mugnier et al. (2004): "MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images", JOSA A, vol 21 no. 10, pp. 1841-1854

  9. Wide-field wide-band interferometric imaging:The WB A-Projection and hybrid algorithms

    CERN Document Server

    Bhatnagar, S; Golap, K

    2013-01-01

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper we present the Wide-Band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the Multi-term Multi Frequency Synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image ...

  10. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  11. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    CERN Document Server

    Basden, A G; Bharmal, N A; Bitenc, U; Brangier, M; Buey, T; Butterley, T; Cano, D; Chemla, F; Clark, P; Cohen, M; Conan, J -M; de Cos, F J; Dickson, C; Dipper, N A; Dunlop, C N; Feautrier, P; Fusco, T; Gach, J L; Gendron, E; Geng, D; Goodsell, S J; Gratadour, D; Greenaway, A H; Guesalaga, A; Guzman, C D; Henry, D; Holck, D; Hubert, Z; Huet, J M; Kellerer, A; Kulcsar, C; Laporte, P; Roux, B Le; Looker, N; Longmore, A J; Marteaud, M; Martin, O; Meimon, S; Morel, C; Morris, T J; Myers, R M; Osborn, J; Perret, D; Petit, C; Raynaud, H; Reeves, A P; Rousset, G; Lasheras, F Sanchez; Rodriguez, M Sanchez; Santos, J D; Sevin, A; Sivo, G; Stadler, E; Stobie, B; Talbot, G; Todd, S; Vidal, F; Younger, E J

    2016-01-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  12. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  13. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Science.gov (United States)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  14. Wide-field monitoring strategy for the study of fast optical transients

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  15. Gravimetric monitoring of the first field-wide steam injection in a fractured carbonate field in Oman - A feasibility study

    NARCIS (Netherlands)

    Glegola, M.; Ditmar, P.; Vossepoel, F.; Arts, R.; Al-Kindy, F.; Klees, R.

    2015-01-01

    Gas-Oil Gravity Drainage is to be enhanced by steam injection in a highly fractured, low permeability carbonate field in Oman. Following a successful pilot, field-wide steam injection is being implemented, first of this type in the world. A dedicated monitoring program has been designed to track cha

  16. Exploiting speckle correlations to improve the resolution of wide-field fluorescence microscopy

    CERN Document Server

    Yilmaz, Hasan; Bertolotti, Jacopo; Lagendijk, Ad; Vos, Willem L; Mosk, Allard P

    2014-01-01

    Fluorescence microscopy is indispensable in nanoscience and biological sciences. The versatility of labeling target structures with fluorescent dyes permits to visualize structure and function at a subcellular resolution with a wide field of view. Due to the diffraction limit, conventional optical microscopes are limited to resolving structures larger than 200 nm. The resolution can be enhanced by near-field and far-field super-resolution microscopy methods. Near-field methods typically have a limited field of view and far-field methods are limited by the involved conventional optics. Here, we introduce a combined high-resolution and wide-field fluorescence microscopy method that improves the resolution of a conventional optical microscope by exploiting correlations in speckle illumination through a randomly scattering high-index medium: Speckle correlation resolution enhancement (SCORE). As a test, we collect two-dimensional fluorescence images of 100-nm diameter dye-doped nanospheres. We demonstrate a decon...

  17. UV-dropout Galaxies in the GOODS-South Field from WFC3 Early Release Science Observations

    OpenAIRE

    Hathi, N. P.; Ryan Jr, R. E.; Cohen, S H; Yan, H; Windhorst, R. A.; McCarthy, P. J.; O'Connell, R.W.; Koekemoer, A M; Rutkowski, M. J.; Balick, B.; Bond, H.E.; Calzetti, D; Disney, M. J.; Dopita, M. A.; Frogel, Jay A.

    2010-01-01

    We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys (ACS) optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z~1-3. These new HST/WFC3 observations were taken over 50 sq.arcmin in the GOODS-South field as a part of the Early Release Science program. The uniqueness o...

  18. Optical Design for the Off-axis Reflective Optics with Wide Field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Reflective optics with wide field of view has been applied more and more widely in EUVL or space optics, and also plays an important role in promoting scientific and technological research. Among the reflective optics, the off-axis reflective optics is the most hopeful solution to the ever-highest demands of these applications. This paper gives the requirements of both the above mentioned applications and the similarities and differences between these two kinds of optical systems. Finally, a design example of off-axis reflective optics with wide field of view is presented and described.

  19. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    Science.gov (United States)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  20. VizieR Online Data Catalog: >20yrs of HST obs. of Cepheids in SNIa host gal. (Hoffmann+, 2016)

    Science.gov (United States)

    Hoffmann, S. L.; Macri, L. M.; Riess, A. G.; Yuan, W.; Casertano, S.; Foley, R. J.; Filippenko, A. V.; Tucker, B. E.; Chornock, R.; Silverman, J. M.; Welch, D. L.; Goobar, A.; Amanullah, R.

    2017-01-01

    HST observations of Cepheid variables (both archival or newly obtained) span more than two decades (1994-2016; see table 1). The earliest Cepheid observations we analyzed were obtained with the Wide Field and Planetary Camera 2 (WFPC2) as part of the initial efforts to measure H0 with HST (Freedman+ 2001ApJ...553...47F; Sandage+ 2006ApJ...653..843S) and were later used by Freedman+ (2012ApJ...758...24F) to reach beyond the LMC for the Carnegie Hubble Project. We also re-analyzed observations obtained in previous phases of our project (Riess+ 2009, J/ApJS/183/109; 2011, J/ApJ/730/119) with the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) and/or the Wide Field Camera 3 (WFC3) Ultraviolet and Visible Channel (UVIS). Finally, we obtained new observations of nine SN Ia hosts using WFC3. We obtained the majority of our optical images with these modern cameras, 113 and 132 unique epochs with ACS and WFC3, respectively, while WFPC2 contributes a smaller fraction with 67 epochs. (6 data files).

  1. HST LEGUS - Legacy Extragalactic UV Survey

    Science.gov (United States)

    Calzetti, Daniela; LEGUS Team

    2017-01-01

    LEGUS (Legacy ExtraGalactic UV Survey) is a cycle 21 Hubble Space Telescope Treasury program designed to provide a definite characterization of the links between star formation on two fundamental scales: those of individual stars, stellar clusters and associations on parsec scales, and of galaxy disks on kilo-parsec scales.In order to achieve this goal, LEGUS has obtained multi-color images of 50 nearby star-forming galaxies, in the distance range 3-16 Mpc. Wavelength coverage spans five bands (NUV, U, B, V, and I) by combining new WFC3 observations with archival ACS imaging data, when available. The galaxies were carefully selected to sample the full range of galaxy mass, morphology, star formation rate (SFR), sSFR (specific SFR=SFR/mass), metallicity, internal structure (rings, bars), and interaction state found in the Local Volume where HST can resolve and age-date young stellar populations on parsec scales. Many of the galaxies are well-known, iconic ones, with a wealth of additional information available in a number of archives. The multi-color HST images are being used to secure complete inventories of the young stars, star clusters, and structures of the galaxies, together with the characterization of their ages, masses, and extinctions.I will briefly introduce a few highlights on the scientific results obtained so far by the LEGUS team, in addition to describing the high-level science products the team plans to release to the community, in order to enable a wide range of additional scientific applications.

  2. Wayne - A Simulator for HST WFC3 IR Grism Spectroscopy

    CERN Document Server

    Varley, R

    2015-01-01

    Wayne is an algorithm that simulates Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) grism spectroscopic frames including sources of noise and systematics. It can simulate both staring and spatial scan modes, and observations such as the transit and eclipse of exoplanets. Unlike many other instrument simulators, the focus of Wayne is on creating frames with realistic systematics in order to test the effectiveness of different data analysis methods in a variety of different scenarios. This approach is critical for method validation and optimising observing strategies. In this paper we describe Wayne's implementation for WFC3 in the near-infrared channel with the G141 and G102 grisms. We compare the simulations to real data, obtained for the exoplanet HD 209458b to verify the accuracy of the simulation. The simulated data described in this paper is available now at www.ucl.ac.uk/exoplanets/wayne/. We plan to release this tool to the community as open source software in the near future.

  3. A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system

    CERN Document Server

    Pota, Vincenzo; Bridges, Terry; Strader, Jay; Romanowsky, Aaron J; Villaume, Alexa; Jennings, Zachary; Faifer, Favio R; Pastorello, Nicola; Forbes, Duncan A; Campbell, Ainsley; Usher, Christopher; Foster, Caroline; Spitler, Lee R; Caldwell, Nelson; Forte, Juan C; Norris, Mark A; Zepf, Stephen E; Beasley, Michael A; Gebhardt, Karl; Hanes, David A; Sharples, Ray M; Arnold, Jacob A

    2015-01-01

    We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently-obtained HST/ACS mosaic, and new Subaru/Suprime-Cam and archival CFHT/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/DEIMOS, Gemini/GMOS and MMT/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous datasets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC ...

  4. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    Science.gov (United States)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  5. Photometric redshifts for the CFHTLS T0004 Deep and Wide fields

    CERN Document Server

    Coupon, J; Kilbinger, M; McCracken, H J; Mellier, Y; Arnouts, S; Bertin, E; Hudelot, P; Schultheis, M; Le Fèvre, O; Le Brun, V; Guzzo, L; Bardelli, S; Zucca, E; Bolzonella, M; Garilli, B; Zamorani, G; Zanichelli, A

    2008-01-01

    We compute photometric redshifts based on the template-fitting method in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u*,g',r',i',z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three Wide fields. Our photometric redshifts are calibrated with and compared to 16,983 high-quality spectroscopic redshifts from several surveys. We find a dispersion of 0.028 and an outlier rate of 3.5% in the Deep field at i'AB < 24 and a dispersion of 0.036 and an outlier rate of 2.8% in the Wide field at i'AB < 22.5. Beyond i'AB = 22.5 in the Wide field the number of outliers rises from 5% to 10% at i'AB<23 and i'AB<24 respectively. For the Wide sample, we find the systematic redshift bias keeps below 1% to i'AB < 22.5, whereas we find no significant bias in the Deep field. We investigated the effect of tile-to-tile photometric variations and demonstrate that the accuracy of our photometric redshifts is redu...

  6. Three dimensional image reconstruction based on a wide-field optical coherence tomography system

    Science.gov (United States)

    Feng, Yinqi; Feng, Shengtong; Zhang, Min; Hao, Junjun

    2014-07-01

    Wide-field optical coherence tomography has a promising application for its high scanning rate and resolution. The principle of a wide-field optical coherence tomography system is described, and 2D images of glass slides are reconstructed using eight-stepped phase-shifting method in the system. Using VC6.0 and OpenGL programming, 3D images are reconstructed based on the Marching Cube algorithm with 2D image sequences. The experimental results show that the depth detection and three-dimensional tomography for translucent materials could be implemented efficiently in the WFOCT system.

  7. Wide field monitoring of the X-ray sky using Rotation Modulation Collimators

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren

    1995-01-01

    Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intrigui...... an RMC-system of corresponding physical dimensions. But due to its simplicity, low data rate, and ability to work on spin stabilized (micro)satellites, the RMC wide field monitor may still have a role to play in the X-ray astronomy of the future....

  8. Multi-beaming propertieis of reflector antennas used in radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The given work is devoted to the modern developments in the field of radio astronomy instrumentation. In particular, the sensitivity of the multi-beam reflector radio telescope which is fed by phased array (PAF) is considered. Using PAF as reflector feed allows obtaining wide and continuous field of view (FOV) of the telescope. This has several advantages with compare to horn-cluster feeds which are described in this work. The sensitivity inside whole FOV was computed using three different beamforming schemes.

  9. An Overview of Wide-Field-Of-View Optical Designs for Survey Telescopes

    Science.gov (United States)

    2010-09-01

    aberrations while trying not to introduce chromatic aberration . For wide fields of view, the designs can become quite complex and expensive...published details of a refractive aberration corrector for the Ritchey- Chretien optical system [5]. Before this time, refractive correctors were not...well known, but were in use as chromatic correctors and field flatteners on refractor telescopes [2, 6]. The 1931 introduction of the Schmidt Camera

  10. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    CERN Document Server

    Balcells, Marc; Carter, David; Dalton, Gavin B; Trager, Scott C; Feltzing, Sofia; Verheijen, Marc A W; Jarvis, Matt; Percival, Will; Abrams, Don C; Agocs, Tibor; Brown, Anthony G A; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J; McLure, Ross; Peletier, Reynier F; Perez-Fournon, Ismael; Sharples, Ray M; Tosh, Ian A J; Trujillo, Ignacio; Walton, Nic; Westfall, Kyle B

    2010-01-01

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requ...

  11. Herschel-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimeter galaxies

    CERN Document Server

    Negrello, M; Dye, S; da Cunha, E; Serjeant, S; Fleuren, S; Bussmann, R S; Cooray, A; Dannerbauer, H; Gonzalez-Nuevo, J; Lapi, A; Omont, A; Amber, S; Auld, R; Baes, M; Buttiglione, S; Cava, A; Danese, L; Dariush, A; De Zotti, G; Dunne, L; Eales, S; Fritz, J; Ibar, E; Ivison, R; Kim, S; Maddox, S; Michalowski, M J; Pascale, E; Pohlen, M; Rigby, E; Rowlands, K; Smith, D J B; Sutherland, W; Temi, P; Wardlow, J

    2013-01-01

    We report on deep near-infrared observations obtained with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formation rates of approximately 400 to 2000 M_sol/yr, with approximately (6-25)x10^10 M_sol of their baryonic mass already turned into stars. At these rates o...

  12. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  13. Exploiting speckle correlations to improve the resolution of wide-field fluorescence microscopy

    NARCIS (Netherlands)

    Yilmaz, H.; Putten, van E.G.; Bertolotti, J.; Lagendijk, A.; Vos, W.L.; Mosk, A.P.

    2014-01-01

    Fluorescence microscopy is indispensable in nanoscience and biological sciences. The versatility of labeling target structures with fluorescent dyes permits to visualize structure and function at a subcellular resolution with a wide field of view. Due to the diffraction limit, conventional optical m

  14. Faint Tidal Features in Galaxies within the Canada-France-Hawaii Telescope Legacy Survey Wide Fields

    CERN Document Server

    Atkinson, Adam M; Ferguson, Annette M N

    2013-01-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous M_r10^10.5 M_sun, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  15. Interferometric imaging with the 32 element Murchison Wide-field Array

    CERN Document Server

    Ord, S M; Wayth, R B; Greenhill, L J; Bernardi, G; Gleadow, S; Edgar, R G; Clark, M A; Allen, G; Arcus, W; Benkevitch, L; Bowman, J D; Briggs, F H; Bunton, J D; Burns, S; Cappallo, R J; Coles, W A; Corey, B E; deSouza, L; Doeleman, S S; Derome, M; Deshpande, A; Emrich, D; Goeke, R; Gopalakrishna, M R; Herne, D; Hewitt, J N; Kamini, P A; Kaplan, D L; Kasper, J C; Kincaid, B B; Kocz, J; Kowald, E; Kratzenberg, E; Kumar, D; Lonsdale, C J; Lynch, M J; McWhirter, S R; Madhavi, S; Matejek, M; Morales, M F; Morgan, E; Oberoi, D; Pathikulangara, J; Prabu, T; Rogers, A E E; Roshi, A; Salah, J E; Schinkel, A; Shankar, N Udaya; Srivani, K S; Stevens, J; Tingay, S J; Vaccarella, A; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C

    2010-01-01

    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.

  16. The XMM-Newton wide-field survey in the COSMOS field: I. Survey description

    CERN Document Server

    Hasinger, G; Brunner, H; Brusa, M; Comastri, A; Elvis, M; Finoguenov, A; Fiore, F; Franceschini, A; Gilli, R; Griffiths, R E; Lehmann, I; Mainieri, V; Matt, G; Matute, I; Miyaji, T; Molendi, S; Paltani, S; Sanders, D B; Scoville, N Z; Tresse, L; Urry, C M; Vettolani, P; Zamorani, G

    2006-01-01

    We present the first set of XMM-Newton EPIC observations in the 2 square degree COSMOS field. The strength of the COSMOS project is the unprecedented combination of a large solid angle and sensitivity over the whole multiwavelength spectrum. The XMM-Newton observations are very efficient in localizing and identifying active galactic nuclei (AGN) and clusters as well as groups of galaxies. One of the primary goals of the XMM-Newton Cosmos survey is to study the co-evolution of active galactic nuclei as a function of their environment in the Cosmic web. Here we present the log of observations, images and a summary of first research highlights for the first pass of 25 XMM-Newton pointings across the field. In the existing dataset we have detected 1416 new X-ray sources in the 0.5-2, 2-4.5 and 4.5-10 keV bands to an equivalent 0.5-2 keV flux limit of 7x10-16 erg cm-2 s-1. The number of sources is expected to grow to almost 2000 in the final coverage of the survey. From an X-ray color color analysis we identify a ...

  17. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Will [Australian Astron. Observ.; Gillingham, Peter [Australian Astron. Observ.; Smith, Greg [Australian Astron. Observ.; Kent, Steve [Fermilab; Doel, Peter [University Coll. London

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  18. Novel X-ray telescopes for wide-field X-ray monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudec, R. [Academy of science of Czech Republic, Ondrejov (Czech Republic); Inneman, A. [Centre for advanced X-ray technologies Reflex sro, Prague (Czech Republic); Pina, L.; Sveda, L. [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Science

    2005-07-15

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science.

  19. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  20. PPAK Wide field Integral Field Spectroscopy of NGC 628 III. Stellar population properties

    CERN Document Server

    Sanchez-Blazquez, Patricia; Diaz, Angeles; Sanchez, Sebastian

    2013-01-01

    We present a stellar population analysis of the nearby, face-on, SA(s)c galaxy, NGC628, which is part of the PPAK IFS Nearby Galaxies Survey (PINGS). The data cover a field of view of ~6 arcmin in diameter with a sampling of $\\sim$2.7 arcsec per spectrum and a wavelength range (3700-7000A). We apply spectral inversion methods to derive 2-dimensional maps of star formation histories and chemical enrichment. We present maps of the mean (luminosity- and mass-weighted) age and metallicity that reveal the presence of structures such as a nuclear ring, previously seen in molecular gas. The disk is dominated in mass by an old stellar component at all radii sampled by our data, while the percentage of young stars increase with radius. The mean stellar age and metallicity profiles have a two defined regions, an inner one with flatter gradients (even slightly positive) and an external ones with a negative, steeper one, separated at $\\sim$60 arcsec. This break in the profiles is more prominent in the old stellar compone...

  1. Magnetic Field Configuration at the Galactic Center Investigated by Wide Field Near-Infrared Polarimetry

    CERN Document Server

    Nishiyama, Shogo; Hatano, Hirofumi; Kanai, Saori; Kurita, Mikio; Sato, Shuji; Matsunaga, Noriyuki; Nagata, Tetsuya; Nagayama, Takahiro; Kandori, Ryo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Sato, Yaeko; Hough, James H; Sugitani, Koji; Okuda, Haruyuki

    2008-01-01

    We present a polarimetric map of a 20'x20' area toward the Galactic center. The polarization of point sources has been measured in the J, H, and Ks bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m telescope IRSF. One percent or better accuracy of polarization degree is achieved for sources with J<14.5, H<13.5, and Ks<12.0. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we have obtained a polarization originating from magnetically aligned dust grains at the central region of our Galaxy of at most 1-2 kpc. The distribution of the position angles shows a peak at about 20 deg, nearly parallel to the Galactic plane, suggesting a toroidal magnetic configuration. The derived direction of the magnetic field is in good agreement with that obtained from far-infrared/submillimeter observations, which detect polarized thermal emission from dust in the molecular clouds at the Galactic center. Our results show that by subtracting foreground co...

  2. Field-balanced adaptive optics error function for wide field-of-view space-based systems

    Science.gov (United States)

    McComas, Brian K.; Friedman, Edward J.

    2002-03-01

    Adaptive optics are regularly used in ground-based astronomical telescopes. These applications are characterized by a very narrow (approximately 1 arcmin) field of view. For economic reasons, commercial space-based earth-observing optical systems must have a field of view as large as possible. We develop a new error function that is an extension of conventional adaptive optics for wide field-of-view optical systems and show that this new error function enables diffraction-limited performance across a large field of view with only one deformable mirror. This new error function allows for reprogramming of aberration control algorithms for particular applications by the use of an addressable weighting function.

  3. HST Polarimetry of the 3C 273 Jet

    Science.gov (United States)

    Clautice, Devon; Perlman, Eric S.; Sparks, William B.; Biretta, John A.; O'Dea, Christopher P.; Baum, Stefi Alison; Cheung, Chi C.; Birkinshaw, Mark; Worrall, Diana M.; Martel, Andre; Urry, C. Megan; Stawarz, Lukasz; Coppi, Paolo S.; Uchiyama, Yasunobu; Cara, Mihai; Meisenheimer, Klaus; Begelman, Mitchell C.

    2017-01-01

    We present preliminary results using HST polarimetry of the jet of 3C 273. Polarization is a critical parameter for understanding jet flows, and has proven essential in characterizing the physics of FR I jets; high-quality HST polarimetry has been done for just two other FR II jets previously. Our recent work on two quasar jets, where we measured high optical polarization in the brightest X-ray knots, has favored the synchrotron emission model over the alternative IC/CMB model for their optical to X-ray emission. These new observations of 3C 273 allow for the determination of the magnetic field structure and confirmation of which emission mechanisms are operating to create its optical to X-ray emission, and will allow us to greatly advance modeling efforts for this jet and nail down its kinetic power, a key unknown parameter for understanding quasars and their cosmological effects.

  4. Technical Consultation of the Hubble Space Telescope (HST) System Health Assessment: Analysis of HST Health

    Science.gov (United States)

    Gentz, Steven J.; Heard, Brent N.; Hodson, Robert F.; Pettit, Duane H.; Pandolf, John E.; Azzolini, John D.; Dennehy, Cornelius J.; Farley, Rodger E.; Kirchman, Frank J.; Spidaliere, Peter D.

    2005-01-01

    The NESC conducted an abridged independent examination of available information and personnel interviews to evaluate the current and anticipated state of the spacecraft subsystems and the parameters that describe the HST's health. These examinations included the projected timeliness of a robotic SM and whether the GSFC baseline concept is likely to provide the capability to extend the useful scientific life of the HST by an additional 5 years. The NESC team collected a broad spectrum of pertinent HST Program analyses, reports, briefings, and the results of the IPAO and the Aerospace Corporation AOA assessments as they relate to the degradation of the HST s health. This review included the state of the HST subsystems having the potential to impact the viability of the HST, but will not be serviced under the baseline robotic SM.

  5. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  6. On the Atmospheric Extinction Reduction Procedure in Multiband Wide-Field Photometric Surveys

    CERN Document Server

    Zakharov, A; Biryukov, A; Kroussanova, N; Prokhorov, M; Beskin, G; Karpov, S; Bondar, S; Ivanov, E; Perkov, A; Sasyuk, V

    2015-01-01

    We propose an improved method for the atmospheric extinction reduction within optical photometry. Our method is based on the simultaneous multicolor observations of photometric standards. Such data are now available within the modern wide-field sky surveys and contain a large amount of information about instant atmospheric conditions. So, it became possible to estimate the extinction parameters on the basis of a quite short observational dataset and, hence, to trace the rapid stars twinkling accurately. Having been developed for a new MiniMegaTORTORA observational system, the proposed method can be adopted for a wide range of modern observational programs.

  7. The postcollapse core of M15 imaged with the HST planetary camera

    Science.gov (United States)

    Lauer, Tod R.; Holtzman, Jon A.; Faber, S. M.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well.

  8. The postcollapse core of M15 imaged with the HST planetary camera

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, T.R.; Holtzman, J.A.; Faber, S.M.; Baum, W.A.; Currie, D.G.; Ewald, S.P.; Groth, E.J.; Hester, J.J.; Kelsall, T. (Kitt Peak National Observatory, Tucson, AZ (USA) Lowell Observatory, Flagstaff, AZ (USA) Lick Observatory, Santa Cruz, CA (USA) Washington Univ., Seattle (USA) Maryland Univ., College Park (USA) Space Telescope Science Institute, Baltimore, MD (USA) Princeton Univ., NJ (USA) California Institute of Technology, Pasadena (USA) NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-03-01

    It is shown here that, despite the severe spherical aberration present in the HST, the Wide Field/Planetary Camera (WFPC) images still present useful high-resolution information on M15, the classic candidate for a cluster with a collapsed core. The stars in M15 have been resolved down to the main-sequence turnoff and have been subtracted from the images. The remaining faint, unresolved stars form a diffuse background with a surprisingly large core with r(c) = 0.13 pc. The existence of a large core interior to the power-law cusp may imply that M15 has evolved well past maximum core collapse and may rule out the presence of a massive central black hole as well. 26 refs.

  9. VizieR Online Data Catalog: HST observations of star clusters in NGC 3256 (Mulia+, 2016)

    Science.gov (United States)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    2016-09-01

    Our observations come from the ACS on Hubble Space Telescope (HST). NGC 3256 was observed using the filters F555W (~V in the Johnson-Cousins system; exposed for 2552s), FR656N (Hα; 2552s), and F330W (~U; 11358s) as part of the program GO-9735 (PI: Whitmore). The V and U band images were taken in 2003 November using the Wide Field Camera (WFC) and High Resolution Camera (HRC), respectively. The Hα observations were taken in 2004 March. WFC observations using F435W (~B) and F814W (~I) filters were taken in 2005 November as part of program GO-10592 (PI: Evans) for 1320 and 760s, respectively. (1 data file).

  10. A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458b

    CERN Document Server

    Tsiaras, A; Rocchetto, M; Varley, R; Morello, G; Tinetti, G

    2015-01-01

    The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently one of the most popular instruments for observing exoplanetary atmospheres, especially with the use of the spatial scanning technique. An increasing number of exoplanets have been studied using this technique as it enables the observation of bright targets without saturating the sensitive detectors. In this work we present a new pipeline for analysing the data obtained with the spatial scanning technique, starting from the raw data provided by the instrument. In addition to commonly used correction techniques, we take into account the geometric distortions of the instrument, whose impact may become important when combined to the scanning process. Our approach can improve the photometric precision for existing data and also push further the limits of the spatial scanning technique, as it allows the analysis of even longer spatial scans. As an application of our method and pipeline, we present the results from a reanalysis of the spatia...

  11. Optical Metrology for the Filter Set for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    Science.gov (United States)

    Leviton, Douglas B.; Boucarut, Rene A.; Content, David A.; Keski-Kuha, Ritva A.; Krebs, Carolyn A.; Miner, Linda A.; Norton, Todd A.; Mehalick, Kimberly; Petrone, Peter; Bush, Frank D.; Puc, Bernard; Standley, Clive; Tsvetanov, Zlatan; Kral, Catherine

    1998-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) will employ a wide variety of spectral filtration components including narrow band, medium band, wide band, and far ultraviolet (FUV) long pass filters, spatially- variable filters (ramp filters), VIS/IR polarizers, NUV polarizers, FUV prisms, and a grism. These components are spread across ACS's Wide Field, High Resolution, and Solar Blind channels which provide diffraction-limited imaging of astronomical targets using aberration-correcting optics which remove most aberrations from HST's Optical Telescope Assembly (OTA). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements which these filters must meet include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, and a high degree of parfocality. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The development of optical metrology stations used to demonstrate that each ACS filter will meet its design specifications is discussed. Of particular note are specially-designed spectral transmissometers and interferometers.

  12. The Wide Integral Field Infrared Spectrograph (WIFIS): optomechanical design and development

    Science.gov (United States)

    Meyer, R. Elliot; Moon, Dae-Sik; Sivanandam, Suresh; Ma, Ke; Henderson, Chuck; Blank, Basil; Chou, Chueh-Yi; Jarvis, Miranda; Eikenberry, Stephen S.

    2016-08-01

    We present the optomechanical design and development of the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS will provide an unrivalled integral field size of 20"×50" for a near-infrared (0.9-1.7 μm) integral-field spectrograph at the 2.3-meter Steward Bok telescope. Its main optomechanical system consists of two assemblies: a room-temperature bench housing the majority of the optical components and a cryostat for a field-flattening lens, thermal blocking filter, and detector. Two additional optical subsystems will provide calibration functionality, telescope guiding, and off-axis optical imaging. WIFIS will be a highly competitive instrument for seeing-limited astronomical investigations of the dynamics and chemistry of extended objects in the near-infrared wavebands. WIFIS is expected to be commissioned during the end of 2016 with scientific operations beginning in 2017.

  13. HST Photometry of Uranus 1994-2015

    Science.gov (United States)

    Karkoschka, Erich

    2016-10-01

    Images of Uranus by the Hubble Space Telescope (HST) provide a useful tool in studying seasonal and other physical changes on Uranus. HST gives spatial resolution on the disk of Uranus, wide spectral coverage, temporal coverage over more than 20 years, and stable photometric properties. We selected 1368 images in 81 filters of four cameras between 240 and 1130 nm wavelength taken between August 1994 and October 2015.We started with analyzing the photometry of the whole disk of Uranus. We divided the total light of Uranus into the light from "quiet" Uranus and the light from active storms, which can contribute as much as 2.3 % to the total light, although their median contribution is only 0.14 %. The statistical analysis of the light from storms as function of wavelength and time gives clues about their temporal distribution and altitude distribution since different filters probe different altitudes.The photometry of quiet Uranus shows three main variations: a smooth seasonal variation, a small deviation from this on time scales of 1-2 years, and a small variation with phase angle. The latter variation is 0.15 % for each degree of phase angle between 0 and 3 degrees. This may be the first such measurement for Uranus. The deviations from the smooth curve are about 0.2 %, which is significant since most data otherwise fit to the 0.1 % level.The seasonal variation has the same shape at all wavelengths, except that the amplitude differs. The shape is roughly a parabola with a minimum brightness in 2009, two years after the equinox of Uranus. The amplitude is negligible at wavelengths probing high altitudes but goes up to a factor of 2.1 in wavelengths probing the 1-2 bar level. The seasonal variation is a combined effect of physical change in the atmosphere and the geometric change due to variable sub-solar and sub-Earth latitudes. The physical change is further divided into darkening of high southern latitudes and brightening of high northern latitudes. The

  14. Delivery, installation, on-sky verification of the Hobby Eberly Telescope wide field corrector

    Science.gov (United States)

    Lee, Hanshin; Hill, Gary J.; Good, John M.; Vattiat, Brian L.; Shetrone, Matthew; Kriel, Herman; Martin, Jerry; Schroeder, Emily; Oh, Chang Jin; Frater, Eric; Smith, Bryan; Burge, James H.

    2016-08-01

    The Hobby-Eberly Telescope (HET)†, located in West Texas at the McDonald Observatory, operates with a fixed segmented primary (M1) and has a tracker, which moves the prime-focus corrector and instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by deploying the new Wide Field Corrector (WFC), new tracker system, and new Prime Focus Instrument Package (PFIP). The focus of this paper is on the delivery, installation, and on-sky verification of the WFC. We summarize the technical challenges encountered and resolutions to overcome such challenges during the construction of the system. We then detail the transportation from Tucson to the HET, on-site ground verification test results, post-installation static alignment among the WFC, PFIP, and M1, and on-sky verification of alignment and image quality via deploying multiple wavefront sensors across 22 arcminutes field of view. The new wide field HET will feed the revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF).

  15. Mapping the aberrations of a wide-field spectrograph using a photonic comb

    Science.gov (United States)

    Bland-Hawthorn, Joss; Kos, Janez; Betters, Christopher H.; De Silva, Gayandhi; O'Byrne, John; Patterson, Rob; Leon-Saval, Sergio G.

    2017-07-01

    We demonstrate a new approach to calibrating the spectral-spatial response of a wide-field spectrograph using a fibre etalon comb. Conventional wide-field instruments employed on front-line telescopes are mapped with a grid of diffraction-limited holes cut into a focal plane mask. The aberrated grid pattern in the image plane typically reveals n-symmetric (e.g. pincushion) distortion patterns over the field arising from the optical train. This approach is impractical in the presence of a dispersing element because the diffraction-limited spots in the focal plane are imaged as an array of overlapping spectra. Instead we propose a compact solution that builds on recent developments in fibre-based Fabry-Perot etalons. We introduce a novel approach to near-field illumination that exploits a 25cm commercial telescope and the propagation of skew rays in a multimode fibre. The mapping of the optical transfer function across the full field is represented accurately (<0.5% rms residual) by an orthonormal set of Chebyshev moments. Thus we are able to reconstruct the full 4Kx4K CCD image of the dispersed output from the optical fibres using this mapping, as we demonstrate. Our method removes one of the largest sources of systematic error in multi-object spectroscopy.

  16. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    Science.gov (United States)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  17. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber

    Science.gov (United States)

    Choi, Youngwoon; Yoon, Changhyeong; Kim, Moonseok; Yang, Taeseok Daniel; Fang-Yen, Christopher; Dasari, Ramachandra R.; Lee, Kyoung Jin; Choi, Wonshik

    2013-01-01

    A single multimode fiber has been considered an ideal optical element for endoscopic imaging due to the possibility of the direct image transmission via multiple spatial modes. However, the wave distortion induced by the mode dispersion has been a fundamental limitation. In this Letter, we proposed a method for eliminating the effect of the mode dispersion and therefore realized wide-field endoscopic imaging by using only a single multimode fiber with no scanner attached to the fiber. Our method will potentially revolutionize endoscopy in various fields encompassing medicine and industry. PMID:23215488

  18. A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    OpenAIRE

    Dempsey, Jessica T.; Holland, Wayne S.; Chrysostomou, Antonio; Berry, David S.; Bintley, Daniel; Chapin, Edward L.; Craig, Simon C.; Coulson, Iain M.; Davis, Gary R.; Friberg, Per; Jenness, Tim; Gibb, Andy G.; Parsons, Harriet A. L.; Scott, Douglas; Thomas, Holly S.

    2012-01-01

    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise ...

  19. A Nulling Wide Field Imager for Exoplanets Detection and General Astrophysics

    CERN Document Server

    Guyon, O; Guyon, Olivier; Roddier, Francois

    2002-01-01

    We present a solution to obtain a high-resolution image of a wide field with the central source removed by destructive interference. The wide-field image is created by aperture synthesis with a rotating sparse array of telescopes in space. Nulling of the central source is achieved using a phase-mask coronagraph. The full (u,v) plane coverage delivered by the 60m, six 3-meter telescope array is particularly well-suited for the detection and characterization of exoplanets in the infrared (DARWIN and Terrestrial Planet Finder (TPF) missions) as well as for other generic science observations. Detection (S/N=10) of an Earth-like planet is achieved in less than 10 hours with a 1 micron bandwidth at 10 micron.

  20. Ground-based complex for detection and investigation of fast optical transients in wide field

    Science.gov (United States)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  1. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning.

    Science.gov (United States)

    Yao, Ruoyang; Pian, Qi; Intes, Xavier

    2015-12-01

    Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique.

  2. Wide-field optical coherence tomography based microangiography for retinal imaging

    Science.gov (United States)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  3. Confirmation of Wide-Field Signatures in Redshifted 21 cm Power Spectra

    CERN Document Server

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Deshpande, A A; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hernquist, L; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kim, Han-Seek; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Wayth, R B; Webster, R L; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    We confirm our recent prediction of the "pitchfork" foreground signature in power spectra of high-redshift 21 cm measurements, wherein the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be most sensitive to the cosmological HI signal. In our recent paper, many signatures from the simulation which predicted this feature were validated against Murchison Widefield Array (MWA) data but this key pitchfork signature was close to the noise level. In this paper, we improve the data sensitivity through coherent averaging of 12 independent snapshots with identical instrument settings, and provide the first confirmation of the prediction with a signal-noise ratio > 10. This wide-field effect can be mitigated by careful antenna designs that suppress sensitivity near the horizon. Simple models for antenna apertures proposed ...

  4. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.

    Science.gov (United States)

    Duan, Yubo; Chen, Nanguang

    2015-11-15

    Wide-field optical microscopy is efficient and robust in biological imaging, but it lacks depth sectioning. In contrast, scanning microscopic techniques, such as confocal microscopy and multiphoton microscopy, have been successfully used for three-dimensional (3D) imaging with optical sectioning capability. However, these microscopic techniques are not very suitable for dynamic real-time imaging because they usually take a long time for temporal and spatial scanning. Here, a hybrid imaging technique combining wide-field microscopy and scanning microscopy is proposed to accelerate the image acquisition process while maintaining the 3D optical sectioning capability. The performance was demonstrated by proof-of-concept imaging experiments with fluorescent beads and zebrafish liver.

  5. Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes

    Science.gov (United States)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.

    2016-07-01

    Two new instruments are currently being built for the Gemini-North and WIYN telescopes. They are based on the existing DSSI (Differential Speckle Survey Instrument), but the new dual-channel instruments will have both speckle and "wide-field" imaging capabilities. Nearly identical copies of the instrument will be installed as a public access permanent loan at the Gemini-N and WIYN telescopes. Many exoplanet targets will come from the NASA K2 and TESS missions. The faint limiting magnitude, for speckle observations, will remain around 16 to 17th magnitude depending on observing conditions, while wide-field, high speed imaging should be able to go to 21+. For Gemini, the instrument will be remotely operable from either the mid-level facility at Hale Pohaku or the remote operations base in Hilo.

  6. The first light of Mini-MegaTORTORA wide-field monitoring system

    CERN Document Server

    Biryukov, A; Karpov, S; Bondar, S; Ivanov, E; Katkova, E; Perkov, A; Sasyuk, V

    2014-01-01

    Here we describe the first light of the novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA, which is being tested now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (~900 square degrees) or narrow (~100 square degrees) fields of view, either in clear light or with any combination of color (Johnson B, V or R) polarimetric filters installed, with exposure times ranging from 100 ms to 100 s. The primary goal of the system is the detection of rapid -- with sub-second characteristic time-scales -- optical transients, but it may be also used for studying the variability of the sky objects on longer time scales.

  7. Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    CERN Document Server

    Zhang, S S; Cao, Z; Chen, S Z; Chen, M J; Chen, Y; Chen, L H; Ding, K Q; He, H H; Liu, J L; Li, X X; Liu, J; Ma, L L; Ma, X H; Sheng, X D; Zhou, B; Zhang, Y; Zhao, J; Zha, M; Xiao, G

    2011-01-01

    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented.

  8. Wide-Field InfraRed Survey Telescope (WFIRST) Interim Report

    CERN Document Server

    Green, James; Baltay, Charles; Bean, Rachel; Bennett, David; Brown, Robert; Conselice, Christopher; Donahue, Megan; Gaudi, Scott; Lauer, Tod; Perlmutter, Saul; Rauscher, Bernard; Rhodes, Jason; Roellig, Thomas; Stern, Daniel; Sumi, Takahiro; Tanner, Angelle; Wang, Yun; Wright, Edward; Gehrels, Neil; Sambruna, Rita; Traub, Wesley

    2011-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. This paper describes an Interim DRM. The DRM will be completed in 2012.

  9. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila

    OpenAIRE

    2004-01-01

    Genome-wide microarray analysis (Affymetrix array) was used (i) to determine whether only one gene, the cytochrome P450 enzyme Cyp6g1, is differentially transcribed in dichlorodiphenyltrichloroethane (DDT)-resistant vs. -susceptible Drosophila; and (ii) to profile common genes differentially transcribed across a DDT-resistant field isolate [Rst(2)DDTWisconsin] and a laboratory DDT-selected population [Rst(2)DDT91-R]. Statistical analysis (ANOVA model) identified 158 probe sets that were diffe...

  10. Hubble Space Telescope: Wide field and planetary camera instrument handbook. Version 2.1

    Science.gov (United States)

    Griffiths, Richard (Editor)

    1990-01-01

    An overview is presented of the development and construction of the Wide Field and Planetary Camera (WF/PC). The WF/PC is a duel two dimensional spectrophotometer with rudimentary polarimetric and transmission grating capabilities. The instrument operates from 1150 to 11000 A with a resolution of 0.1 arcsec per pixel or 0.043 arcsec per pixel. Data products and standard calibration methods are briefly summarized.

  11. Nonmydriatic ultra-wide-field scanning laser ophthalmoscopy (Optomap) versus two-field fundus photography in diabetic retinopathy.

    Science.gov (United States)

    Liegl, Raffael; Liegl, Kristine; Ceklic, Lala; Haritoglou, Christos; Kampik, Anselm; Ulbig, Michael W; Kernt, Marcus; Neubauer, Aljoscha S

    2014-01-01

    The purpose of this study was to investigate the diagnostic properties of a 2-laser wavelength nonmydriatic 200° ultra-wide-field scanning laser ophthalmoscope (SLO) versus mydriatic 2-field 45° color fundus photography (EURODIAB standard) for assessing diabetic retinopathy (DR). A total of 143 consecutive eyes of patients with different levels of DR were graded regarding DR level and macular edema based on 2-field color photographs or 1 Optomap Panoramic 200 SLO image. All SLO images were nonmydriatic and all photographs mydriatic. Grading was performed masked to patient and clinical data. Based on photography, 20 eyes had no DR, 44 had mild, 18 moderate and 42 severe nonproliferative DR, and 19 eyes had proliferative DR. Overall correlation for grading DR level compared to Optomap SLO was moderate with kappa 0.54 (p photography need to be confirmed in further studies.

  12. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    Science.gov (United States)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  13. Tidal capture formation of Low Mass X-Ray Binaries from wide binaries in the field

    CERN Document Server

    Michaely, Erez

    2015-01-01

    We present a potentially efficient dynamical formation scenario for Low Mass X-ray Binaries (LMXBs) in the field, focusing on black-hole (BH) LMXBs. In this formation channel LMXBs are formed from wide binaries $(>1000$ AU) with a BH component and a stellar companion. The wide binary is perturbed by fly-by's of field stars and its orbit random-walks and changes over time. This diffusion process can drive the binary into a sufficiently eccentric orbit such that the binary components tidally interact at peri-center and the binary evolves to become a short period binary, which eventually evolves into an LMXB. The formation rate of LMXBs through this channel mostly depends on the number of such BH wide binaries progenitors, which in turn depends on the velocity kicks imparted to BHs (or NSs) at birth. We consider several models for the formation and survival of such wide binaries, and calculate the LMXB formation rates for each model. We find that models where BHs form through direct collapse with no/little natal...

  14. Monitoring with high temporal resolution to search for optical transients in the wide field

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  15. Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging.

    Science.gov (United States)

    McClatchy, David M; Rizzo, Elizabeth J; Wells, Wendy A; Cheney, Philip P; Hwang, Jeeseong C; Paulsen, Keith D; Pogue, Brian W; Kanick, Stephen C

    2016-06-20

    Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient [Formula: see text] and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.

  16. Deep slitless infrared spectroscopic surveys with HST/WFC3

    CERN Document Server

    Weiner, Benjamin J

    2012-01-01

    HST is commonly thought of as an optical-IR imaging or UV-spectroscopy observatory. However, the advent of WFC3-IR made it possible to do slitless infrared spectroscopic surveys over an area significant for galaxy evolution studies (~0.15 deg^2). Slitless infrared spectroscopy is uniquely possible from space due to the reduced background. Redshift surveys with WFC3-IR offer probes of the astrophysics of the galaxy population at z=1-3 from line features, and the true redshift and spatial distribution of galaxies, that cannot be done with photometric surveys alone. While HST slitless spectroscopy is low spectral resolution, its high multiplex advantage makes it competitive with future ground based IR spectrographs, its flux calibration is stable, and its high spatial resolution allows measuring the spatial extent of emission lines, which only HST can do currently for large numbers of objects. A deeper slitless IR spectroscopic survey over hundreds of arcmin^2 (eg one or more GOODS fields) is one of the remainin...

  17. HST/WFC3 Observations of Giant Hot Exoplanets

    Science.gov (United States)

    Deming, D.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.-M.; Gilliland, R.; Knutson, H.; Madhusudhan, N.; Mandell, A.; hide

    2011-01-01

    Low resolution thermal emission spectra of several dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have reported molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3. This is the largest pure-exoplanet program ever executed on HST (115 orbits). Among the abundant molecules, only water absorbs significantly at 1.4-microns, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We are also using the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.S-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.S-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program.

  18. TMT-AGE: wide field of regard multi-object adaptive optics for TMT

    Science.gov (United States)

    Akiyama, Masayuki; Oya, Shin; Ono, Yoshito H.; Takami, Hideki; Ozaki, Shinobu; Hayano, Yutaka; Iwata, Ikuru; Hane, Kazuhiro; Wu, Tong; Yamamuro, Tomoyasu; Ikeda, Yuji

    2014-07-01

    We introduce current status of the feasibility study on a wide field of regard (FoR) Multi-Object Adaptive Optics (MOAO) system for TMT (TMT-AGE: TMT-Analyzer for Galaxies in the Early universe). MOAO is a system which realize high spatial-resolution observations of multiple objects scattered in a wide FoR. In this study, we put emphasise on the FoR as wide as 10' diameter. The wide FoR is crucial to effectively observe very high-redshift galaxies, which have low surface number density. Simulations of an MOAO system with 8 LGSs show close-to-diffraction-limited correction can be achieved within 5' diameter FoR and moderate AO correction can be achieved within 10' diameter FoR. We discuss overall system design of the wide FoR MOAO system considering the constraint from the stroke of small-size deformable mirror (DM). We also introduce current status of developments of key components of an MOAO system; high-dynamic range wavefront sensor (WFS) and large-stroke small-size DM, and real time computer (RTC) with fast tomographic reconstruction.

  19. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  20. The 64 Mpixel wide field imager for the Wendelstein 2m Telescope: Design and Calibration

    CERN Document Server

    Kosyra, Ralf; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella

    2014-01-01

    The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (< 0.8" median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2 $\\times$ 2 mosaic of 4k $\\times$ 4k 15 \\mu m e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of...

  1. Current status of the Hobby-Eberly Telescope wide field upgrade

    Science.gov (United States)

    Hill, Gary J.; Booth, John A.; Cornell, Mark E.; Good, John M.; Gebhardt, Karl; Kriel, Herman J.; Lee, Hanshin; Leck, Ron; Moreira, Walter; MacQueen, Phillip J.; Perry, Dave M.; Rafal, Marc D.; Rafferty, Tom H.; Ramiller, Chuck; Savage, Richard D.; Taylor, Charles A.; Vattiat, Brian L.; Ramsey, Lawrence W.; Beno, Joseph H.; Beets, Timothy A.; Esguerra, Jorge D.; Häuser, Marco; Hayes, Richard J.; Heisler, James T.; Soukup, Ian M.; Zierer, Joseph J.; Worthington, Michael S.; Mollison, Nicholas T.; Wardell, Douglas R.; Wedeking, Gregory A.

    2012-09-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope of 9.2 meter aperture, located in West Texas at the McDonald Observatory (MDO). The HET operates with a fixed segmented primary and has a tracker which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. A major upgrade of the HET is in progress that will increase the pupil size to 10 meters and the field of view to 22' by replacing the corrector, tracker and prime focus instrument package. In addition to supporting the existing suite of instruments, this wide field upgrade will feed a revolutionary new integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEXχ). This paper discusses the current status of this upgrade.

  2. Optical wide field monitor AROMA-W using multiple digital single-lens reflex cameras

    Science.gov (United States)

    Takahashi, Ichiro; Tsunashima, Kosuke; Tatsuhito, Takeda; Saori, Ono; Kazutaka, Yamaoka; Yoshida, Atsumasa

    2010-12-01

    We have developed and operated the automatic optical observation device Aoyama Gakuin University Robotic Optical Monitor for Astrophysical objects - Wide field (AROMA-W). It covers a large field of view of about 45 degrees W 30 degrees at a time by the multiple digital single-lens reflex cameras, and provides photometric data in four bands with a limiting V magnitude of about 12-13 magnitude (20 seconds, 3 sigma level). The automatic analysis pipeline which can analyze in parallel with observation has been constructed so far. It can draw the light curves of all stars in the field of view of AROMA-W. We are aiming at the simultaneous observation of the transients (e.g., X-ray nova, Supernova, GRB) that MAXI discovered by using the AROMA-W. We report the developmental status, the observational results of AROMA-W and a possibility of the simultaneous observation to the X-ray transients discovered with MAXI.

  3. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC1399

    CERN Document Server

    Puzia, Thomas H; Goudfrooij, Paul; Maccarone, Thomas J; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments. The measurement of rh for the major fraction of the NGC1399 GC system reveals a trend of increasing rh versus galactocentric distance, Rgal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of rh(red)/rh(blue)=0.82+/-0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC1399 shows that additional ex...

  4. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  5. WINGS: a WIde-field Nearby Galaxy-cluster Survey. I. Optical imaging

    Science.gov (United States)

    Fasano, G.; Marmo, C.; Varela, J.; D'Onofrio, M.; Poggianti, B. M.; Moles, M.; Pignatelli, E.; Bettoni, D.; Kjærgaard, P.; Rizzi, L.; Couch, W. J.; Dressler, A.

    2006-01-01

    This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters, with constraints on the redshift (0.04definition of a local, "zero-point" reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium-resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using, respectively, the WFC@INT and WYFFOS@WHT in the northern hemisphere, and the WFI@MPG and 2dF@AAT in the southern hemisphere. In addition, a NIR (J, K) survey of ˜50 clusters and an Hα+U survey of some 10 clusters are presently ongoing with the WFCAM@UKIRT and WFC@INT, respectively, while a very-wide-field optical survey has also been programmed with OmegaCam@VST. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ˜0.025 mag, reaching completeness to V˜ 23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7) Mpc and (0.7-1.7) kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to obtain a valuable description of the local properties of clusters and galaxies in clusters.

  6. Pixel Stability in HST Advanced Camera for Surveys Images

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current that is propagated into individual pixels in an exposure. This excess signal from the CCD itself can be persistently existent through multiple exposures and can have an adverse effect on the detectors science performance unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed to map the location of these pixels. These images, generally referred to as “dark” images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This "dark current" can then be subtracted from the science images by re-scaling the dark to the science exposure times. Pixels that have signal above a certain threshold are traditionally marked as “hot” and flagged in the data quality array. Many users will discard these pixels as being bad because of this extra current. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra Poisson noise from this hot pixel’s dark current can be taken into account. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously marked as bad to be brought back into the science image as a reliable pixel.

  7. Data Collected During the Post-Flight Survey of Micrometeoroid and Orbital Debris Impact Features on the Hubble Wide Field Planetary Camera 2

    Science.gov (United States)

    Opiela, J. N.; Liou, J.-C.; Anz-Meador, P. D.

    2010-01-01

    Over a period of five weeks during the summer of 2009, personnel from the NASA's Orbital Debris Program Office and Meteoroid Environment Office performed a post-flight examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator. The objective was to record details about all micrometeoroid and orbital debris (MMOD) impact features with diameters of 300 micron and larger. The WFPC-2 was located in a clean room at NASA's Goddard Space Flight Center. Using a digital microscope, the team examined and recorded position, diameter, and depth information for each of 685 craters. Taking advantage of the digital microscope's data storage and analysis features, the actual measurements were extracted later from the recorded images, in an office environment at the Johnson Space Center. Measurements of the crater include depth and diameter. The depth was measured from the undisturbed paint surface to the deepest point within the crater. Where features penetrate into the metal, both the depth in metal and the paint thickness were measured. In anticipation of hypervelocity tests and simulations, several diameter measurements were taken: the spall area, the area of any bare metal, the area of any discolored ("burned") metal, and the lips of the central crater. In the largest craters, the diameter of the crater at the surface of the metal was also measured. The location of each crater was recorded at the time of inspection. This paper presents the methods and results of the crater measurement effort, including the size and spatial distributions of the impact features. This effort will be followed by taking the same measurements from hypervelocity impact targets simulating the WFPC-2 radiator. Both data sets, combined with hydrocode simulation, will help validate or improve the MMOD environment in low Earth orbit.

  8. The Hot and Energetic Universe: The Wide Field Imager (WFI) for Athena+

    CERN Document Server

    Rau, A; Nandra, K; Porro, M; Barret, D; Santangelo, A; Schmid, C; Struder, L; Tenzer, C; Wilms, J; Amoros, C; Andritschke, R; Aschauer, F; Bahr, A; Gunther, B; Furmetz, M; Ott, B; Perinati, E; Rambaud, D; Reiffers, J; Treis, J; von Kienlin, A; Weidenspointner, G

    2013-01-01

    The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The instrument is designed to make optimal use of the grasp (collecting area times solid angle product) provided by the optical design of the Athena+ mirror system (Willingale et al. 2013), by combining a sensitive approx. 40' diameter field of view (baseline; 50' goal) DEPFET detector with a pixel size properly sampling the angular resolution of 5 arc sec on-axis (half energy width).This synthesis makes the WFI a very powerful survey instrument, significantly surpassing currently existing capabilities (Nandra et al. 2013; Aird et al. 2013). In addition, the WFI will provide unprecedented simultaneous high-time resolution and high count rate capabilities for the observation of bright sources with low pile-up and high efficiency. In this paper, we summarize the instrume...

  9. A New Strategy for Deep Wide-Field High Resolution Optical Imaging

    CERN Document Server

    Kaiser, N; Luppino, G A

    1999-01-01

    We propose a new strategy for obtaining enhanced resolution (FWHM = 0.12 arcsec) deep optical images over a wide field of view. As is well known, this type of image quality can be obtained in principle simply by fast guiding on a small (D = 1.5m) telescope at a good site, but only for target objects which lie within a limited angular distance of a suitably bright guide star. For high altitude turbulence this 'isokinetic angle' is approximately 1 arcminute. With a 1 degree field say one would need to track and correct the motions of thousands of isokinetic patches, yet there are typically too few sufficiently bright guide stars to provide the necessary guiding information. Our proposed solution to these problems has two novel features. The first is to use orthogonal transfer charge-coupled device (OTCCD) technology to effectively implement a wide field 'rubber focal plane' detector composed of an array of cells which can be guided independently. The second is to combine measured motions of a set of guide stars...

  10. Wide field nulling imager for TPF: the Boeing-SVS hypertelescope concept

    Science.gov (United States)

    Guyon, Olivier

    2003-02-01

    The Terrestrial Planet Finder (TPF) mission is aimed at providing direct images of Earth-like planets orbiting nearby stars and characterizing their atmospheres (low resolution spectroscopy). The BOEING/SVS hypertelescope concept, NRLA (Non-Redundant Linear Array), uses a 35m baseline interferometric rotating array of six 2.3-meter telescopes operating in the infrared (7 to 12 microns) to produce wide field images of exoplanetary systems. The full (u,v) plane coverage of the array offers very good imaging capabilities, which is essential to unambiguously confirm the detection of planets, and also provides an outstanding capability for high resolution/high dynamic range imaging for general astrophysics. Thanks to a novel approach combining pupil densification, phase mask coronagraphy and pupil redilution, this concept combines wide field of view imaging and interferometric nulling of the central star. We first briefly present the techniques used by this concept (phase mask coronagraphy, pupil densification and redilution, aperture synthesis imaging) and demonstrate how they can be used to overcome the limitations commonly encountered by interferometers (low (u,v) plane coverage, small field of view, low dynamical range). A complete computer simulation of the concept has been written and is used to study the performance of the array for exoplanet imaging and spectroscopy. We show that with this concept, detection (S/N=5) of Earth-like planets at 10pc with a 5 microns spectral bandwidth can be achieved in less than an hour (for a 100% quantum efficiency).

  11. Enola Gay: an integrated modelling optical toolbox applied to a wide-field telescope

    Science.gov (United States)

    Schipani, P.; Perrotta, F.

    2008-07-01

    The integrated modelling approach is fundamental in telescopes design where it is necessary to merge different disciplines together. This paper describes the integration of optical ray-tracing capabilities within the Matlab computational environment. This approach allows to write automatic procedures to implement a huge number of computations, that are very unpractical to perform in interactive mode by ray tracing software packages. Data produced by computations are stored and automatically analyzed. One of the main benefits from this approach comes from the traceability of the work, that is intrinsically impossible when the optical designer works in interactive mode. The right procedure is built and tuned just the first time and the computation software is available for inspection and check. Furthermore computations and results are easily reproducible simply re-running Matlab scripts. An automatic approach is especially helpful in wide-field telescope projects where the optical quality has to be studied over a wide field of view. This leads to repeat the same computations many times in a number of fields. In interactive mode this would cause a significant waste of optical designer time to repeat many times the same manual procedures. The solution proposed here allows to save time and prevent occasional mistakes.

  12. Panoramic Views of Cluster-Scale Assembly Explored by Subaru Wide-Field Imaging

    CERN Document Server

    Kodama, T

    2005-01-01

    We present panoramic views of cluster-scale assembly at z=0.41, 0.55 and 0.83 based on the multi-color wide-field imaging of three distant clusters with Subaru as a part of our PISCES project. It exploits the unique wide-field imaging capability of Suprime-Cam which provides a 34'x27' field of view corresponding to a physical area of 16x13Mpc^2 at z~1. We plan to target 15 clusters in total at 0.45Mpc from the cores as well as complex inner structures. The galaxy distributions in the inner regions of the clusters look similar to the X-ray intensity maps, suggesting that most of the optical structures trace physically bound systems. We compare the structures of the three clusters with those of model clusters in a numerical simulation (N-body + semi-analytic model) by parameterising the shapes of iso-density contours of galaxies. We find a broad agreement except for the z~0.8 cluster, where the observed cluster exhibit more complex structures than the model clusters. These new findings provide good evidence tha...

  13. Simple concept for a wide-field lensless digital holographic microscope using a laser diode

    Directory of Open Access Journals (Sweden)

    Adinda-Ougba A.

    2015-09-01

    Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.

  14. Wide-field x-ray imaging for future missions, including XEUS

    Science.gov (United States)

    Conconi, Paolo; Pareschi, Giovanni; Campana, Sergio; Chincarini, Guido; Tagliaferri, Gianpiero

    2004-02-01

    It is well known that the Wolter I design for focusing X-ray telescopes provides perfect on-axis images, while, despite the absence of spherical aberration, the off-axis angular resolution rapidly degrades because of coma, field curvature and astigmatism. However, more general mirror designs than Wolter's exist in which primary and secondary mirror profiles can be described by polynomial equations. These power series solutions are particularly well indicated to be optimized, in order to achieve high imaging performances even at large off-axis incidence angles, despite a small degradation of the on-axis response. The concept, derived from the Ritchey-Chretien telescope widely used in optical astronomy, has already been experimentally proven for X-ray astronomical applications at the Brera Astronomical Observatory (Italy), in the context of the feasibility study of the Wide Field X-ray Telescope mission. Here we present a new design (including a model for slope errors and mechanical tolerances) for a X-ray telescope of medium-size class assuming monolithic mirror shells made of glass, optimized to have a Half Energy Width better than 5 arcsec over a 30 arcmin field of view (radius) and an effective area almost twice that one of Chandra. The use of polynomial mirrors seems extremely well suited also for the case of the XEUS optics. Indeed, the small aspect-ratio between the large focal length of the XEUS telescope (50 m) and the total mirror height (1 m) makes it very favorable to diminish the aberration effects due to the field curvature. With the assumption of mirror shells with polynomial profile it would be possible to achieve for XEUS an imaging response almost constant up to a field of view of 20 arcmin in radius.

  15. Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy

    Science.gov (United States)

    Yu, Jiun-Yann; Kuo, Chun-Hung; Holland, Daniel B.; Chen, Yenyu; Ouyang, Mingxing; Blake, Geoffrey A.; Zadoyan, Ruben; Guo, Chin-Lin

    2011-11-01

    Optical sectioning provides three-dimensional (3D) information in biological tissues. However, most imaging techniques implemented with optical sectioning are either slow or deleterious to live tissues. Here, we present a simple design for wide-field multiphoton microscopy, which provides optical sectioning at a reasonable frame rate and with a biocompatible laser dosage. The underlying mechanism of optical sectioning is diffuser-based temporal focusing. Axial resolution comparable to confocal microscopy is theoretically derived and experimentally demonstrated. To achieve a reasonable frame rate without increasing the laser power, a low-repetition-rate ultrafast laser amplifier was used in our setup. A frame rate comparable to that of epifluorescence microscopy was demonstrated in the 3D imaging of fluorescent protein expressed in live epithelial cell clusters. In this report, our design displays the potential to be widely used for video-rate live-tissue and embryo imaging with axial resolution comparable to laser scanning microscopy.

  16. Plastic optical fiber for wide field-of-view optical wireless receiver

    Science.gov (United States)

    Fallah, Hoorieh; Sterckx, Karel; Saengudomlert, Poompat; Mohammed, Waleed S.

    2016-10-01

    This paper demonstrates a working indoor optical wireless link for smart environment applications. The system utilizes a wide field-of-view (FOV) optical wireless receiver through cleaving the tip of large core plastic optical fibers (POFs) attached to the detector. The quality of the optical link is quantified through bit error rate (BER) measurements. The experimental results show a wide FOV with the uncoded BER in the order of 10-3 for transmission distances up to 35 cm when using two POFs for signal collection. The distance can be improved further by increasing the number of fibers. The transmitted signal format and how the BER measurement is achieved are discussed at length. In addition, details are provided for the design of the electronics to establish the optical wireless link.

  17. An integrated image processing platform designed for Chinese GF-1 wide field view data

    Science.gov (United States)

    Li, Zhishan; Shi, Runhe; Liu, Chaoshun; Chen, Maosi

    2016-09-01

    The Wide Field View (WFV), a space borne multi-spectral sensor onboard the Chinese GaoFen-1 (GF-1) satellite from the China High-resolution Earth Observation System, is operating in orbit dedicating to providing Earth observation with decametric spatial resolution, high temporal resolution and wide coverage for environment monitoring purpose. The objective of this study is to present an integrated image processing and environment monitoring platform specifically for GF-1 WFV data. The platform is developed with a multi-layer architecture and C/S structure, which primarily consists of image pre-processing, environment monitoring, data visualization, and results output modules. The client application was created by using C# whereas IDL was used to develop image processing and other relevant algorithms. This paper focuses mainly on the overall design of the platform and related key techniques. The platform has been implemented as a stand-alone application, and successfully implemented in real world environment monitoring studies.

  18. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    CERN Document Server

    Lorente, Nuria P F

    2013-01-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its $13 \\times 61$ core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target position...

  19. Accounting for the anisoplanatic point spread function in deep wide-field adaptive optics images

    Science.gov (United States)

    Cresci, G.; Davies, R. I.; Baker, A. J.; Lehnert, M. D.

    2005-08-01

    In this paper we present the approach we have used to determine and account for the anisoplanatic point spread function (PSF) in deep adaptive optics (AO) images for the Survey of a Wide Area with NACO (SWAN) at the ESO VLT. The survey comprises adaptive optics observations in the Ks band totaling ~30~arcmin^2, assembled from 42 discrete fields centered on different bright stars suitable for AO guiding. We develop a parametric model of the PSF variations across the field of view in order to build an accurate model PSF for every galaxy detected in each of the fields. We show that this approach is particularly convenient, as it uses only easily available data and makes no uncertain assumptions about the stability of the isoplanatic angle during any given night. The model was tested using simulated galaxy profiles to check its performance in terms of recovering the correct morphological parameters; we find that the results are reliable up to Ks ˜ 20.5 (KAB˜22.3) in a typical SWAN field. Finally, the model obtained was used to derive the first results from five SWAN fields, and to obtain the AO morphology of 55 galaxies brighter than Ks = 20. These preliminary results demonstrate the unique power of AO observations to derive the details of faint galaxy morphologies and to study galaxy evolution.

  20. Wide-field retinotopy defines human cortical visual area v6.

    Science.gov (United States)

    Pitzalis, Sabrina; Galletti, Claudio; Huang, Ruey-Song; Patria, Fabiana; Committeri, Giorgia; Galati, Gaspare; Fattori, Patrizia; Sereno, Martin I

    2006-07-26

    The retinotopic organization of a newly identified visual area near the midline in the dorsalmost part of the human parieto-occipital sulcus was mapped using high-field functional magnetic resonance imaging, cortical surface-based analysis, and wide-field retinotopic stimulation. This area was found in all 34 subjects that were mapped. It represents the contralateral visual hemifield in both hemispheres of all subjects, with upper fields located anterior and medial to areas V2/V3, and lower fields medial and slightly anterior to areas V3/V3A. It contains a representation of the center of gaze distinct from V3A, a large representation of the visual periphery, and a mirror-image representation of the visual field. Based on similarity in position, visuotopic organization, and relationship with the neighboring extrastriate visual areas, we suggest it might be the human homolog of macaque area V6, and perhaps of area M (medial) or DM (dorsomedial) of New World primates.

  1. Wide-field x-ray microscopy with Kirkpatrick-Baez optics

    Science.gov (United States)

    Jach, Terrence; Durbin, Stephen M.; Bakulin, Alex; Bright, David S.; Stagarescu, Cristian; Srajer, George; Haskel, Daniel; Pedulla, Joseph

    2001-12-01

    Modern technology permits the fabrication of Kirkpatrick-Baez (KB) multilayer optics with performance close to the theoretical limit. We have constructed a KB field-imaging microscope which operates in the x-ray energy range 6-10 keV with a field of view of 40-150 micrometers . The optics perform at a reflectivity of 80% at the first Bragg peak. Using highly-collimated synchrotron radiation, we realize a resolution of 900 nm at 9 keV. The intensity and magnification are sufficient to perform real-time imaging with a CCD x-ray camera, with increases in field of view and resolution at this energy due to improvements in both data collection and image processing. The collimation of the incident radiation corresponds to Koehler illumination. The dynamic range of the images using a 12-bit camera allows us to extend the field of view at the Bragg reflection over several Kiessig fringes. We have adjusted the energy to take advantage of absorption at the excitation edges of elements and have performed imaging using circularly polarized radiation. We have used this instrument to demonstrate wide-field imaging in both absorption and diffraction. We present magnified images of multiple layers in a test integrated circuit in absorption and of a metal single crystal in diffraction.

  2. WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide; Kusakabe, Nobuhiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hough, James H. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nakajima, Yasushi [Center of Information and Communication Technology, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 (Japan); Nishiyama, Shogo [Miyagi University of Education, Sendai 980-0845 (Japan); Nagata, Tetsuya [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kandori, Ryo, E-mail: jungmi.kwon@astron.s.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-09-15

    We conducted wide and deep simultaneous JHK{sub s}-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHK{sub s} band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHK{sub s} bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H − K{sub s} color up to H − K{sub s} ≈ 3.5. The magnetic field structures in the core region are revealed up to at least A{sub V} ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius–Centaurus association.

  3. SIMULTANEOUS EXOPLANET CHARACTERIZATION AND DEEP WIDE-FIELD IMAGING WITH A DIFFRACTIVE PUPIL TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Bendek, Eduardo A.; Milster, Thomas D. [College of Optical Sciences, University of Arizona, Tucson, AZ 85721 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, Physics Division L-210, 7000 East Avenue, Livermore, CA 94550 (United States); Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Martinache, Frantz [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States); Pitman, Joe [Exploration Sciences, P.O. Box 24, Pine, CO 80470 (United States); Woodruff, Robert A. [Lockheed Martin, 2081 Evergreen Avenue, Boulder, CO 80304 (United States); Belikov, Ruslan, E-mail: guyon@naoj.org [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-04-10

    High-precision astrometry can identify exoplanets and measure their orbits and masses while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-{mu}as accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.

  4. The development of a wide-field, high-resolution UV Raman hyperspectral imager

    Science.gov (United States)

    Gomer, Nathaniel R.; Nelson, Matthew P.; Angel, S. M.

    2015-05-01

    Raman spectroscopy is a valuable tool for the investigation and analysis of explosive and biological analytes because it provides a unique molecular fingerprint that allows for unambiguous target identification. Raman can be advantageous when utilized with deep UV excitation, but typical deep UV Raman systems have numerous limitations that hinder their performance and make their potential integration onto a field portable platform difficult. These systems typically offer very low throughput, are physically large and heavy, and can only probe an area the size of a tightly focused laser, severely diminishing the ability of the system to investigate large areas efficiently. The majority of these limitations are directly related to a system's spectrometer, which is typically dispersive grating based and requires a very narrow slit width and long focal length optics to achieve high spectral resolution. To address these shortcomings, ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, are developing a revolutionary wide-field Raman hyperspectral imaging system capable of providing wide-area, high resolution measurements with greatly increased throughput in a small form factor, which would revolutionize the way Raman is conducted and applied. The innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery. This combination of technologies creates a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution measurements using defocused excitation, giving the system a greater area coverage and faster search rate than traditional Raman systems. This paper will focus on the need for an innovative UV Raman system, provide an overview of spatial heterodyne Raman spectroscopy, and discuss the development

  5. The Fundamental Role of Wide-Field Imaging in Space Situational Awareness

    Science.gov (United States)

    McGraw, J. T.; Ackermann, M.; Zimmer, P.

    Space Situational Awareness (SSA) is fundamentally based upon surveillance of the variety of objects moving in Earth orbital space: functioning satellites, derelicts, and space debris. Optical telescopes provide a significant fraction of all data for the surveillance of space, and virtually all data on GEO and related objects. Starting with an operational definition of surveillance of space (SoS), we discuss: The unique role of wide-field imaging in acquiring surveillance data The detector-driven optical design of small, wide-field telescopes that produce data capable of providing high signal-to-noise images and tracks in the presence of detector and complicated background noise Multiple sky tracking and detector readout combinations to optimize object detection from LEO through GEO The approach to real-time image data processing capable of enabling rapid analysis and decision-making, as needed. Specifically, we describe the fundamental physics associated with the design of optical surveillance cameras based upon small aperture, wide field-of-view telescopes which we have designed. Critical performance issues include uncued detection of new and/or un-cataloged objects to faint limiting magnitudes (V > 18 at LEO), including initial orbit determination, and the capability to survey large areas of the sky (such as the CONUS GEO belt of approximately 1800 sq. degrees) to faint limiting magnitudes (V = 18) every two hours. The goal is to convert these data into actionable information in very near real-time. Initial data demonstrating and supporting our surveillance of space system designs and design goals will be presented.

  6. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    Science.gov (United States)

    Kotredes, Lewis; Charbonneau, David; Looper, Dagny L.; O'Donovan, Francis T.

    2004-06-01

    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.

  7. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    CERN Document Server

    Kotredes, L; Looper, D L; O'Donovan, F T; Charbonneau, David; Donovan, Francis T. O'; Kotredes, Lewis; Looper, Dagny L.

    2003-01-01

    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.

  8. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    Science.gov (United States)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  9. The Wide Field Spectrograph (WiFeS): Performance and Data Reduction

    CERN Document Server

    Dopita, Michael; Farage, Catherine; McGregor, Peter; Bloxham, Gabe; Green, Anthony; Roberts, Bill; Nielson, Jon; Wilson, Greg; Young, Peter; 10.1007/s10509-010-0335-9

    2010-01-01

    This paper describes the on-telescope performance of the Wide Field Spectrograph (WiFeS). The design characteristics of this instrument, at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) and mounted on the ANU 2.3m telescope at the Siding Spring Observatory has been already described in an earlier paper (Dopita et al. 2007). Here we describe the throughput, resolution and stability of the instrument, and describe some minor issues which have been encountered. We also give a description of the data reduction pipeline, and show some preliminary results.

  10. Field Oriented Control for Rotor Position Estimation of IPM Drives over a Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Ekhlas Kadhum

    2013-01-01

    Full Text Available Field oriented control strategy of Interior Permanent Magnet IPM Synchronous Motor drives over a wide speed range applications is presented. Rotor position estimation using model reference adaptive system method for IPM Drive without using a mechanical sensor is illustrated considering the effects of cross-saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. The inductance measurement regards the cross saturation which is used to obtain the suitable id - characteristics in base and flux weakening regions. The simulation results show that rotor position estimation error accuracy was improved. Various dynamic conditions have been investigated

  11. The High-Speed and Wide-Field TORTORA Camera: description & results .

    Science.gov (United States)

    Greco, G.; Beskin, G.; Karpov, S.; Guarnieri, A.; Bartolini, C.; Bondar, S.; Piccioni, A.; Molinari, E.

    We present the description and the most significant results of the wide-field and ultra-fast TORTORA camera devoted to the investigation of rapid changes in light intensity in a phenomenon occurring within an extremely short period of time and randomly distributed over the sky. In particular, the ground-based TORTORA observations synchronized with the gamma -ray BAT telescope on board of the Swift satellite has permitted to trace the optical burst time-structure of the Naked-Eye GRB 080319B with an unprecedented level of accuracy.

  12. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates

    Science.gov (United States)

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-01-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10-11 to 10-6 Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  13. Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities.

    Science.gov (United States)

    Nakagawa, Wataru; Sun, Pang-Chen; Chen, Chyong-Hua; Fainman, Yeshaiahu

    2002-02-01

    We describe a novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure. We analyze the transmissivity of this type of filter for a range of wavelengths and in-plane incidence angles as a function of the defect's refractive index, the number of layers in the photonic-crystal reflectors, and the period of the defects and find that this structure diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.

  14. Deriving comprehensive error breakdown for wide field adaptive optics systems using end-to-end simulations

    Science.gov (United States)

    Ferreira, F.; Gendron, E.; Rousset, G.; Gratadour, D.

    2016-07-01

    The future European Extremely Large Telescope (E-ELT) adaptive optics (AO) systems will aim at wide field correction and large sky coverage. Their performance will be improved by using post processing techniques, such as point spread function (PSF) deconvolution. The PSF estimation involves characterization of the different error sources in the AO system. Such error contributors are difficult to estimate: simulation tools are a good way to do that. We have developed in COMPASS (COMputing Platform for Adaptive opticS Systems), an end-to-end simulation tool using GPU (Graphics Processing Unit) acceleration, an estimation tool that provides a comprehensive error budget by the outputs of a single simulation run.

  15. i1WFT: An Integrated 1-M Class Wide-Field Telescope

    Science.gov (United States)

    Bucciol, G.; Spano, P.; Marchiori, G.; Tordi, M.

    2016-09-01

    We present a fully integrated system, based onto a 1-m aperture telescope, to perform fast-deployable, high-reliability, SSA deep observations. The optics is based onto a prime focus wide field configuration to increase target sensitivity and accuracy. Multi-spectral observations can perform target characterization. The system includes the telescope mount, the dome, the detector system, the dedicated softwares, to assist users in all the steps, from planning, scheduling, acquisition and data processing. The goal of the system is to evaluate collision probability based onto accurate orbital positional data, automatically generated by the system observations. User-customized solutions can be developed.

  16. Range performance of the DARPA AWARE wide field-of-view visible imager.

    Science.gov (United States)

    Nichols, J M; Judd, K P; Olson, C C; Novak, K; Waterman, J R; Feller, S; McCain, S; Anderson, J; Brady, D

    2016-06-01

    In a prior paper, we described a new imaging architecture that addresses the need for wide field-of-view imaging combined with the resolution required to identify targets at long range. Over the last two years substantive improvements have been made to the system, both in terms of the size, weight, and power of the camera as well as to the optics and data management software. The result is an overall improvement in system performance, which we demonstrate via a maritime target identification experiment.

  17. Adaptive optics for fluorescence wide-field microscopy using spectrally independent guide star and markers.

    Science.gov (United States)

    Vermeulen, Pierre; Muro, Eleonora; Pons, Thomas; Loriette, Vincent; Fragola, Alexandra

    2011-07-01

    We describe the implementation and use of an adaptive optics loop in the imaging path of a commercial wide field microscope. We show that it is possible to maintain the optical performances of the original microscope when imaging through aberrant biological samples. The sources used for illuminating the adaptive optics loop are spectrally independent, in excitation and emission, from the sample, so they do not appear in the final image, and their use does not contribute to the sample bleaching. Results are compared with equivalent images obtained with an identical microscope devoid of adaptive optics system.

  18. Mesosphere Study by Wide-Field Twilight Polarization Measurements: First Results beyond the Polar Circle

    CERN Document Server

    Ugolnikov, Oleg S

    2015-01-01

    The paper contains the observations description and first results of mesosphere temperature and dust study based on twilight wide-field polarization analysis started in 2015 in Apatity, northern Russia (67.6 deg N, 33.4 deg E) with original all-sky camera. It is the first twilight polarization measurements set in the polar region and the first one during the winter and early spring epoch. The general polarization properties of the twilight sky and single scattering separation procedure are described. The basic results are the Boltzmann temperature decrease above 70 km and lack of mesosphere dust that is typical for this season.

  19. The First Hundred Brown Dwarfs Discovered by the Wide-Field Infrared Survey Explorer (WISE)

    Science.gov (United States)

    Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, Amanda K.; Eisenhardt, Peter R.; McLean, Ian S.; Bauer, James M.; Benford, Dominic J.; Lake, Sean E.; Petty, Sara M.; Tsai, Chao-Wei; Beichman, Charles; Stapelfeldt, Karl R.; Stern, Daniel; Vacca, William D.

    2011-01-01

    We present ground-based spectroscopic verification of six Y dwarfs also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types > or =T6, six of which have been announced earlier in Mainzer et al. and I3urgasser et al. We present color-color and colortype diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. "

  20. Background Simulations of the Wide Field Imager of the ATHENA X-Ray Observatory

    CERN Document Server

    Hauf, Steffen; Pia, Maria Grazia; Hoffmann, Dieter H H; Lang, Philipp; Neff, Stephan; Stefanescu, Alexander; Strüder, Lothar

    2011-01-01

    The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and timing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.

  1. e-VLBI... a Wide-field Imaging Instrument with milliarcsecond Resolution & microJy Sensitivity

    CERN Document Server

    Garrett, M A

    2004-01-01

    The European VLBI Network (EVN) is in the process of establishing an e-VLBI array in which the radio telescopes and the EVN correlator at JIVE are connected in real-time, via high-speed national fibre optic networks and the pan-European research network, GEANT. This paper reports on recent test results, including the production of the first real-time e-VLBI astronomical image. In a parallel and related development, the field-of-view of VLBI is also expanding by many orders of magnitude, and the first results of deep, wide-field surveys capable of detecting many sources simultaneously are summarised. The detection of sources as faint as 10 microJy should soon be possible in the era of ``Mk5'' and e-VLBI.

  2. The mass of high-z massive galaxy cluster, SPT-CL J2106-5844 using weak-lensing analysis with HST observations

    Science.gov (United States)

    Kim, Jinhyub; Jee, James; Ko, Jongwan

    2017-01-01

    We present a weak-lensing analysis of the galaxy cluster SPT-CL J2106-5844 at z~1.132 using images from the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) on-board on the Hubble Space Telescope (HST). This cluster discovered in the South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey is known to be the most massive system at z > 1 in the survey. Within the current ΛCDM hierarchical structure formation paradigm, the mass of the cluster at such a high redshift inferred by SZ, X-ray, and galaxy velocity dispersion data is somewhat unusual. The previous mass estimates, however, rely on assumptions on the dynamical state of the system, which may become questionable when the universe was young (about 40% of the current age). In this work, we present the first weak-lensing mass estimates of this interesting cluster. We describe how we derive a mass from the HST/ACS and HST/WFC3 deep imaging data and show a two-dimensional mass reconstruction. We find that the mass distribution of the cluster is unimodal with a centroid consistent (~1σ) with both galaxy luminosity and number density distributions. Based on tangential shear fitting with an NFW halo assumption, our weak-lensing mass estimates agree well with the previous estimates.

  3. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-01-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations

  4. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    Science.gov (United States)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  5. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    Science.gov (United States)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  6. Accounting for anisoplanatic point spread function in deep wide-field adaptive optics images

    CERN Document Server

    Cresci, G; Baker, A J; Lehnert, M D

    2005-01-01

    In this paper we present the approach we have used to determine and account for the anisoplanatic point spread function (PSF) in deep adaptive optics (AO) images for the Survey of a Wide Area with NACO (SWAN) at the ESO VLT. The survey comprises adaptive optics observations in the Ks band totaling ~ 30 arcmin^2, assembled from 42 discrete fields centered on different bright stars suitable for AO guiding. We develop a parametric model of the PSF variations across the field of view in order to build an accurate model PSF for every galaxy detected in each of the fields. We show that this approach is particularly convenient, as it uses only easily available data and makes no uncertain assumptions about the stability of the isoplanatic angle during any given night. The model was tested using simulated galaxy profiles to check its performance in terms of recovering the correct morphological parameters; we find that the results are reliable up to Ks ~ 20.5 (K_AB ~ 22.3) in a typical SWAN field. Finally, the model ob...

  7. Using Wide-Field Meteor Cameras to Actively Engage Students in Science

    Science.gov (United States)

    Kuehn, D. M.; Scales, J. N.

    2012-08-01

    Astronomy has always afforded teachers an excellent topic to develop students' interest in science. New technology allows the opportunity to inexpensively outfit local school districts with sensitive, wide-field video cameras that can detect and track brighter meteors and other objects. While the data-collection and analysis process can be mostly automated by software, there is substantial human involvement that is necessary in the rejection of spurious detections, in performing dynamics and orbital calculations, and the rare recovery and analysis of fallen meteorites. The continuous monitoring allowed by dedicated wide-field surveillance cameras can provide students with a better understanding of the behavior of the night sky including meteors and meteor showers, stellar motion, the motion of the Sun, Moon, and planets, phases of the Moon, meteorological phenomena, etc. Additionally, some students intrigued by the possibility of UFOs and "alien visitors" may find that actual monitoring data can help them develop methods for identifying "unknown" objects. We currently have two ultra-low light-level surveillance cameras coupled to fish-eye lenses that are actively obtaining data. We have developed curricula suitable for middle or high school students in astronomy and earth science courses and are in the process of testing and revising our materials.

  8. Wide-Field Fluorescein Angiography in Wet Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Savitha Madhusudhan

    2014-01-01

    Full Text Available Purpose. The aim of our study was to investigate if peripheral retinal ischaemia contributed to the pathogenesis of neovascular AMD (NvAMD, using wide-field fluorescein angiography (WFFA. Methods. This prospective study included 30 consecutive patients with newly diagnosed NvAMD in the index eye. Wide-field colour fundus images and fluorescein angiograms were obtained using P200C optomap FA and analysed using a grid with three concentric circles of 50°, 100°, and 200° centred on the fovea to define zones Z1, Z2, and Z3. Results. Areas of peripheral retinal nonperfusion were seen in 2 (7% eyes, peripheral vascular leakage in 5 (17% eyes, and diffuse dye leakage close to the ora in 5 (17% eyes. A total of one-third of the study eyes showed changes on WFFA in Z2 and Z3. On comparing index eyes to nonindex eyes in these patients, the presence of NvAMD was associated with peripheral FA changes (P=0.009, Fisher’s test. Conclusion. Frank peripheral retinal non-perfusion does not appear to be associated with NvAMD. In some patients with active NvAMD there is degradation of the peripheral blood-retina barrier. Smoking was also found to be associated with the above-mentioned abnormalities.

  9. Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes

    Science.gov (United States)

    Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen

    2017-09-01

    Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.

  10. WPOL: a DSSD-based hard x-ray wide field imager and polarimeter

    Science.gov (United States)

    Laurent, P.; Bertoli, W.; Breelle, E.; Dolgorouky, Y.; Gouiffès, C.; Khalil, M.; Limousin, O.; Lebrun, F.; Rodriguez, J.

    2014-07-01

    WPOL (Wide field camera with POLarimetry) is a wide field camera which aims to monitor the X-ray/low gamma-ray sources and measures their polarimetric properties. This camera will be operated in space to trigger a main instrument in case of transient events (gamma-ray bursts, black hole binaries state transition, supernovae, …) and to map the Xray/ gamma-ray polarized sources of the Galaxy, which has never been done up to now. It will be proposed, as an accompanying instrument, in the context of the next medium mission ESA call (M4). The concept of the instrument is based upon a coded mask imaging with a detector unit composed of two planes of Silicon double sided stripped detectors (DSSD), a passive collimator and a tungsten mask. Mapping is done on the first plane through mask imaging and polarization is measured by studying Compton scattering events between the two planes. The source direction in the sky being known through the mask pattern projected on the detector plane, and the scattered photon direction being measured between the two planes, only the determination of the first energy deposit is needed to compute the whole Compton scattering kinetics and in particular, to determine the source photon energy

  11. Wide field OCT based microangiography in living human eye (Conference Presentation)

    Science.gov (United States)

    Zhang, Qinqin; Chen, Chieh-Li; Chu, Zhongdi; Zhang, Anqi; An, Lin; Durbin, Mary; Sharma, Utkarsh; Rosenfeld, Philip J.; Wang, Ruikang K.

    2016-03-01

    To investigate the application of optical microangiography (OMAG) in living human eye. Patients with different macular diseases were recruited, including diabetic retinopathy (DR), geographic atrophy (GA), retinitis pigmentosa (RP), and venous occlusion, et al. Wide field OCT angiography images can be generated by montage scanning protocol based on the tracking system. OMAG algorithm based on complex differentiation was used to extract the blood flow and removed the bulk motion by 2D cross-correlation method. The 3D angiography was segmented into 3 layers in the retina and 2 layers in the choroid. The en-face maximum projection was used to obtain 2-dimensional angiograms of different layers coded with different colors. Flow and structure images were combined for cross-sectional view. En face OMAG images of different macular diseases showed a great agreement with FA. Meanwhile, OMAG gave more distinct vascular network visions that were less affected by hemorrhage and leakage. The MAs were observed in both superficial and middle retinal layers based on OMAG angiograms in different layers of DR patients. The contour line of FAZ was extracted as well, which can be quantitative the retinal diseases. For GA patient, the damage of RPE layer enhanced the penetration of light and enabled the acquisition of choriocapillaries and choroidal vessels. The wide field OMAG angiogram enabled the capability of capturing the entire geographic atrophy. OMAG provides depth-resolved information and detailed vascular images of DR and GA patients, providing a better visualization of vascular network compared to FA.

  12. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation.

    Science.gov (United States)

    Reis, Wieland G; Tomović, Željko; Weitz, R Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-20

    The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  13. An Ultra Fast Image Generator (UFig) for wide-field astronomy

    CERN Document Server

    Bergé, Joel; Réfrégier, Alexandre; Amara, Adam

    2012-01-01

    Simulated wide-field images are becoming an important part of observational astronomy, either to prepare for new surveys or to test measurement methods. In order to efficiently explore vast parameter spaces, the computational speed of simulation codes is a central requirement to their implementation. We introduce the Ultra Fast Image Generator (UFig) which aims to bring wide-field imaging simulations to the current limits of computational capabilities. We achieve this goal through: (1) models of galaxies, stars and observational conditions, which, while simple, capture the key features necessary for realistic simulations, and (2) state-of-the-art computational and implementation optimizations. We present the performances of UFig and show that it is faster than existing public simulation codes by several orders of magnitude. It allows us to produce images more quickly than SExtractor needs to analyze them. For instance, it can simulate a typical 0.25 deg^2 Subaru SuprimeCam image (10k x 8k pixels) with a 5-sig...

  14. WINGS: a WIde-field Nearby Galaxy-cluster Survey. I - Optical imaging

    CERN Document Server

    Fasano, G; Varela, J; D'Onofrio, M; Poggianti, B M; Moles, M; Pignatelli, E; Bettoni, D; Kjaergaard, P; Rizzi, L; Couch, W; Dressler, A

    2005-01-01

    This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters with constraints on the redshift (0.0420). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the cluster galaxies as a function of cluster properties and local environment. This data collection will allow to define a local, Zero-Point reference to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using respectively the WFC@INT and WYFFOS@WHT in the northern hemisphere, a...

  15. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    Energy Technology Data Exchange (ETDEWEB)

    Law, Nicholas M.; Sivanandam, Suresh [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Ahmadi, Aida [University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada); Steinbring, Eric; Murowinski, Richard, E-mail: law@di.utoronto.ca [National Science Infrastructure, National Research Council Canada, Victoria, British Columbia, V9E 2E7 (Canada)

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  16. Exoplanets from the Arctic: The First Wide-Field Survey at 80 Degrees North

    CERN Document Server

    Law, Nicholas M; Salbi, Pegah; Ngan, Wai-Hin Wayne; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard; Sivanandam, Suresh; Kerzendorf, Wolfgang

    2012-01-01

    Located within 10 degrees of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 degrees North, near Eureka, Nunavut, for a 152-hour observing campaign in February 2012. The 16-megapixel-camera systems were based on commercial f/1.2 lenses with 70mm and 42mm apertures, and they continuously imaged 504 and 1,295 square degrees respectively. In total, the cameras took over 44,000 images and produced better-than-1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat-fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1-2% in each 10s exposure. Binning th...

  17. Affordable Wide-field Optical Space Surveillance using sCMOS and GPUs

    Science.gov (United States)

    Zimmer, P.; McGraw, J.; Ackermann, M.

    2016-09-01

    Recent improvements in sCMOS technology allow for affordable, wide-field, and rapid cadence surveillance from LEO to out past GEO using largely off-the-shelf hardware. sCMOS sensors, until very recently, suffered from several shortcomings when compared to CCD sensors - lower sensitivity, smaller physical size and less predictable noise characteristics. Sensors that overcome the first two of these are now available commercially and the principals at J.T. McGraw and Associates (JTMA) have developed observing strategies that minimize the impact of the third, while leveraging the key features of sCMOS, fast readout and low average readout noise. JTMA has integrated a new generation sCMOS sensor into an existing COTS telescope system in order to develop and test new detection techniques designed for uncued optical surveillance across a wide range of apparent object angular rates - from degree per second scale of LEO objects to a few arcseconds per second for objects out past GEO. One further complication arises from this: increased useful frame rate means increased data volume. Fortunately, GPU technology continues to advance at a breakneck pace and we report on the results and performance of our new detection techniques implemented on new generation GPUs. Early results show significance within 20% of the expected theoretical limiting signal-to-noise using commodity GPUs in near real time across a wide range of object parameters, closing the gap in detectivity between moving objects and tracked objects.

  18. Field and long-term demonstration of a wide area quantum key distribution network

    CERN Document Server

    Wang, Shuang; Yin, Zhen-Qiang; Li, Hong-Wei; He, De-Yong; Li, Yu-Hu; Zhou, Zheng; Song, Xiao-Tian; Li, Fang-Yi; Wang, Dong; Chen, Hua; Han, Yun-Guang; Huang, Jing-Zheng; Guo, Jun-Fu; Hao, Peng-Lei; Li, Mo; Zhang, Chun-Mei; Liu, Dong; Liang, Wen-Ye; Miao, Chun-Hua; Wu, Ping; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective i...

  19. HST Cycle 19 Exposure Time Calculators

    Science.gov (United States)

    York, Brian Andrew; Diaz, R. I.; Busko, I.; Greenfield, P.; Laidler, V.; Miller, T.; Sienkiewicz, M.; Sosey, M.

    2010-05-01

    The Exposure Time Calculator (ETC) is a web-based application that assists users in calculating the exposure time needed for their HST observations, or the Signal-to-Noice Ratio (SNR) they can attain with a given HST observing time. These quantities are key for the preparation of proposals and observations during Phase I and Phase II of the proposing cycle and therefore have to be sufficiently accurate for each of the supported observing modes of all the HST instruments. Developing a general tool that shares communality among the different instruments is complicated, not only form the point of view of attaining accuracy of the calculations but also regarding reliability, portability, and maintainability. We are currently developing a new version of the ETC for Cycle 19 in Python to improve these qualities and to provide a basis for JWST Exposure Time Calculators. This poster describes the improvements over the previous ETC and the current status of the new version.

  20. Automated Astrometric Analysis of Satellite Observations using Wide-field Imaging

    Science.gov (United States)

    Skuljan, J.; Kay, J.

    2016-09-01

    An observational trial was conducted in the South Island of New Zealand from 24 to 28 February 2015, as a collaborative effort between the United Kingdom and New Zealand in the area of space situational awareness. The aim of the trial was to observe a number of satellites in low Earth orbit using wide-field imaging from two separate locations, in order to determine the space trajectory and compare the measurements with the predictions based on the standard two-line elements. This activity was an initial step in building a space situational awareness capability at the Defence Technology Agency of the New Zealand Defence Force. New Zealand has an important strategic position as the last land mass that many satellites selected for deorbiting pass before entering the Earth's atmosphere over the dedicated disposal area in the South Pacific. A preliminary analysis of the trial data has demonstrated that relatively inexpensive equipment can be used to successfully detect satellites at moderate altitudes. A total of 60 satellite passes were observed over the five nights of observation and about 2600 images were collected. A combination of cooled CCD and standard DSLR cameras were used, with a selection of lenses between 17 mm and 50 mm in focal length, covering a relatively wide field of view of 25 to 60 degrees. The CCD cameras were equipped with custom-made GPS modules to record the time of exposure with a high accuracy of one millisecond, or better. Specialised software has been developed for automated astrometric analysis of the trial data. The astrometric solution is obtained as a two-dimensional least-squares polynomial fit to the measured pixel positions of a large number of stars (typically 1000) detected across the image. The star identification is fully automated and works well for all camera-lens combinations used in the trial. A moderate polynomial degree of 3 to 5 is selected to take into account any image distortions introduced by the lens. A typical RMS

  1. Mimir: A Near-Infrared Wide-Field Imager, Spectrometer and Polarimeter

    Science.gov (United States)

    Clemens, D. P.; Sarcia, D.; Grabau, A.; Tollestrup, E. V.; Buie, M. W.; Dunham, E.; Taylor, B.

    2007-12-01

    Mimir, a new facility-class near-infrared instrument for the 1.8 m Perkins telescope on Anderson Mesa outside Flagstaff, Arizona, was commissioned and has been operating for three years. Mimir is multifunction, performing wide-field (F/5) and narrow-field (F/17) imaging, long-slit spectroscopy, and imaging polarimetry. The F/5 mode images at 0.59" per pixel onto the 1024 × 1024 pixel ALADDIN III InSb array detector, giving a 10' × 10' field of view. In the F/17 mode, the plate scale is 0.18" per pixel. Optically, Mimir is a refractive reimager for the F/17.5 Perkins beam. A six-lens collimator produces an achromatic 25 mm pupil, which is imaged by a five-lens camera (F/5), a four-lens camera (F/17), or a two-lens pupil viewer onto the detector. Three filter wheels precede the pupil, one follows the pupil. The wheels contain a rotating half-wave plate, broadband filters, narrowband filters, grisms, long-pass filters, a wire grid, and thermal IR blockers. The first telescope focus is within Mimir, where a slit and decker unit, consisting of two linear motion cars, selects one of 13 slit scenes. The slit and decker cars, the four filter wheels, the half-wave plate rotation, and the camera selector are all driven by stepper motors within the cold vacuum space. Cooling is provided by a CTI 1050 two-stage, closed-cycle helium refrigerator, keeping the optics, filters, and internal surfaces between 65 and 75 K and the detector at 33.5 K. Switching between Mimir's different modes takes only a few seconds, making it a versatile tool for conducting a wide range of investigations and for quickly reacting to changing observing conditions. Mimir on the Perkins telescope achieves imaging sensitivities 2-4 mag deeper than 2MASS, moderate resolution (R ˜ 700) JHK spectra of virtually any 2MASS source, high-precision wide-field imaging polarimetry, and L' and M' band imaging and spectroscopy.

  2. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    Science.gov (United States)

    Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.

    2008-07-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.

  3. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice

    Science.gov (United States)

    Silasi, Gergely; Xiao, Dongsheng; Vanni, Matthieu P.; Chen, Andrew C. N.; Murphy, Timothy H.

    2016-01-01

    Background Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. New Method We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. Results The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30 minutes. A single set-screw provides a stable means of attachment for mesoscale assessment without obscuring the cortical field of view. Comparison with Existing Methods We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice. Conclusions We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors. PMID:27102043

  4. Deployment of the Hobby-Eberly Telescope wide-field upgrade

    Science.gov (United States)

    Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.

    2016-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.

  5. Localising rectus muscle insertions using high frequency wide-field ultrasound biomicroscopy.

    Science.gov (United States)

    Khan, Hayat Ahmad; Smith, David R; Kraft, Stephen P

    2012-05-01

    The ultrasound biomicroscope (UBM) can accurately locate an extraocular muscle (EOM) insertion. The authors compared the accuracy of the Sonomed UBM (SUBM), a new 'wide-field ultrasound biomicroscope', with the older model Humphrey UBM (HUBM) in localising EOM insertions and compared their ranges of detection of muscle insertions. Prospective, double-masked, observational study of 27 patients undergoing primary (n=40 muscles) or repeat (n=10 muscles) horizontal or vertical rectus muscle surgery. EOM insertional distances were measured with SUBM, and then intraoperatively with callipers. A Bland-Altman analysis and intraclass correlation coefficient were used to compare the SUBM and surgical data. For all muscles, the differences between SUBM and surgery measurements were less than 1.0 mm. The mean of the SUBM insertion distances was 6.67 mm (SD 1.65 mm) versus 6.7 mm (SD 1.6 mm) at surgery. The intraclass correlation coefficient showed 'excellent' correlation between the two sets of data and was higher than that reported with HUBM. The image quality with the SUBM was superior to the HUBM, and its range of field was much larger (14×18 mm vs 5×6 mm). The SUBM with its smaller, more manoeuvrable probe handpiece and a wider scanning field was more accurate in detecting muscle insertions compared with HUBM.

  6. Simulating HST observations of strong lensing clusters

    Science.gov (United States)

    Meneghetti, Massimo

    2014-10-01

    The Frontier Fields {FF} are using galaxy cluster gravitational lensing to boost the powers of Hubble and Spitzer to reveal the faintest galaxies yet observed. Accurate gravitational lensing models with uncertainty estimates are required to study some of the physical parameters of the lensed galaxies. Simulated HST observations of lensing clusters with known mass distributions are ideal to determine the accuracies of these modeling methods. Our team has begun performing these tests, demonstrating that integrated quantities such as lensed number counts are accurately recovered, enabling luminosity functions to be constrained. We have also begun to quantify magnification uncertainties for individual galaxies, but additional tests are needed. Here we propose to create a set of simulated osbervations of clusters selected to be analogs of the CLASH and FF clusters. They will include lensing effects and they will be delivered to the Mikulski Archive for Space Telescopes as a legacy product for others to analyze. They will be usable to extend our tests for robustly determine the accuracies in model magnification and mass measurements. Mass uncertainties will be a key ingredient in efforts to use galaxy clusters to constrain cosmology and theories of structure formation. Results from this program will also be useful to improve lens modeling methods toward more optimal use of the large numbers of lensing constraints available in deep FF imaging. This program will help astronomers realize the full potential of the large investments of Hubble, Spitzer, Chandra, and ground-based observing time in the FF, CLASH, and other past and future cluster lensing observations.

  7. HST NICMOS snapshot survey of faint galaxies at z < 1

    Science.gov (United States)

    Hinkley, S.; Im, M.; DEEP Team

    2000-12-01

    During Cycle 7 HST observations, we have obtained NICMOS H-band images of faint field galaxies for which both HST morphological information (in V and/or I) and spectroscopic redshifts are available. The purpose of the NICMOS observation is to provide their morphology in rest frame NIR wavelengths (8000 - 16000 Å), where the effect of dust extinction is less severe, and to obtain their near infrared (NIR) colors. The objects in our field are partly contained in the Groth Strip being studied in detail by the DEEP team. In addition, we have made use of a software package called GIM2D (Simard et al. 2001). This package is designed to perform detailed 2-dimensional decompositions for images of distant galaxies. Using this software, we have obtained structural parameters for the objects in the H-band to complement those parameters in V and I. We will present: i) color gradients inside elliptical galaxies to test models of their formation; ii) the effect of dust extinction on the properties of field galaxies at 0 < z < 1; iii) evolution of V-H, and V-I colors of bulges as well as the B/T ratio of spiral galaxies as a function of redshift; iv) morphological k-correction. The median redshift of our sample is z ~ 0.5 and this corresponds to about one half of the current age of the universe. This work is supported by the STScI grant GO-07895.02-96A.

  8. PPAK Wide-field Integral Field Spectroscopy of NGC 628: I. The largest spectroscopic mosaic on a single galaxy

    CERN Document Server

    Sanchez, S F; Kennicutt, R C; Johnson, B D; Diaz, A I; Pasquali, A; Hao, C N

    2010-01-01

    We present a wide-field IFS survey on the nearby face-on Sbc galaxy NGC 628, comprising 11094 individual spectra, covering a nearly circular field-of-view of ~6 arcmin in diameter, with a sampling of ~2.7 arcsec per spectrum in the optical wavelength range (3700--7000 AA). This galaxy is part of the PPAK IFS Nearby Galaxies Survey, (PINGS, Rosales-Ortega et al. 2009). To our knowledge, this is the widest spectroscopic survey ever made in a single nearby galaxy. A detailed flux calibration was applied, granting a spectrophotometric accuracy of $\\sim$\\,0.2 mag. The age of the stellar populations shows a negative gradient from the inner (older) to the outer (younger) regions. We found an inversion of this gradient in the central ~1 kpc region, where a somewhat younger stellar population is present within a ring at this radius. This structure is associated with a circumnuclear star-forming region at ~ 500 pc, also found in similar spiral galaxies. From the study of the integrated and spatially resolved ionized ga...

  9. Studies of prototype DEPFET sensors for the wide field imager of Athena

    Science.gov (United States)

    Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Bianchi, Davide; Koch, Anna; Meidinger, Norbert; Müller-Seidlitz, Johannes; Ott, Sabine; Porro, Matteo

    2016-07-01

    The Wide Field Imager of the Athena telescope will combine an excellent spectroscopic performance and high count rate capability with a large field of view. For these purposes, its focal plane consists of two complementary detectors, using DEPFET active pixel sensors. One is the high count rate detector with a small field of view, which has to be operated with a readout speed of 80 μs per frame. In contrast, the large area detector will cover a large field of view and has to be read out with a frame rate four identical active pixel arrays, consisting of 512 x 512 pixels, each. Since a column parallel readout will be used, 512 pixels are connected to one single channel of a readout ASIC. The readout will be accomplished by either sensing a voltage step on the source node or a change of the transistor drain current. The former so-called source follower mode requires long settling times - proportional to the load capacitances - but can cope with local inhomogeneities. Alternatively, the latter so-called drain current mode provides a fast readout - independent to the load capacitance - but implicates a higher sensitivity on local variations of the DEPFETs bias currents. Both modes are implemented in the VERITAS 2.1 readout ASIC and were studied with 64 x 64 pixels arrays. Drain current devices could be operated with significantly smaller settling times but suffer from a slightly increased noise at similar shaping times in comparison to the source follower ones. By using an optimized timing with dedicated settling and shaping times, the devices of both modes feature a comparable spectral performance.

  10. Mid-infrared Variability from the Spitzer Deep Wide-field Survey

    Science.gov (United States)

    Kozłowski, Szymon; Kochanek, Christopher S.; Stern, Daniel; Ashby, Matthew L. N.; Assef, Roberto J.; Bock, J. J.; Borys, C.; Brand, K.; Brodwin, M.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, Arjun; Eisenhardt, P. R.; Gonzalez, A.; Gorjian, V.; Griffith, R.; Grogin, N.; Ivison, R.; Jacob, J.; Jannuzi, B. T.; Mainzer, A.; Moustakas, L.; Röttgering, H.; Seymour, N.; Smith, H. A.; Stanford, S. A.; Stauffer, J. R.; Sullivan, I. S.; van Breugel, W.; Willner, S. P.; Wright, E. L.

    2010-06-01

    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg2 of the NOAO Deep Wide Field Survey Boötes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r>0.8) and that their joint variance (σ12) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBoötes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S 0 ~= 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

  11. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Science.gov (United States)

    Pena, J.; Franco, L.; Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pazos, A.; Pardo, J.; Pombar, M.; Rodríguez, A.; Sendón, J.

    2004-11-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm × 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  12. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pardo, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-11-07

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  13. Non-contact wide-field hemodynamic imaging reveals the inverted jugular venous pulse waveform

    CERN Document Server

    Amelard, Robert; Greaves, Danielle K; Pfisterer, Kaylen J; Leung, Jason; Clausi, David A; Wong, Alexander

    2016-01-01

    Cardiovascular disease is the leading cause of death globally. Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pressure waveform (JVP) is able to provide important information about cardiac health. Factors such as mechanical deformations, electric abnormalities, and irregular external forces change the fundamental shape of the JVP. However, current methods for measuring the JVP require invasive catheter insertion, or subjective qualitative visual inspection of the patient's jugular pulse. Thus, JVP are not routinely performed, and are scheduled only when there is probable cause for catheterisation. Non-invasive monitoring methods would benefit JVP monitoring. Recently, there has been a surge in focus on photoplethysmographic imaging (PPGI) systems. These systems are non-contact wide-field imaging systems able to assess blood pulse waveforms across a large area of the body. However, PPGI has not been previously explored for measuring jugular venous pulse. In this...

  14. Retinal changes detected by wide-field autofluorescence imaging of patients with primary rhegmatogenous retinal detachment

    DEFF Research Database (Denmark)

    Poulsen, Christina Døfler; Grauslund, Jakob; Peto, Tunde

    2014-01-01

    .2 million inhabitants. Methods: A clinical prospective study of 99 eyes in 99 patients undergoing surgery for primary RRD between 1st of January 2013 and 12th of July 2013. All patients underwent surgery with pars plana vitrectomy (PPV) and had either gas or silicone oil tamponade. Patients were examined...... preoperatively and at a 2-months follow-up. Examinations included best corrected visual acuity (BCVA), slit lamp biomicroscopy, spectral domain optical coherence tomography (SD-OCT) (Topcon 3D-OCT 2000) and wide-field imaging (Optos 200Tx color and AF). Additional data collected included age, gender, previous...... eye history (including cataract surgery), present symptoms, IOP, time from RRD to surgery, preoperative proliferative vitreoretinopathy (PVR) graded according to standardized protocol as follows: A (vitreous haze, pigment, vitreous cells and clumps) , B (wrinkling of inner retinal suface, vessel...

  15. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    Science.gov (United States)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  16. Meteor observations with Mini-Mega-TORTORA wide-field monitoring system

    Science.gov (United States)

    Karpov, S.; Orekhova, N.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we report on the results of meteor observations with 9-channel Mini-Mega-TORTORA (MMT-9) optical monitoring system with the wide field and high temporal resolution. During the first 1.5 years of operation more than 90 thousands of meteors have been detected, at a rate of 300-350 per night, with durations from 0.1 to 2.5 seconds and angular velocities up to 38 degrees per second. The faintest detected meteors have peak brightnesses about 10 mag, while the majority have them ranging from 4 to 8 mag. Some of the meteors have been observed in BVR filters simultaneously. Color variations along the trail for them have been determined. The parameters of the detected meteors have been published online. The database also includes data from 10 thousands of meteors detected by our previous FAVOR camera during 2006-2009.

  17. Automated Classification of Periodic Variable Stars detected by the Wide-field Infrared Survey Explorer

    CERN Document Server

    Masci, Frank J; Grillmair, Carl J; Cutri, Roc M

    2014-01-01

    We describe a methodology to classify periodic variable stars identified in the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Database. This will assist in the future construction of a WISE periodic-Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative...

  18. Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    We are working on the development of a method for optimizing wide-field x-ray telescope mirror prescriptions, including polynomial coefficients, mirror shell relative displacements, and (assuming 4 focal plane detectors) detector placement and tilt that does not require a search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough that second order expansions are valid, we show that the performance at the detector surface can be expressed as a quadratic function of the parameters with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The best values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero. We describe the present status of this development effort.

  19. Atmospheric turbulence in phase-referenced and wide-field interferometric images: Application to the SKA

    CERN Document Server

    Marti-Vidal, I; Jimenez-Monferrer, S; Marcaide, J M

    2010-01-01

    Phase referencing is a standard calibration procedure in radio interferometry. It allows to detect weak sources by using quasi-simultaneous observations of closeby sources acting as calibrators. Therefore, it is assumed that, for each antenna, the optical paths of the signals from both sources are similar. However, atmospheric turbulence may introduce strong differences in the optical paths of the signals and affect, or even waste, phase referencing for cases of relatively large calibrator-to-target separations and/or bad weather. The situation is similar in wide-field observations, since the random deformations of the images, mostly caused by atmospheric turbulence, have essentially the same origin as the random astrometric variations of phase-referenced sources with respect to the phase center of their calibrators. In this paper, we present the results of a Monte Carlo study of the astrometric precision and sensitivity of an interferometric array (a realization of the Square Kilometre Array, SKA) in phase-r...

  20. Optical Design Trade Study for the Wide Field Infrared Survey Telescope [WFIRST

    Science.gov (United States)

    Content, David A.; Goullioud, R.; Lehan, John P.; Mentzell, John E.

    2011-01-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics mission by the Astro2010 Decadal Survey incorporating the Joint Dark Energy Mission (JDEM)-Omega payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of NWNH, the WFIRST project has been working with the WFIRST science definition team (SDT) to refine mission and payload concepts. We present the driving requirements. The current interim reference mission point design, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slitless spectroscopy science channels, is consistent with the requirements, requires no technology development, and out performs the JDEM-Omega design.

  1. Wide-field two-photon microscopy: features and advantages for biomedical applications

    Science.gov (United States)

    Wachsmann-Hogiu, S.; Hwang, J. Y.; Lindsley, E.; Farkas, D. L.

    2007-02-01

    We describe a simple fluorescence microscope based on wide-field two-photon excitation. While still taking advantage of some inherent properties of non-linear (two-photon) microscopy, such as increased penetration depth through tissue and reduced phototoxicity, this approach provides video frame rate imaging, can be easily coupled to fluorescence spectral and lifetime detection modules, and makes efficient use of the high average power currently available from ultrashort pulsed lasers. For a standard histopathology specimen, we were able to identify different structures based on spectral and fluorescence lifetime detection and analysis. We examined the use of 200fs and 2ps pulses from Spectra Physics MaiTai and Tsunami lasers, respectively, with average power ranging from 50mW to 500mW.

  2. San Pedro meeting on Wide Field Variability Surveys: Some concluding comments

    Science.gov (United States)

    Feast, Michael W.

    2017-09-01

    This is a written version of the closing talk at the 22nd Los Alamos Stellar pulsation conference on wide field variability surveys. It comments on some of the issues which arise from the meeting. These include the need for attention to photometric standardization (especially in the infrared) and the somewhat controversial problem of statistical bias in the use of parallaxes (and other methods of distance determination). Some major advances in the use of pulsating variables to study Galactic structure are mentioned. The paper includes a clarification of apparently conflicting results from classical Cepheids and RR Lyrae stars in the inner Galaxy and bulge. The importance of understanding non-periodic phenomena in variable stars, particularly asymptotic giant branch variables and R Coronae Borealis stars, is stressed, especially for its relevance to mass-loss in which pulsation may only play a minor role.

  3. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    Science.gov (United States)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  4. Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Stoneking, Eric; Hsu, Oscar; Welter, Gary

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to ad-dress the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the GNC subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.

  5. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.

    Science.gov (United States)

    Wei, Xiangqin; Gu, Xingfa; Meng, Qingyan; Yu, Tao; Zhou, Xiang; Wei, Zheng; Jia, Kun; Wang, Chunmei

    2017-07-08

    Leaf area index (LAI) is an important vegetation parameter that characterizes leaf density and canopy structure, and plays an important role in global change study, land surface process simulation and agriculture monitoring. The wide field view (WFV) sensor on board the Chinese GF-1 satellite can acquire multi-spectral data with decametric spatial resolution, high temporal resolution and wide coverage, which are valuable data sources for dynamic monitoring of LAI. Therefore, an automatic LAI estimation algorithm for GF-1 WFV data was developed based on the radiative transfer model and LAI estimation accuracy of the developed algorithm was assessed in an agriculture region with maize as the dominated crop type. The radiative transfer model was firstly used to simulate the physical relationship between canopy reflectance and LAI under different soil and vegetation conditions, and then the training sample dataset was formed. Then, neural networks (NNs) were used to develop the LAI estimation algorithm using the training sample dataset. Green, red and near-infrared band reflectances of GF-1 WFV data were used as the input variables of the NNs, as well as the corresponding LAI was the output variable. The validation results using field LAI measurements in the agriculture region indicated that the LAI estimation algorithm could achieve satisfactory results (such as R² = 0.818, RMSE = 0.50). In addition, the developed LAI estimation algorithm had potential to operationally generate LAI datasets using GF-1 WFV land surface reflectance data, which could provide high spatial and temporal resolution LAI data for agriculture, ecosystem and environmental management researches.

  6. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    Science.gov (United States)

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies. © 2015 The Royal Australian and New Zealand College of Radiologists.

  7. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    Science.gov (United States)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  8. Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release

    Indian Academy of Sciences (India)

    Fei Shi; Xu Kong; James Wicker; Yang Chen; Zi-Qiang Gong; Dong-Xin Fan

    2012-06-01

    With the goal of investigating the degree at which the MIR luminosity in the Wide-field Infrared Survey Explorer (WISE) traces the SFR, we analyse 3.4, 4.6, 12 and 22 m data in a sample of ∼ 140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + \\log (O/H) < 9.46, with redshift < 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA. We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 m from WISE and H luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 m luminosity and SFR relates to the galaxy’s properties, such as 4000 Å break and galaxy color.

  9. Wide-Field InfraRed Survey Telescope (WFIRST) Final Report

    CERN Document Server

    Green, J; Baltay, C; Bean, R; Bennett, D; Brown, R; Conselice, C; Donahue, M; Fan, X; Gaudi, B S; Hirata, C; Kalirai, J; Lauer, T; Nichol, B; Padmanabhan, N; Perlmutter, S; Rauscher, B; Rhodes, J; Roellig, T; Stern, D; Sumi, T; Tanner, A; Wang, Y; Weinberg, D; Wright, E; Gehrels, N; Sambruna, R; Traub, W; Anderson, J; Cook, K; Garnavich, P; Hillenbrand, L; Ivezic, Z; Kerins, E; Lunine, J; McDonald, P; Penny, M; Phillips, M; Rieke, G; Riess, A; van der Marel, R; Barry, R K; Cheng, E; Content, D; Cutri, R; Goullioud, R; Grady, K; Helou, G; Jackson, C; Kruk, J; Melton, M; Peddie, C; Rioux, N; Seiffert, M

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (...

  10. Wide Field CO Mapping in the Region of IRAS 19312+1950

    CERN Document Server

    Nakashima, Jun-ichi; Sobolev, Andrej M; Zhang, Yong; Hsia, Chih-Hao; Yung, Bosco H K

    2016-01-01

    We report the results of a wide field CO mapping in the region of IRAS 19312+1950. This IRAS object exhibits SiO/H$_2$O/OH maser emission, and is embedded in a chemically-rich molecular component, of which the origin is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the $^{12}$CO $J=1-0$, $^{13}$CO $J=1-0$ and C$^{18}$O $J=1-0$ lines using the Nobeyama 45m telescope. In conjunction with the archival CO maps, we investigated a region with a size up to $20' \\times 20'$ around this IRAS object. We calculated CO gas mass assuming the LTE condition, a stellar velocity against to the interstellar medium assuming an analytic model of a bow shock, and absolute luminosity using the latest archival data and trigonometric parallax distance. The derived gas-mass (225 M$_{\\odot}$ $-$ 478 M$_{\\odot}$) of the molecular component and the relatively large luminosity ($2.63\\times10^{4}$ L$_{\\od...

  11. Optical multi-frequency swept sensing for wide-field vibration measurement of interior surfaces in biological tissue

    Science.gov (United States)

    Choi, S.; Nin, F.; Hibino, H.; Suzuki, T.

    2015-12-01

    Multifrequency sensing technique adopting the wide field heterodyne detection technique is demonstrated for interior surface vibration measurements in thick biological tissue. These arrangements allow obtaining not only 3D tomographic images but also various vibration parameters such as spatial amplitude, phase, and frequency, with high temporal and transverse resolutions over a wide field. The axial resolution and the accuracy of vibration amplitude measurement were estimated to be 2.5 μm and 3 nm, respectively. This wide-field tomographic sensing method can be applied for measuring microdynamics of a variety of biological samples, thus contributing to the progress in life sciences research.

  12. When VLT Meets HST : The HUGS Survey

    NARCIS (Netherlands)

    Fontana, A.; Dunlop, J. S.; Paris, D.; Targett, T.; Boutsia, K.; Castellano, M.; Galametz, A.; Grazian, A.; McLure, R.; Merlin, E.; Pentericci, L.; Wuyts, S.; Almaini, O.; Caputi, K.; Chary, R.-R.; Cirasuolo, M.; Conselice, C.; Cooray, A.; Daddi, E.; Dickinson, M.; Faber, S. M.; Fazio, G.; Ferguson, H.; Giallongo, E.; Giavalisco, M.; Grogin, N.; Hathi, N.; Koekemoer, A.; Koo, D. C.; Lucas, R.; Nonino, M.; Rix, H.-W.; Renzini, A.; Rosario, D.; Santini, P.; Scarlata, C.; Sommariva, V.; Stark, D. P.; van der Wel, A.; Vanzella, E.; Wild, V.; Yan, H.; Zibetti, S.

    2014-01-01

    A new ultra-deep near-infrared imaging survey has been completed using the HAWK-I imager at the VLT. It is named HUGS (HAWK-I Ultra Deep Survey and GOODS Survey) and delivers the deepest, highest quality images ever collected in the K-band. HUGS complements the data delivered by the HST CANDELS surv

  13. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  14. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  15. Automatic Processing of Chinese GF-1 Wide Field of View Images

    Science.gov (United States)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  16. VizieR Online Data Catalog: HST VI photometry of Bol 514 in M31 (Federici+, 2007)

    Science.gov (United States)

    Federici, L.; Bellazzini, M.; Galleti, S.; Fusi Pecci, F.; Buzzoni, A.; Parmeggiani, G.

    2007-06-01

    Table 5 presents the photometry of the individual stars of the M31 remote globular cluster B514. The observations were carried out with the Advanced Camera for Surveys/Wide Field Camera on board of the HST, in the F606W/F814W bands, for total exposure times of 2412s and 2418s respectively. The cluster was placed near the center of the ACS/WFC Chip 2. Data reduction has been performed using the ACS module of DOLPHOT, a point spread function-fitting package specifically devoted to the photometry of HST data, that provides as output the magnitudes and positions of the detected sources, and a number of quality parameters for a suitable sample selection. Table 5 presents all the ACS/WFC Chip 2 stars with valid measurements in both passbands, global quality flag=1, crowding parameter <0.3 and chi-square parameter <1.5. The x,y coordinates, the magnitudes both in the Vegamag and in the Johnson-Cousins systems and the global 'chi' parameter are listed for each of the selected stars. (1 data file).

  17. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    Science.gov (United States)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  18. The Wide-Area X-ray Survey in the Legacy Stripe 82 Field

    Science.gov (United States)

    LaMassa, S.; Urry, M.; Cappelluti, N.; Comastri, A.; Glikman, E.; Richards, G.; B"ohringer, H.

    2016-06-01

    We are carrying out a wide-area X-ray survey in the Sloan Digital Sky Survey Stripe 82 field to uncover how luminous, obscured AGN evolve over cosmic time and the role they play in galaxy evolution. Stripe 82 is a legacy field with a high level of spectroscopic completeness and rich multi-wavelength coverage from the ultraviolet to far-infrared, including Spitzer and Herschel imaging. Our Stripe 82X survey currently reaches 31 deg^{2}, with ˜6200 X-ray point sources detected at ≥5σ level. I will review the characteristics of this survey, on-going programs to target obscured AGN candidates, and how we can use the lessons learned from the synergistic multi-wavelength coverage to develop strategic plans for future surveys and missions. Finally, I will comment on how extending the Stripe 82X survey area to 100 deg^{2} will provide unprecedented insight into the high-L (Lx > 10^{45} erg/s), high-z (z > 2) AGN population.

  19. Development of a prototype of the Tomo-e Gozen wide-field CMOS camera

    Science.gov (United States)

    Sako, Shigeyuki; Osawa, Ryou; Takahashi, Hidenori; Kikuchi, Yuki; Doi, Mamoru; Kobayashi, Naoto; Aoki, Tsutomu; Arimatsu, Ko; Ichiki, Makoto; Ikeda, Shiro; Ita, Yoshifusa; Kasuga, Toshihiro; Kawakita, Hideyo; Kokubo, Mitsuru; Maehara, Hiroyuki; Matsunaga, Noriyuki; Mito, Hiroyuki; Mitsuda, Kazuma; Miyata, Takashi; Mori, Kiyoshi; Mori, Yuki; Morii, Mikio; Morokuma, Tomoki; Motohara, Kentaro; Nakada, Yoshikazu; Osawa, Kentaro; Okumura, Shin-ichiro; Onozato, Hiroki; Sarugaku, Yuki; Sato, Mikiya; Shigeyama, Toshikazu; Soyano, Takao; Tanaka, Masaomi; Taniguchi, Yuki; Tanikawa, Ataru; Tarusawa, Ken'ichi; Tominaga, Nozomu; Totani, Tomonori; Urakawa, Seitaro; Usui, Fumihiko; Watanabe, Junichi; Yamaguchi, Jumpei; Yoshikawa, Makoto

    2016-08-01

    The Tomo-e Gozen is an extremely wide-field optical camera for the Kiso 1.0-m Schmidt telescope. It is capable of taking consecutive frames with a field-of-view of 20 deg2 and a sub-second time-resolution, which are achieved by 84 chips of 2k×1k CMOS sensor. This camera adopts unconventional designs including a lightweight structure, a nonvacuumed and naturally-air cooled system, front-side-illuminated CMOS sensors with microlens arrays, a sensor alignment along a spherical focal plane of the telescope, and massive readout electronics. To develop technical components necessary for the Tomo-e Gozen and confirm a feasibility of its basic design, we have developed a prototype-model (PM) of the Tomo-e Gozen prior to the final-model (FM). The Tomo-e PM is equipped with eight chips of the CMOS sensor arranged in a line along the RA direction, covering a sky area of 2.0 deg2. The maximum frame rate is 2 fps. The total data production rate is 80 MByte sec-1 at 2 fps, corresponding to approximately 3 TByte night-1. After laboratory testing, we have successfully obtained consecutive movie data at 2 fps with the Tomo-e PM in the first commissioning run conducted in the end of 2015.

  20. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    Science.gov (United States)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  1. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  2. A retinal circuit model accounting for wide-field amacrine cells.

    Science.gov (United States)

    Sağlam, Murat; Hayashida, Yuki; Murayama, Nobuki

    2009-03-01

    In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the "linear-nonlinear" (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the circuit elements could explain the higher-order retinal functions. However, in such a model, each class of retinal neurons is mostly omitted and thus, how those neurons play roles in the visual computations cannot be explored. Here, we present a spatio-temporal computational model of the vertebrate retina, based on the response function for each class of retinal neurons and on the anatomical inter-cellular connections. This model was capable of not only reproducing the spatio-temporal filtering properties of the outer retinal neurons, but also realizing the object segregation mechanism in the inner retinal circuit involving the "wide-field" amacrine cells. Moreover, the first-order Wiener kernels calculated for the neurons in our model showed a reasonable fit to the kernels previously measured in the real retinal neuron in situ.

  3. Proto-Model of an Infrared Wide-Field Off-Axis Telescope

    CERN Document Server

    Kim, Sanghyuk; Chang, Seunghyuk; Kim, Geon Hee; Yang, Sun Choel; Kim, Myung Sang; Lee, Sungho; Lee, Hanshin; 10.5303/JKAS.2010.43.5.169

    2010-01-01

    We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of 8 deg X 8 deg. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

  4. The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design

    Science.gov (United States)

    Barbera, M.; Branduardi-Raymont, G.; Collura, A.; Comastri, A.; Eder, J.; Kamisiński, T.; Lo Cicero, U.; Meidinger, N.; Mineo, T.; Molendi, S.; Parodi, G.; Pilch, A.; Piro, L.; Rataj, M.; Rauw, G.; Sciortino, L.; Sciortino, S.; Wawer, P.

    2015-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all type of X-ray sources that present a UV/Visible bright counterpart. In this paper, we describe the main activities that we are carrying on for the conceptual design of the optical blocking filter, that will be mounted on the filter wheel, in order to satisfy the scientific requirements on optical load from bright UV/Vis astrophysical source, to maximize the X-ray transmission, and to withstand the severe acoustic and vibration loads foreseen during launch.

  5. High-resolution LCD projector for extra-wide-field-of-view head-up display

    Science.gov (United States)

    Brown, Robert D.; Modro, David H.; Quast, Gerhardt A.; Wood, Robert B.

    2003-09-01

    LCD projection-based cockpit displays are beginning to make entry into military and commercial aircraft. Customers for commercial Head-Up Displays (HUDs)(including airframe manufacturers) are now interested in the adaptation of the technology into existing and future HUD optical systems. LCD projection can improve mean-time-between-failure rates because the LCDs are very robust and the light sources can be replaced with scheduled maintenance by the customer without the need for re-calibration. LCD projectors promise to lower the cost of the HUD because the cost of these displays continues to drop while the cost of CRTs remain stable. LCD projectors provide the potential for multi-colors, higher brightness raster, and all-digital communication between the flight computer and display unit. Another potential benefit of LCD projection is the ability to increase field of view and viewing eyebox without exceeding existing power budgets or reducing display lifetime and reliability compared to the capabilities provided by CRTs today. This paper describes the performance requirements and improved performance of a third-generation LCD projection image source for use in a wide field of view head-up display (HUD) optical system. This paper will focus on new HUD requirements and the application of various technologies such as LCOS microdisplays, arc lamps, and rear-projection screens. Measured performance results are compared to the design requirements.

  6. A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    CERN Document Server

    Dempsey, Jessica T; Chrysostomou, Antonio; Berry, David S; Bintley, Daniel; Chapin, Edward L; Craig, Simon C; Coulson, Iain M; Davis, Gary R; Friberg, Per; Jenness, Tim; Gibb, Andy G; Parsons, Harriet A L; Scott, Douglas; Thomas, Holly S; Tilanus, Remo P J; Robson, Ian; Walther, Craig A

    2012-01-01

    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450 and 850 micron arrays, with average yields of approximately 3400 bolometers at each wavelength, will be shown. The observing modes of the instrument and the on-sky calibration techniques are described. The culmination of these efforts has resulted in a scientifically powerful mapping camera with sensitivities that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.

  7. PSF Estimation of Space-Variant Ultra-Wide Field of View Imaging Systems

    Directory of Open Access Journals (Sweden)

    Petr Janout

    2017-02-01

    Full Text Available Ultra-wide-field of view (UWFOV imaging systems are affected by various aberrations, most of which are highly angle-dependent. A description of UWFOV imaging systems, such as microscopy optics, security camera systems and other special space-variant imaging systems, is a difficult task that can be achieved by estimating the Point Spread Function (PSF of the system. This paper proposes a novel method for modeling the space-variant PSF of an imaging system using the Zernike polynomials wavefront description. The PSF estimation algorithm is based on obtaining field-dependent expansion coefficients of the Zernike polynomials by fitting real image data of the analyzed imaging system using an iterative approach in an initial estimate of the fitting parameters to ensure convergence robustness. The method is promising as an alternative to the standard approach based on Shack–Hartmann interferometry, since the estimate of the aberration coefficients is processed directly in the image plane. This approach is tested on simulated and laboratory-acquired image data that generally show good agreement. The resulting data are compared with the results of other modeling methods. The proposed PSF estimation method provides around 5% accuracy of the optical system model.

  8. Deep, Wide-field CCD Photometry for the Open Cluster NGC3532

    CERN Document Server

    Clem, James L; Hoard, D W; Wachter, Stefanie

    2011-01-01

    We present the results of a deep, wide-field CCD survey for the open cluster NGC~3532. Our new $BV(RI)_{c}$ photometry effectively covers a one square degree area and reaches an unprecedented depth of $V\\sim21$ to reveal that NGC~3532 is a rich open cluster that harbors a large number of faint, low-mass stars. We employ a number of methods to reduce the impact of field star contamination in the cluster color-magnitude diagrams, including supplementing our photometry with $JHK_{s}$ data from the 2MASS catalog. These efforts allow us to define a robust sample of candidate main sequence stars suitable for a purely empirical determination of the cluster's parameters by comparing them to the well-established Hyades main sequence. Our results confirm previous findings that NGC~3532 lies fairly near to the Sun [$(m-M)_0=8.46\\pm0.05$; $492^{+12}_{-11}$~pc] and has an extremely low reddening for its location near the Galactic plane [$E(B-V)=0.028\\pm0.006$]. Moreover, an age of $\\sim300$\\,Myr has been derived for the c...

  9. Polarization mosaicing: high dynamic range and polarization imaging in a wide field of view

    Science.gov (United States)

    Schechner, Yoav Y.; Nayar, Shree K.

    2003-12-01

    We present an approach for imaging the polarization state of scene points in a wide field of view, while enhancing the radiometric dynamic range of imaging systems. This is achieved by a simple modification of image mosaicking, which is a common technique in remote sensing. In traditional image mosaics, images taken in varying directions or positions are stitched to obtain a larger image. Yet, as the camera moves, it senses each scene point multiple times in overlapping regions of the raw frames. We rigidly attach to the camera a fixed, spatially varying polarization and attenuation filter. This way, the camera motion-induced multiple measurements per scene point are taken under different optical settings. This is in contrast to the redundant measurements of traditional mosaics. Computational algorithms then analyze the data to extract polarization imaging with high dynamic range across the mosaic field of view. We developed a Maximum Likelihood method to automatically register the images, in spite of the challenging spatially varying effects. Then, we use Maximum Likelihood to handle, in a single framework, variable exposures (due to transmittance variations), saturation, and partial polarization filtering. As a by product, these results enable polarization settings of cameras to change while the camera moves, alleviating the need for camera stability. This work demonstrates the modularity of the Generalized Mosaicing approach, which we recently introduced for multispectral image mosaics. The results are useful for the wealth of polarization imaging applications, in addition to mosaicking applications, particularly remote sensing. We demonstrate experimental results obtained using a system we built.

  10. Wide Field Hard X-ray Survey Telescope: ProtoEXIST1

    CERN Document Server

    Hong, J; Chammas, N; Allen, B; Copete, A; Said, B; Burke, M; Howell, J; Gauron, T; Baker, R G; Barthelmy, S D; Sheikh, S; Gehrels, N; Cook, W R; Burnham, J A; Harrison, F A; Collins, J; Labov, S; Garson, A; Krawczynski, H

    2007-01-01

    We report our progress on the development of pixellated imaging CZT detector arrays for our first-generation balloon-borne wide-field hard X-ray (20 - 600 keV) telescope, ProtoEXIST1. Our ProtoEXIST program is a pathfinder for the High Energy Telescope (HET) on the Energetic X-ray Imaging Survey telescope (EXIST), a proposed implementation of the Black Hole Finder Probe. ProtoEXIST1 consists of four independent coded-aperture telescopes with close-tiled (~0.4 mm gaps) CZT detectors that preserve their 2.5mm pixel pitch. Multiple shielding/field-of-view configurations are planned to identify optimal geometry for the HET in EXIST. The primary technical challenge in ProtoEXIST is the development of large area, close-tiled modules of imaging CZT detectors (1000 cm2 for ProtoEXIST1), with all readout and control systems for the ASIC readout vertically stacked. We describe the overall telescope configuration of ProtoEXIST1 and review the current development status of the CZT detectors, from individual detector crys...

  11. Mid-Infrared Variability from the Spitzer Deep, Wide-Field Survey

    CERN Document Server

    Kozlowski, Szymon; Stern, Daniel; Ashby, Matthew L N; Assef, Roberto J; Bock, J J; Borys, C; Brand, K; Brodwin, M; Brown, M J I; Cool, R; Cooray, A; Croft, S; Dey, Arjun; Eisenhardt, P R; Gonzalez, A; Gorjian, V; Griffith, R; Grogin, N; Ivison, R; Jacob, J; Jannuzi, B T; Mainzer, A; Moustakas, L; Rottgering, H; Seymour, N; Smith, H A; Stanford, S A; Stauffer, J R; Sullivan, I S; van Breugel, W; Willner, S P; Wright, E L

    2010-01-01

    We use the multi-epoch, mid-infrared Spitzer Deep, Wide-Field Survey to investigate the variability of 474,179 objects in 8.1 deg^2 of the NDWFS Bootes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 micron bands. We find that 1.1% of the studied sample meet our standard selection criteria for being classed as a variable source. We require that the 3.6 and 4.5 micron light-curves are strongly correlated (r>0.8) and that their joint variance exceeds that for all sources with the same magnitude by 2 sigma. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBootes survey, radio catalogs, 24 micron-selected AGN candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects. Most of the s...

  12. SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)

    Science.gov (United States)

    Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter

    2016-08-01

    The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This

  13. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2017-03-01

    Diabetic retinopathy (DR) is a major cause of irreversible vision loss. DR screening relies on retinal clinical signs (features). Opportunities for computer-aided DR feature detection have emerged with the development of Ultra-WideField (UWF) digital scanning laser technology. UWF imaging covers 82% greater retinal area (200°), against 45° in conventional cameras3 , allowing more clinically relevant retinopathy to be detected4 . UWF images also provide a high resolution of 3078 x 2702 pixels. Currently DR screening uses 7 overlapping conventional fundus images, and the UWF images provide similar results1,4. However, in 40% of cases, more retinopathy was found outside the 7-field ETDRS) fields by UWF and in 10% of cases, retinopathy was reclassified as more severe4 . This is because UWF imaging allows examination of both the central retina and more peripheral regions, with the latter implicated in DR6 . We have developed an algorithm for automatic recognition of DR features, including bright (cotton wool spots and exudates) and dark lesions (microaneurysms and blot, dot and flame haemorrhages) in UWF images. The algorithm extracts features from grayscale (green "red-free" laser light) and colour-composite UWF images, including intensity, Histogram-of-Gradient and Local binary patterns. Pixel-based classification is performed with three different classifiers. The main contribution is the automatic detection of DR features in the peripheral retina. The method is evaluated by leave-one-out cross-validation on 25 UWF retinal images with 167 bright lesions, and 61 other images with 1089 dark lesions. The SVM classifier performs best with AUC of 94.4% / 95.31% for bright / dark lesions.

  14. Wide field imager instrument for the Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea; Tenzer, Chris; Wilms, Jörn

    2015-01-01

    The Advanced Telescope for High Energy Astrophysics (Athena) has been selected for ESA's L2 mission, scheduled for launch in 2028. It will provide the necessary capabilities to achieve the ambitious goals of the science theme "The Hot and Energetic Universe." Athena's x-ray mirrors will be based on silicon pore optics technology with a 12-m focal length. Two complementary focal plane camera systems are foreseen, which can be moved interchangeably to the focus of the mirror system: the actively shielded micro-calorimeter spectrometer X-IFU and the wide field imager (WFI). The WFI camera will provide an unprecedented survey power through its large field of view of 40 arc min with a high count-rate capability (˜1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 to 15 keV during the entire mission lifetime (e.g., full width at half maximum ≤150 eV at 6 keV). This performance is accomplished by a set of depleted P-channel field effect transistor (DEPFET) active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450-μm-thick silicon bulk. This manuscript will summarize the current instrument concept and design, the status of the technology development, and the envisaged baseline performance.

  15. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  16. A testbed for wide-field, high-resolution, gigapixel-class cameras.

    Science.gov (United States)

    Kittle, David S; Marks, Daniel L; Son, Hui S; Kim, Jungsang; Brady, David J

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  17. Design of wide-field submillimeter-wave camera using SIS photon detectors

    Science.gov (United States)

    Matsuo, Hiroshi; Ariyoshi, Seiichiro; Otani, Chiko; Ezawa, Hajime; Kobayashi, Jun; Mori, Yuko; Nagata, Hirohisa; Shimizu, Hirohiko M.; Fujiwara, Mikio; Akiba, Makoto; Hosako, Iwao

    2004-10-01

    SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE. Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.

  18. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  19. WPOL, a future space Compton wide field polarimeter: Optimization for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: mkhalil@in2p3.fr [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Laurent, P.; Lebrun, F. [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); CEA, Centre de Saclay, 91191 Gif-Sur-Yvette Cedex (France); Dolgorouky, Y. [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Limousin, O. [CEA, Centre de Saclay, 91191 Gif-Sur-Yvette Cedex (France); Bertoli, W.; Breelle, E. [APC Laboratory, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2015-07-01

    Polarimetry in the hard X-ray/soft gamma-ray domain (20–1000 keV) is a new area of astrophysics that started to unveil in the past few years, mainly with the ESA/INTEGRAL mission results. Following these pioneering observations, it is appropriate to prepare a new concept which will allow the astronomers to map the X-ray/gamma-ray polarized sources in our Galaxy. WPOL is a wide field polarimeter which aims at monitoring the X-ray and gamma-ray sources and measuring their polarimetric properties. This camera will be used in space to map our Galaxy and also to alert a main instrument in case of transient events such as gamma-ray bursts, black hole binaries state transition, supernovae. It will be proposed, as an accompanying instrument, within the context of the next medium mission ESA call (M4) in January 2015. This concept is based upon coded mask imaging, with a detector unit composed of two layers of Silicon Double Sided Strip Detectors (DSSD) and a tungsten mask. In this article, we will present the key scientific drivers and the instrumental concept for WPOL (imaging technique, energy reconstitution and polarimetric measurements). Then, we will present an optimization of the thickness of the first detection layer performed through MEGALIB Monte-Carlo simulations. Finally, we will present a MEGALIB simulation of WPOL's observation of a source at 100 keV to compute the minimum detectable polarization reached by the instrument. - Highlights: • WPOL will operate in the horizon of 2020 where no other wide field monitor in the 2–200 keV is planned to be operational. • Thickness of the first detection layer in the Compton camera is optimized by using the thickest detector available (2000 μm). • Thickness of the first detection layer in the Compton camera is optimized for polarimetry. • by using the thickest detector available (2000 μm). • The polarization modulation factor of WPOL was found to 8% at 100 keV. • The minimum detectable polarization

  20. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    Science.gov (United States)

    Sawyer, Travis W.; Siri Luthman, A.; Bohndiek, Sarah E.

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback–Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  1. Wide-field hard x-ray survey telescope: ProtoEXIST1

    Science.gov (United States)

    Hong, J.; Grindlay, J. E.; Chammas, N.; Allen, B.; Copete, A.; Said, B.; Burke, M.; Howell, J.; Gauron, T.; Baker, R. G.; Barthelmy, S. D.; Sheikh, S.; Gehrels, N.; Cook, W. R.; Burnham, J. A.; Harrison, F. A.; Collins, J.; Labov, S.; Garson, A., III; Krawczynski, H.

    2007-09-01

    We report our progress on the development of pixellated imaging CZT detector arrays for our first-generation balloon-borne wide-field hard X-ray (20 - 600 keV) telescope, ProtoEXIST1. Our ProtoEXIST program is a pathfinder for the High Energy Telescope (HET) on the Energetic X-ray Imaging Survey telescope (EXIST), a proposed implementation of the Black Hole Finder Probe. ProtoEXIST1 consists of four independent coded-aperture telescopes with close-tiled (~0.4 mm gaps) CZT detectors that preserve their 2.5mm pixel pitch. Multiple shielding/field-of-view configurations are planned to identify optimal geometry for the HET in EXIST. The primary technical challenge in ProtoEXIST is the development of large area, close-tiled modules of imaging CZT detectors (1000 cm2 for ProtoEXIST1), with all readout and control systems for the ASIC readout vertically stacked. We describe the overall telescope configuration of ProtoEXIST1 and review the current development status of the CZT detectors, from individual detector crystal units (DCUs) to a full detector module (DM). We have built the first units of each component for the detector plane and have completed a few Rev2 DCUs (2x2 cm2), which are under a series of tests. Bare DCUs (pre-crystal bonding) show high, uniform ASIC yield (~70%) and ~30% reduction in electronics noise compared to the Rev1 equivalent. A Rev1 DCU already achieved ~1.2% FWHM at 662 keV, and preliminary analysis of the initial radiation tests on a Rev2 DCU shows ~ 4 keV FWHM at 60 keV (vs. 4.7 keV for Rev1). We therefore expect about <=1% FWHM at 662 keV with the Rev2 detectors.

  2. The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    Science.gov (United States)

    Hammer, Derek; Kleijn, Gijs Verdoes; Hoyos, Carlos; Den Brok, Mark; Balcells, Marc; Ferguson, Henry C.; Goudfrooij, Paul; Carter, David; Guzman, Rafael; Peletier, Reynier F.; hide

    2010-01-01

    The Coma cluster, Abell 1656, was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in early 2007, the partially-completed survey still covers approximately 50% of the core high density region in Coma. Observations were performed for twenty-five fields with a total coverage area of 274 aremin(sup 2), and extend over a wide range of cluster-centric radii (approximately 1.75 Mpe or 1 deg). The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present SEXTRACTOR source catalogs generated from the processed images, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SEXTRACTOR Kron magnitudes based only on the measured source flux and its half-light radius. We have performed photometry for 76,000 objects that consist of roughly equal numbers of extended galaxies and unresolved objects. Approximately two-thirds of all detections are brighter than F814W=26.5 mag (AB), which corresponds to the 10sigma, point-source detection limit. We estimate that Coma members are 5-10% of the source detections, including a large population of compact objects (primarily GCs, but also cEs and UCDs), and a wide variety of extended galaxies from cD galaxies to dwarf low surface brightness galaxies. The initial data release for the HST-ACS Coma Treasury program was made available to the public in August 2008. The images and catalogs described in this study relate to our second data release.

  3. Science Yield of an Improved Wide Field Infrared Survey Telescope (WFIRST)

    CERN Document Server

    Levi, Michael E; Lampton, Michael L; Sholl, Michael J

    2011-01-01

    The Astronomy and Astrophysics Decadal Survey's highest recommended space mission was a Wide-Field Infrared Survey Telescope (WFIRST) to efficiently conduct three kinds of studies: dark energy surveys, exoplanet surveys, and guest surveys. In this paper we illustrate four potential WFIRST payloads that accomplish these objectives and that fully utilize optical and technical advances made since the community input to the Decadal Survey. These improvements, developed by our group, are: unobscured 1.3 or 1.5 m apertures; simultaneous dual focal lengths delivering pixel scales of 0.18" for imaging and 0.38" or 0.45" for slitless spectroscopy; the use of a prism in converging light for slitless spectroscopy; and payload features that allow up to 270 days/year observing the Galactic Bulge. These factors combine to allow WFIRST payloads that provide improved survey rates compared to previous mission concepts. In this report we perform direct comparisons of survey speeds for constant survey depth using our optical an...

  4. Resistive current states in wide superconducting films in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V M [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine); Zolochevskii, I V [B Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 61103 Kharkiv (Ukraine)

    2006-04-15

    The temperature dependence of the current-voltage characteristics of high-quality thin films of tin from 7 to 50 {mu}m thick are investigated in the absence of an external magnetic field. For the first time, we have experimentally observed phase slip centres (PSCs) and phase slip lines (PSLs) on the same superconducting tin film with known parameters in the temperature intervals corresponding to the mechanisms of their formation and existence. We have shown that the states of a wide film with increasing transport current appear in the following order: the superconducting state for current less than critical; the resistive vortex state for current more than critical, but less than maximum current for the uniform flux flow (instability current); the critical state due to the onset of instability of the steady pattern of viscous motion of the vortices; a vortex-free resistive state with PSLs for current more than instability current, but less than the upper critical current; and the normal state at a current higher than the upper critical current.

  5. The New Milky Way: a wide-field survey of optical transients near the Galactic plane

    CERN Document Server

    Sokolovsky, Kirill; Lebedev, Alexandr

    2013-01-01

    Currently, it may take days for a bright nova outburst to be detected. With the few exceptions, little is known about novae behaviour prior to maximum light. A theoretically-predicted population of ultra-fast novae with t2<1d is evading observational discovery because it is not possible to routinely organize fast follow-up observations of nova candidates. With the aim of brining the detection time of novae and other bright (V<13.5) optical transients from days down to hours or less, we develop an automated wide-field (8x6 deg.) system capable of surveying the whole Milky Way area visible from the observing site in one night. The system is built using low-cost mass-produced components and the transient detection pipeline is based on the open source VaST software. We describe the instrument design and report results of the first observations conducted in October-November 2011 and January-April 2012. The results include the discovery of Nova Sagittarii 2012 No. 1 as well as two X-ray emitting cataclysmic v...

  6. A deep and wide-field view at the IC 2944 / 2948 complex in Centaurus

    CERN Document Server

    Baume, G; Corti, M A; Carraro, G; Panei, J A

    2014-01-01

    We employed the ESO MPI wide-field camera and obtained deep images in the VIc pass-bands in the region of the IC 2944/2948 complex (l ~ 294; b ~ -1), and complemented them with literature and archival data. We used this material to derive the photometric, spectroscopic and kinematic properties of the brightest (V < 16) stars in the region. The VI deep photometry on the other end, helped us to unravel the lower main sequence of a few, possibly physical, star groups in the area. Our analysis confirmed previous suggestions that the extinction toward this line of sight follows the normal law (Rv = 3.1). We could recognize B-type stars spread in distance from a few hundred pc to at least 2 kpc. We found two young groups (age ~ 3 Myr) located respectively at about 2.3 and 3.2 kpc from the Sun. They are characterized by a significant variable extinction (E(B-V) ranging from 0.28 to 0.45 mag), and host a significant pre-main sequence population. We computed the initial mass functions for these groups and obtained ...

  7. Wide-field imaging of NGC 4365's globular cluster system: The third subpopulation revisited

    CERN Document Server

    Blom, Christina; Forbes, Duncan A

    2011-01-01

    Analysis of the globular cluster (GC) system of the giant elliptical (E3) galaxy NGC 4365, from eight Hubble Space Telescope/Advanced Camera for Surveys (ACS) pointings and a wide-field Subaru/SuprimeCam (S-Cam) image, is presented. We determine the lower limit on the number of GCs to be 6450+-110 and show that the GC system extends beyond 134 kpc (9.5 galaxy effective radii). We revisit the question of whether NGC 4365 has a bimodal or trimodal GC colour distribution and find support for three distinct GC colour subpopulations (i.e. blue, green and red). Sersic profile fits to the radial surface density of each subpopulation reveal that the blue GCs are more extended than either red or green GCs. We find significant differences in the median half light radii for GCs in the blue, green and red subpopulations as well as in the subpopulation ellipticities. A KS test on the mass functions show >98 per cent probability that all three subpopulations are distinct from one another. We also find radial gradients of G...

  8. Unmanned Aerial Vehicle Navigation Using Wide-Field Optical Flow and Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Matthew B. Rhudy

    2015-01-01

    Full Text Available This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information. The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF and are evaluated with respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV. Two different formulations are proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image distance which can be measured using a laser rangefinder. The results demonstrate that the full state formulation is able to estimate the aircraft ground velocity to within 1.3 m/s of a GPS receiver solution used as reference “truth” and regulate attitude angles within 1.4 degrees standard deviation of error for both sets of flight data.

  9. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors

    KAUST Repository

    Huang, Ruo-Gu

    2011-06-24

    We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV) and low subthreshold swing (~80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  10. Incorporating biological pathways via a Markov random field model in genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Min Chen

    2011-04-01

    Full Text Available Genome-wide association studies (GWAS examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene-based method. We also illustrate the usefulness of our approach through its applications to a real data example.

  11. Characterization of High Proper Motion Objects from the Wide-field Infrared Survey Explorer

    CERN Document Server

    Luhman, K L

    2014-01-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from 2MASS and WISE, we have identified the members of this sample that are likely to be late type, nearby, or metal poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and five subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ~12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08-623558....

  12. Telescope Fabra ROA Montsec: a new robotic wide-field Baker-Nunn facility

    CERN Document Server

    Fors, O; Muiños, J L; Montojo, F J; Baena-Gallé, R; Boloix, J; Morcillo, R; Merino, M T; Downey, E C; Mazur, M J

    2012-01-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astron\\`omic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide-field of view (4.4 deg x 4.4 deg), moderate limiting magnitude (V~19.5mag), ability of tracking at arbitrary right ascension and declination rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kind of image survey programs can benefit from those specifications. Apart from other less time consuming programs, since the beginning of sci...

  13. Characterization of high proper motion objects from the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Sheppard, Scott S., E-mail: kluhman@astro.psu.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States)

    2014-06-01

    We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ∼12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08–623558.7, may belong to the thick disk.

  14. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M. [Infrared Processing and Analysis Center, Caltech 100-22, Pasadena, CA 91125 (United States); Hoffman, Douglas I., E-mail: fmasci@ipac.caltech.edu [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  15. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    Science.gov (United States)

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH4NO3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm(2) samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm(2) for PETN and AN films under these experimental conditions.

  16. GravityCam: wide-field, high-resolution imaging and high-speed photometry instrument

    Science.gov (United States)

    MacKay, Craig; Dominik, Martin; Steele, Iain

    2016-08-01

    The limits to the angular resolution achievable with conventional ground-based telescopes are unchanged over 70 years. Atmospheric turbulence limits image quality to typically 1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images are recorded at high speed and then aligned before combination and can yield a 3-5 fold improvement in image resolution. Very wide survey fields are possible with widefield telescope optics. We describe GravityCam and detail its application to accelerate greatly the rate of detection of Earth size planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies. The microlensing survey will also provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.

  17. Tomographic control for wide field AO systems on extremely large telescopes

    Science.gov (United States)

    Petit, C.; Conan, J.-M.; Fusco, T.; Neichel, B.

    2010-07-01

    We investigate in this article tomographic control using both Laser and Natural Guide Stars (LGS and NGS) in the particular framework of the European Extremely Large Telescope (E-ELT) Wide Field Adaptive Optics (WFAO) modules design. A similar global control strategy has been indeed derived for both the Laser Tomographic Adaptive Optics (LTAO) and Multi-Conjugate Adaptive Optics (MCAO) modules of the E-ELT, due to similar constraints. This control strategy leads in both cases to a split control of low order modes measured thanks to NGS and high order modes measured thanks to LGS. We investigate here this split tomographic control, compared to an optimal coupled solution. To support our analysis, a dedicated simulation code has been developed. Indeed, due to the huge complexity of the EELT, fast simulation tools must be considered to explore quickly the tomographic issues. We describe our control strategy which has lead to considering split tomographic control. First results on Tomography for E-ELT WFAO systems are then presented and discussed.

  18. Background simulations for the wide field imager aboard the ATHENA X-ray Observatory

    Science.gov (United States)

    Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar

    2012-09-01

    The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.

  19. A Wide-field Near- and Mid-Infrared Census of Young Stars in NGC 6334

    CERN Document Server

    Willis, Sarah; Allen, Lori; Fazio, Giovanni G; Smith, Howard; Carey, Sean

    2013-01-01

    This paper presents a study of the rate and efficiency of star formation in the NGC 6334 star forming region. We obtained observations at J, H, and Ks taken with the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) and combined them with observations taken with the Infrared Array Camera (IRAC) camera on the Spitzer Space Telescope at wavelengths {\\lambda} = 3.6, 4.5, 5.8, and 8.0 {\\mu}m. We also analyzed previous observations taken at 24 {\\mu}m using the Spitzer MIPS camera as part of the MIPSGAL survey. We have produced a point source catalog with >700,000 entries. We have identified 2283 YSO candidates, 375 Class I YSOs and 1908 Class II YSOs using a combination of existing IRAC-based color classification schemes that we have extended and validated to the near-IR for use with warm Spitzer data. We have identified multiple new sites of ongoing star formation activity along filamentary structures extending tens of parsecs beyond the central molecular ridge of NGC 6334. By mapping the extinction we derived ...

  20. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  1. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey

    CERN Document Server

    Crnojević, D; Caldwell, N; Guhathakurta, P; McLeod, B; Seth, A; Simon, J D; Strader, J; Toloba, E

    2015-01-01

    In the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we investigate the resolved stellar halos of two nearby galaxies (the elliptical Centaurus A and the spiral Sculptor, D $\\sim3.7$ Mpc) out to a projected galactocentric radius of 150 kpc with Magellan/Megacam. The survey has led to the discovery of $\\sim$20 faint satellites to date, plus prominent streams and substructures in two environments that are substantially different from the Local Group, i.e. the Centaurus A group dominated by an elliptical and the loose Sculptor group of galaxies. These discoveries clearly attest to the importance of past and ongoing accretion processes in shaping the halos of these nearby galaxies, and provide the first census of their satellite systems down to an unprecedented $M_V<-8$. The detailed characterization of the stellar content, shape and gradients in the extended halos of Sculptor, Centaurus A, and their dwarf satellites provides key constraints on theoretical models of galaxy formation a...

  2. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker-Nunn Facility

    Science.gov (United States)

    Fors, Octavi; Núñez, Jorge; Muiños, José Luis; Montojo, Francisco Javier; Baena-Gallé, Roberto; Boloix, Jaime; Morcillo, Ricardo; Merino, María Teresa; Downey, Elwood C.; Mazur, Michael J.

    2013-05-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astronòmic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5 m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide field of view (4°.4 × 4°.4), moderate limiting magnitude (V ~ 19.5 mag), ability of tracking at arbitrary right ascension (α) and declination (δ) rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kinds of image survey programs can benefit from those specifications. Apart from other less time-consuming programs, since the beginning of science TFRM operations we have been conducting two specific and distinct surveys: super-Earths transiting around M-type dwarfs stars, and geostationary debris in the context of Space Situational Awareness/Space Surveillance and Tracking (SSA/SST) programs. Preliminary results for both cases will be shown.

  3. The First Ultra-Cool Brown Dwarf Discovered by the Wide-field Infrared Survey Explorer

    CERN Document Server

    Mainzer, A; Skrutskie, M; Gelino, C R; Kirkpatrick, J Davy; Jarrett, T; Masci, F; Marley, M; Saumon, D; Wright, E; Beaton, R; Dietrich, M; Eisenhardt, P; Garnavich, P; Kuhn, O; Leisawitz, D; Marsh, K; McLean, I; Padgett, D; Rueff, K

    2010-01-01

    We report the discovery of the first new ultra-cool brown dwarf found with the Wide-field Infrared Survey Explorer (WISE). The object's preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 micron spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new brown dwarf is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 microns. Current estimates place it at a distance of 6 to 10 pc. This object represents the first in what will likely be hundreds of nearby brown dwarfs found by WISE that will be suitable for follow up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, ...

  4. The Discovery of Y Dwarfs Using Data from the Wide-field Infrared Survey Explorer (WISE)

    CERN Document Server

    Cushing, Michael C; Gelino, Christopher R; Griffith, Roger L; Skrutskie, Michael F; Mainzer, Amanda K; Marsh, Kenneth A; Beichman, Charles A; Burgasser, Adam J; Prato, Lisa A; Simcoe, Robert A; Marley, Mark S; Saumon, D; Freedman, Richard S; Eisenhardt, Peter R; Wright, Edward L

    2011-01-01

    We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H_2O and CH_4 that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f_lambda, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH_3. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS J0722-0540 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spect...

  5. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    Science.gov (United States)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  6. Enhanced flight symbology for wide-field-of-view helmet-mounted displays

    Science.gov (United States)

    Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.

    2003-09-01

    A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.

  7. Prowess – A Software Model for the Ooty Wide Field Array

    Indian Academy of Sciences (India)

    Visweshwar Ram Marthi;

    2017-03-01

    One of the scientific objectives of the Ooty Wide Field Array (OWFA) is to observe the redshifted Hi emission from $z \\sim 3.35$. Although predictions spell out optimistic outcomes in reasonable integration times, these studies were based purely on analytical assumptions, without accounting for limiting systematics. A software model for OWFA has been developed with a view to understanding the instrument-induced systematics, by describing a complete software model for the instrument. This model has been implemented through a suite of programs, together called Prowess, which has been conceived with the dual role of an emulator as well as observatory data analysis software. The programming philosophy followed in building Prowess enables a general user to define an own set of functions and add new functionality. This paper describes a co-ordinate system suitable for OWFA in which the baselines are defined. The foregrounds are simulated from their angular power spectra. The visibilities are then computed from the foregrounds. These visibilities are then used for further processing, such as calibration and power spectrum estimation. The package allows for rich visualization features in multiple output formats in an interactive fashion, giving the user an intuitive feel for the data. Prowess has been extensively used for numerical predictions of the foregrounds for the OWFA \\HI~ experiment.

  8. The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)

    CERN Document Server

    Kirkpatrick, J Davy; Gelino, Christopher R; Griffith, Roger L; Skrutskie, Michael F; Marsh, Kenneth A; Wright, Edward L; Mainzer, Amanda K; Eisenhardt, Peter R; McLean, Ian S; Thompson, Maggie A; Bauer, James M; Benford, Dominic J; Bridge, Carrie R; Lake, Sean E; Petty, Sara M; Stanford, S Adam; Tsai, Chao-Wei; Bailey, Vanessa; Beichman, Charles A; Bochanski, John J; Burgasser, Adam J; Capak, Peter L; Cruz, Kelle L; Hinz, Philip M; Kartaltepe, Jeyhan S; Knox, Russell P; Manohar, Swarnima; Masters, Daniel; Morales-Calderon, Maria; Prato, Lisa A; Rodigas, Timothy J; Salvato, Mara; Schurr, Steven D; Scoville, Nicholas Z; Simcoe, Robert A; Stapelfeldt, Karl R; Stern, Daniel; Stock, Nathan D; Vacca, William D

    2011-01-01

    We present ground-based spectroscopic verification of six Y dwarfs (see Cushing et al), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types greater than or equal to T6, six of which have been announced earlier in Mainzer et al and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. After deriving an absolute WISE 4.6 um (W2) magnitude vs. spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8 (+1.3,-0.6) pc; if this ...

  9. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  10. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey†

    Science.gov (United States)

    Crnojević, D.; Sand, D. J.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J. D.; Strader, J.; Toloba, E.

    2016-08-01

    In the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we investigate the resolved stellar halos of two nearby galaxies (the elliptical Centaurus A and the spiral Sculptor, D ~ 3.7 Mpc) out to a projected galactocentric radius of 150 kpc with Magellan/Megacam. The survey has led to the discovery of ~20 faint satellites to date, plus prominent streams and substructures in two environments that are substantially different from the Local Group, i.e. the Centaurus A group dominated by an elliptical and the loose Sculptor group of galaxies. These discoveries clearly attest to the importance of past and ongoing accretion processes in shaping the halos of these nearby galaxies, and provide the first census of their satellite systems down to an unprecedented MV < -8. The detailed characterization of the stellar content, shape and gradients in the extended halos of Sculptor, Centaurus A, and their dwarf satellites provides key constraints on theoretical models of galaxy formation and evolution.

  11. An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers

    NARCIS (Netherlands)

    Huijssen, J.; Verweij, M.D.

    2010-01-01

    The development and optimization of medical ultrasound transducers and imaging modalities require a computational method that accurately predicts the nonlinear acoustic pressure field. A prospective method should provide the wide-angle, pulsed field emitted by an arbitrary planar source distribution

  12. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field

    Institute of Scientific and Technical Information of China (English)

    Hao-Jing Yan; Rogier A.Windhorst; Nimish P.Hathi; Seth H.Cohen; Russell E.Ryan; Robert W.O'Connell; Patrick J.McCarthy

    2010-01-01

    We present a large sample of candidate galaxies at z ≈ 7-10,selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3that was recently installed on the Hubble Space Telescope.Our sample is composed of 20 z850-dropouts(four new discoveries),15 Y105-dropouts(nine new discoveries)and 20 J125-dropouts(all new discoveries).The surface densities of the z850-dropouts are close to what was predicted by earlier studies,however,those of the Y105-and J125-dropouts are quite unexpected.While no Y105-or J125-dropouts have been found at AB < 28.0 mag,their surface densities seem to increase sharply at fainter levels.While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed,the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z~7 to 10.Motivated by such steep increases,we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ≈ 8 and 10.As compared to their counterpart at z ≈ 7,here L*decreases by a factor demanded by the existing observations,they are allowed and seem to agree with the data better than other alternatives.If these luminosity functions are still valid beyond our current detection limit,this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ≈ 10,which,while seemingly exotic,would naturally fit in the picture of the cosmic hydrogen reionization.These early galaxies could easily account for the ionizing photon budget required by the reionization,and they would imply that the global star formation rate density might start from a very high value at z ≈ 10,rapidly reach the minimum at z ≈ 7,and start to rise again towards z ≈ 6.In this scenario,the majority of the stellar mass that the universe assembled through the reionization epoch seems still

  13. A Demonstration of Accurate Wide-field V-band Photometry Using a Consumer-grade DSLR Camera

    CERN Document Server

    Kloppenborg, Brian K; Eggenstein, Heinz-Bernd; Maravelias, Grigoris; Pearson, Tom

    2013-01-01

    The authors examined the suitability of using a Digital Single Lens Reflex (DSLR) camera for stellar photometry and, in particular, investigated wide field exposures made with minimal equipment for analysis of bright variable stars. A magnitude-limited sample of stars was evaluated exhibiting a wide range of (B-V) colors taken from four fields between Cygnus and Draco. Experiments comparing green channel DSLR photometry with VT photometry of the Tycho 2 catalogue showed very good agreement. Encouraged by the results of these comparisons, a method for performing color-based transformations to the more widely used Johnson V filter band was developed and tested. This method is similar to that recommended for Tycho 2 VT data. The experimental evaluation of the proposed method led to recommendations concerning the feasibility of high precision DSLR photometry for certain types of variable star projects. Most importantly, we have demonstrated that DSLR cameras can be used as accurate, wide field photometers with on...

  14. Metallicities of Emission-Line Galaxies from HST ACS PEARS and HST WFC3 ERS Grism Spectroscopy at 0.6 < z < 2.4

    CERN Document Server

    Xia, Lifang; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Kümmel, Martin; Walsh, Jeremy; Windhorst, Rogier A; O'Connell, Robert

    2012-01-01

    Galaxies selected on the basis of their emission line strength show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 < z < 2.4, selected by their prominent emission lines in low-resolution grism spectra in the optical with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) and in the near-infrared using Wide-Field Camera 3 (WFC3). Using a sample of 11 emission line galaxies (ELGs) at 0.6 < z < 2.4 with luminosities of -22 < M_B < -19, which have [OII], H\\beta, and [OIII] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 < 12+log(O/H) < 8.5. The galaxy stellar masses are derived using Bayesian based Markov Chain Monte Carlo (\\piMC^2) fitting of their Spectral Energy Distribution (SED), and span the mass range 8.1 < log(M_*/M_\\sun) < 10.1. These galaxies show a mass-metallicity (M-L) and Lumin...

  15. Dense cores in galaxies out to z=2.5 in SDSS, UltraVISTA, and the five 3D-HST/CANDELS fields: number density, evolution, and the apparent need for efficient cooling at high redshift

    CERN Document Server

    van Dokkum, Pieter; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E; Whitaker, Katherine E; Brammer, Gabriel; Conroy, Charlie; Schreiber, Natascha M Forster; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-01-01

    The dense interiors of massive galaxies are among the most intriguing environments in the Universe. In this paper we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3x10^10 Msun inside r=1 kpc out to z=2.5, using the 3D-HST survey and data at low redshift. The number density of galaxies with dense cores appears to have decreased from z=2.5 to the present, probably at least in part due to stellar mass loss and the resulting adiabatic expansion. We infer that dense cores were mostly formed at z>2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z=2.5 to z=0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z=2.5 to ~15% at z=0. Beca...

  16. Stellar Populations of Lyman Break Galaxies at z approx. to 1-3 in the HST/WFC3 Early Release Science Observations

    Science.gov (United States)

    Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.; Straughn, A. N.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, Jay A.; Hall, D. N. B.; Holtzman, J. A.; Kimble, R. A.; Paresce, F.; Saha, A.; Silk, J. I.; Tauger, J. T.; Young, E. T.

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.

  17. Multiple Observing Modes for Wide-field Optical Surveillance of GEO Space

    Science.gov (United States)

    McGraw, J.; Zimmer, P.; Ackermann, M.

    2016-09-01

    Very wide field of view optical sensors with silicon detectors are being used in multiple survey modes by J. T. McGraw and Associates to provide persistent, affordable surveillance of GEO space to faint limiting magnitudes. Examples include: classical staring mode with typical integration times of seconds provided by multiple co-directed sensors to provide a deep mosaic of tens of square degrees per exposure to faint limiting magnitude b) step-and-stare observations of several second integration time from which a continuous, overlapped, mosaicked image of GEO space can be provided time-delay and integrate (TDI) imagery obtained by driving the telescope in declination and stepping the telescope in the E-W direction, which produces repeated, overlapping (if desired), synoptic images of GEO space. With current 350 mm diameter optics, detection limits for concentrated observations (e.g. "neighborhood watch") detection limits of magnitude 18 are achieved, and for uncued survey the detection limits are fainter than magnitude 16. Each of these techniques can employ multiple telescopes to obtain search rates in excess of 1000 square degrees per hour, allowing complete uncued CONUS GEO surveillance to +/- 15 degrees latitude every two nighttime hours. With appropriate placement, sensors could provide complete coverage of GEO to these limiting magnitudes at the same survey rate. At each step of the development of this unique capability we discuss the fundamental underlying physical principals of optics, detectors, search modes and siting that enable this survey, a valuable adjunct to RF, radar, GEODSS and other optical surveys of GEO space.

  18. Peripheral Reticular Pigmentary Degeneration and Choroidal Vascular Insufficiency, Studied by Ultra Wide-Field Fluorescein Angiography

    Science.gov (United States)

    Bae, Kunho; Cho, Kyuyeon; Kang, Se Woong; Kim, Sang Jin; Kim, Jong Min

    2017-01-01

    Purpose To explore the pathogenesis of peripheral reticular pigmentary degeneration (PRPD) and its clinical significance. Methods This cross-sectional, observational study (conducted between January 2010 and May 2015) enrolled 441 eyes of 229 subjects, including 35 eyes with PRPD and 406 eyes without PRPD, which was identified by ultra-wide-field fluorescein angiography (UWFA). The distribution and angiographic circulation time of PRPD were assessed by UWFA. The frequencies of systemic and ophthalmologic comorbidities were compared between groups. Univariate and multivariate generalized estimation equation methods were used to determine the risk factors for PRPD. Results The patients with PRPD had a mean age of 75.7 ± 8.5 years (range, 59–93 years), whereas the patients without PRPD had a mean age of 60.1 ± 14.9 years (range, 9–92 years). All eyes with PRPD manifested the lesion in the superior nasal periphery with or without circumferential extension. Among those, only 16 eyes (45.7%) in the PRPD group showed distinctive features in the same location on fundus photographs. There was significant choroidal filling delay in the PRPD group when compared with the control group (1.42±1.22 vs. -0.02±1.05 seconds, P < 0.001). Multivariate regression analysis revealed that older age (P < 0.001), stroke (P = 0.018), ischemic optic neuropathy (P < 0.001), and age-related macular degeneration (P = 0.022) were significantly associated with PRPD. Conclusions UWFA may enhance the diagnostic sensitivity of PRPD. Choroidal vascular insufficiency with compromised systemic circulation in the elderly was related to the manifestation of PRPD. These results help to better understand the pathophysiology of PRPD. Co-existence of systemic and ophthalmic circulatory disorders should be considered in patients with PRPD. PMID:28114409

  19. THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 321-520, Pasadena, CA 91109 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Beichman, Charles A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Prato, Lisa A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simcoe, Robert A. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 37, Cambridge, MA 02139 (United States); Marley, Mark S.; Freedman, Richard S. [NASA Ames Research Center, MS 254-3, Moffett Field, CA 94035 (United States); Saumon, D. [Los Alamos National Laboratory, MS F663, Los Alamos, NM 87545 (United States); Wright, Edward L., E-mail: michael.cushing@gmail.com [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States)

    2011-12-10

    We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H{sub 2}O and CH{sub 4} that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51-054031.2, the latest-type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f{sub {lambda}}, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH{sub 3}. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS 0722-05 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.

  20. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    Science.gov (United States)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  1. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    CERN Document Server

    Straughn, A N; Kuemmel, M; Walsh, J R; Cohen, S H; Gardner, J P; Windhorst, R A; O'Connell, R W; Pirzkal, N; Meurer, G; McCarthy, P J; Hathi, N P; Malhotra, S; Rhoads, J; Balick, B; Bond, H E; Calzetti, D; Disney, M J; Dopita, M A; Frogel, J A; Hall, D N B; Holtzman, J A; Kimble, R A; Luppino, G; Paresce, F; Saha, A; Silk, J I; Trauger, J T; Walker, A R; Whitmore, B C; Young, E T

    2010-01-01

    We present grism spectra of emission--line galaxies (ELGs) from 0.6--1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6--0.95 micron) grism data in GOODS--South, extending the wavelength covereage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the \\Ha, \\OIII, and \\OII\\ emission lines detected in the redshift ranges 0.2$\\cle$z$\\cle$1.6, 1.2$\\cle$z$\\cle$2.4 and 2.0$\\cle$z$\\cle$3.6 respectively in the G102 (0.8--1.1 microns; R$\\sim$210) and G141 (1.1--1.6 microns; R$\\sim$130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., \\SII\\ and \\SIII\\ lines). From these relatively shallow observations, line luminosities, star--formation rates, and grism s...

  2. Observing Jupiter's polar stratospheric haze with HST/STIS. An HST White Paper

    CERN Document Server

    Grodent, Denis; Nichols, Jonathan

    2015-01-01

    The purpose of this HST white paper is to demonstrate that it is possible to monitor Jupiter's polar haze with HST/STIS without breaking the ground screening limit for bright objects. This demonstration rests on a thorough simulation of STIS output from an existing image obtained with HST/WFPC2. It is shown that the STIS NUV-MAMA + F25CIII filter assembly provides a count rate per pixel ~11 times smaller than that obtained for one pixel of WFPC2 WF3 CCD + F218W corresponding filter. This ratio is sufficiently large to cope with the bright solar light scattered by Jupiter's atmosphere, which was a lesser concern for WFPC2 CCD safety. These STIS images would provide unprecedented spatial and temporal resolution observations of small-scale stratospheric aerosol structures, possibly associated with Jupiter's complex FUV aurora.

  3. Stellar Populations of Lyman Break Galaxies at z=1-3 in the HST/WFC3 Early Release Science Observations

    CERN Document Server

    Hathi, N P; Ryan, R E; Finkelstein, S L; McCarthy, P J; Windhorst, R A; Yan, H; Koekemoer, A M; Rutkowski, M J; O'Connell, R W; Straughn, A N; Balick, B; Bond, H E; Calzetti, D; Disney, M J; Dopita, M A; Frogel, J A; Hall, D N B; Holtzman, J A; Kimble, R A; Paresce, F; Saha, A; Silk, J I; Trauger, J T; Walker, A R; Whitmore, B C; Young, E T

    2012-01-01

    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z=1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 sq. arcmin in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z=1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope {\\beta} is redder than at high redshift (z>3), where LBGs are less dusty; (3) on average, LBGs at z=1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1{\\sigma} uncertainties. This could imply that identical dropout selection techniq...

  4. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection.

    Science.gov (United States)

    Pian, Qi; Yao, Ruoyang; Zhao, Lingling; Intes, Xavier

    2015-02-01

    We present a time-resolved fluorescence diffuse optical tomography platform that is based on wide-field structured illumination, single-pixel detection, and hyperspectral acquisition. Two spatial light modulators (digital micro-mirror devices) are employed to generate independently wide-field illumination and detection patterns, coupled with a 16-channel spectrophotometer detection module to capture hyperspectral time-resolved tomographic data sets. The main system characteristics are reported, and we demonstrate the feasibility of acquiring dense 4D tomographic data sets (space, time, spectra) for time domain 3D quantitative multiplexed fluorophore concentration mapping in turbid media.

  5. Automatic detection of asteroids and meteoroids --- a wide-field survey

    Science.gov (United States)

    Vereš, P.; Tóth, J.; Jedicke, R.; Tonry, J.; Denneau, L.; Wainscoat, R.; Kornoš, L.; Šilha, J.

    2014-07-01

    The small Near-Earth Asteroids (NEAs) represent a potential risk but also an easily accessible space resource for future robotic or human in-situ space exploration or commercial activities. However, the population of 1--300 m NEAs is not well understood in terms of size- frequency and orbital distribution. NEAs with diameters below 200 m tend to have much faster spin rates than large objects and they are believed to be monolithic and not rubble-pile like their large counterparts. Moreover, the current surveys do not systematically search for the small NEAs that are mostly overlooked. We propose a low- cost robotic optical survey (ADAM-WFS) aimed at small NEAs based on four state-of-the-art telescopes having extremely wide fields of view. The four Houghton-Terebizh 30-cm astrographs (Fig. left) with 4096×4096 -pixel CCD cameras will acquire 96 square degrees in one exposure with the plate scale of 4.4 arcsec/pixel. In 30 seconds, the system will be able to reach +17.5 mag in unfiltered mode. The survey will be operated on semi-automatic basis, covering the entire night sky three times per night and optimized toward fast moving targets recognition. The advantage of the proposed system is the usage of existing of-the-shelf components and software for the image processing and object identification and linking (Denneau et al., 2013). The one-year simulation of the survey (Fig. right) at the testing location at AGO Modra observatory in Slovakia revealed that we will detect 60--240 NEAs between 1--300 m that get closer than 10 lunar distances from the Earth. The number of detections will rise by a factor of 1.5--2 in case the survey is placed at a superb observing location such as Canary Islands. The survey will also serve as an impact warning system for imminent impactors. Our simulation showed that we have a 20 % chance of finding a 50-m NEA on a direct impact orbit. The survey will provide multiple byproducts from the all-sky scans, such as comet discoveries, sparse

  6. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    Science.gov (United States)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  7. THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE)

    Energy Technology Data Exchange (ETDEWEB)

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Tsai, Chao-Wei; Beichman, Charles A. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Cushing, Michael C.; Mainzer, A.; Eisenhardt, Peter R.; Bauer, James M. [NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Wright, Edward L.; McLean, Ian S.; Lake, Sean E.; Petty, Sara M. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Thompson, Maggie A. [The Potomac School, 1301 Potomac School Road, McLean, VA 22101 (United States); Benford, Dominic J. [Infrared Astrophysics Branch, NASA-Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bridge, Carrie R. [Division of Physics, Mathematics, and Astronomy, MS 220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Stanford, S. A. [Department of Physics, University of California, Davis, CA 95616 (United States); Bailey, Vanessa, E-mail: davy@ipac.caltech.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); and others

    2011-12-01

    We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types {>=}T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 {mu}m (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8{sup +1.3}{sub -0.6} pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of {approx}4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of

  8. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond.

    Science.gov (United States)

    Hall, L T; Beart, G C G; Thomas, E A; Simpson, D A; McGuinness, L P; Cole, J H; Manton, J H; Scholten, R E; Jelezko, F; Wrachtrup, Jörg; Petrou, S; Hollenberg, L C L

    2012-01-01

    A quantitative understanding of the dynamics of biological neural networks is fundamental to gaining insight into information processing in the brain. While techniques exist to measure spatial or temporal properties of these networks, it remains a significant challenge to resolve the neural dynamics with subcellular spatial resolution. In this work we consider a fundamentally new form of wide-field imaging for neuronal networks based on the nanoscale magnetic field sensing properties of optically active spins in a diamond substrate. We analyse the sensitivity of the system to the magnetic field generated by an axon transmembrane potential and confirm these predictions experimentally using electronically-generated neuron signals. By numerical simulation of the time dependent transmembrane potential of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we show that the imaging system is capable of imaging planar neuron activity non-invasively at millisecond temporal resolution and micron spatial resolution over wide-fields.

  9. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report

    CERN Document Server

    Spergel, D; Baltay, C; Bennett, D; Breckinridge, J; Donahue, M; Dressler, A; Gaudi, B S; Greene, T; Guyon, O; Hirata, C; Kalirai, J; Kasdin, N J; Macintosh, B; Moos, W; Perlmutter, S; Postman, M; Rauscher, B; Rhodes, J; Wang, Y; Weinberg, D; Benford, D; Hudson, M; Jeong, W -S; Mellier, Y; Traub, W; Yamada, T; Capak, P; Colbert, J; Masters, D; Penny, M; Savransky, D; Sterns, D; Zimmerman, N; Barry, R; Bartusek, L; Carpenter, K; Cheng, E; Content, D; Dekens, F; Demers, R; Grady, K; Jackson, C; Kuan, G; Kruk, J; Melton, M; Nemati, B; Parvin, B; Poberezhskiy, I; Peddie, C; Ruffa, J; Wallace, J K; Whipple, A; Wollack, E; Zhao, F

    2015-01-01

    This report describes the 2014 study by the Science Definition Team (SDT) of the Wide-Field Infrared Survey Telescope (WFIRST) mission. It is a space observatory that will addresses the most compelling scientific problems in dark energy, exoplanets and general astrophysics using a 2.4m telescope with a wide-field infrared instrument and an optical coronagraph. The Astro2010 Decadal Survey recommended a Wide Field Infrared Survey Telescope as its top priority for a new large space mission. As conceived by the decadal survey, WFIRST would carry out a dark energy science program, a microlensing program to determine the demographics of exoplanets, and a general observing program utilizing its ultra wide field. In October 2012, NASA chartered a Science Definition Team (SDT) to produce, in collaboration with the WFIRST Study Office at GSFC and the Program Office at JPL, a Design Reference Mission (DRM) for an implementation of WFIRST using one of the 2.4-m, Hubble-quality telescope assemblies recently made availabl...

  10. Clinical assessment of human breast cancer margins with wide-field optical coherence micro-elastography (Conference Presentation)

    Science.gov (United States)

    Allen, Wes M.; Chin, Lixin; Wijesinghe, Philip; Kirk, Rodney W.; Latham, Bruce; Sampson, David D.; Saunders, Christobel M.; Kennedy, Brendan F.

    2017-02-01

    Breast cancer has the second highest mortality rate of all cancers in females. Surgical excision of malignant tissue forms a central component of breast-conserving surgery (BCS) procedures. Incomplete excision of malignant tissue is a major issue in BCS with typically 20 - 30% cases requiring a second surgical procedure due to postoperative detection of tumor in the margin. A major challenge for surgeons during BCS is the lack of effective tools to assess the surgical margin intraoperatively. Such tools would enable the surgeon to more effectively remove all tumor during the initial surgery, hence reducing re-excision rates. We report advances in the development of a new tool, optical coherence micro-elastography, which forms images, known as elastograms, based on mechanical contrast within the tissue. We demonstrate the potential of this technique to increase contrast between malignant tumor and healthy stroma in elastograms over OCT images. We demonstrate a key advance toward clinical translation by conducting wide-field imaging in intraoperative time frames with a wide-field scanning system, acquiring mosaicked elastograms with overall dimensions of 50 × 50 mm, large enough to image an entire face of most lumpectomy specimens. We describe this wide-field imaging system, and demonstrate its operation by presenting wide-field optical coherence tomography images and elastograms of a tissue mimicking silicone phantom and a number of representative freshly excised human breast specimens. Our results demonstrate the feasibility of scanning large areas of lumpectomies, which is an important step towards practical intraoperative margin assessment.

  11. PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak

    NARCIS (Netherlands)

    Kelz, Andreas; Verheijen, Marc A. W.; Roth, Martin M.; Bauer, Svend M.; Becker, Thomas; Paschke, Jens; Popow, Emil; Sánchez, Sebastian F.; Laux, Uwe

    2006-01-01

    PPak is a new fiber-based integral field unit (IFU) developed at the Astrophysical Institute of Potsdam and implemented as a module into the existing Potsdam Multi-Aperture Spectrophotometer (PMAS) spectrograph. The purpose of PPak is to provide an extended field of view with a large light-collectin

  12. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    Science.gov (United States)

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  13. Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    CERN Document Server

    Libralato, M; Bedin, L R; Piotto, G; Platais, I; Kissler-Patig, M; Milone, A P; .,

    2014-01-01

    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achi...

  14. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners.

    Science.gov (United States)

    Greco, V; Frijia, F; Mikellidou, K; Montanaro, D; Farini, A; D'Uva, M; Poggi, P; Pucci, M; Sordini, A; Morrone, M C; Burr, D C

    2016-06-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields.

  15. Field Monitoring and Analysis of Climate Change Across a Wide Range of Ecosystems in Hawaii

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of this ongoing project is to ensure continued operation and maintenance of the HaleNet climate and ecosystem monitoring network, including field...

  16. LIGHTCURVES OF HST-1 IN M87

    Directory of Open Access Journals (Sweden)

    Y. Coronado

    2011-01-01

    Full Text Available El movimiento de nudos en jets astrofísicos es comúnmente interpretado como ondas de choque moviéndose a lo largo de éstos. Observaciones multifrecuencia del nudo HST-1 en extensos periodos de tiempo producen complicadas curvas de luz, las cuales son difíciles de modelar con codigos hidrodinámicos estándar. En este trabajo reproducimos estas curvas de luz, usando el enfoque semi-analítico dado en Mendoza et al. (2009, desarrollado para reproducir curvas de luz de superficies de trabajo moviéndose a lo largo de jets relativistas. En particular usamos este enfoque para reproducir las exóticas características observadas en las curvas de luz del nudo HST-1 en M87. Mostramos que los complicados ajustes de las curvas de luz se reproducen con gran precisión en todas la longitudes de onda, cuando se considera que estas superficies de trabajo son generadas por oscilaciones periódicas en la velocidad del flujo y masa inyectada en la base del jet.

  17. Integrating Field-Centered, Project Based Activities with Academic Year Coursework: A Curriculum Wide Approach

    Science.gov (United States)

    Kelso, P. R.; Brown, L. M.

    2015-12-01

    Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."

  18. Understanding sub-stellar populations using wide-field infrared surveys

    Directory of Open Access Journals (Sweden)

    Hewett P.C.

    2011-07-01

    Full Text Available This paper discusses benchmark brown dwarfs in various environments, and focuses on those in wide binary systems. We present a summary of the recently discovered T dwarf population from the UKIDSS Large Area Survey, and describe the constraints that it places on our knowledge of the sub-stellar initial mass function. We also present some exciting results from our ongoing search for wide companions to this sample, that has so far revealed an M4-T8.5 binary system at ∼12 parsecs and also the first ever Tdwarf-white dwarf binary system. The T dwarfs in these binaries have their properties constrained by the primary object and are thus benchmark objects that are already testing the predictions of theoretical model atmospheres.

  19. KOALA, a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope: assembly and commissioning

    Science.gov (United States)

    Zhelem, Ross; Brzeski, Jurek; Case, Scott; Churilov, Vladimir; Ellis, Simon; Farrell, Tony; Green, Andrew; Heng, Anthony; Horton, Anthony; Ireland, Michael; Jones, Damien; Klauser, Urs; Lawrence, Jon; Miziarski, Stan; Orr, David; Pai, Naveen; Staszak, Nick; Tims, Julia; Vuong, Minh; Waller, Lew; Xavier, Pascal

    2014-07-01

    The KOALA optical fibre feed for the AAOmega spectrograph has been commissioned at the Anglo-Australian Telescope. The instrument samples the reimaged telescope focal plane at two scales: 1.23 arcsec and 0.70 arcsec per image slicing hexagonal lenslet over a 49x27 and 28x15 arcsec field of view respectively. The integral field unit consists of 2D hexagonal and circular lenslet arrays coupling light into 1000 fibres with 100 micron core diameter. The fibre run is over 35m long connecting the telescope Cassegrain focus with the bench mounted spectrograph room where all fibres are reformatted into a one-dimensional slit. Design and assembly of the KOALA components, engineering challenges encountered, and commissioning results are discussed.

  20. A simple algorithm to calculate the pulsed sound field of a wide-band linear phased array

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; QUE Pei-wen; ZHANG Zhi-gang; LEI Hua-ming; JIN Jian-hua

    2006-01-01

    A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained by summing the impulse responses of rectangular piston elements with different delay times. The output response of the linear wide-band array is equal to the convolution of impulse response functions with wide-band pulse exciting signal. Sound field distributions and impulse responses of three kinds of transducers are compared. The results can be used to optimize the parameters of the linear phased array transducers used in ultrasonic imaging in nondestructive testing (NDT).

  1. Magnetic fields on a wide range of scales in star-forming galaxies

    CERN Document Server

    Heald, George; Sridhar, Sarrvesh S

    2016-01-01

    A key ingredient in the evolution of galaxies is the star formation cycle. Recent progress in the study of magnetic fields is revealing the close connection between star formation and its effect on the small-scale structure in the magnetized interstellar medium (ISM). In this contribution we describe how the modern generation of radio telescopes is being used to probe the physics of the ISM through sensitive multiwavelength surveys of gas and magnetic fields, from the inner star forming disk and outward into the galaxy outskirts where large-scale magnetic fields may also play a key role. We highlight unique pioneering efforts towards performing and scientifically exploiting large-scale surveys of the type that the SKA will undertake routinely. Looking to the future, we describe plans for using the Square Kilometre Array (SKA) and its pathfinders to gain important new insights into the cosmic history of galaxy evolution.

  2. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    Science.gov (United States)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    2017-01-01

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization bridges this gap. We combine all available high resolution polarization observations to fit models of the line of sight magnetic field structure across the disk. We find simple screens of Faraday rotation, differential Faraday rotation, and internal Faraday dispersion are insufficient to explain the observed depolarization, and present the results of the best fit models. We discuss how future broadband observations and improved models will help reconstruct the full 3D model of the magnetic field structure in the disks and haloes of galaxies.

  3. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes.

    Science.gov (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis

    2008-05-01

    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK.

  4. Cavity Quantum Electrodynamics in a wide aperture spherical resonator. Part II Vacuum-field atom trapping

    CERN Document Server

    Daul, J M; Daul, Jean-Marc; Grangier, Philippe

    2003-01-01

    We consider the situation where a two-level atom is placed in the vicinity of the center of a spherical cavity with a large numerical aperture. The vacuum field at the center of the cavity is actually equivalent to the one obtained in a microcavity, and both the dissipative and the reactive parts of the atom's spontaneous emission are significantly modified. Using an explicit calculation of the spatial dependence of the radiative relaxation rate and of the associated level shift, we show that for a weakly excitating light field, the atom can be attracted to the center of the cavity by vacuum-induced light shifts.

  5. Through the looking GLASS: HST spectroscopy of faint galaxies lensed by the Frontier Field cluster MACS0717.5+374K. B. Schmidt, T. Treu, G. B. Brammer, M. Bradac, X. Wang, M. Dijkstra, A. Dressler, A. Fontana, R. Gavazzi, A. L. Henry, A. Hoag, T. A. Jones, P. L. Kelly, M. A. Malkan, C. Mason, L. Pentericci, B. Poggianti, M.Stiavelli, M. Trenti, A. von der Linden, B. Vulcani5

    CERN Document Server

    Schmidt, K B; Brammer, G B; Bradac, M; Wang, X; Dijkstra, M; Dressler, A; Fontana, A; Gavazzi, R; Henry, A L; Hoag, A; Jones, T A; Kelly, P L; Malkan, M A; Mason, C; Pentericci, L; Poggianti, B; Stiavelli, M; Trenti, M; von der Linden, A; Vulcani, B

    2014-01-01

    The \\emph{Grism Lens-Amplified Survey from Space} (GLASS) is a Hubble Space Telescope (\\HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic telescopes. Extensive \\HST\\ imaging is available from many sources including the CLASH and Frontier Field programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and $z\\gtrsim6$ galaxy candidates obtained from the first seven orbits targeting the core of the Frontier Field cluster MACS0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8--1.7$\\mu$m, we confirm 4 strongly lensed systems by detecting emission lines in each of the images. For the 9 $z\\gtrsim6$ galaxy candidates clear from contamination, we do not detect any emission line down to a 1-$\\sigma$ noise level of $\\sim$5$\\times$10$^{-18}$\\cgs. Taking lensing magnification into account, our flux sensitivity reaches $\\sim$0.2--5$\\times$10$^{-18}$\\c...

  6. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NARCIS (Netherlands)

    Nishiguchi, K.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET w

  7. Nanosecond time-scale switching of permalloy thin film elements studied by wide-field time-resolved Kerr microscopy

    Science.gov (United States)

    Chumakov, Dmitry; McCord, Jeffrey; Schäfer, Rudolf; Schultz, Ludwig; Vinzelberg, Hartmut; Kaltofen, Rainer; Mönch, Ingolf

    2005-01-01

    The switching of extended Ni81Fe19 thin film elements with a thickness of 50nm and various shapes (squared, rectangular, pointed) has been studied by time-resolved stroboscopic Kerr microscopy based on a conventional wide-field optical polarization microscope. The elements are deposited on coplanar strip-lines that generate field pulses driven by electronic pulse generators. Time resolution is obtained by imaging with a gated and intensified charge-coupled device camera. The opening can be varied from 250ps to continuous exposure, allowing the comparison of fast magnetization processes and quasistatic switching in slowly varying fields. The latter is typically characterized by the formation of a concertina domain pattern that irreversibly decays in a multidomain ground state by the abrupt motion of vortices and domain walls. After excitation with fast field pulses similar blocked patterns are formed. They dissolve by spatially inhomogeneous rotational processes involving cross-tie-wall-like domain boundaries.

  8. Morphologies of ˜190,000 Galaxies at z = 0-10 Revealed with HST Legacy Data. I. Size Evolution

    Science.gov (United States)

    Shibuya, Takatoshi; Ouchi, Masami; Harikane, Yuichi

    2015-08-01

    We present the redshift evolution of the galaxy effective radius re obtained from the Hubble Space Telescope (HST) samples of ˜190,000 galaxies at z = 0-10. Our HST samples consist of 176,152 photo-z galaxies at z = 0-6 from the 3D-HST+CANDELS catalog and 10,454 Lyman break galaxies (LBGs) at z = 4-10 identified in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), HUDF 09/12, and HFF parallel fields, providing the largest data set to date for galaxy size evolution studies. We derive re with the same technique over the wide redshift range of z = 0-10, evaluating the optical-to-UV morphological K correction and the selection bias of photo-z galaxies+LBGs as well as the cosmological surface-brightness dimming effect. We find that re values at a given luminosity significantly decrease toward high z, regardless of statistics choices (e.g., {r}{{e}}\\propto {(1+z)}-1.10+/- 0.06 for median). For star-forming galaxies, there is no evolution of the power-law slope of the size-luminosity relation and the median Sérsic index (n˜ 1.5). Moreover, the re distribution is well represented by log-normal functions whose standard deviation {σ }{ln{r}{{e}}} does not show significant evolution within the range of {σ }{ln{r}{{e}}}˜ 0.45-0.75. We calculate the stellar-to-halo size ratio from our re measurements and the dark-matter halo masses estimated from the abundance-matching study, and we obtain a nearly constant value of {r}{{e}}/{r}{vir}=1.0%-3.5% at z = 0-8. The combination of the re-distribution shape+standard deviation, the constant {r}{{e}}/{r}{vir}, and n˜ 1.5 suggests a picture in which typical high-z star-forming galaxies have disk-like stellar components in a sense of dynamics and morphology over cosmic time of z˜ 0-6. If high-z star-forming galaxies are truly dominated by disks, the {r}{{e}}/{r}{vir} value and the disk-formation model indicate that the specific angular momentum of the disk normalized by the host halo is {j

  9. The XMM-Newton wide-field survey in the COSMOS field: VI. Statistical properties of clusters of galaxies

    CERN Document Server

    Finoguenov, A; Hasinger, G; Scoville, N Z; Aussel, H; Böhringer, H; Brusa, M; Capak, P; Cappelluti, N; Comastri, A; Giodini, S; Griffiths, R E; Impey, C; Koekemoer, A M; Kneib, J P; Leauthaud, A; Lefèvre, O; Lilly, S; Mainieri, V; Massey, R; McCracken, H J; Mobasher, B; Murayama, T; Peacock, J A; Sakelliou, I; Schinnerer, E; Silverman, J D; Smolcic, V; Taniguchi, Y; Tasca, L; Taylor, J E; Trump, J R; Zamorani, G

    2006-01-01

    We present the results of a search for galaxy clusters in the first 36 XMM-Newton pointings on the COSMOS field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 3x10-15 ergs cm-2 s-1, having one of the widest XMM-Newton contiguous raster surveys, covering an area of 2.1 square degrees. Cluster candidates are identified through a wavelet detection of extended X-ray emission. Verification of the cluster candidates is done based on a galaxy concentration analysis in redshift slices of thickness of 0.1-0.2 in redshift, using the multi-band photometric catalog of the COSMOS field and restricting the search to zS)-lg(S) distribution compares well with previous results, although yielding a somewhat higher number of clusters at similar fluxes. The X-ray luminosity function of COSMOS clusters matches well the results of nearby surveys, providing a comparably tight constraint on the faint end slope of alpha=1.93+/-0.04. For the probed luminosity range of 8x10+42 - 2x10+44 ergs s-1, our survey is in a...

  10. Innovations of wide-field optical-sectioning fluorescence microscopy: toward high-speed volumetric bio-imaging with simplicity

    Science.gov (United States)

    Yu, Jiun-Yann

    Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere. The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths. Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often

  11. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    Science.gov (United States)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  12. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  13. Ulva prolifera monitoring by GF-1 wide field-of-view sensor data

    Science.gov (United States)

    Liang, Wenxiu; Li, Junsheng; Zhou, Demin; Shen, Qian; Zhang, Fangfang; Zhang, Haobin

    2014-11-01

    Ulva prolifera, a kind of green macroalgae, is nontoxic itself, however, its bloom has bad effects on the marine environment, coastal scene, water sports and seashore tourism. Monitoring of the Ulva prolifera by remote sensing technology has the advantages of wide coverage, rapidness, low cost and dynamic monitoring over a long period of time. The GF-1 satellite was launched in April 2013, which provides a new suitable remote sensing data source for monitoring the Ulva prolifera. At present, segmenting image with a threshold is the most widely used method in Ulva prolifera extraction by remote sensing data, because it is simple and easy to operate. However, the threshold value is obtained through visual analysis or using a fixed statistical value, and could not be got automatically. Facing this problem, we proposed a new method, which can obtain the segmentation threshold automatically based on the local maximum gradient value. This method adopted the average NDVI value of local maximum gradient points as the threshold, and could get an appropriate segmentation threshold automatically for each image. The preliminary results showed that this method works well in monitoring Ulva prolifera by GF-1 WFV data.

  14. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  15. Mini-MegaTORTORA wide-field monitoring system with sub-second temporal resolution: observation of transient events

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-06-01

    Here we present a summary of first years of operation and first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (~900 square degrees) or narrow (~100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  16. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  17. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Science.gov (United States)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  18. Observations of transient events with Mini-MegaTORTORA wide-field monitoring system with sub-second temporal resolution

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.

    2017-07-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (900 square degrees) or narrow (100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT also include faint meteors and artificial satellites.

  19. Mini-MegaTORTORA Wide-Field Monitoring System with Subsecond Temporal Resolution: Observation of Transient Events

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.

    2017-06-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites.

  20. The Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System: Spectral Variation on Kuiper Belt Objects

    CERN Document Server

    Fraser, Wesley C; Glass, Florian

    2015-01-01

    Here we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System. 12 targets were re-observed with the Wide Field Camera 3 in optical and NIR wavebands designed to compliment those used during the first visit. Additionally, all observations originally presented by Fraser and Brown (2012) were reanalyzed through the same updated photometry pipeline. A reanalysis of the optical and NIR colour distribution reveals a bifurcated optical colour distribution and only two identifiable spectral classes, each of which occupies a broad range of colours and have correlated optical and NIR colours, in agreement with our previous findings. We report the detection of significant spectral variations on 5 targets which cannot be attributed to photometry errors, cosmic rays, point spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have ...

  1. Rotation of Jets from T-Tauri Stars New Clues from Hst/stis

    Science.gov (United States)

    Coffey, Deirdre; Woitas, Jens; Francesca, Bacciotti; Ray, Thomas P.; Eisloffel, Jochen

    Whether jets from newly forming stars rotate is a fundamental question in star formation research. Theoretical models propose jet rotation as a means of removing angular momentum from the young star and disk system thus allowing accretion. While widely accepted this idea has not yet been tested observational due to the high resolution requirement of examining jets close to their launching point. Previous findings from the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and Owens Valley Radio Observatory (OVRO) give indications of same sense rotation of the jet (Bacciotti et al 2002) and disk (Testi et al 2002) respectively of T Tauri star DG Tau. We report preliminary findings from HST/STIS data for 3 of 8 sources in a current survey to establish conclusively whether protostellar jets rotate. The results were positive yielding evidence of radial velocity differences about the axis at the base of all three jets of up to 20-30 km/s.

  2. Preplanetary Nebulae: An HST Imaging Survey and a New Morphological Classification System

    CERN Document Server

    Sahai, Raghvendra; Contreras, Carmen Sánchez; Claussen, Mark

    2007-01-01

    Using the Hubble Space Telescope (HST), we have carried out a survey of candidate preplanetary nebulae (PPNs). We report here our discoveries of objects having well-resolved geometrical structures, and use the large sample of PPNs now imaged with HST (including previously studied objects in this class) to devise a comprehensive morphological classification system for this category of objects. The wide variety of aspherical morphologies which we have found for PPNs are qualitatively similar to those found for young planetary nebulae in previous surveys. We also find prominent halos surrounding the central aspherical shapes in many of our objects -- these are direct signatures of the undisturbed circumstellar envelopes of the progenitor AGB stars. Although the majority of these have surface-brightness distributions consistent with a constant mass-loss rate with a constant expansion velocity, there are also examples of objects with varying mass-loss rates. As in our surveys of young planetary nebulae (PNs), we f...

  3. EMBRACE@Nancay: An Ultra Wide Field of View Prototype for the SKA

    CERN Document Server

    Torchinsky, S A; Censier, B; Karastergiou, A; Serylak, M; Renaud, P; Taffoureau, C

    2015-01-01

    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the "intensity mapping" experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.

  4. A Wide-Field HI Study of the NGC 1566 Group

    CERN Document Server

    Kilborn, V A; Forbes, D A; Barnes, D G; Musgrave, R C; Kilborn, Virginia A.; Koribalski, Baerbel S.; Forbes, Duncan A.; Barnes, David G.; Musgrave, Ruth C.

    2004-01-01

    We report on neutral hydrogen observations of a ~ 5.5 x 5.5 degree field around the NGC 1566 galaxy group with the multibeam narrow-band system on the 64-m Parkes telescope. We detected thirteen HI sources in the field, including two galaxies not previously known to be members of the group, bringing the total number of confirmed galaxies in this group to 26. Each of the HI galaxies can be associated with an optically catalogued galaxy. No 'intergalactic HI clouds' were found to an HI mass limit of ~ 3.5 x 10^8 Msun. We have estimated the expected HI content of the late-type galaxies in this group and find the total detected HI is consistent with our expectations. However, while no global HI deficiency is inferred for this group, two galaxies exhibit individual HI deficiencies. Further observations are needed to determine the gas removal mechanisms in these galaxies.

  5. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  6. Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting

    Directory of Open Access Journals (Sweden)

    Laurin Ginner

    2014-10-01

    Full Text Available Optical angiography systems based on optical coherence tomography (OCT require dense sampling in order to maintain good vascular contrast. We demonstrate a way to gain acquisition speed and spatial sampling by using spectral splitting with a swept source OCT system. This method splits the recorded spectra into two to several subspectra. Using continuous lateral scanning, the lateral sampling is then increased by the same factor. This allows increasing the field of view of OCT angiography, while keeping the same transverse resolution and measurement time. The performance of our method is demonstrated in vivo at different locations of the human retina and verified quantitatively. Spectral splitting can be applied without any changes in the optical setup, thus offering an easy way to increase the field of view of OCT in general and in particular for OCT angiography.

  7. A retinal circuit model accounting for wide-field amacrine cells

    OpenAIRE

    SAĞLAM, Murat; Hayashida, Yuki; Murayama, Nobuki

    2008-01-01

    In previous experimental studies on the visual processing in vertebrates, higher-order visual functions such as the object segregation from background were found even in the retinal stage. Previously, the “linear–nonlinear” (LN) cascade models have been applied to the retinal circuit, and succeeded to describe the input-output dynamics for certain parts of the circuit, e.g., the receptive field of the outer retinal neurons. And recently, some abstract models composed of LN cascades as the cir...

  8. PMAS: The Potsdam Multi Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak

    CERN Document Server

    Kelz, A; Roth, M M; Bauer, S M; Becker, T; Paschke, J; Popow, E; Sánchez, S F; Laux, U; Kelz, Andreas; Verheijen, Marc A.W.; Roth, Martin M.; Bauer, Svend M.; Becker, Thomas; Paschke, Jens; Popow, Emil; Sanchez, Sebastian F.; Laux, Uwe

    2005-01-01

    PPak is a new fiber-based Integral Field Unit (IFU), developed at the Astrophysical Institute Potsdam, implemented as a module into the existing PMAS spectrograph. The purpose of PPak is to provide both an extended field-of-view with a large light collecting power for each spatial element, as well as an adequate spectral resolution. The PPak system consists of a fiber bundle with 331 object, 36 sky and 15 calibration fibers. The object and sky fibers collect the light from the focal plane behind a focal reducer lens. The object fibers of PPak, each 2.7 arcseconds in diameter, provide a contiguous hexagonal field-of-view of 74 times 64 arcseconds on the sky, with a filling factor of 60%. The operational wavelength range is from 400 to 900nm. The PPak-IFU, together with the PMAS spectrograph, are intended for the study of extended, low surface brightness objects, offering an optimization of total light-collecting power and spectral resolution. This paper describes the instrument design, the assembly, integratio...

  9. Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    OpenAIRE

    Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; Dailey, J.; Eisenhardt, P.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Spahr, T.; Tholen, D.; Alles, R; Beck, R.

    2011-01-01

    The \\emph{Wide-field Infrared Survey Explorer} has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the \\emph{Infrared Astronomical Satellite} and the \\emph{Cosmic Background Explorer}. NASA's Planetary Science Division has funded an enhancement to the \\WISE\\ data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the \\WISE\\ data. NEOWISE has mined the \\WIS...

  10. The Power of Wide Field HI Surveys: ALFALFA Imaging of Massive Tidal Features in the Leo Cloud of Galaxies

    Science.gov (United States)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2016-01-01

    Tidal interactions are well known to play an important role in galactic evolution in group environments, but the extent of these interactions, and their relative impact on the morphology-density relation is still unclear. Neutral hydrogen (HI) mapping can reveal the recent interaction history of group galaxies, but is difficult to execute due to the need for high sensitivity over wide fields. The Arecibo Legacy Fast ALFA survey (ALFALFA; Giovanelli et al. 2005; Haynes et al. 2011) provides high sensitivity, unbiased, wide field maps of HI in the local volume; here we will present a 50 deg2 ALFALFA map of a well studied region of the Leo Cloud of galaxies, which includes the NGC3226/7 group and HCG44. These observations reveal HI tails and plumes with extents exceeding 1.4 deg (~600 kpc), well beyond the primary beams of previous observations. These tails constitute a significant fraction of the total HI mass in NGC3226/7 (Arp 94) and HCG44. We will also present WSRT maps of the extended emission near Arp 94, which show tail morphologies inconsistent with 2 body interactions. These observations demonstrate that large scale group interactions will be an important science outcome for future sensitive, wide field HI surveys.This work is supported by NSF grants AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.

  11. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions

    Institute of Scientific and Technical Information of China (English)

    Lukas; Reznicek; Carmen; Stumpf; Florian; Seidensticker; Anselm; Kampik; Aljoscha; S; Neubauer; Marcus; Kernt

    2014-01-01

    ·AIM:Toevaluatethe diagnostic properties of wide-field fundus autofluorescence(FAF) scanning laser ophthalmoscope(SLO) imaging for differentiating choroidal pigmented lesions.·METHODS: A consecutive series of 139 patients were included, 101 had established choroidal melanoma with13 untreated lesions and 98 treated with radiotherapy.Thirty-eight had choroidal nevi. All patients underwent a full ophthalmological examination, undilated wide-field imaging, FAF and standardized US examination. FAF images and imaging characteristics from SLO were correlated with the structural findings in the two patient groups.·RESULTS: Mean FAF intensity of melanomas was significantly lower than the FAF of choroidal nevi. Only 1out of 38 included eyes with nevi touched the optic disc compared to 31 out of 101 eyes with melanomas. In 18 out of 101 melanomas subretinal fluid was seen at the pigmented lesion compared to none seen in eyes with confirmed choroidal nevi. In "green laser separation", a trend towards more mixed FAF appearance of melanomas compared to nevi was observed. The mean maximal and minimal transverse and longitudinal diameters of melanomas were significantly higher than those of nevi.·CONCLUSION: Wide-field SLO and FAF imaging may be an appropriate non-invasive diagnostic screening tool to differentiate benign from malign pigmented choroidal lesions.

  12. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand

    CERN Document Server

    Sako, T; Sasaki, M; Okajima, K; Abe, F; Bond, I A; Hearnshaw, J B; Itow, Y; Kamiya, K; Kilmartin, P M; Masuda, K; Matsubara, Y; Muraki, Y; Rattenbury, N J; Sullivan, D J; Sumi, T; Tristram, P; Yanagisawa, T; Yock, P C M

    2008-01-01

    We have developed a wide-field mosaic CCD camera, MOA-cam3, mounted at the prime focus of the Microlensing Observations in Astrophysics (MOA) 1.8-m telescope. The camera consists of ten E2V CCD4482 chips, each having 2kx4k pixels, and covers a 2.2 deg^2 field of view with a single exposure. The optical system is well optimized to realize uniform image quality over this wide field. The chips are constantly cooled by a cryocooler at -80C, at which temperature dark current noise is negligible for a typical 1-3 minute exposure. The CCD output charge is converted to a 16-bit digital signal by the GenIII system (Astronomical Research Cameras Inc.) and readout is within 25 seconds. Readout noise of 2--3 ADU (rms) is also negligible. We prepared a wide-band red filter for an effective microlensing survey and also Bessell V, I filters for standard astronomical studies. Microlensing studies have entered into a new era, which requires more statistics, and more rapid alerts to catch exotic light curves. Our new system is...

  13. Globular clusters in the outer Galactic halo: new HST/ACS imaging of 6 globular clusters and the Galactic globular cluster age-metallicity relation

    CERN Document Server

    Dotter, Aaron; Anderson, Jay

    2011-01-01

    Color-magnitude diagrams (CMDs) derived from Hubble Space Telescope (HST) Advanced Camera for Surveys F606W,F814W photometry of 6 globular clusters (GCs) are presented. The six GCs form two loose groupings in Galactocentric distance (Rgc): IC 4499, NGC 6426, and Ruprecht 106 at ~15-20 kpc and NGC 7006, Palomar 15, and Pyxis at ~40 kpc. The CMDs allow the ages to be estimated from the main sequence turnoff in every case. In addition, the age of Palomar 5 (Rgc ~ 18 kpc) is estimated using archival HST Wide Field Planetary Camera 2 V,I photometry. The age analysis reveals the following: IC 4499, Ruprecht 106, and Pyxis are 1-2 Gyr younger than inner halo GCs with similar metallicities; NGC 7006 and Palomar 5 are marginally younger than their inner halo counterparts; NGC 6426 and Palomar 15, the two most metal-poor GCs in the sample, are coeval with all the other metal-poor GCs within the uncertainties. Combined with our previous efforts, the current sample provides strong evidence that the Galactic GC age-metall...

  14. HST Rotational Spectral Mapping of Two L-Type Brown Dwarfs: Variability In and Out of Water Bands Indicates High-Altitude Haze Layers

    CERN Document Server

    Yang, Hao; Marley, Mark S; Saumon, Didier; Morley, Caroline V; Buenzli, Esther; Artigau, Etienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J; Mohanty, Subhanjoy; Lowrance, Patrick L; Showman, Adam P; Karalidi, Theodora; Flateau, Davin; Heinze, Aren N

    2014-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 $\\mu$m and 1.7 $\\mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $\\mu$m and 1.4 $\\mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $\\mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altit...

  15. Wide Field-of-view and Broadband Terahertz Beam Steering Based on Gap Plasmon Geodesic Antennas.

    Science.gov (United States)

    Liu, Kaipeng; Guo, Yinghui; Pu, Mingbo; Ma, Xiaoliang; Li, Xiong; Luo, Xiangang

    2017-01-30

    Despite a plethora of applications ranging from wireless communications to sensing and spectroscopy, the current terahertz beam steering technologies suffer from tremendous insert loss, stringent control of electric bias, limited scanning angle, relatively complicated configuration and narrow operation bandwidth, preventing further practical application. We propose and demonstrate a conceptually new approach for terahertz beam steering by virtue of gap plasmon geodesic antennas. By adjusting the geometric dimension of the gap plasmon geodesic antennas, all gap plasmon modes add coherently along a peculiar direction that depends on the geodesic mean surface. Consequently, high directive beams are generated through the antenna, whose direction could be changed within a wide-angle range spanning ±45° by lateral motion of the feed. Furthermore, an assembled antenna structure consisting of four-element geodesic antennas array is proposed for full 360° beam steering, which can operate in a broadband range from 0.8 THz to 1.2 THz.

  16. Direction Dependent Effects In Wide-Field Wideband Full Stokes Radio Imaging

    CERN Document Server

    Jagannathan, Preshanth; Rau, Urvashi; Taylor, Russ

    2014-01-01

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction-dependent (DD) gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full Stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wide-band full Stokes power pattern of the Karl G. Jansky Very Large Array (VLA) antennas to demonstrate the level of errors arising from direction-dependent gains and their non-neglegible impact on upcoming sky surveys such as the VLASS. DD corrections through hybrid projection algorithms are computationally expensive to perform. A highly parallel implementation through high performance computing architectures is the only feasible way of applying these correction...

  17. Wide Field-of-view and Broadband Terahertz Beam Steering Based on Gap Plasmon Geodesic Antennas

    Science.gov (United States)

    Liu, Kaipeng; Guo, Yinghui; Pu, Mingbo; Ma, Xiaoliang; Li, Xiong; Luo, Xiangang

    2017-01-01

    Despite a plethora of applications ranging from wireless communications to sensing and spectroscopy, the current terahertz beam steering technologies suffer from tremendous insert loss, stringent control of electric bias, limited scanning angle, relatively complicated configuration and narrow operation bandwidth, preventing further practical application. We propose and demonstrate a conceptually new approach for terahertz beam steering by virtue of gap plasmon geodesic antennas. By adjusting the geometric dimension of the gap plasmon geodesic antennas, all gap plasmon modes add coherently along a peculiar direction that depends on the geodesic mean surface. Consequently, high directive beams are generated through the antenna, whose direction could be changed within a wide-angle range spanning ±45° by lateral motion of the feed. Furthermore, an assembled antenna structure consisting of four-element geodesic antennas array is proposed for full 360° beam steering, which can operate in a broadband range from 0.8 THz to 1.2 THz.

  18. Dependence of the open-closed field line boundary in Saturn's ionosphere on both the IMF and solar wind dynamic pressure: comparison with the UV auroral oval observed by the HST

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2008-02-01

    Full Text Available We model the open magnetic field region in Saturn's southern polar ionosphere during two compression regions observed by the Cassini spacecraft upstream of Saturn in January 2004, and compare these with the auroral ovals observed simultaneously in ultraviolet images obtained by the Hubble Space Telescope. The modelling employs the paraboloid model of Saturn's magnetospheric magnetic field, whose parameters are varied according to the observed values of both the solar wind dynamic pressure and the interplanetary magnetic field (IMF vector. It is shown that the open field area responds strongly to the IMF vector for both expanded and compressed magnetic models, corresponding to low and high dynamic pressure, respectively. It is also shown that the computed open field region agrees with the poleward boundary of the auroras as well as or better than those derived previously from a model in which only the variation of the IMF vector was taken into account. The results again support the hypothesis that the auroral oval at Saturn is associated with the open-closed field line boundary and hence with the solar wind interaction.

  19. Improvement of Traceability of Widely-Defined Measurements in the Field of Humanities

    Science.gov (United States)

    Sapozhnikova, K.; Taymanov, R.

    2010-01-01

    In the last decades, a tendency to extend the domain of "fuzzy" measurements of multiparametric quantities to the field of humanities has been observed. In the measurement process, the "fuzzy" measurements should meet the requirements of metrological traceability. The paper deals with the approach proposed for developing a measurement model of "fuzzy" measurements. The approach suggested is illustrated by an example of a model for measuring the emotions contained in musical fragments. The model is based on the hypothesis that permits to explain the origination of emotions in the evolution process.

  20. Compressive imaging for difference image formation and wide-field-of-view target tracking

    Science.gov (United States)

    Shikhar

    2010-11-01

    Use of imaging systems for performing various situational awareness tasks in military and commercial settings has a long history. There is increasing recognition, however, that a much better job can be done by developing non-traditional optical systems that exploit the task-specific system aspects within the imager itself. In some cases, a direct consequence of this approach can be real-time data compression along with increased measurement fidelity of the task-specific features. In others, compression can potentially allow us to perform high-level tasks such as direct tracking using the compressed measurements without reconstructing the scene of interest. In this dissertation we present novel advancements in feature-specific (FS) imagers for large field-of-view surveillence, and estimation of temporal object-scene changes utilizing the compressive imaging paradigm. We develop these two ideas in parallel. In the first case we show a feature-specific (FS) imager that optically multiplexes multiple, encoded sub-fields of view onto a common focal plane. Sub-field encoding enables target tracking by creating a unique connection between target characteristics in superposition space and the target's true position in real space. This is accomplished without reconstructing a conventional image of the large field of view. System performance is evaluated in terms of two criteria: average decoding time and probability of decoding error. We study these performance criteria as a function of resolution in the encoding scheme and signal-to-noise ratio. We also include simulation and experimental results demonstrating our novel tracking method. In the second case we present a FS imager for estimating temporal changes in the object scene over time by quantifying these changes through a sequence of difference images. The difference images are estimated by taking compressive measurements of the scene. Our goals are twofold. First, to design the optimal sensing matrix for taking

  1. A long-range, wide field-of-view infrared eyeblink detector.

    Science.gov (United States)

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise.

  2. The Cosmic Infrared Background Experiment (CIBER): The Wide-field Imagers

    Science.gov (United States)

    Bock, J.; Sullivan, I.; Arai, T.; Battle, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lam, A. C.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Mitchell-Wynne, K.; Nam, U. W.; Renbarger, T.; Smidt, J.; Suzuki, K.; Tsumura, K.; Wada, T.; Zemcov, M.

    2013-08-01

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2° × 2° field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' × 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with Δλ/λ ~ 0.5 bandpasses centered at 1.1 μm and 1.6 μm to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  3. Wide-Area Mapping of Forest with National Airborne Laser Scanning and Field Inventory Datasets

    Science.gov (United States)

    Monnet, J.-M.; Ginzler, C.; Clivaz, J.-C.

    2016-06-01

    Airborne laser scanning (ALS) remote sensing data are now available for entire countries such as Switzerland. Methods for the estimation of forest parameters from ALS have been intensively investigated in the past years. However, the implementation of a forest mapping workflow based on available data at a regional level still remains challenging. A case study was implemented in the Canton of Valais (Switzerland). The national ALS dataset and field data of the Swiss National Forest Inventory were used to calibrate estimation models for mean and maximum height, basal area, stem density, mean diameter and stem volume. When stratification was performed based on ALS acquisition settings and geographical criteria, satisfactory prediction models were obtained for volume (R2 = 0.61 with a root mean square error of 47 %) and basal area (respectively 0.51 and 45 %) while height variables had an error lower than 19%. This case study shows that the use of nationwide ALS and field datasets for forest resources mapping is cost efficient, but additional investigations are required to handle the limitations of the input data and optimize the accuracy.

  4. A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

    Science.gov (United States)

    Zhao, Junming; Zhang, Lianhong; Li, Jensen; Feng, Yijun; Dyke, Amy; Haq, Sajad; Hao, Yang

    2015-12-01

    Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies.

  5. Natural guide-star processing for wide-field laser-assisted AO systems

    CERN Document Server

    Correia, Carlos M; Conan, Jean-Marc; Petit, Cyril; Sauvage, Jean-Francois; Fusco, Thierry; Vernet, Joel D R; Thatte, Niranjan

    2016-01-01

    Sky-coverage in laser-assisted AO observations largely depends on the system's capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELT's visible and near-infrared (0.47 to 2.45 {\\mu}m) integral field spectrograph - Harmoni. We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wave-front is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using. Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the...

  6. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.

    Science.gov (United States)

    Park, Yong Il; Lee, Kang Taek; Suh, Yung Doug; Hyeon, Taeghwan

    2015-03-21

    Lanthanide-doped upconverting nanoparticles (UCNPs) have recently attracted enormous attention in the field of biological imaging owing to their unique optical properties: (1) efficient upconversion photoluminescence, which is intense enough to be detected at the single-particle level with a (nonscanning) wide-field microscope setup equipped with a continuous wave (CW) near-infrared (NIR) laser (980 nm), and (2) resistance to photoblinking and photobleaching. Moreover, the use of NIR excitation minimizes adverse photoinduced effects such as cellular photodamage and the autofluorescence background. Finally, the cytotoxicity of UCNPs is much lower than that of other nanoparticle systems. All these advantages can be exploited simultaneously without any conflicts, which enables the establishment of a novel UCNP-based platform for wide-field two-photon microscopy. UCNPs are also useful for multimodal in vivo imaging because simple variations in the composition of the lattice atoms and dopant ions integrated into the particles can be easily implemented, yielding various distinct biomedical activities relevant to magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). These multiple functions embedded in a single type of UCNPs play a crucial role in precise disease diagnosis. The application of UCNPs is extended to therapeutic fields such as photodynamic and photothermal cancer therapies through advanced surface conjugation schemes.

  7. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  8. Conditional random fields for fast, large-scale genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Jim C Huang

    Full Text Available Understanding the role of genetic variation in human diseases remains an important problem to be solved in genomics. An important component of such variation consist of variations at single sites in DNA, or single nucleotide polymorphisms (SNPs. Typically, the problem of associating particular SNPs to phenotypes has been confounded by hidden factors such as the presence of population structure, family structure or cryptic relatedness in the sample of individuals being analyzed. Such confounding factors lead to a large number of spurious associations and missed associations. Various statistical methods have been proposed to account for such confounding factors such as linear mixed-effect models (LMMs or methods that adjust data based on a principal components analysis (PCA, but these methods either suffer from low power or cease to be tractable for larger numbers of individuals in the sample. Here we present a statistical model for conducting genome-wide association studies (GWAS that accounts for such confounding factors. Our method scales in runtime quadratic in the number of individuals being studied with only a modest loss in statistical power as compared to LMM-based and PCA-based methods when testing on synthetic data that was generated from a generalized LMM. Applying our method to both real and synthetic human genotype/phenotype data, we demonstrate the ability of our model to correct for confounding factors while requiring significantly less runtime relative to LMMs. We have implemented methods for fitting these models, which are available at http://www.microsoft.com/science.

  9. Wide Field-of-view and Broadband Terahertz Beam Steering Based on Gap Plasmon Geodesic Antennas

    Science.gov (United States)

    Liu, Kaipeng; Guo, Yinghui; Pu, Mingbo; Ma, Xiaoliang; Li, Xiong; Luo, Xiangang

    2017-01-01

    Despite a plethora of applications ranging from wireless communications to sensing and spectroscopy, the current terahertz beam steering technologies suffer from tremendous insert loss, stringent control of electric bias, limited scanning angle, relatively complicated configuration and narrow operation bandwidth, preventing further practical application. We propose and demonstrate a conceptually new approach for terahertz beam steering by virtue of gap plasmon geodesic antennas. By adjusting the geometric dimension of the gap plasmon geodesic antennas, all gap plasmon modes add coherently along a peculiar direction that depends on the geodesic mean surface. Consequently, high directive beams are generated through the antenna, whose direction could be changed within a wide-angle range spanning ±45° by lateral motion of the feed. Furthermore, an assembled antenna structure consisting of four-element geodesic antennas array is proposed for full 360° beam steering, which can operate in a broadband range from 0.8 THz to 1.2 THz. PMID:28134324

  10. Mitigating Systematic Errors in Angular Correlation Function Measurements from Wide Field Surveys

    CERN Document Server

    Morrison, Christopher Brian

    2015-01-01

    We present an investigation into the effects of survey systematics such as varying depth, point spread function (PSF) size, and extinction on the galaxy selection and correlation in photometric, multi-epoch, wide area surveys. We take the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) as an example. Variations in galaxy selection due to systematics are found to cause density fluctuations of up to 10% for some small fraction of the area for most galaxy redshift slices and as much as 50% for some extreme cases of faint high-redshift samples. This results in correlations of galaxies against survey systematics of order $\\sim$1% when averaged over the survey area. We present an empirical method for mitigating these systematic correlations from measurements of angular correlation functions using weighted random points. These weighted random catalogs are estimated from the observed galaxy over densities by mapping these to survey parameters. We are able to model and mitigate the effect of systematic correl...

  11. The Cosmic Infrared Background Experiment (CIBER): The Wide-Field Imagers

    CERN Document Server

    Bock, J; Arai, T; Battle, J; Cooray, A; Hristov, V; Keating, B; Kim, M G; Lam, A C; Lee, D H; Levenson, L R; Mason, P; Matsumoto, T; Matsuura, S; Mitchell-Wynne, K; Nam, U W; Renbarger, T; Smidt, J; Suzuki, K; Tsumura, K; Wada, T; Zemcov, M

    2012-01-01

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the extragalactic background light above the Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2x2 degree field of view, to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcminutes, and 7"x7" pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with \\Delta \\lambda / \\lambda ~0.5 bandpasses centered at 1.1 and 1.6 microns to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengt...

  12. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Sullivan, I. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Cooray, A.; Mitchell-Wynne, K.; Smidt, J. [Center for Cosmology, University of California, Irvine, CA 92697 (United States); Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Institute of Astronomy and Astrophysics, Academia Sinica, National Taiwan University, Taipei 10617, Taiwan (China); Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Suzuki, K. [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan); and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  13. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    Science.gov (United States)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  14. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    Science.gov (United States)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  15. The crucial role of HST during the NASA Juno mission: a "Juno initiative"

    CERN Document Server

    Grodent, Denis; Gérard, Jean-Claude; Gladstone, G Randall; Nichols, Jonathan D; Clarke, John T; Bagenal, Fran; Adriani, Alberto

    2015-01-01

    In 2016, the NASA Juno spacecraft will initiate its one-year mission around Jupiter and become the first probe to explore the polar regions of Jupiter. The HST UV instruments (STIS and ACS) can greatly contribute to the success of the Juno mission by providing key complementary views of Jupiter's UV aurora from Earth orbit. Juno carries an ultraviolet Spectrograph (UVS) and an infrared spectral mapper (JIRAM) that will obtain high-resolution spectral images providing the auroral counterpart to Juno's in situ particles and fields measurements with the plasma JADE and JEDI particle detectors. The Juno mission will be the first opportunity to measure simultaneously the energetic particles at high latitude and the auroral emissions they produce. Following programmatic and technical limitations, the amount of UVS data transmitted to Earth will be severely restricted. Therefore, it is of extreme importance that HST captures as much additional information as possible on Jupiter's UV aurora during the one-year life o...

  16. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    Science.gov (United States)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  17. Mid-Infrared Luminosity Function of Local Star-Forming Galaxies in the NEP-Wide Survey Field of AKARI

    CERN Document Server

    Kim, Seong Jin; Jeong, Woong-Seob; Goto, Tomotsugu; Matsuhara, Hideo; Im, Myungshin; Shim, Hyunjin; Kim, Min Gyu; Lee, Myung Gyoon

    2015-01-01

    We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break lu...

  18. New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.

    Science.gov (United States)

    Shih, Cheng Wei; Chin, Albert

    2016-08-03

    At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.

  19. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    Science.gov (United States)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s-1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  20. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds.

    Science.gov (United States)

    Chen, Edward H; Gaathon, Ophir; Trusheim, Matthew E; Englund, Dirk

    2013-05-08

    Recent advances in fluorescence microscopy have enabled spatial resolution below the diffraction limit by localizing multiple temporally or spectrally distinguishable fluorophores. Here, we introduce a super-resolution technique that deterministically controls the brightness of uniquely addressable, photostable emitters. We modulate the fluorescence brightness of negatively charged nitrogen-vacancy (NV(-)) centers in nanodiamonds through magnetic resonance techniques. Using a CCD camera, this "deterministic emitter switch microscopy" (DESM) technique enables super-resolution imaging with localization down to 12 nm across a 35 × 35 μm(2) area. DESM is particularly well suited for biological applications such as multispectral particle tracking since fluorescent nanodiamonds are not only cytocompatible but also nonbleaching and bright. We observe fluorescence count rates exceeding 1.5 × 10(6) photons per second from single NV(-) centers at saturation. When combined with emerging NV(-)-based techniques for sensing magnetic and electric fields, DESM opens the door to rapid, super-resolution imaging for tracking and sensing applications in the life and physical sciences.

  1. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  2. An all-silica three element wide-field corrector for GMT

    Science.gov (United States)

    Saunders, Will; Gillingham, Peter; Lin, Sean; Woodruff, Bob; Rakich, Andrew

    2016-08-01

    We present an alternative Corrector-ADC design for GMT. The design consists of just 3 silica lenses, of maximum size 1.51m, and includes only a single low-precision asphere for 20' field-of-view, and none for 10'. The polychromatic (360nm-1300nm) image quality is d80slide mechanisms each using a single encoded actuator, and L3 via a novel `tracker-ball' support and three actuators. There is also a small motion of M2 via the hexapod, automatically generated by the AGWS system. The ADC action causes a small non-telecentricity, but this is much less than the unavoidable chromatic effects shared with the baseline design. The ADC action also changes the distortion pattern of the telescope, but this can be used positively, to reduce the maximum image motion due to differential refraction by a factor of three. The transmission is superb at all wavelengths, because of the reduced number of air/glass surfaces, and the use only of fused silica.

  3. An all-silica three-element wide-field corrector for GMT

    CERN Document Server

    Saunders, Will; Lin, Sean; Woodruff, Bob; Rakich, Andrew

    2016-01-01

    We present an alternative Corrector-ADC design for GMT. The design consists of just 3 silica lenses, of maximum size 1.51m, and includes only a single low-precision asphere for 20' field-of-view, and none for 10'. The polychromatic (360nm-1300nm) image quality is d80<0.043" at zenith and d80<0.20" for ZD<60 degrees. The monochromatic image quality is d80<0.1" everywhere, and typically ~0.05". The ADC action is achieved by tilt and translation of all three lenses; L1 and L2 via simple slide mechanisms each using a single encoded actuator, and L3 via a novel 'tracker-ball' support and three actuators. There is also a small motion of M2 via the hexapod, automatically generated by the AGWS system. The ADC action causes a small non-telecentricity, but this is much less than the unavoidable chromatic effects shared with the baseline design. The ADC action also changes the distortion pattern of the telescope, but this can be used positively, to reduce the maximum image motion due to differential refracti...

  4. A Wide-Field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    CERN Document Server

    Findlay, Joseph R; Weger, James S; Bucher, Gerald A; Perry, Marvin C; Myers, Adam D; Pierce, Michael J; Vogel, Conrad

    2016-01-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully-remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit/s 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several real-time video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. Construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40' field-of-view with a new 4096x4096 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20'' rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical ...

  5. A Wide-Field View of Leo II -- A Structural Analysis Using the SDSS

    CERN Document Server

    Coleman, Matthew G; Rix, Hans-Walter; Grebel, Eva K; Koch, Andreas

    2007-01-01

    Using SDSS I data, we have analysed the stellar distribution of the Leo II dwarf spheroidal galaxy (distance of 233 kpc) to search for evidence of tidal deformation. The existing SDSS photometric catalogue contains gaps in regions of high stellar crowding, hence we filled the area at the centre of Leo II using the DAOPHOT algorithm applied to the SDSS images. The combined DAOPHOT-SDSS dataset contains three-filter photometry over a 4x4 square degree region centred on Leo II. By defining a mask in three-filter colour-magnitude space, we removed the majority of foreground field stars. We have measured the following Leo II structural parameters: a core radius of r_c = 2.64 +/- 0.19 arcmin (178 +/- 13 pc), a tidal radius of r_t = 9.33 +/- 0.47 arcmin (632 +/- 32 pc) and a total V-band luminosity of L_V = (7.4 +/- 2.0) times 10^5 L_sun (M_V = -9.9 +/- 0.3). Our comprehensive analysis of the Leo II structure did not reveal any significant signs of tidal distortion. The internal structure of this object contains onl...

  6. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    Science.gov (United States)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  7. Deep wide-field near-infrared survey of the Carina Nebula

    CERN Document Server

    Preibisch, Thomas; Kuderna, Benjamin; Ohlendorf, Henrike; King, Robert R; Hodgkin, Simon; Irwin, Mike; Lewis, James R; McCaughrean, Mark J; Zinnecker, Hans

    2011-01-01

    (abbreviated) We used HAWK-I at the ESO VLT to produce a near-infrared survey of the Carina Nebula that is deep enough to detect the full low-mass stellar population. The results of a recent deep X-ray survey are used to distinguish between young stars in Carina and background contaminants. We find that the ages of the low-mass stars (derived from color-magnitude diagrams of the invidual cluster in the Carina Nebula) agree with previous age estimates for the massive stars. About 3200 of the X-ray selected stars have masses >= 1 Msun; this number is in good agreement with extrapolations of the field IMF based on the number of high-mass stars and shows that there is no deficit of low-mass stars. The near-infrared excess fractions for the stellar populations in Carina are lower than typical for other, less massive clusters of similar age, suggesting a faster timescale of circumstellar disk dispersal than in the more quiescent regions, most likely due to the very high level of massive star feedback. Narrow-band i...

  8. HATSouth: a global network of fully automated identical wide-field telescopes

    CERN Document Server

    Bakos, G Á; Penev, K; Bayliss, D; Jordán, A; Afonso, C; Hartman, J D; Henning, T; Kovács, G; Noyes, R W; Béky, B; Suc, V; Csák, B; Rabus, M; Lázár, J; Papp, I; Sári, P; Conroy, P; Zhou, G; Sackett, P D; Schmidt, B; Mancini, L; Sasselov, D D; Ueltzhoeffer, K

    2012-01-01

    HATSouth is the world's first network of automated and homogeneous telescopes that is capable of year-round 24-hour monitoring of positions over an entire hemisphere of the sky. The primary scientific goal of the network is to discover and characterize a large number of transiting extrasolar planets, reaching out to long periods and down to small planetary radii. HATSouth achieves this by monitoring extended areas on the sky, deriving high precision light curves for a large number of stars, searching for the signature of planetary transits, and confirming planetary candidates with larger telescopes. HATSouth employs 6 telescope units spread over 3 locations with large longitude separation in the southern hemisphere (Las Campanas Observatory, Chile; HESS site, Namibia; Siding Spring Observatory, Australia). Each of the HATSouth units holds four 0.18m diameter f/2.8 focal ratio telescope tubes on a common mount producing an 8.2x8.2 arcdeg field, imaged using four 4Kx4K CCD cameras and Sloan r filters, to give a...

  9. High-resolution wide-field imaging of perfused capillaries without the use of contrast agent

    Directory of Open Access Journals (Sweden)

    Nelson DA

    2011-08-01

    Full Text Available Darin A Nelson1, Zvia Burgansky-Eliash1,2, Hila Barash1, Anat Loewenstein3, Adiel Barak4, Elisha Bartov2, Tali Rock2, Amiram Grinvald51Optical Imaging Ltd, Rehovot, Israel; 2Department of Ophthalmology, Edith Wolfson Medical Center, Holon, Israel; 3Department of Ophthalmology, Tel Aviv Medical Center & Sackler Faculty of Medicine, Tel Aviv University, Israel; 4Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; 5Department of Neurobiology, The Weizmann Institute of Science, Rehovot, IsraelPurpose: Assessment of capillary abnormalities facilitates early diagnosis, treatment, and follow-up of common retinal pathologies. Injected contrast agents like fluorescein are widely used to image retinal capillaries, but this highly effective procedure has a few disadvantages, such as untoward side effects, inconvenience of injection, and brevity of the time window for clear visualization. The retinal function imager (RFI is a tool for monitoring retinal functions, such as blood velocity and oximetry, based on intrinsic signals. Here we describe the clinical use of hemoglobin in red blood cells (RBCs as an intrinsic motion-contrast agent in the generation of detailed noninvasive capillary-perfusion maps (nCPMs.Patients and methods: Multiple series of nCPM images were acquired from 130 patients with diabetic retinopathy, vein occlusion, central serous retinopathy, age-related macular degeneration, or metabolic syndrome, as well as from 37 healthy subjects. After registration, pixel value distribution parameters were analyzed to locate RBC motion.Results: The RFI yielded nCPMs demonstrating microvascular morphology including capillaries in exquisite detail. Maps from the same subject were highly reproducible in repeated measurements, in as much detail and often better than that revealed by the very best fluorescein angiography. In patients, neovascularization and capillary nonperfusion areas were clearly observed. Foveal avascular

  10. VizieR Online Data Catalog: HST photometry of stars in HD 97950 (Pang+, 2016)

    Science.gov (United States)

    Pang, X.; Pasquali, A.; Grebel, E. K.

    2016-07-01

    The HD97950 cluster and its immediate surroundings in the giant HII region NGC3603 were observed with the Hubble Space Telescope (HST). The ultraviolet (UV) data were taken with the High Resolution Channel (HRC) of the Advanced Camera for Surveys (ACS) in 2005 (GO 10602, PI: Jesus Maiz Apellaniz) through the F220W, F250W, F330W, and F435W filters. The HRC is characterized by a spatial resolution of 0.03"/pixel and a field of view of 29''*25''. The optical observations were carried out with the Wide Field and Planetary Camera 2 (WFPC2) in two epochs: 1997 (GO 6763, PI: Laurent Drissen) and 2007 (GO 11193, PI: Wolfgang Brandner) through the F555W, F675W, and F814W filters. The Planetary Camera (PC) chip was centered on the cluster (0.045"/pixel, 40''*40'') for both programs. Pang et al. 2013 (cat. J/ApJ/764/73) reduced the two-epoch WFPC2 data and identified more than 400 member stars on the PC chip via relative proper motions. Of these member stars, 142 are in common between the HRC and PC images and thus have UV and optical photometry available (see Table1). Among the HD97950 cluster member stars determined from relative proper motions (Pang et al. 2013, cat. J/ApJ/764/73, Table2), there are five main-sequence (MS) stars located in the cluster with projected distances of r<0.7pc from the center, for which there are also spectral types available from Table3 of Melena et al. (2008AJ....135..878M). The photometry of these five MS stars is presented in Table2. The individual color excesses and extinctions of the member main sequence stars are listed in Table3. (3 data files).

  11. Wide-field near-infrared fluorescence endoscope for real-time in vivo imaging

    Science.gov (United States)

    Liu, Zhongyao; Miller, Sharon J.; Joshi, Bishnu P.; Wang, Thomas D.

    2012-02-01

    A diode-pumped solid state laser is used to deliver excitation at λex = 671 nm. The beam is expanded by a pair of relay lenses (f1 = 30 and f2 = 50 mm) to 3 mm diameter, filling the aperture of a fluid light cable that is coupled to a Hopkins II rigid endoscope. Near-infrared fluorescence images are collected by the endoscope and transmitted by another set of relay lenses onto a CCD detector that has dimensions of 8.7x6.9 mm2 (1388x1040 pixels). A zoom lens system (F#1.6-16 aperture) with a tunable focal length (20-100 mm) magnifies the image to fill the dimensions of the CCD. A band pass filter allows fluorescence with spectral range λem = 696 to 736 nm to be collected. The system achieves a resolution of 9.8 μm and field-of-view of 3.6 mm at a distance of 2.5 mm between the distal end of the endoscope and the tissue. Images are collected at a rate of 10 frames per second. A filter wheel is incorporated into the handle of the instrument housing to rapidly switch between reflectance and fluorescence images. Cy5.5-labeled peptides were delivered through the 1 mm diameter instrument channel in the endoscope. Near-infrared fluorescence images demonstrated specific peptide binding to spontaneous adenomas that developed beginning at 2 months of age in a genetically-engineered mouse with mutation of one allele in the APC gene. This integrated methodology represents a powerful tool that can achieve real time detection of disease in the colon and other hollow organs.

  12. Wide-field, dynamic, slit-based spectroscopy of neutral helium in coronal rain

    Science.gov (United States)

    Schad, T. A.

    2016-12-01

    Building upon the Massively Multiplexed Spectrograph (mxSPEC) instrument concept [Lin, H. SPIE Vol. 9147 (2014)], we report dynamical observations of off-limb coronal rain in the neutral orthohelium lines at 1083 nm using an experiment that combines a narrowband imaging channel with a co-spatial, 17 parallel-long-slit, grating-based, spectrograph on a single HgCdTe detector. Over a 170'' x 120'' field of view, a temporal cadence of 8.5 seconds is achieved between successive maps that critically sample the diffraction limit of the Dunn Solar Telescope (1.22λ/D = 0.36'') while providing a spectral resolution (R = λ/δλ) of 40000 and a bandwidth of 1 nm (i.e. 275 km/sec Doppler coverage). The strict simultaneity of the narrowband channel relative to the each spectra (acquired at a rate of 10 Hz) allows a robust assessment (and/or compensation) of the atmospheric seeing. Due to the relatively high helium abundance, the magnetic sensitivity of the helium triplet, and the expected important role of neutral helium atoms in partially ionized environments, the He I triplet is an important diagnostic of coronal rain that will be made available by the Daniel K Inouye Solar Telescope (DKIST), currently under construction on Haleakala, Maui, Hawaii. This report will introduce the modified mxSPEC observing technique, discuss the dynamics observed in the He I spectra, and compare these dynamics with coordinated slit-jaw measurements at 1400 and 2796 Angstrom from the Interface Region Imaging Spectrograph (IRIS).

  13. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    Science.gov (United States)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  14. Hubble Space Telescope Wide Field Camera 3 Observations of Escaping Lyman Continuum Radiation from Galaxies and Weak AGN at Redshifts z~2.3--5

    CERN Document Server

    Smith, Brent M; Jansen, Rolf A; Cohen, Seth H; Jiang, Linhua; Dijkstra, Mark; Koekemoer, Anton M; Bielby, Richard; Inoue, Akio K; MacKenty, John W; O'Connell, Robert W; Silk, Joseph I

    2016-01-01

    We present observations of escaping Lyman Continuum (LyC) radiation from 50 massive star-forming galaxies and 14 weak AGN with reliable spectroscopic redshifts at z~2.3--5.8. We analyzed HST WFC3/UVIS mosaics of the ERS field in three UV filters, and ACS B in the GOODS-South field to sample the rest-frame LyC over these redshifts. The average LyC emission of galaxies at z_mean=2.38, 2.68, 3.47, and 5.02 is detected at the >=3sigma level in image stacks of 11--15 galaxies in the WFC3/UVIS F225W, F275W, F336W, and ACS/WFC F435W filters. Their average LyC flux corresponds to AB~29.5--30.7 mag. The LyC flux of weak AGN is typically ~1 mag brighter at z~2.3--4.8, but averaged over ~4x fewer galaxies. The stacked galaxy LyC profiles are flatter than their non-ionizing UV-continuum profiles out to r~0".7, possibly indicating a radial porosity dependence in the ISM. The average LyC emission from AGN is more extended and sometimes more elongated compared to galaxies without AGN, possibly due to the viewing-angle at wh...

  15. Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam.

    Science.gov (United States)

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2009-09-10

    An actively stabilized interferometer with a constant optical path difference is a key element in long-term astronomical observation, and resolving interference fringe ambiguities is important to produce high-precision results for the long term. We report a simple and reliable method of resolving fringe ambiguities of a wide-field Michelson interferometer by measuring the interference visibility of a noncollimated single-frequency laser beam. Theoretical analysis shows that the interference visibility is sensitive to a subfringe phase shift, and a wide range of beam arrangements is suitable for real implementation. In an experimental demonstration, a Michelson interferometer has an optical path difference of 7 mm and a converging monitoring beam has a numerical aperture of 0.045 with an incidental angle of 17 degrees. The resolution of visibility measurements corresponds to approximately 1/16 fringe in the interferometer phase shift. The fringe ambiguity-free region is extended over a range of approximately 100 fringes.

  16. Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination

    Science.gov (United States)

    Therrien, O. D.; Aubé, B.; Pagès, S.; Koninck, P. De; Côté, D.

    2011-01-01

    Wide-field temporal focusing is a novel technique that provides optical sectioning for imaging without the need for beam scanning. However, illuminating over large areas greatly reduces the photon density which limits the technique applicability to small regions, precluding functional imaging of cellular networks. Here we present a strategy that combines beam shaping and temporal focusing of amplified pulses (>1 µJ/pulse) for fast imaging of cells from the central nervous system in acute slices. Multiphoton video-rate imaging over total areas as wide as 4800 µm2 with an optical sectioning under 10 µm at 800 nm is achieved with our setup, leading to imaging of calcium dynamics of multiple cells simultaneously in thick tissue. PMID:21412473

  17. Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    CERN Document Server

    Mainzer, A; Grav, T; Masiero, J; Cutri, R M; Dailey, J; Eisenhardt, P; McMillan, R S; Wright, E; Walker, R; Jedicke, R; Spahr, T; Tholen, D; Alles, R; Beck, R; Brandenburg, H; Conrow, T; Evans, T; Fowler, J; Jarrett, T; Marsh, K; Masci, F; McCallon, H; Wheelock, S; Wittman, M; Wyatt, P; DeBaun, E; Elliott, G; Elsbury, D; Gautier, T; Gomillion, S; Leisawitz, D; Maleszewski, C; Micheli, M; Wilkins, A

    2011-01-01

    The \\emph{Wide-field Infrared Survey Explorer} has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the \\emph{Infrared Astronomical Satellite} and the \\emph{Cosmic Background Explorer}. NASA's Planetary Science Division has funded an enhancement to the \\WISE\\ data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the \\WISE\\ data. NEOWISE has mined the \\WISE\\ images for a wide array of small bodies in our Solar System, including Near-Earth Objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in February 2011, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and $\\sim$120 comets. The NEOWISE dataset will enable a panoply of new scientific investigations.

  18. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion.

    Science.gov (United States)

    Bian, Yinxu; Li, Haifeng; Wang, Yifan; Zheng, Zhenrong; Liu, Xu

    2015-09-20

    This paper presents a distortion correction method for designing a wide field of view (FOV) lens for an imaging system. The lens is composed of two aspheric surfaces and several spheres. In the preliminary design, profiles of the aspheric surfaces can be obtained according to aplanatism, refraction law, and polynomial fitting methods, where the numeric computation, the differential geometry computation, and the polynomial fitting algorithm are stated in detail. Then the lens is optimized by the damped least squares method. Theoretically, this method cannot eliminate aberrations absolutely but can balance some kinds of aberrations to the image well. Furthermore, a projector lens with a wide FOV, low distortion, and low throw ratio [TR = (projection distance)/(image diagonal size)] is designed successfully by this method.

  19. Extragalactic Transients in the Era of Wide-Field Radio Surveys. I. Detection Rates and Light Curve Characteristics

    CERN Document Server

    Metzger, Brian D; Berger, Edo

    2015-01-01

    The impending era of wide-field radio surveys has the potential to revolutionize our understanding of astrophysical transients. Here we evaluate the prospects of a wide range of planned and hypothetical radio surveys using the properties and volumetric rates of known and hypothetical classes of extragalactic synchrotron radio transients (e.g., on- and off-axis gamma-ray bursts [GRB], supernovae, tidal disruption events [TDE], compact object mergers). Utilizing these sources and physically motivated considerations we assess the allowed phase-space of radio luminosity and peak timescale for extragalactic transients. We also include for the first time effects such as redshift evolution of the rates, K-corrections, and non-Euclidean luminosity distance, which affect the detection rates of the most sensitive surveys. The number of detected events is calculated by means of a Monte Carlo method, using the various survey properties (depth, cadence, area) and realistic detection criteria that include a cut on the mini...

  20. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    Science.gov (United States)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also