WorldWideScience

Sample records for hss twist drills

  1. Detecting Safety Zone Drill Process Parameters for Uncoated HSS Twist Drill in Machining GFRP Composites by Integrating Wear Rate and Wear Transition Mapping

    Directory of Open Access Journals (Sweden)

    Sathish Rao Udupi

    2016-01-01

    Full Text Available The previous research investigations informed that the tool wear of any machining operation could be minimized by controlling the machining factors such as speed, feed, geometry, and type of cutting tool. Hence the present research paper aims at controlling the process parameters to minimize the drill tool wear, during the machining of Glass Fiber Reinforced Polymer (GFRP composites. Experiments were carried out to find the tool wear rate and a wear mechanism map of uncoated High Speed Steel (HSS drill of 10 mm diameter was developed for the drilling of GFRP composite laminates. The surface micrograph images on the drill land surface displayed dominant wear mechanisms induced on HSS drill during machining of GFRP and they were found to be adhesive wear, adhesive and abrasive wear, abrasive wear, and diffusion and fatigue wear. A “safety wear zone” was identified on the wear mechanism map, where the minimum tool wear of the HSS drill occurs. From the safety zone boundaries, it was inferred that the drill spindle speed should be set between 1200 and 1590 rpm and feed rate must be set within a range of 0.10–0.16 mm/rev for GFRP work and HSS tool combination to enhance the service life of 10 mm HSS drills and to minimize the tool wear.

  2. Use of twist-drill craniostomy with drain in evacuation of chronic subdural hematomas: independent predictors of recurrence.

    Science.gov (United States)

    Escosa Baé, Marcos; Wessling, Heinrich; Salca, Horia Calin; de Las Heras Echeverría, Pedro

    2011-05-01

    Recurrence rates after chronic subdural hematoma (CSDH) evacuation with any of actual techniques [twist-drill craniostomy (TDC), burr-hole craniostomy, craniotomy] range from 5% to 30%. Use of drain has improved recurrence rates when used with burr-hole craniostomy. Now, we analyze predictors of recurrence of TDC with drain. Three hundred twelve consecutive patients with CSDH have been studied in a retrospective study. Operative technique in all patients consisted in TDC with drain. Data recorded included any associated comorbidity. Radiologic measures of the CSDH before and after the procedure were studied. Clinical evaluation included Modified Rankin Scale, Glasgow Coma Scale (GCS), and neurological deficits. Two groups were compared: recurrence group and nonrecurrence group. Follow-up was for at least 1 year. Twelve percent experienced recurrence. Preoperative CSDH width, preoperative midline shift, postoperative midline width, postoperative CSDH width, and residual CSDH 1 month later were significantly associated with CSDH recurrence. The logistic regression model for the multivariate analysis revealed that postoperative midline shift and postoperative neurological deficit were significantly associated with CSDH recurrence. The duration of treatment with dexamethasone was found not to be related with recurrence. Mortality before hospital discharge was 1%. Hospital stay was 2.5 days. TDC with drain has similar results in recurrence rates, morbidity, mortality, and outcome as other techniques as burr-hole craniostomy with drain. Preoperative and postoperative hematoma width and midline shift are independent predictors of recurrence. Brain re-expansion and time of drain maintenance are important factors related with recurrence of CSDH. Future CSDH reservoirs must avoid negative pressure and sudden pressure changes inside the whole closed drain system.

  3. Built-up edge investigation in vibration drilling of Al2024-T6.

    Science.gov (United States)

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Prediction of Burr Size in Drilling Operation of Al 2014 Alloy Using Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2016-12-01

    Full Text Available This paper presents the influence of cutting parameters like cutting speed, feed rate, drill diameter, point angle and clearance angle on the burr size of Al 2014 alloy during drilling on CNC vertical machining center. A plan of experiments based on Taguchi method has been used to acquire the data. An orthogonal array, signal to noise (S/N ratio and analysis of variance (ANOVA are employed to investigate machining characteristics using HSS twist drill bits with variable tool geometry and maintain constant helix angle of 450 . Confirmation tests have been carried out to predict the optimal setting of process parameters to validate the proposed method and obtained the values 0.232 mm and 0.173 mm for burr height and thickness respectively

  5. HSS DEPOSITION BY PTA – FEASIBILITY AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pavel Rohan

    2016-03-01

    Full Text Available High speed steels (HSS as iron alloys reinforced by carbides of tungsten, chromium, vanadium and/or cobalt are known for more than 100 years. HSS is commonly used for cutting tools fabrication because of their high hardness, ductility, and strength and temperature resistance. Recently many different kinds of thin layers are often deposited on HSS tools in order to increase their lifetime. HSS are produced by conventional metallurgical methods and the tools are hardened by quenching and tempering. Recently, large part of HSS tools are produced by powder metallurgy (i.e. HIP-hot isostatic pressing. There are also some studies about thermal spraying of HSS but there is no evidence about Plasma Transfer Arc cladding of HSS. Two powders of HSS 23, resp. HSS30 grade were selected and deposited by Plasma Transfer Arc (PTA and pulsed PTA on to mild steel substrate. In order to find the ability of thick layer forming, four layers cladding were used. To minimize heat input the influence of 76 Hz pulsation was also studied. Vickers hardness was measured on cross section and metallography of coatings was done. It was found that with selected parameters thick layer of HSS can be deposited. Pulsation increases the hardness of coatings in comparison with layers produced by direct current PTA. PTA and pulsed PTA methods of HSS parts fabrication can be used for both manufacturing and reparation of cutting tools and also for 3D additive manufacturing process.

  6. In vivo imaging of twist drill drainage for subdural hematoma: a clinical feasibility study on electrical impedance tomography for measuring intracranial bleeding in humans.

    Directory of Open Access Journals (Sweden)

    Meng Dai

    Full Text Available Intracranial bleeding is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would largely reduce the rate of disability and mortality, and improve the prognosis of the patients. Electrical Impedance Tomography (EIT can non-invasively image the internal resistivity distribution within a human body using a ring of external electrodes, and is thus a promising technique to promptly detect the occurrence of intracranial bleedings because blood differs from other brain tissues in resistivity. However, so far there is no experimental study that has determined whether the intracranial resistivity changes in humans could be repeatedly detected and imaged by EIT. Hence, we for the first time attempt to clinically validate this by in vivo imaging the influx and efflux of irrigating fluid (5% dextrose in water, D5W during the twist-drill drainage operation for the patients with subdural hematoma (SDH. In this study, six patients (four male, two female with subacute or chronic SDH received the surgical operation in order to evacuate the hematoma around subdural region, and EIT measurements were performed simultaneously on each patient's head. The results showed that the resistivity significantly increased on the corresponding position of EIT images during the influx of D5W and gradually decreased back to baseline during the efflux. In the quantitative analysis, the average resistivity values demonstrated the similar results and had highly linear correlation (R(2 = 0.93 ± 0.06 with the injected D5W volumes, as well as the area of the resistivity gain(R(2 = 0.94 ± 0.05. In conclusion, it was clinically validated that intracranial resistivity changes in humans were detectable and quantifiable by the EIT method. After further technical improvements, EIT has the great potential of being a routine neuroimaging tool for early detection of intracranial bleedings.

  7. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  8. Controling twisting of wells by turbine method

    Energy Technology Data Exchange (ETDEWEB)

    Markov, O.A.; Burkin, Yu. V.; Dveriy, S.V.; Ivanov, B.A.; Romaniv, A.V.; Sereda, N.G.

    1985-01-01

    Methods are examined for controlling twisting of wells by turbine method using eccentric device and rotor method applying oriented assymmetrical flushing of the bit zone, as well as technique of studying the operation of drilling string in a twisted wellby computer.

  9. CORRECTING ACCOUNTING RESULTS OF TENSIONS USING FEM BY HSS METHOD

    Directory of Open Access Journals (Sweden)

    D. O. Bannikov

    2011-05-01

    Full Text Available The usage of the Hot Spot Stress (HSS method by means of linear surface extrapolation (LSE approach was analyzed for the correction of results of the Finite-Element Method (FEM in case of singularity of stresses. The given examples of structures and testing examples were computed on the base of design-and-computation software SCAD for Windows (version 11.3.

  10. MADM Technique Integrated with Grey- based Taguchi method for Selection of Alluminium alloys to minimize deburring cost during Drilling

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2015-06-01

    Full Text Available Traditionally, burr problems had been considered unavoidable so that most efforts had been made on removal of the burr as a post process. Nowadays, a trend of manufacturing is an integration of the whole production flow from design to end product. Manufacturing problem issues are handled in various stages even from design stage. Therefore, the methods of describing the burr are getting much attention in recent years for the systematic approach to resolve the burr problem at various manufacturing stages. The main objective of this paper is to explore the basic concepts of MADM methods. In this study, five parameters namely speed, feed, drill size, drill geometry such as point angle and clearance angle were identified to influence more on burr formation during drilling. L 18 orthogonal array was selected and experiments were conducted as per Taguchi experimental plan for Aluminium alloy of 2014, 6061, 5035 and 7075 series. The experiment performed on a CNC Machining center with HSS twist drills. The burr size such as height and thickness were measured on exit of each hole. An optimal combination of process parameters was obtained to minimize the burr size via grey relational analysis. The output from grey based- taguchi method fed as input to the MADM. Apart from burr size strength and temperature are also considered as attributes. Finally, the results generated in MADM suggests the suitable alternative of  aluminium alloy, which results in less deburring cost, high strength and high resistance at elevated temperatures.

  11. OPTIMIZATION OF SURFACE ROUGHNESS AND CIRCULARITY DEVIATION AND SELECTION OF DIFFERENT ALLUMINIUM ALLOYS DURING DRILLING FOR AUTOMOTIVE AND AEROSPACE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2016-05-01

    Full Text Available This paper presents the influence of cutting parameters like cutting speed, feed rate, drill diameter, point angle and clearance angle on the surface roughness and circularity deviation of Alluminium alloys during drilling on CNC vertical machining center. A plan of experiments based on Taguchi method has been used to acquire the data. An orthogonal array, signal to noise (S/N ratio and analysis of variance (ANOVA are employed to investigate machining characteristics of Alluminium alloys using HSS twist drill bits of variable tool geometry and maintain constant helix angle of 45 degrees. Confirmation tests have been carried out to predict the optimal setting of process parameters to validate the proposed approach and obtained the values of 3.7451µm, 0.1076mm for surface roughness and circularity deviation respectively. Finally, the output results of taguchi method fed as input to the AHP and TOPSIS. the results generated in both AHP and TOPSIS suggests the suitable alternative of  aluminium alloy, which results in better surface roughness and less error in circularity.

  12. Study of twisting of vertical wells

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, N.G.; Burkin, Yu.V.; Markov, O.A.

    1980-01-01

    Diagrams and techniques are examined for analytical and experimental studies for the interaction of components in the lower part of the drilling column of different design with the face and the walls of wells. Results of studies and field introduction of measures to regulate twisting of wells are presented.

  13. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    Science.gov (United States)

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  14. Optimization of Burr size, Surface Roughness and Circularity Deviation during Drilling of Al 6061 using Taguchi Design Method and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2015-03-01

    Full Text Available This paper presents the influence of cutting parameters like cutting speed, feed rate, drill diameter, point angle and clearance angle on the burr size, surface roughness and circularity deviation of Al 6061 during drilling on CNC vertical machining center. A plan of experiments based on Taguchi technique has been used to acquire the data. An orthogonal array, signal to noise (S/N ratio and analysis of variance (ANOVA are employed to investigate machining characteristics of Al 6061 using HSS twist drill bits of variable tool geometry and maintain constant helix angle of 45 degrees. Confirmation tests have been carried out to predict the optimal setting of process parameters to validate the used approach, obtained the values of 0.2618mm, 0.1821mm, 3.7451µm, 0.0676mm for burr height, burr thickness, surface roughness and circularity deviation respectively. Finally, artificial neural network has been applied to compare the predicted values with the experimental values, good agreement was shown between the predictive model results and the experimental measurements. Normal 0 false false false EN-US X-NONE X-NONE

  15. Image system analysis of human eye wave-front aberration on the basis of HSS

    Science.gov (United States)

    Xu, Ancheng

    2017-07-01

    Hartmann-Shack sensor (HSS) has been used in objective measurement of human eye wave-front aberration, but the research on the effects of sampling point size on the accuracy of the result has not been reported. In this paper, point spread function (PSF) of the whole system mathematical model was obtained via measuring the optical imaging system structure of human eye wave-front aberration measurement. The impact of Airy spot size on the accuracy of system was analyzed. Statistics study show that the geometry of Airy spot size of the ideal light source sent from eye retina formed on the surface of HSS is far smaller than the size of the HSS sample point image used in the experiment. Therefore, the effect of Airy spot on the precision of the system can be ignored. This study theoretically and experimentally justifies the reliability and accuracy of human eye wave-front aberration measurement based on HSS.

  16. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  17. Twisted network programming essentials

    CERN Document Server

    Fettig, Abe

    2005-01-01

    Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s

  18. Cryogenic Processing of HSS M2: Mechanical Properties and XRD Analysis

    Directory of Open Access Journals (Sweden)

    Sharma Ish Hunar

    2016-01-01

    Full Text Available The purpose of this study was to reveal the changes in properties of deep cryogenic treatment (DCT processed high speed steel, in comparison to conventional heat treatment for secondary hardness. Tool properties were assessed in terms of hardness, and tensile strength. Statistically significant enhancement in the mechanical properties was observed. Cryogenic processing of HSS tool steel eliminated the retained austenite, and hence increased the hardness of the material. This treatment initiated nucleation sites for precipitation of large numbers of very fine carbide particles.Tensile values for cryogenically treated HSS samples can be attributed to the fact that the tool becomes more brittle after the treatment. XRD analysis illustrated the contraction in lattice of martensite and austenite. Deep cryogenic treatment practically removed all traces of austenite in the sample. The superior performance of cryogenically treated HSS can be attributed to the transformation of almost all retained austenite into martensite, a harder structure and precipitation of fine and hard carbides.

  19. Casing drilling

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, D. [Tesco Corp., Calgary, AB (Canada)

    2003-07-01

    This paper reviewed the experience that Tesco has gained by drilling several wells using only casings as the drill stem. Tesco has manufactured a mobile and compact hydraulic drilling rig called the Casing Drilling {sup TM} system. The system could be very effective and efficient for exploration and development of coalbed methane (CBM) reserves which typically require extensive coring. Continuous coring while drilling ahead, along wire line retrieval, can offer time savings and quick core recovery of large diameter core which is typically required for exploration core desorption tests. The proposed system may also have the potential to core or drill typically tight gas sands or underbalanced wells with air or foam. This would reduce drilling fluid damage while simultaneously finding gas. Compared to conventional drill pipes, Casing Drilling {sup TM} could also be effective with water production from shallow sands because of the smaller annual clearance which requires less air volumes to lift any produced water. 9 figs.

  20. 3D Finite Element Modelling of Drilling Process of Al2024-T3 Alloy with solid tooling and Experimental Validation

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Tosello, Guido

    2017-01-01

    Drilling is an indispensable process for many manufacturing industries due to its importance for assembling components. This study presents a 3D finite element modelling (3D FEM) approach for drilling process of aluminium 2024-T3. The 3D model of drilling tools for two facet HSSCo and four facet...... HSS were generated including their geometries. The simulations were carried out for both drills under different cutting conditions. The numerically obtained thrust forces were compared against experimental results. The tool stress distribution, chip formation and temperature distribution in the chip...... area were determined numerically. The results confirm the ability and advantage of 3D FE modelling of the drilling process....

  1. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    Science.gov (United States)

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  2. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    Directory of Open Access Journals (Sweden)

    Amir Hossein Ghasemi

    2018-01-01

    Full Text Available Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed on thrust force, surface roughness, and dimensional accuracy (cylindricity have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  3. Recruitment of alkaloid-specific homospermidine synthase (HSS) from ubiquitous deoxyhypusine synthase: Does Crotalaria possess a functional HSS that still has DHS activity?

    Science.gov (United States)

    Nurhayati, Niknik; Ober, Dietrich

    2005-06-01

    Quinolizidine alkaloids are the most prominent group of alkaloids occurring in legumes, except for many members of the tribe Crotalarieae that accumulate pyrrolizidine alkaloids (PAs). To study the evolution of PA biosynthesis as a typical pathway of plant secondary metabolism in this tribe, we have searched for a cDNA coding for homospermidine synthase (HSS), the enzyme catalyzing the first specific step in this biosynthesis. HSS was shown to have been recruited from deoxyhypusine synthase (DHS) by independent gene duplication in several different angiosperm lineages during evolution. Except for a cDNA sequence coding for the DHS of Crotalaria retusa, no data is available concerning the origin of PA biosynthesis within this tribe of the Fabaceae. In addition to several pseudogenes, we have identified one functional DHS in C. scassellatii and two in C. juncea. Despite C. juncea plants under study being devoid of PAs, we have found that the two sequences of C. juncea are different with respect to their genomic organization, their tissue-specific expression, and their biochemical activities. Supported by the branching pattern of a maximum likelihood analysis of these sequences, they have been classified as "class 1" and "class 2" DHS. It remains open whether the duplicated DHS belonging to class 2 is involved in the biosynthesis of PAs.

  4. USE OF HIGH SPEED STEEL WORK ROLLS (HSS ON APERAM STECKEL MILL

    Directory of Open Access Journals (Sweden)

    Arísio de Abreu Barbosa

    2013-12-01

    Full Text Available This paper outlines the main actions taken to reinforce the decision to use HSS work rolls on the Aperam Steckel Mill. These are: work roll cooling improvements, systematically analyzing Eddy Current and Ultrasonic non destructive tests, mechanical adjustment of work roll crown and critically examining the rolling process. These actions applied together have contributed to the success of HSS rolls state of the art application, and provide the Steckel Mill with a much improved performance. Significant results have been achieved, such as: increasing of work roll change intervals, increasing of the available production time, a yield gain, a product quality improvement, less working hours needed for the roll grinding operation, etc

  5. Twisted Quantum Affine Algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    We give a highest weight classification of the finite-dimensional irreducible representations of twisted quantum affine algebras. As in the untwisted case, such representations are in one-to-one correspondence with n-tuples of monic polynomials in one variable. But whereas in the untwisted case n is the rank of the underlying finite-dimensional complex simple Lie algebra ?, in the twisted case n is the rank of the subalgebra of ? fixed by the diagram automorphism. The way in which such an n-tuple determines a representation is also more complicated than in the untwisted case.

  6. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  7. THERMAL CHANGES OBSERVED AT DRILLING SITE DURING BONE DRILLING Model study in bovine rib

    Directory of Open Access Journals (Sweden)

    Dedy Kusuma

    2011-12-01

    Full Text Available The use of bone drill in the process of odontectomy and preparation of dental implant may increase temperature around drilling hole. As thermal changes are the critical precursor to physiological bone healing, increased of temperature over threshold must be minimized. The aim of this model study was to compare the temperature changes that were generated during bone drilling with various speeds. Eighteen fresh bovine ribs were chosen due to the similarity of physical properties and dimension of human mandible. A constant drill load of 4.06N was applied throughout the drilling procedures via a drilling rig. Bovine ribs were drilled by using the same bur  geometry (twist drill, 120 point angle at low speed (8.750 rpm, 21.875 rpm, 35.000 rpm. The  bone temperature changes generated by the drilling process were measured measured by K-type thermocouple. The speed of 8750 rpm produced a maximum temperature changes in both distance of 1 mm and 2 mm from drilling hole. Minimal temperature changes were recorded for the speed of 35.000 rpm. ANOVA test, showed the mean of thermal changes for each of speed at distance 1 and 2 mm from drilling hole. The clinical benefits of using speed below 35000 rpm need to be considered due to the potential risk of thermal damage.

  8. Estudo espectral de alvos urbanos com imagens do sensor HSS (Hyperspectral Scanner System)

    OpenAIRE

    Romero da Costa Moreira

    2008-01-01

    Estudou-se a caracterização espectral e discriminação de alvos urbanos da cidade de São José dos Campos SP, com imagens do sensor aerotransportado HSS (Hyperspectral Scanner System), adquiridas com 3 metros de resolução espacial, e de espectros de campo e laboratório. A imagem (37 bandas entre 400-2400 nm) foi convertida de valores de radiância para reflectância de superfície usando um aplicativo baseado no modelo de transferência radiativa MODTRAN 4. A missão de imageamento, ocorrida em mai...

  9. Harmonic Interaction Analysis in Grid-connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    . Furthermore, a harmonic matrix of the grid-connected converter is developed to analyze the harmonic interaction at the steady-state behavior. Besides, the frequency-domain results are compared with time-domain simulation results by using HSS modeling to verify the theoretical analysis. Experimental results...... research about the harmonic interaction. However, it is found that the Linear Time Invariant (LTI) based model analysis makes it difficult to analyze these phenomena because of the time-varying properties of the power electronic based systems. This paper investigates grid-connected converter by using...

  10. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  11. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  12. Twisted aspirin crystals.

    Science.gov (United States)

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-06

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites.

  13. Factorial validity of the Maslach Burnout Inventory (MBI-HSS among Spanish professionals

    Directory of Open Access Journals (Sweden)

    Gil-Monte Pedro R

    2005-01-01

    Full Text Available OBJECTIVE: To assess the factorial validity and internal consistency of the Maslach Burnout Inventory (MBI-HSS. METHODS: In a sample consisting of 705 Spanish professionals from diverse occupational sectors (health, education, police and so one, seven plausible factorial models hypothesized were compared using LISREL 8. RESULTS: The four-factor oblique solution and the three-factor oblique solution showed the best and similar fit. Deletion of Item 12 and Item 16, taking into consideration the suggestions in the manual, improved the goodness of fit for both models. The four-factor oblique model suggests that, in addition to Emotional Exhaustion (EE and Depersonalization (DP, Personal Accomplishment (PA consists of two components labeled here Self-Competence (Items 4, 7, 17, and 21 and the Existential Component (Items 9, 12, 18, and 19. However, the alpha coefficient was relatively low for the Self-Competence component, suggesting that it is more suitable to estimate the syndrome as a threedimensional construct. The Cronbach's alpha was satisfactory for PA (alpha =.71 and EE (alpha =.85, and moderate for DP (alpha =.58. CONCLUSIONS: The results show that the MBI-HSS offers factorial validity and its scales present internal consistency to evaluate the quality of working life for Spanish professionals.

  14. Ionosphere-Thermosphere Coupling and Energy Partitioning During Two HSS Events

    Science.gov (United States)

    Verkhoglyadova, Olga; Mannucci, Anthony; Meng, Xing; Tsurutani, Bruce; Mlynczak, Martin; Hunt, Linda; Redmon, Robert; Green, Janet

    2015-04-01

    We analyze external driving of the ionosphere-thermosphere (IT) system during two CIR-HSS events, on 29 April - 4 May 2011 and on 8-12 May 2012. By studying similar CIR-HSS events in the same phase of a solar cycle and the same season we aim to understand differences and similarities in the magnetosphere-IT coupling caused by external driving and other factors (pre-conditioning or driving from below). We focus on understanding energy and momentum transfer (with solar wind coupling functions, Joule heating, nitric oxide (NO) infrared cooling radiation and energetic particle precipitation) and corresponding energy partitioning in the IT system. We utilize observations from DMSP, POES/MEPED and TIMED/SABER. We use the Global Ionosphere-Thermosphere Model (GITM, Ridley et al., 2006) with different driving inputs to understand the IT response. We outline a physics-based approach for forecasting moderate to intense storms in the Earth's upper atmosphere caused by solar wind disturbances. Ridley, A. J., Y. Deng, and G. Toth (2006), The global ionosphere-thermosphere model, Journal of Atmospheric and Solar-Terrestrial Physics, 68(8), 839-864, doi:10.1016/j.jastp.2006.01.008.

  15. A novel system for automated propofol sedation: hybrid sedation system (HSS).

    Science.gov (United States)

    Zaouter, Cedrick; Taddei, Riccardo; Wehbe, Mohamad; Arbeid, Erik; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M

    2017-04-01

    Closed-loop systems for propofol have been demonstrated to be safe and reliable for general anesthesia. However, no study has been conducted using a closed-loop system specifically designed for sedation in patients under spinal anesthesia. We developed an automatic anesthesia sedation system that allows for closed-loop delivery of propofol for sedation integrating a decision support system, called the hybrid sedation system (HSS). The objective of this study is to compare this system with standard practice. One hundred fifty patients were enrolled and randomly assigned to two groups: HSS-Group (N = 75), in which propofol was administered using a closed-loop system; Control Group (N = 75), in which propofol was delivered manually. The clinical performance of the propofol sedation control is defined as efficacy to maintain bispectral index (BIS) near 65. The clinical control was called 'Excellent', 'Good', 'Poor' and 'Inadequate' with BIS values within 10 %, from 11 to 20 %, 21 to 30 %, or greater than 30 % of the BIS target of 65, respectively. The controller performance was evaluated using Varvel's parameters. Data are presented as mean ± standard deviation, groups were compared using t test or Chi square test, P propofol sedation showed better maintenance of the target BIS value compared to manual administration.

  16. On the Detectability of the X 2A" HSS, HSO, and HOS Radicals in the Interstellar Medium

    Science.gov (United States)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2017-02-01

    {\\tilde{X}}2A\\prime\\prime HSS has yet to be observed in the gas phase in the interstellar medium (ISM). HSS has been observed in cometary material and in high abundance. However, its agglomeration to such bodies or dispersal from them has not been observed. Similarly, HSO and HOS have not been observed in the ISM, either, even though models support their formation from reactions of known sulfur monoxide and hydrogen molecules, among other pathways. Consequently, this work provides high-level, quantum chemical rovibrational spectroscopic constants and vibrational frequencies in order to assist in interstellar searches for these radical molecules. Furthermore, the HSO-HOS isomerization energy is determined to be 3.63 kcal mol-1, in line with previous work, and the dipole moment of HOS is 36% larger at 3.87 D than HSO, making the less stable isomer more rotationally intense. Finally, the S-S bond strength in HSS is shown to be relatively weak at 30% of the typical disulfide bond energy. Consequently, HSS may degrade into SH and sulfur atoms, making any ISM abundance of HSS likely fairly low, as recent interstellar surveys have observed.

  17. The Gravitational Field of a Twisted Skyrmion

    CERN Document Server

    Hadi, Miftachul; Husein, Andri

    2015-01-01

    We study nonlinear sigma model, especially Skyrme model without twist and Skyrme model with twist: twisted Skyrme model. Twist term, $mkz$, is indicated in vortex solution. We are interested to construct a space-time containing a string with Lagrangian plus a twist. To add gravity, we replace $\\eta^{\\mu\

  18. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  19. Twist limits for late twisting double somersaults on trampoline.

    Science.gov (United States)

    Yeadon, M R; Hiley, M J

    2017-06-14

    An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1996-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  1. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1997-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  2. Performance Testing of Twist Drills on AISI 4140 Alloy Steel

    Science.gov (United States)

    1979-07-01

    and friction coefficient of the particular material. (29) Sachsenberg, E., Versuche mit Spiralbohren, Maschinenbau 7 (1928), pp. 905-911. 5k TOP...1971. (47) Klein, H. H., Das Bohrschanbild als Kriterium der Bohrerform und-leistung, Werkstattstechnik und Maschinenbau , Vol. 47 (1957), Heft 11...59, American Society of Tool Engineers, 1958. 29. Sachsenberg, E., Versuche mit Spiralbohren, Maschinenbau 7 (1928), pp. 905-911. 30. Spaans, C

  3. Statistical Analysis of Deep Drilling Process Conditions Using Vibrations and Force Signals

    Directory of Open Access Journals (Sweden)

    Syafiq Hazwan

    2016-01-01

    Full Text Available Cooling systems is a key point for hot forming process of Ultra High Strength Steels (UHSS. Normally, cooling systems is made using deep drilling technique. Although deep twist drill is better than other drilling techniques in term of higher productivity however its main problem is premature tool breakage, which affects the production quality. In this paper, analysis of deep twist drill process parameters such as cutting speed, feed rate and depth of cut by using statistical analysis to identify the tool condition is presented. The comparisons between different two tool geometries are also studied. Measured data from vibrations and force sensors are being analyzed through several statistical parameters such as root mean square (RMS, mean, kurtosis, standard deviation and skewness. Result found that kurtosis and skewness value are the most appropriate parameters to represent the deep twist drill tool conditions behaviors from vibrations and forces data. The condition of the deep twist drill process been classified according to good, blunt and fracture. It also found that the different tool geometry parameters affect the performance of the tool drill. It believe the results of this study are useful in determining the suitable analysis method to be used for developing online tool condition monitoring system to identify the tertiary tool life stage and helps to avoid mature of tool fracture during drilling process.

  4. Ultrasonic/Sonic Rotary-Hammer Drills

    Science.gov (United States)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  5. Tool geometry optimization for drilling CFRP/Al-Li stacks with a lightning strike protection

    Science.gov (United States)

    El Bouami, Souhail; Habak, Malek; Velasco, Raphaël; Santos, Baptise Dos; Franz, Gérald; Vantomme, Pascal

    2017-10-01

    One-shot drilling of Carbon Fiber-Reinforced Polymer materials with a Lightning Strike Protection (LSP)/metal stacks is a challenging task due to the inherent difference physical and mechanical properties and processing mechanisms of each component. The objective of the present work is to optimize tool geometry width in drilling of CFRP/Al-Li with a LSP. Firstly, a set of conventional uncoated carbide drills which are commercially available for the drilling of aeronautic composites was used to study the effect of tool geometry on drilled-hole quality. The set encompasses a twist drill bit, a step drill bit and a point spur drill bit. Based on references and cutting conditions recommended by drill manufacturers, the drilling tests performed are based on full-factorial experimental design using three cutting speeds and two feed rates. Results showed that, on the one hand, spur drill gave the best results causing small damage extension in the hole perimeter but we noticed a rapid tool wear at the spur which increases with feed. On the other hand, step drill presented higher LSP delamination located at the hole entrance but reduces the level of thrust force. The choice of tool geometry process should be a compromise in drilling aluminium as well as drilling carbon fiber with LSP. In the second phase of the current work, three different new uncoated carbide geometries were developed: a Spur Step Drill, a Three Steps Drill and a Square Step Drill. Same cutting conditions were used for the three drills. Results showed a rapid tool wear for the Spur Step Drill at the spur. In terms of LSP delamination, burr and drill wear, the drill adapted to drilling CFRP/Al-Li with LSP stacks is the three steps drill.

  6. Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weiwei [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Chen, Wanglin; Yang, Shubao; Lin, Yue [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Zhang, Shihong, E-mail: shzhang@ahut.edu.cn [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China); Cho, Tong-Yul [Institute of Industrial Technology, Changwon National University, Changwon, Kyungnam 641-773 (Korea, Republic of); Lee, G.H. [Material Processing Research Department, Korea Institute of Materials Science (KIMS), 66 Sangnam-dong, Changwon, Kyungnam 641-010 (Korea, Republic of); Kwon, Sik-Chol [School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan City, Anhui Province 243002 (China)

    2015-10-01

    Highlights: • Design of the AlCrSiN multilayer and composite coating. • Tribological/mechanical properties of the coatings. • AlCrSiN coating with the special structures presented lowest F.C. • AlCrSiN coating possessed best service life and cutting performance for the application of high-speed steel (HSS) tools. - Abstract: In the present work, AlCrN coating and AlCrSiN multilayer and nanocomposite coating were designed and deposited on the surface of high speed steel (HSS) cutters. The microstructures of these coatings were investigated systematically by means of grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscope (XPS), electron probe X-ray microanalysis (EPMA), scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), in association with mechanical property measurement and corresponding cutting test. The results showed that the AlCrN coating mainly composed of nanocrystalline fcc-CrN, hcp-AlN and fcc-(Cr,Al)N solid-solution. In addition to these nanocrystalline phases, a few amorphous Si{sub 3}N{sub 4} phases were observed for the AlCrSiN multilayers and nanocomposite coating with a stronger {2 0 0} preferred orientation. The modulation period (6 nm) of the AlCrSiN coating was much smaller than that of the AlCrN coating (18 nm). The service life of the AlCrSiN coated tool increased approximately 40% longer in comparison with the AlCrN coated tool because of its more excellent mechanical properties (48 GPa hardness, 1123 MPa toughness, 52 N LC2 adhesion strength and 0.25 average friction coefficient). During the cutting process, the wear mechanisms of coated tools at the early stage and mid-stage were abrasion wear and adhesion wear, respectively. And the worn loss of AlCrSiN coated tool was less than that of AlCrN coated tool.

  7. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  8. Directional drilling of a drill string

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, J.; Catherall, R.; Stewar, W.M.; Pounds, R.J.

    1990-02-13

    A method is provide for controlling the direction of a drill bit at the downhole end of a drill string drilling from a surface. Two steerable stabilisers are provide at the downhole end of the drill string at locations spaced apart in the drilling direction. The orientation of the stabilisers is adjusted to create reactive forces from the bore hole to deflect the course of the bit in a desired direction. The stabilisers are suitably arranged eccentrically and circumferentially offset by 180 degrees {-+} 60 degree. In normal drilling, the drill string is rotated such that the stabilisers engage the bore hole to support a downhole motor against tilting. When off course drilling is sensed, the stabilisers are rotated to a position and stopped from rotation such that drilling forces generate reaction forces to cause a desired change of direction.

  9. Performance analysis for a 2 (3HSS+S parallel manipulator with double moving platforms

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2016-09-01

    Full Text Available The working efficiency of a parallel manipulator with double moving platforms is better than a parallel manipulator with a single moving platform. In this study, a 2 (3HSS+S parallel manipulator is presented, and the topology model of the parallel manipulator is established. After calculating, the position and velocity of the manipulator were analysed, and the workspace was obtained under the constraint conditions of parallel manipulator. Within the workspace, the motion dexterity was studied using the reciprocal of the condition number of the motion Jacobian matrix. The static load-bearing performance was analysed through the two norms of the force Jacobian matrix. The two performance indices, which are motion dexterity and static load bearing, indicate that the manipulator has favourable performance characteristics in the range of positive values of angle, which is the rotation in z-axis, but it has a singular position in the range of large negative values of angle. Within the scope of the singular point, the maximum and minimum eigenvalues of the stiffness matrix and the kinematic stiffness index (KSI were analysed. It has been concluded that the stiffness characteristics are poor near the singular points, and the correctness analysis of the two performance indices has been verified by the results.

  10. THE EFFECT OF SUPPORT PLATE ON DRILLING-INDUCED DELAMINATION

    Directory of Open Access Journals (Sweden)

    Navid Zarif Karimi

    2016-02-01

    Full Text Available Delamination is considered as a major problem in drilling of composite materials, which degrades the mechanical properties of these materials. The thrust force exerted by the drill is considered as the major cause of delamination; and one practical approach to reduce delamination is to use a back-up plate under the specimen. In this paper, the effect of exit support plate on delamination in twist drilling of glass fiber reinforced composites is studied. Firstly, two analytical models based on linear fracture mechanics and elastic bending theory of plates are described to find critical thrust forces at the beginning of crack growth for drilling with and without back-up plate. Secondly, two series of experiments are carried out on glass fiber reinforced composites to determine quantitatively the effect of drilling parameters on the amount of delamination. Experimental findings verify a large reduction in the amount of delaminated area when a back-up plate is placed under the specimen.

  11. Chuck for delicate drills

    Science.gov (United States)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  12. [Validity and Reliability of the German Version of the HSS Expectation Questionnaire on Hip Joint Replacement].

    Science.gov (United States)

    Balck, F; Kirschner, S; Jeszenszky, C; Lippmann, M; Günther, K-P

    2016-12-01

    Background: Total hip arthroplasty is one of the most successful operations in medicine. The clinical result after surgery and compliance during rehabilitation are influenced by the patient's expectations. There is a lack of a validated German instrument to record these expectations in a standardised manner. Patients: 193 patients from the Dresden Hip Register with osteoarthritis of the hip were surveyed with respect to their expectations before the operation. The study sample consists of 108 women and 85 men. The average age of the patients was 59.7 years, with a standard deviation of 12.2 years. Methods: The Hospital for Special Patient Expectations Survey was translated into German and culturally adapted. In addition, the RKI demographic core data set, the HADS-D, LOT-R and the SCL-(K-)9 were collected to validate the instrument. In the statistical analysis, four main factors could be distinguished. These were "everyday activities", "pain relief and improvement in function", "medication and social participation" and "gait improvement". Results: Patients were predominantly married. 20 % of the women were widowed. 20 % had received higher education. Almost half of the patients were retired, 30 % were employed, 15.1 % self-employed and 7.3 % were unemployed. For most of the items, patients expected major improvements up to normalisation of their health. There were many different answers to several items, such as the question on occupation. For sporting and sexual activities no high expectations were given. The average expectation of the whole sample shows major differences to individual expectations. Men showed higher expectations for medication, social participation and gait improvement than did women. There were lower expectations for everyday activities, medication and social participation and gait improvement for older patients. Summary: The German version of the HSS patients expectation survey was validated. The instrument is useful in the

  13. Taguchi Optimization of Cutting Parameters in Turning AISI 1020 MS with M2 HSS Tool

    Science.gov (United States)

    Sonowal, Dharindom; Sarma, Dhrupad; Bakul Barua, Parimal; Nath, Thuleswar

    2017-08-01

    In this paper the effect of three cutting parameters viz. Spindle speed, Feed and Depth of Cut on surface roughness of AISI 1020 mild steel bar in turning was investigated and optimized to obtain minimum surface roughness. All the experiments are conducted on HMT LB25 lathe machine using M2 HSS cutting tool. Ranges of parameters of interest have been decided through some preliminary experimentation (One Factor At a Time experiments). Finally a combined experiment has been carried out using Taguchi’s L27 Orthogonal Array (OA) to study the main effect and interaction effect of the all three parameters. The experimental results were analyzed with raw data ANOVA (Analysis of Variance) and S/N data (Signal to Noise ratio) ANOVA. Results show that Spindle speed, Feed and Depth of Cut have significant effects on both mean and variation of surface roughness in turning AISI 1020 mild steel. Mild two factors interactions are observed among the aforesaid factors with significant effects only on the mean of the output variable. From the Taguchi parameter optimization the optimum factor combination is found to be 630 rpm spindle speed, 0.05 mm/rev feed and 1.25 mm depth of cut with estimated surface roughness 2.358 ± 0.970 µm. A confirmatory experiment was conducted with the optimum factor combination to verify the results. In the confirmatory experiment the average value of surface roughness is found to be 2.408 µm which is well within the range (0.418 µm to 4.299 µm) predicted for confirmatory experiment.

  14. Highly transparent twist polarizer metasurface

    Science.gov (United States)

    Faniayeu, Ihar; Khakhomov, Sergei; Semchenko, Igor; Mizeikis, Vygantas

    2017-09-01

    A twist polarizer metasurface for polarization rotation by an angle of 90 ° is proposed and realized at microwave frequencies. The metasurface consists of sub-wavelength metallic helices arranged periodically in a single layer and operates in transmission geometry with a nearly unity cross-polarization conversion coefficient at resonance. The structure exhibits low reflectivity R polarization orientation of the incident wave. Moreover, it can operate with high efficiency at oblique incidence angles of up to 35 ° . Such twist polarizer metasurfaces are potentially applicable as electromagnetic/optical isolators and frequency-selective polarization antennas.

  15. Twist1- and Twist2-haploinsufficiency results in reduced bone formation.

    Directory of Open Access Journals (Sweden)

    Yanyu Huang

    Full Text Available Twist1 and Twist2 are highly homologous bHLH transcription factors that exhibit extensive highly overlapping expression profiles during development. While both proteins have been shown to inhibit osteogenesis, only Twist1 haploinsufficiency is associated with the premature synostosis of cranial sutures in mice and humans. On the other hand, biallelic Twist2 deficiency causes only a focal facial dermal dysplasia syndrome or additional cachexia and perinatal lethality in certain mouse strains. It is unclear how these proteins cooperate to synergistically regulate bone formation.Twist1 floxed mice (Twist1(f/f were bred with Twist2-Cre knock-in mice (Twist2(Cre/+ to generate Twist1 and Twist2 haploinsufficient mice (Twist1(f/+; Twist2(Cre/+. X-radiography, micro-CT scans, alcian blue/alizarin red staining, trap staining, BrdU labeling, immunohistochemistry, in situ hybridizations, real-time PCR and dual luciferase assay were employed to investigate the overall skeletal defects and the bone-associated molecular and cellular changes of Twist1(f/+;Twist2(Cre/+ mice.Twist1 and Twist2 haploinsufficient mice did not present with premature ossification and craniosynostosis; instead they displayed reduced bone formation, impaired proliferation and differentiation of osteoprogenitors. These mice exhibited decreased expressions of Fgf2 and Fgfr1-4 in bone, resulting in a down-regulation of FGF signaling. Furthermore, in vitro studies indicated that both Twist1 and Twist2 stimulated 4.9 kb Fgfr2 promoter activity in the presence of E12, a Twist binding partner.These data demonstrated that Twist1- and Twist2-haploinsufficiency caused reduced bone formation due to compromised FGF signaling.

  16. Mutating the heme sensing response regulator HssR in Staphylococcus aureus but not in the Listeria monocytogenes homologue results in increased tolerance to the antimicrobial peptide Plectasin

    DEFF Research Database (Denmark)

    Thomsen, L. E.; Gottlieb, Caroline Trebbien; Gottschalk, S.

    2010-01-01

    is incompletely understood and such knowledge is required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently discovered HDP active against Gram-positive bacteria with the human pathogen, Staphylococcus aureus (S. aureus) being highly susceptible and the food borne pathogen....... However, in S. aureus, four mutants with insertion in the heme response regulator (hssR) were 2-4 fold more resistant to plectasin as compared to the wild type. The hssR mutation also enhanced resistance to the plectasin-like defensin eurocin, but not to other classes of HDPs or to other stressors tested....... Addition of plectasin did not influence the expression of hssR or hrtA, a gene regulated by HssR. The genome of L. monocytogenes LO28 encodes a putative HssR homologue, RR23 (in L. monocytogenes EGD-e lmo2583) with 48% identity to the S. aureus HssR, but a mutation in the rr23 gene did not change...

  17. Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation

    National Research Council Canada - National Science Library

    Meng, Tian; Huang, Yanyu; Wang, Suzhen; Zhang, Hua; Dechow, Paul C; Wang, Xiaofang; Qin, Chunlin; Shi, Bing; D'Souza, Rena N; Lu, Yongbo

    2015-01-01

    ...)) by breeding Twist1 floxed mice (Twist1(fl/fl)) with Twist2-Cre recombinase knockin mice (Twist2(Cre) (/+)). The Twist2(Cre) (/+);Twist1(fl/fl) embryos formed smaller tooth germs and abnormal cusps during early tooth morphogenesis...

  18. CASING DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2005-12-01

    Full Text Available Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-retrievable tools and a drill-lock assembly, permitting bit and BHA changes, coring, electrical logging and even directional or horizontal drilling. Once the casing point is reached, the casing is cemented in place without tripping pipe.

  19. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  20. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  1. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    Sazzad Ali Biswas

    2017-08-07

    Aug 7, 2017 ... SAZZAD ALI BISWAS. Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri 603 103, India ... F of characteristic zero. In general, we do not have any explicit formula of epsilon factor of a twisted character ...... of one variable II, Lecture Notes in Mathematics 349 (1972) (Berlin: Springer) pp. 501–597.

  2. CASING DRILLING TECHNOLOGY

    OpenAIRE

    Nediljka Gaurina-Međimurec

    2005-01-01

    Casing drilling is an alternative option to conventional drilling and uses standard oilfield casing instead of drillstring. This technology is one of the greatest developments in drilling operations. Casing drilling involves drilling and casing a well simultaneously. In casing driling process, downhole tools can be retrieved, through the casing on wire-line, meaning tool recovery or replacement of tools can take minutes versus hours under conventional methods. This process employs wireline-re...

  3. Defect analysis in drilling needle-punched carbon–carbon composites perpendicular to nonwoven fabrics

    Directory of Open Access Journals (Sweden)

    Chenwei Shan

    2015-08-01

    Full Text Available Carbon–carbon composites are unique materials consisting of carbon fibers embedded in a carbonaceous matrix. Drilling of carbon–carbon composites is difficult to carry out due to the anisotropic, high specific stiffness and brittleness, nonhomogeneous inner structure of composites, and high abrasiveness of their reinforcing constituents. These typically result in defects being introduced into the workpiece and in very rapid wear development in the drilling tool. Defects are the undesired effects of machining using nonappropriate drilling parameters or worn drill. Aimed at this issue, first, the major defects caused in drilling needle-punched carbon–carbon composites are analyzed in detail. Second, the fiber fuzz factor and the ripping factor of fibers are defined to depict the drilling defects. Experiments are carried out using a conventional twist drill, and the results indicate that material structures, federates, and cutting speeds are reckoned to be the most significant factors contributing to defects.

  4. The Modeling and Harmonic Coupling Analysis of Multiple-Parallel Connected Inverter Using Harmonic State Space (HSS)

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    As the number of power electronics based systems are increasing, studies about overall stability and harmonic problems are rising. In order to analyze harmonics and stability, most research is using an analysis method, which is based on the Linear Time Invariant (LTI) approach. However, this can...... change compared to the conventional operation. In this paper, a Harmonic State Space modeling method, which is based on the Linear Time varying theory, is used to analyze different operating points of the parallel connected converters. The analyzed results show that the HSS modeling approach explicitly...

  5. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2004-01-01

    The efficiency of six cutting oils was evaluated in drilling AISI 316L austenitic stainless steel using conventional HSS-Co tools by measurements of tool life, tool wear, cutting forces and chip formation. Seven tools were tested with each fluid to catastrophic failure. Cutting forces and chip...... that a performing fluid produces longer tool life, better chip breaking, lower wear and cutting forces. In particular, good correlation was found between tool life and cutting forces. Differences in cutting forces due to the fluid could be measured with a higher repeatability than tool life, thus resulting...... in a measurement capability comparable to that obtained using tool life as a performance criterion. As a consequence, it is suggested that drilling thrust can be used to assess the performance of cutting fluids in drilling stainless steel, resulting in considerable time savings and cost reduction with respect...

  6. "Twisted" black holes are unphysical

    CERN Document Server

    Gray, Finnian; Schuster, Sebastian; Visser, Matt

    2016-01-01

    So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.

  7. The Hans Tausen drill

    DEFF Research Database (Denmark)

    Johnsen, Sigfus Johann; Dahl-Jensen, Dorthe; Steffensen, Jørgen Peder

    2007-01-01

    of providing drilling capability for these projects, as it had done for the GRIP project. The group decided to further simplify existing deep drill designs for better reliability and ease of handling. The drill design decided upon was successfully tested on Hans Tausen Ice Cap, Peary Land, Greenland, in 1995......In the mid-1990s, excellent results from the GRIP and GISP2 deep drilling projects in Greenland opened up funding for continued ice-coring efforts in Antarctica (EPICA) and Greenland (NorthGRIP). The Glaciology Group of the Niels Bohr Institute, University of Copenhagen, was assigned the task....... The 5.0 m long Hans Tausen (HT) drill was a prototype for the ~11 m long EPICA and NorthGRIP versions of the drill which were mechanically identical to the HT drill except for a much longer core barrel and chips chamber. These drills could deliver up to 4 m long ice cores after some design improvements...

  8. Deep Sea Drilling Project

    Science.gov (United States)

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  9. Evaluating the psychometric properties of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS among Italian nurses: how many factors must a researcher consider?

    Directory of Open Access Journals (Sweden)

    Barbara Loera

    Full Text Available The Maslach Burnout Inventory (MBI is the mainstream measure for burnout. However, its psychometric properties have been questioned, and alternative measurement models of the inventory have been suggested.Different models for the number of items and factors of the MBI-HSS, the version of the Inventory for the Human Service sector, were tested in order to identify the most appropriate model for measuring burnout in Italy.The study dataset consisted of a sample of 925 nurses. Ten alternative models of burnout were compared using confirmatory factor analysis. The psychometric properties of items and reliability of the MBI-HSS subscales were evaluated.Item malfunctioning may confound the MBI-HSS factor structure. The analysis confirmed the factorial structure of the MBI-HSS with a three-dimensional, 20-item assessment.The factorial structure underlying the MBI-HSS follows Maslach's definition when items are reduced from the original 22 to a 20-item set. Alternative models, either with fewer items or with an increased number of latent dimensions in the burnout structure, do not yield better results to justify redefining the item set or theoretically revising the syndrome construct.

  10. Evaluating the psychometric properties of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS) among Italian nurses: how many factors must a researcher consider?

    Science.gov (United States)

    Loera, Barbara; Converso, Daniela; Viotti, Sara

    2014-01-01

    The Maslach Burnout Inventory (MBI) is the mainstream measure for burnout. However, its psychometric properties have been questioned, and alternative measurement models of the inventory have been suggested. Different models for the number of items and factors of the MBI-HSS, the version of the Inventory for the Human Service sector, were tested in order to identify the most appropriate model for measuring burnout in Italy. The study dataset consisted of a sample of 925 nurses. Ten alternative models of burnout were compared using confirmatory factor analysis. The psychometric properties of items and reliability of the MBI-HSS subscales were evaluated. Item malfunctioning may confound the MBI-HSS factor structure. The analysis confirmed the factorial structure of the MBI-HSS with a three-dimensional, 20-item assessment. The factorial structure underlying the MBI-HSS follows Maslach's definition when items are reduced from the original 22 to a 20-item set. Alternative models, either with fewer items or with an increased number of latent dimensions in the burnout structure, do not yield better results to justify redefining the item set or theoretically revising the syndrome construct.

  11. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2011-03-03

    ... COMMISSION Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in... of imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23... drill pipe and drill collars from China were subsidized within the meaning of section 703(b) of the Act...

  12. 78 FR 59972 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2013-09-30

    ... COMMISSION Drill Pipe and Drill Collars from China AGENCY: United States International Trade Commission... phase investigation of the antidumping and countervailing duty orders on drill pipe and drill collars... remanding certain aspects of the Commission's affirmative threat determination in Drill Pipe and Drill...

  13. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Science.gov (United States)

    2010-03-08

    ... COMMISSION Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings 7304... by reason of LTFV and subsidized imports of drill pipe and drill collars from China. Accordingly...

  14. Modeling and control of active twist aircraft

    Science.gov (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  15. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  16. The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin

    Directory of Open Access Journals (Sweden)

    Kristensen Hans-Henrik

    2010-12-01

    Full Text Available Abstract Background Host defence peptides (HDPs, also known as antimicrobial peptides (AMPs, have emerged as potential new therapeutics and their antimicrobial spectrum covers a wide range of target organisms. However, the mode of action and the genetics behind the bacterial response to HDPs is incompletely understood and such knowledge is required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently discovered HDP active against Gram-positive bacteria with the human pathogen, Staphylococcus aureus (S. aureus being highly susceptible and the food borne pathogen, Listeria monocytogenes (L. monocytogenes being less sensitive. In the present study we aimed to use transposon mutagenesis to determine the genetic basis for S. aureus and L. monocytogenes susceptibility to plectasin. Results In order to identify genes that provide susceptibility to plectasin we constructed bacterial transposon mutant libraries of S. aureus NCTC8325-4 and L. monocytogenes 4446 and screened for increased resistance to the peptide. No resistant mutants arose when L. monocytogenes was screened on plates containing 5 and 10 fold Minimal Inhibitory Concentration (MIC of plectasin. However, in S. aureus, four mutants with insertion in the heme response regulator (hssR were 2-4 fold more resistant to plectasin as compared to the wild type. The hssR mutation also enhanced resistance to the plectasin-like defensin eurocin, but not to other classes of HDPs or to other stressors tested. Addition of plectasin did not influence the expression of hssR or hrtA, a gene regulated by HssR. The genome of L. monocytogenes LO28 encodes a putative HssR homologue, RR23 (in L. monocytogenes EGD-e lmo2583 with 48% identity to the S. aureus HssR, but a mutation in the rr23 gene did not change the susceptibility of L. monocytogenes to plectasin. Conclusions S. aureus HssR, but not the homologue RR23 from L. monocytogenes, provides susceptibility to the defensins

  17. Analysis of twisted tape solutions for cooling of the residual ion dump of the ITER HNB

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Guamán, Santiago, E-mail: santiago.ochoa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hanke, Stefan [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sartori, Emanuele; Palma, Mauro Dalla [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padua (Italy)

    2016-11-01

    Highlights: • Due to manufacturing deviations, the cooling channels are made by double side drilling. • Twisted tapes with two different thicknesses are necessary for a better cooling performance. • The manufacturing of cooling channels and twisted tapes was demonstrated to be feasible. • The water critical heat flux safety margin is higher than 1.5 for the total channel length. • Geometry optimization shown better cooling performance and higher CHF safety margins. - Abstract: The ITER HNB residual ion dump is exposed to a heat load about 17 MW on the dump panels with a peak power density of 7 MW/m{sup 2}. Water flows through cooling channels, 2 m long and 14 mm diameter, realized by double side deep drilling. Unavoidable manufacturing deviations could generate a discontinuity at the channel length center. It is necessary to verify the influence of issues such as cavitation, fluid stagnation, low boiling margins, among others, in the cooling performance. Assuming worst case conditions, analytical and CFD methods showed a subcooled boiling operation with high safety margins to the water critical heat flux. Additionally, by analysing several thermo-hydraulic parameters, the twisted tape cross sections were optimized. Per cooling channel, two twisted tapes are inserted from the sides of the panels, thus, a study of a separation gap between them at the channel length center presented an optimal distance. This paper demonstrates that common machining techniques and drilling tolerances allow the manufacturing of panels able to withstand safely the required beam operation heat loads, even under worst case operation scenarios.

  18. Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling

    Directory of Open Access Journals (Sweden)

    Verkhoglyadova Olga

    2016-01-01

    Full Text Available We analyze the energy budget of the ionosphere-thermosphere (IT system during two High-Speed Streams (HSSs on 22–31 January, 2007 (in the descending phase of solar cycle 23 and 25 April–2 May, 2011 (in the ascending phase of solar cycle 24 to understand typical features, similarities, and differences in magnetosphere-ionosphere-thermosphere (IT coupling during HSS geomagnetic activity. We focus on the solar wind energy input into the magnetosphere (by using coupling functions and energy partitioning within the IT system during these intervals. The Joule heating is estimated empirically. Hemispheric power is estimated based on satellite measurements. We utilize observations from TIMED/SABER (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry to estimate nitric oxide (NO and carbon dioxide (CO2 cooling emission fluxes. We perform a detailed modeling study of these two similar HSS events with the Global Ionosphere-Thermosphere Model (GITM and different external driving inputs to understand the IT response and to address how well the model reproduces the energy transport. GITM is run in a mode with forecastable inputs. It is shown that the model captures the main features of the energy coupling, but underestimates NO cooling and auroral heating in high latitudes. Lower thermospheric forcing at 100 km altitude is important for correct energy balance of the IT system. We discuss challenges for a physics-based general forecasting approach in modeling the energy budget of moderate IT storms caused by HSSs.

  19. Multiple Twisted -Euler Numbers and Polynomials Associated with -Adic -Integrals

    Directory of Open Access Journals (Sweden)

    Jang Lee-Chae

    2008-01-01

    Full Text Available By using -adic -integrals on , we define multiple twisted -Euler numbers and polynomials. We also find Witt's type formula for multiple twisted -Euler numbers and discuss some characterizations of multiple twisted -Euler Zeta functions. In particular, we construct multiple twisted Barnes' type -Euler polynomials and multiple twisted Barnes' type -Euler Zeta functions. Finally, we define multiple twisted Dirichlet's type -Euler numbers and polynomials, and give Witt's type formula for them.

  20. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DYNAMIC PARAMETERS AT DRILLING COATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated (coated particleboards (PB are wood-based composites intensively used in the furniture industry. In order to prepare the PB for joining, drilling is the most commonly applied machining process. The surface quality and the dynamic parameters (thrust force and torque are significantly influenced by the tools characteristics and the machining parameters. The point/tip angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the dynamic parameters. The objective of this study was to measure and analyze the influence of both the geometric and cinematic parameters on the dynamic parameters at drilling with twist (helical drills. The experiments were performed based on a factorial design. The results show that, a low feed rate generally minimizes both the drilling torque and the thrust force, while a small tip angle increases the drilling torque and minimizes the thrust force.

  1. Higher twist effect in inclusive quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.P

    1997-06-01

    The higher twist effect in photo- and electro-production of quarkonium, where the quarkonium is a spin-triplet, S-wave state was analysed. It was found that the nonperturbative effect of next-to-leading twist is contained in four correlation functions related to the initial hadron. In photoproduction the effect of next-to-leading twist is suppressed by the inverse of the mass square of the quarkonium, while in electroproduction effect is suppressed only by the inverse of other large scales. An interesting fact is that at order of next-to-leading twist the quarkonium can be produced by the scattering of a photon with two gluons in the initial hadron. This results that the production of quarkonium via this subprocess is peaked in the forward direction and may help to study twist-4 effect. 16 refs., 4 figs.

  2. Quality in drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, E.; Gervais, I. [Sedco Forex Jacintoport Facility, Channelview, TX (United States); Le Moign, Y.; Pangarkar, S.; Stibbs, B. [Sedco Forex, Montrouge (France); McMorran, P. [Sedco Forex, Pau (France); Nordquist, E. [Dubai Petroleum Company, Dubai (United Arab Emirates); Pittman, T. [Sedco Forex, Perth (Australia); Schindler, H. [Sedco Forex, Dubai (United Arab Emirates); Scott, P. [Woodside Offshore Petroleum Pty. Ltd., Perth (Australia)

    1996-12-31

    Driven by cost and profitability pressures, quality has taken on new meaning and importance in the oil field during the past decade. In drilling operations, new initiatives have led to cooperative team efforts between operators and drilling contractors to enhance quality. In this article examples are given of how one drilling contractor, by adopting a quality culture, is reaping major benefits for its clients as well as its employees. 22 figs., 19 refs.

  3. Drilling cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, L.E. Jr.

    1996-12-31

    This presentation by Louis E. Capuano, Jr., President, ThermaSource, Inc., discusses cost-cutting in the drilling phase of geothermal energy exploration and production. All aspects of a geothermal project including the drilling must be streamlined to make it viable and commercial. If production could be maximized from each well, there would be a reduction in drilling costs. This could be achieved in several ways, including big hole and multi-hole completion, directional drilling, better knowledge of the resource and where to penetrate, etc.

  4. Twisting cracks in Bouligand structures.

    Science.gov (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-12-01

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  6. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  7. Thermal conductivity of twisted bilayer graphene.

    Science.gov (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan

    2014-11-21

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  8. Transmission properties of cryogenic twisted pair filters

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woon; Rehman, Mushtaq; Chong, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Ryu, Sangwan [Chonnam National University, Gwangju (Korea, Republic of)

    2010-12-15

    We fabricated a cryogenic low pass filter that consists of twisted pairs of manganin wires wrapped in copper tape and measured its transmission characteristics at frequencies up to 18 GHz. The dependence of the microwave transmission characteristics on the filter length was studied, which showed that a filter of length 1.0 m had a 70-dB attenuation at 1 GHz. We also studied the dependence of common- and differential-mode transmission on the number of twists per unit length and found that the number of twists per unit length affects differential-mode transmission but not common-mode transmission. Because the shielded twisted pair filter is more compact than a conventional copper powder filter, it can solve the space and thermal load issues when many cables are required for precision electronic transport experiments at low temperatures.

  9. OAM mode converter in twisted fibers

    DEFF Research Database (Denmark)

    Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano

    2014-01-01

    We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....

  10. Fibred knots and twisted Alexander invariants

    OpenAIRE

    Cha, Jae Choon

    2001-01-01

    We introduce a new algebraic topological technique to detect non-fibred knots in the three sphere using the twisted Alexander invariants. As an application, we show that for any Seifert matrix of a knot with a nontrivial Alexander polynomial, there exist infinitely many non-fibered knots with the given Seifert matrix. We illustrate examples of knots that have trivial Alexander polynomials but do not have twisted Alexander invariants of fibred knots.

  11. Plant Development: Lessons from Getting It Twisted.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-08-07

    In plants, one of the most understated developmental phenomena is that of straightness - a root will grow down, a petal will grow flat. A new mutant in Arabidopsis thaliana that displays twisting in petals and roots, at the organ and cell level, has been investigated. Strikingly, the twisting is always left-handed and is not due to underlying cytoskeletal skewing, as is the case in other known, phenotypically similar, mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. THE INFLUENCE OF THE TOOL POINT ANGLE AND FEED RATE ON THE DELAMINATION AT DRILLING OF PRE-LAMINATED PARTICLEBOARD

    Directory of Open Access Journals (Sweden)

    Mihai ISPAS

    2015-12-01

    Full Text Available Pre-laminated particleboard is a wood based composite extensively used in the furniture industry. Drilling is the most common machining process which prepares the panels for joining using twist/helical drills in the absolute majority of cases. The point angle of the drill bit and the feed speed during drilling play a major role in gaining a good surface quality and minimizing the delamination tendency of the pre-laminated particleboard. The objective of this study was to measure and analyze the influence of the two above-mentioned factors on the processing quality, evaluated by de size of delaminations, both, at the entrance side and the exit side of the drill bit. To assess the defect, two parameters were used: the delamination factor and the effective area of delamination. The results showed that, in general, the combination of small point angle with low feed rate minimizes the delamination of pre-laminated particleboard panels at drilling.

  13. UNDERBALANCED DRILLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međiumurec

    2006-12-01

    Full Text Available Historically, most underbalanced drilling (UBD projects were undertaken to eliminate drilling problems and cost. However, recently, the reduction of formation damage has become a main focus for underbalanced operations. This has the greatest potential in directly increasing the profit to the operating company. Potential benefits include increasing of production rate, the ultimate recovery, and enabling accelerated production. Underbalanced technology, while still on a sharp growth curve, is finally becoming accepted as a normal method for handling the drilling and completion of wells. This paper details the benefits and limiting factors of UBD technology, underbalanced fluid system selection, and UBD techniques, as well as candidate screening and selection.

  14. Modified drill permits one-step drilling operation

    Science.gov (United States)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  15. Twist expression promotes migration and invasion in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kobayashi Yoshiyuki

    2009-07-01

    Full Text Available Abstract Background Twist, a transcription factor of the basic helix-loop-helix class, is reported to regulate cancer metastasis. It is known to induce epithelial-mesenchymal transition (EMT. In this study, we evaluated the expression of twist and its effect on cell migration in hepatocellular carcinoma (HCC. Methods We examined twist expression using immunohistochemistry in 20 tissue samples of hepatocellular carcinoma, and assessed twist expression in HCC cell lines by RT-PCR and Western blot analysis. Ectopic twist expression was created by introducing a twist construct in the twist-negative HCC cell lines. Endogenous twist expression was blocked by twist siRNA in the twist-positive HCC cell lines. We studied EMT related markers, E-cadherin, Vimentin, and N-cadherin by Western blot analysis. Cell proliferation was measured by MTT assay, and cell migration was measured by in vitro wound healing assay. We used immunofluorescent vinculin staining to visualize focal adhesion. Results We detected strong and intermediate twist expression in 7 of 20 tumor samples, and no significant twist expression was found in the tumor-free resection margins. In addition, we detected twist expression in HLE, HLF, and SK-Hep1 cells, but not in PLC/RPF/5, HepG2, and Huh7 cells. Ectopic twist-expressing cells demonstrated enhanced cell motility, but twist expression did not affect cell proliferation. Twist expression induced epithelial-mesenchymal transition together with related morphologic changes. Focal adhesion contact was reduced significantly in ectopic twist-expressing cells. Twist-siRNA-treated HLE, HLF, and SK-Hep1 cells demonstrated a reduction in cell migration by 50, 40 and 18%, respectively. Conclusion Twist induces migratory effect on hepatocellular carcinoma by causing epithelial-mesenchymal transition.

  16. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  17. UNDERBALANCED DRILLING TECHNOLOGY

    OpenAIRE

    Nediljka Gaurina-Međiumurec; Katarina Simon; Davorin Matanović; Borivoje Pašić

    2006-01-01

    Historically, most underbalanced drilling (UBD) projects were undertaken to eliminate drilling problems and cost. However, recently, the reduction of formation damage has become a main focus for underbalanced operations. This has the greatest potential in directly increasing the profit to the operating company. Potential benefits include increasing of production rate, the ultimate recovery, and enabling accelerated production. Underbalanced technology, while still on a sharp growth curve, is ...

  18. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  19. The bifactor model of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS)--an alternative measurement model of burnout.

    Science.gov (United States)

    Mészáros, V; Adám, Sz; Szabó, M; Szigeti, R; Urbán, R

    2014-02-01

    The purpose of the present study was to examine the construct validity of the Hungarian language version of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS). A sample of 653 healthcare professionals (420 physicians and 233 nurses and nursing assistants) completed the MBI-HSS. A series of confirmatory factor analyses showed that a hierarchical bifactor model including a global burnout factor and three specific factors of emotional exhaustion, depersonalization and reduced personal accomplishment had the closest fit to the data, compared with an alternative second-order three-factor hierarchical model as well as to non-hierarchical one-factor, two-factor, three-factor, four-factor and five-factor models. However, only the global burnout factor and the specific personal accomplishment factor explained a considerable unique proportion of variance in observed scores. Our study confirms the validity of the MBI-HSS and suggests an alternative structural model, which may contribute to further understanding of the burnout construct. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Morphology of TiAlN Thin Film onto HSS as Cutting Tools by Using Mosaic-Styled Target RF Sputtering Method

    Directory of Open Access Journals (Sweden)

    Sigit Tri Wicaksono

    2016-05-01

    Full Text Available High Speed Steel (HSS has been widely used in manufacturing industry as cutting tools. Several methods have been used to improve the cutting performance of HSS in dry cutting. One of them was by growing a thin layer of hard coating on the contact surface of the cutting tool material. In this research, Titanium Aluminum Nitride (TiAlN layer were deposited on AISI M41 HSS substrate by using Radio Frequency (RF sputtering method with mosaic styled of target materials. The aluminum surface area ratios on the Titanium target are 10, 20, 30, and 40 % respectively. The deposition time are 15, 30, and 45 minutes respectively. The formation of TiAlN and AlN crystalline compounds were observed by X-Ray Diffraction method. The morphology of thin film layer with a thickness range from 1.4 to 5.2 µm was observed by using a Scanning Electron Microscopy. It was known that the deposition time affect to the thickness and also the roughness of the layer. The topography images by Atomic Force Microscopy showed that the deposition time of 45 minutes produce the finest layer with the surface roughness of 10.8 nm.

  1. Modeling pellet impact drilling process

    OpenAIRE

    Kovalev, Artem Vladimirovich; Ryabchikov, Sergey Yakovlevich; Isaev, Evgeniy Dmitrievich; Ulyanova, Oksana Sergeevna

    2016-01-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling t...

  2. Effect of cutting parameters on workpiece and tool properties during drilling of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Yahya Hisman; Yildiz, Hakan [Batman Univ. (Turkey). Dept. of Mechanical Engineering; Oezek, Cebeli [Firat Univ., Elazig (Turkey)

    2016-08-01

    The main aim of machining is to provide the dimensional preciseness together with surface and geometric quality of the workpiece to be manufactured within the desired limits. Today, it is quite hard to drill widely utilized Ti-6Al-4 V alloys owing to their superior features. Therefore, in this study, the effects of temperature, chip formation, thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears on the drilling of Ti-6Al-4 V were investigated under dry cutting conditions with different cutting speeds and feed rates by using tungsten carbide (WC) and high speed steel (HSS) drills. Moreover, the mathematical modeling of thrust force, surface roughness, burr height and tool wear were formed using Matlab. It was found that the feed rate, cutting speed and type of drill have a major effect on the thrust forces, surface roughness, burr heights, hole diameter deviations and tool wears. Optimum results in the Ti-6Al-4 V alloy drilling process were obtained using the WC drill.

  3. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  4. Twisted electron-acoustic waves in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P. O. Nilore, Islamabad 45650 (Pakistan); Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Ali, S.; Khan, S. A. [National Centre for Physics at Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Shahzad, K. [Department of Physics and Applied Mathematics (DPAM), Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan)

    2016-08-15

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  5. TWIST is Expressed in Human Gliomas, Promotes Invasion

    Directory of Open Access Journals (Sweden)

    Maria C. Elias

    2005-09-01

    Full Text Available TWIST is a basic helix-loop-helix (bHLH transcription factor that regulates mesodermal development, promotes tumor cell metastasis, and, in response to cytotoxic stress, enhances cell survival. Our screen for bHLH gene expression in rat C6 glioma revealed TWIST. To delineate a possible oncogenic role for TWIST in the human central nervous system (CNS, we analyzed TWIST message, protein expression in gliomas, normal brain. TWIST was detected in the large majority of human glioma-derived cell lines, human gliomas examined. Increased TWIST mRNA levels were associated with the highest grade gliomas, increased TWIST expression accompanied transition from low grade to high grade in vivo, suggesting a role for TWIST in promoting malignant progression. In accord, elevated TWIST mRNA abundance preceded the spontaneous malignant transformation of cultured mouse astrocytes hemizygous for p53. Overexpression of TWIST protein in a human glioma cell line significantly enhanced tumor cell invasion, a hallmark of high-grade gliomas. These findings support roles for TWIST both in early glial tumorigenesis, subsequent malignant progression. TWIST was also expressed in embryonic, fetal human brain, in neurons, but not glia, of mature brain, indicating that, in gliomas, TWIST may promote the functions also critical for CNS development or normal neuronal physiology.

  6. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  7. Single Piezo-Actuator Rotary-Hammering Drill

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2011-01-01

    This innovation comprises a compact drill that uses low-axial preload, via vibrations, that fractures the rock under the bit kerf, and rotates the bit to remove the powdered cuttings while augmenting the rock fracture via shear forces. The vibrations fluidize the powered cuttings inside the flutes around the bit, reducing the friction with the auger surface. These combined actions reduce the consumed power and the heating of the drilled medium, helping to preserve the pristine content of the produced samples. The drill consists of an actuator that simultaneously impacts and rotates the bit by applying force and torque via a single piezoelectric stack actuator without the need for a gearbox or lever mechanism. This reduces the development/fabrication cost and complexity. The piezoelectric actuator impacts the surface and generates shear forces, fragmenting the drilled medium directly under the bit kerf by exceeding the tensile and/or shear strength of the struck surface. The percussive impact action of the actuator leads to penetration of the medium by producing a zone of finely crushed rock directly underneath the struck location. This fracturing process is highly enhanced by the shear forces from the rotation and twisting action. To remove the formed cuttings, the bit is constructed with an auger on its internal or external surface. One of the problems with pure hammering is that, as the teeth become embedded in the sample, the drilling efficiency drops unless the teeth are moved away from the specific footprint location. By rotating the teeth, they are moved to areas that were not fragmented, and thus the rock fracturing is enhanced via shear forces. The shear motion creates ripping or chiseling action to produce larger fragments to increase the drilling efficiency, and to reduce the required power. The actuator of the drill consists of a piezoelectric stack that vibrates the horn. The stack is compressed by a bolt between the backing and the horn in order to

  8. Analysis of gun barrel rifling twist

    Science.gov (United States)

    Sun, Jia; Chen, Guangsong; Qian, Linfang; Liu, Taisu

    2017-05-01

    Aiming at the problem of gun barrel rifling twist, the constraint relation between rifling and projectile is investigated. The constraint model of rifling and projectile is established and the geometric relation between the twist and the motion of projectile is analyzed. Based on the constraint model, according to the rotating band that is fired, the stress and the motion law of the rotating band in bore are analyzed. The effects to rotating band (double rotating band or wide driving band) caused by different rifling (rib rifling, increasing rifling and combined rifling) are also investigated. The model is demonstrated by several examples. The results of numerical examples and the constraint mode show that the uncertainty factors will be brought in the increasing rifling and combined rifling during the projectile move in the bore. According to the amplitude and the strength of the twist acting on rotating band, the steady property of rotational motion of the projectile, the rib rifling is a better choose.

  9. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  10. Finite element simulation of twist forming process to study twist springback pattern

    Directory of Open Access Journals (Sweden)

    Nashrudin M. N.

    2017-01-01

    Full Text Available Springback is one of the most common defects found in the metal forming of automotive parts. There are three conditions which can be considered as springback i.e. flange angle change, sidewall curl and twist springback and among them, twist springback is the most complicated problem. This study will focuses on the development of finite element simulation model of the twist forming process. The main aim of this project is to investigate the parameters that may affect the twist springback. Few parameters including twist angle, hardening constant and thickness are explored using finite element (FE software ANSYS Workbench (16.0. The rectangular mild strips are used to form the twist forming. The standard material properties and stress-strain curve of mild steel had been used to get the springback prediction. The results of springback were measured by the difference of the bending angles before and after unloading process. The results were then be validated with the research made of Dwivedi et al., (2002. The results show that the springback angle reduces as the thickness of strips are increased and also as the angle of twist increases.

  11. Higher-twist correlations in polarized hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Tangerman, R.D.

    1996-09-16

    In this thesis we studied the response of polarized hadrons to several high-energy probes, working in the framework of the field theoretic model. Emphasis is laid upon higher-twist effects such as quark transverse momentum. The inclusive DIS process is very well suited to study QCD. From general principles we were able to derive four positivity constraints on the structure functions without invoking the helicity formalism. The on-shell quark model is used to illustrate these constraints. Subseqeuently, we concentrated on the higher-twist structure function g{sub 2}(x,Q{sup 2}). (orig./HSI).

  12. Twisting Functors for Quantum Group Modules

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    We construct twisting functors for quantum group modules. First over the field Q(v) but later over any Z[v,v^{−1}]-algebra. The main results in this paper are a rigerous definition of these functors, a proof that they satisfy braid relations and applications to Verma modules.......We construct twisting functors for quantum group modules. First over the field Q(v) but later over any Z[v,v^{−1}]-algebra. The main results in this paper are a rigerous definition of these functors, a proof that they satisfy braid relations and applications to Verma modules....

  13. Twisted bi-layer graphene: microscopic rainbows.

    Science.gov (United States)

    Campos-Delgado, J; Algara-Siller, G; Santos, C N; Kaiser, U; Raskin, J-P

    2013-10-11

    Blue, pink, and yellow colorations appear from twisted bi-layer graphene (tBLG) when transferred to a SiO2 /Si substrate (SiO2 = 100 nm-thick). Raman and electron microscope studies reveal that these colorations appear for twist angles in the 9-15° range. Optical contrast simulations confirm that the observed colorations are related to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG/100 nm-thick SiO2 /Si. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Western USA groundwater drilling

    Science.gov (United States)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  15. Carboniferous drilling project

    Energy Technology Data Exchange (ETDEWEB)

    Ball, F.D.; Sullivan, R.M.; Peach, A.R. (New Brunswick Department of Natural Resources, NB (Canada). Mineral Development Branch)

    1981-01-01

    This report details information acquired in carrying out the Carboniferous Drilling Project in New Brunswick. This data is necessary for deciding on and implementing policy to cover exploration and exploitation of the coal and mineral potential of New Brunswick's Pennsylvanian strata. An ultimate goal is to entice investment by the private sector. Data was acquired through extensive drilling, reconnaissance geological mapping, selected rock chip sample analysis and ground water analysis. The full data is presented here in statistical form and discussed at length. 63 refs., 30 figs., 13 tabs., 10 maps

  16. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  17. Drilling comparison in "warm ice" and drill design comparison

    DEFF Research Database (Denmark)

    Augustin, L.; Motoyama, H.; Wilhelms, F.

    2007-01-01

    For the deep ice-core drilling community, the 2005/06 Antarctic season was an exciting and fruitful one. In three different Antarctic locations, Dome Fuji, EPICA DML and Vostok, deep drillings approached bedrock (the ice-water interface in the case of Vostok), emulating what had previously been...... achieved at NorthGRIP, Greenland, (summer 2003 and 2004) and at EPICA Dome C2, Antarctica (season 2004/05). For the first time in ice-core drilling history, three different types of drill (KEMS, JARE and EPICA) simultaneously reached the depth of 'warm ice' under high pressure. After excellent progress...... at each site, the drilling rate dropped and the drilling teams had to deal with refrozen ice on cutters and drill heads. Drills have different limits and perform differently. In this comparative study, we examine depth, pressure, temperature, pump flow and cutting speed. Finally, we compare a few...

  18. Twist-three effects in two-photon processes

    Science.gov (United States)

    Belitsky, A. V.; Müller, D.

    2000-11-01

    We give a general treatment of twist-three effects in two-photon reactions. We address the issue of the gauge invariance of the Compton amplitude in generalized Bjorken kinematics and relations of twist-three `transverse' skewed parton distributions to twist-two ones and interaction dependent three-particle correlation functions. Finally, we discuss leading order evolution of twist-three functions and their impact on the deeply virtual Compton scattering.

  19. An Integrated Approach for Drilling Optimization Using Advanced Drilling Optimizer

    OpenAIRE

    David Hankins; Saeed Salehi; Fatemeh Karbalaei Saleh

    2015-01-01

    The ability to optimize drilling procedures and economics involves simulation to understand the effects operational parameters and equipment design have on the ROP. An analysis applying drilling performance modeling to optimize drilling operations has been conducted to address this issue. This study shows how optimum operational parameters and equipment can be predicted by simulating drilling operations of preexisting wells in a Northwest Louisiana field. Reference well data was gathered and ...

  20. Influence Of The Triple Spheroidization On Surface Hardness From Drilling Resistance Behavior Of Powder Coated Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Subhakij Khaonetr

    2015-08-01

    Full Text Available The objective of this study on the influence of the triple spheroidization on surface hardness from drilling resistance Dry drilling of powder coated gray cast iron using universal testing machine Compressive mode the surface hardness in powder coating areas normal hardness and Charpy impact resistance were considered. The spheroidizing temperatures were 300amp61616C 450amp61616C and 600amp61616C the spheroidizing time spanned the range of 6 hours and cooled down in the furnace to room temperature for 24 hours. The drilling resistance test the high-speed twist drill diameter of 3 mm the rotating speed of 1000 revmin and the crosshead speed of 5-25 mmmin were investigated. It was found that the surface hardness from drilling resistance normal hardness and Charpy impact resistance increased as the spheroidizing temperatures increased. The maximum surface hardness was found at the third spheroidization.

  1. 1, 6-Diaminoperylene bisimide with a highly twisted perylene core

    Indian Academy of Sciences (India)

    The central perylene core of 1 is twisted with dihedral angles of 19.48(2)◦ and 19.50(2)◦; this twist configuration induces the axial chirality in this family of perylene bisimide chromophores. Density functional theory (DFT) calculations also show that the core twist angles of 1,6-diaminoperylene bisimide are larger than those of ...

  2. Chaos in orientation reversing twist maps of the plane

    NARCIS (Netherlands)

    van den Berg, G.J.B.; van der Vorst, R.C.A.M.; Wójcik, W.

    2007-01-01

    We study forcing of periodic points in orientation reversing twist maps. First, we observe that the fourth iterate of an orientation reversing twist map can be expressed as the composition of four orientation preserving positive twist maps. We then reformulate the problem in terms of parabolic

  3. Twisted convolution, pseudo-differential operators and Fourier modulation spaces

    OpenAIRE

    Toft, Joachim

    2008-01-01

    We discuss continuity of the twisted convolution on (weighted) Fourier modulation spaces. We use these results to establish continuity results for the twisted convolution on Lebesgue spaces. For example we prove that if $\\omega$ is an appropriate weight and $1\\le p\\le 2$, then $L^p_{(\\omega)}$ is an algebra under the twisted convolution.

  4. Twisted surfaces in the Pseudo-Galilean space

    Directory of Open Access Journals (Sweden)

    Ahmet Kazan

    2017-10-01

    Full Text Available In this paper, we construct the twisted surfaces according to the supporting plane and type of rotations in pseudo-Galilean space G13. Also, we find the Gaussian curvatures and mean curvatures of the different types of these twisted surfaces and draw some figures for these twisted surfaces.

  5. Twist-3 Effects in Polarized Photon Structure

    Science.gov (United States)

    Baba, Hideshi; Sasaki, Ken; Uematsu, Tsuneo

    The polarized photon structure is described by two spin structure functions g1γ and g2γ which can be studied in the future polarized ep or e+e- colliders. Here we investigate the QCD twist-3 effects in g2γ to the leading order in QCD.

  6. Families of twisted tensor product codes

    OpenAIRE

    Giuzzi, Luca; Pepe, Valentina

    2011-01-01

    Using geometric properties of the variety $\\cV_{r,t}$, the image under the Grassmannian map of a Desarguesian $(t-1)$-spread of $\\PG(rt-1,q)$, we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We exactly determine the parameters of these codes and characterise the words of minimum weight.

  7. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  8. Self-Portraits with a Twist

    Science.gov (United States)

    DeMarco, Frederick

    2010-01-01

    This article describes an art activity on self-portraiture inspired by artist Tim Hawkinson. Hawkinson created a sculpture titled "Emoter" in which his face, moved by motors, twisted and contorted based on random signals from a TV. This art activity incorporates technology into the art room, brings the work of practicing artists alive, and is a…

  9. Stacking interactions and the twist of DNA

    DEFF Research Database (Denmark)

    Cooper, V.R.; Thonhauser, T.; Puzder, A.

    2008-01-01

    The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence-dependent ......The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence......-dependent Twists observed in high-resolution experiments. Furthermore, they demonstrate that additional stability gained by the presence of thymine is due to methyl interactions with neighboring bases, thus adding to our understanding of the mechanisms that contribute to the relative stability of DNA and RNA. Our...... mapping of the energy required to twist each of the 10 unique base pair steps should provide valuable information for future studies of nucleic acid stability and dynamics. The method introduced will enable the nonempirical theoretical study of significantly larger pieces of DNA or DNA/amino acid...

  10. Measurement Space Drill Support

    Science.gov (United States)

    2015-08-30

    calendar within the CoBP SharePoint portal but it is not updated or maintained. The center Ops are notified if they are hosting the event since a...Recommendation: It is recommended that the center operations office within TRAC maintain the SharePoint calendar with upcoming MS drills and notify other

  11. Developers set drilling pace

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.

    1981-01-01

    Thums four man-made islands each have a rock perimeter - 160,000 tons of granite - and an inner core of 900,000 yards of hydraulically placed dredged-sand fill. Because of the shallow depths of Long Beach Harbor, islands were constructed instead of installing conventional drilling and production platforms. The majority of drilling rigs and their equipment - casing racks and mud tanks - are mounted on steel rails and moved by hydraulic jacks at a rate of 3/4 ft/min. Each island has a central plant supplying mud and kill fluid services. Logging and perforating are performed by conventional land-based equipment. Many of THUMS' wells are drilled at exceedingly high angles to reach reserves beneath the harbor or Long Beach's downtown area. All but six or seven of the more than 800 wells are deviated, at angles ranging from 0 to 80/degree/, with an average deviation of 65 to 70/degree/. Each well has an S-curve well program and is assigned a 100-ft cylindrical diameter course. A simulated drilling program is fed into a computer to make sure the proposed course does not come within 25 ft of any other well bore. Production procedures are outlined along with a discussion of auxiliary equipment.

  12. Continental Scientific Drilling Program.

    Science.gov (United States)

    1979-01-01

    assemblage associated with a Jurassic subduction zone. In this formation, ophiolites, cherts, pillow basalts, glaucophane schists, graywacke, and melanges...RESOURCES 121 follow clear-cut safeguards to avoid any degradation of the geyser and hot spring systems. Any such drilling must also be totally

  13. Mars Science Laboratory Drill

    Science.gov (United States)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  14. Robot based deposition of WC-Co HVOF coatings on HSS cutting tools as a substitution for solid cemented carbide cutting tools

    Science.gov (United States)

    Tillmann, W.; Schaak, C.; Biermann, D.; Aßmuth, R.; Goeke, S.

    2017-03-01

    Cemented carbide (hard metal) cutting tools are the first choice to machine hard materials or to conduct high performance cutting processes. Main advantages of cemented carbide cutting tools are their high wear resistance (hardness) and good high temperature strength. In contrast, cemented carbide cutting tools are characterized by a low toughness and generate higher production costs, especially due to limited resources. Usually, cemented carbide cutting tools are produced by means of powder metallurgical processes. Compared to conventional manufacturing routes, these processes are more expensive and only a limited number of geometries can be realized. Furthermore, post-processing and preparing the cutting edges in order to achieve high performance tools is often required. In the present paper, an alternative method to substitute solid cemented carbide cutting tools is presented. Cutting tools made of conventional high speed steels (HSS) were coated with thick WC-Co (88/12) layers by means of thermal spraying (HVOF). The challenge is to obtain a dense, homogenous, and near-net-shape coating on the flanks and the cutting edge. For this purpose, different coating strategies were realized using an industrial robot. The coating properties were subsequently investigated. After this initial step, the surfaces of the cutting tools were ground and selected cutting edges were prepared by means of wet abrasive jet machining to achieve a smooth and round micro shape. Machining tests were conducted with these coated, ground and prepared cutting tools. The occurring wear phenomena were analyzed and compared to conventional HSS cutting tools. Overall, the results of the experiments proved that the coating withstands mechanical stresses during machining. In the conducted experiments, the coated cutting tools showed less wear than conventional HSS cutting tools. With respect to the initial wear resistance, additional benefits can be obtained by preparing the cutting edge by means

  15. Troponin I release after intravenous treatment with high furosemide doses plus hypertonic saline solution in decompensated heart failure trial (Tra-HSS-Fur).

    Science.gov (United States)

    Parrinello, Gaspare; Di Pasquale, Pietro; Torres, Daniele; Cardillo, Mauro; Schimmenti, Caterina; Lupo, Umberto; Iatrino, Rossella; Petrantoni, Rossella; Montaina, Carla; Giambanco, Salvatore; Paterna, Salvatore

    2012-09-01

    High values of cardiac troponin in acute decompensated congestive heart failure (ADHF) identify patients at higher risk and worsened prognosis. A cardiac troponin increase during therapy indicates the need for more appropriate intervention, aimed at compensating cardiac disease and effectively minimizing myocardial wall stress and subsequent cytolysis. This study evaluated the effects of an intravenous high dose of furosemide with (group A) or without small volume hypertonic saline solution (HSS) (group B) on myocardial cytolysis in patients with ADHF. A total of 248 consecutive patients with ADHF (148 men, mean age 74.9 ± 10.9 years) were randomly assigned to group A or B. Plasma levels of cardiac troponin-I, brain natriuretic peptide, glomerular filtration rate by Modification of Diet in Renal Disease formula, bioelectrical impedance analysis measurements, and delta pressure/delta time (dP/dt) rate were observed on admission and discharge for all patients. We observed a significant reduction of cardiac troponin in both groups and a significant improvement in renal function, hydration state, pulmonary capillary wedge pressure (P < .0001), end diastolic volume (P < .01), ejection fraction (P < .01), and dP/dt (P < .004) in group A. We also observed a significant reduction in body weight (64.4 vs 75.8 kg) (P < .001), cardiac troponin I (0.02 vs 0.31 ng/mL) (P < .0001) and brain natriuretic peptide (542 vs 1,284 pg/mL) (P < .0001), and hospitalization time (6.25 vs 10.2 days) (P < .0001) in the HSS group. These data demonstrate that intravenous high doses of furosemide do not increase myocardial injury and, in addition, when associated to HSS, significantly reduce cardiac troponin I release. This behavior is mirrored by the achievement of improved hemodynamic compensation at echocardiography and body hydration normalization. Copyright © 2012 Mosby, Inc. All rights reserved.

  16. Sensoriamento remoto hiperespectral: avalia??o do sensor R95/HSS para a espacializa??o e caracteriza??o de solos no munic?pio de Manaus

    OpenAIRE

    Correia, Manoel Ricardo Dourado

    2009-01-01

    Avaliou-se o sensor HSS (Hyperspectral Scanner System) para a caracteriza??o e espacializa??o de solos da cidade de Manaus - AM, com imagens de 3 metros de resolu??o espacial. As imagens (37 bandas entre 0,43 ? 2,37 mm) foram convertidas de valores de radi?ncia para reflect?ncia de superf?cie, usando um aplicativo (FLAASH) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes baseado no modelo de transfer?ncia radiativa MODTRAN 4. Para facilitar a an?lise das caracter?sticas espectra...

  17. Gel Evolution in Oil Based Drilling Fluids

    OpenAIRE

    Sandvold, Ida

    2012-01-01

    Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of new drilling techniques such as long deviated sections and drilling in ultra-deep waters, the standard of required performance of the drilling fluids continue to increase. Narrow pressure margins and low tolerance for barite sag requires accurate prediction of the gel evolution in drilling fluids. Increased knowledge of how dri...

  18. Method of drilling with magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.

    2003-01-01

    A method of drilling a bore hole into a stratum, wherein via the drill hole drilling fluid is introduced and fed to the drill head. In order to avoid dilution or leak-off of the drilling fluid the same is in accordance with the invention a magnetorheological drilling fluid, and when an undesirable

  19. Drilling subsurface wellbores with cutting structures

    Science.gov (United States)

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  20. Drilling- and withdrawing-related thermal changes during implant site osteotomies.

    Science.gov (United States)

    Strbac, Georg D; Giannis, Katharina; Unger, Ewald; Mittlböck, Martina; Vasak, Christoph; Watzek, Georg; Zechner, Werner

    2015-02-01

    Intrabony temperature increase is not only dependent on shearing energy and mechanical friction between bone and surgical drill but is also related to heat capacity and thermal conductivity of the surrounding bone and the applied surgical instrument. Thus time of occurrence of the highest temperature rise can be expected after the shearing process of the osteotomy, potentially affecting the process of osseointegration. The aim of this study was to evaluate temperature changes during the shearing and withdrawing processes during osteotomies. An overall 160 automated intermittent osteotomies (10/16 mm drilling depth) with 2 mm diameter twist drills and 3.5 mm diameter conical drills and different irrigation methods (without/external/internal/combined) were performed on standardized bone specimens. The drilling cycles were operated by a computer-controlled surgical system, while a linear motion potentiometer and multichannel temperature sensors in various intrabony levels ensured the real-time documentation of temperature changes during the shearing and withdrawing processes. The highest temperature changes were invariably recorded during the process of withdrawal. Significantly lower temperature changes (p irrigation method. During coolant supply, 2 mm diameter twist drills showed higher temperatures (10 mm, p irrigation (16 mm, p irrigation by the use of conical implant drills. Considering that heat generation during osteotomies is a multifactorial scenario, this study could demonstrate that the highest temperature rise during implant osteotomies occurs during the withdrawing process and that the time of occurrence is influenced by predominant factors such as osteotomy depth and mode of irrigation. © 2013 Wiley Periodicals, Inc.

  1. Twist-three analysis of photon electroproduction off the pion

    Science.gov (United States)

    Belitsky, A. V.; Müller, D.; Kirchner, A.; Schäfer, A.

    2001-12-01

    We study twist-three effects in spin, charge, and azimuthal asymmetries in deeply virtual Compton scattering on a spin-zero target. Contributions which are power suppressed in 1/Q generate a new azimuthal angle dependence of the cross section that is not present in the leading twist results. On the other hand, the leading twist terms are not modified by the twist-three contributions. They may get corrected at the twist-four level, however. In the Wandzura-Wilczek approximation these new terms in the Fourier expansion with respect to the azimuthal angle are entirely determined by the twist-two generalized parton distributions. We also discuss more general issues such as the general form of the angular dependence of the differential cross section, the validity of factorization at the twist-three level, and the relation of generalized parton distributions to spectral functions.

  2. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  3. A New Twisting Somersault: 513XD

    Science.gov (United States)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  4. General relativistic neutron stars with twisted magnetosphere

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2015-03-01

    Soft gamma-ray repeaters and anomalous X-ray pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here, we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided, to investigate the effects of different current distributions on the overall magnetic field structure.

  5. Optimization of Drilling Process Parameters Via Taguchi, TOPSIS and RSA Techniques

    Directory of Open Access Journals (Sweden)

    Shunmugesh K.

    2017-09-01

    Full Text Available Carbon Fiber Reinforced Polymer (CFRP is the most preferred composite material due to its high strength, high modulus, corrosion resistance and rigidity and which has wide applications in aerospace engineering, automobile sector, sports instrumentation, light trucks, airframes. This paper is an attempt to carry out drilling experiments as per Taguchi’s L27 (313 orthogonal array on CFRP under dry condition with three different drill bit type (HSS, TiAlN and TiN. In this research work Response Surface Analysis (RSA is used to correlate the effect of process parameters (cutting speed and feed rate on thrust force, torque, vibration and surface roughness. This paper also focuses on determining the optimum combination of input process parameter and the drill bit type that produces quality holes in CFRP composite laminate using Multi-objective Taguchi technique and TOPSIS. The percentage of contribution, influence of process parameters and adequacy of the second order regression model is carried out by analysis of variance (ANOVA. The results of experimental investigation demonstrates that feed rate is the pre-dominate factor which affects the response variables.

  6. Twisted Radiation by Electrons in Spiral Motion

    CERN Document Server

    Katoh, M; Mirian, N S; Konomi, T; Taira, Y; Kaneyasu, T; Hosaka, M; Yamamoto, N; Mochihashi, A; Takashima, Y; Kuroda, K; Miyamoto, A; Miyamoto, K; Sasaki, S

    2016-01-01

    We theoretically show that a single free electron in circular/spiral motion radiates an electromagnetic wave possessing helical phase structure and carrying orbital angular momentum. We experimentally demonstrate it by double-slit diffraction on radiation from relativistic electrons in spiral motion. We show that twisted photons should be created naturally by cyclotron/synchrotron radiations or Compton scatterings in various situations in astrophysics. We propose promising laboratory vortex photon sources in various wavelengths ranging from radio wave to gamma-rays.

  7. Drag Performance of Twist Morphing MAV Wing

    OpenAIRE

    Ismail N.I.; Zulkifli A.H.; Talib R.J.; Zaini H.; Yusoff H.

    2016-01-01

    Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analy...

  8. Twisted Cyclic Cohomology and Modular Fredholm Modules

    Directory of Open Access Journals (Sweden)

    Adam Rennie

    2013-07-01

    Full Text Available Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988, 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SU_q(2.

  9. Dark Matter in a twisted bottle

    OpenAIRE

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2012-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the dire...

  10. Theoretical investigation of twist boundaries in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Payne, M.C.; Bristowe, P.D.; Joannopoulos, J.D.

    1987-01-01

    Results of the first completely ab-initio investigation of the microscopic structure of a grain boundary in a semiconductor are presented. Using the molecular dynamics simulated annealing method for performing total energy calculations within the LDA and pseudopotential approximations, the ..sigma.. = 5(001) twist boundary in germanium is studied. A low energy structure is identified which exhibits a rigid body translation and a small contraction at the boundary.

  11. Drill bit assembly for releasably retaining a drill bit cutter

    Science.gov (United States)

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  12. Measurement-while-drilling (MWD) development for air drilling

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  13. Measurement-while-drilling (MWD) development for air drilling

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  14. Importance of drill string assembly swivel in horizontal drilling

    Directory of Open Access Journals (Sweden)

    Edmund Tasak

    2006-10-01

    Full Text Available A part of the drill string – the swivel (rotational connector – accomplishes an important task in the horizontal drilling. Its malfunctioning makes it impossible to draw in ( install large diameter and length pipelines. The causes of the connector break-down during the horizontal drilling are investigated in the paper. The drilling has been made for twenty inches gas pipeline installation during reaming operations. A trouble was encountered making good work conditions of a system consisting of the drilling machine drill string reamer swivel tube shield of Cardan joint and the gas pipeline 500 m long. In this case, the swivel brokes down and the planned operation was not finished. The assessment of improper drilling conditions, selection of operation system components, and drilling parameters and the insufficient technological supervising have created an excessive risk of failure. A proper application of technical analysis would considerably decrease the hazard of failure which cause large costs, delays and decrease of confidence to the drilling contractor and pipeline installation.

  15. Configurationally stable longitudinally twisted polycyclic aromatic compounds.

    Science.gov (United States)

    Walters, Robert S; Kraml, Christina M; Byrne, Neal; Ho, Douglas M; Qin, Qian; Coughlin, Frederick J; Bernhard, Stefan; Pascal, Robert A

    2008-12-03

    Two strategies for the synthesis of configurationally stable twisted polycyclic aromatic compounds (PACs) were pursued. The first approach employed dissymmetrically positioned 1-naphthyl substituents to bias the direction of twist in highly substituted PACs. 2,3-Bis(1-naphthyl)-1,4-diphenyltriphenylene (7) was prepared, and its meso cis-dinaphthyl and enantiomeric trans-dinaphthyl isomers were resolved by preparative supercritical fluid chromatography (SFC) on chiral supports. Similarly, several naphthyl-substituted derivatives of the more highly twisted 9,10,11,12,13,14-hexaphenylbenzo[b]triphenylene (2) were prepared. Of these, 10-(1-naphthyl)-9,11,12,14-tetraphenylbenzo[b]triphenylene (13) was resolved by SFC on a chiral support. The pure enantiomers of trans-7 showed moderately large specific rotations ([alpha]D(25) = -330 and +320 degrees), but the specific rotations for the enantiomers of 13 were unexpectedly small ([alpha]D(25) = -23 and +23 degrees). Computational studies suggest that the latter result is due to presence of a minor conformation of 13 possessing a larger rotation of opposite sign than the major conformation. Both 7 and 13 showed strong circular dichroism and moderately strong circularly polarized luminescence. A byproduct of these syntheses was 9,10,19,21-tetraphenyldiphenanthro[9,10-b:9,10-h]carbazole (15), a very crowded carbazole that exhibits an 81 degree end-to-end twist but is not resolvable. In the second approach, the large, twisted, polycyclic aromatic ligand 9,10,11,12,13,14-hexaphenylbenzo[h]naphtho[2,3-f]quinoline (21, an aza-2) was used to prepare the chiral, cyclometallated iridium(III) complex 4. The ligand 21 was prepared via an unusually stable benzannulated norbornadienone, for which the free energy of activation for decarbonylation was a remarkable 33.5 kcal/mol. The iridium complex 4 proved to be configurationally stable and resolvable by analytical HPLC on chiral supports, but the low solubility of 4 prevented its

  16. The Risk Cost Forecast in Drilling Engineering

    OpenAIRE

    Zhao Xiaofeng; Guan Zhichuan; Ke Ke; Zhang Xin; Wu Yanxian

    2014-01-01

    Drilling cost affects the investment benefits and program selection of drilling engineering directly. In the process of drilling, the accident time is about 3-8% of total drilling time, having a great influence on the total drilling cost. Based on analysis and adjustment of the traditional drilling engineering cost structure and the classification method, the concept of risk cost was introduced to drilling engineering cost analysis and researched the recognition and measurement of risk cost o...

  17. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    We consider rigid Calabi–Yau threefolds defined over Q and the question of whether they admit quadratic twists. We give a precise geometric definition of the notion of a quadratic twists in this setting. Every rigid Calabi–Yau threefold over Q is modular so there is attached to it a certain newform...... of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  18. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Jung-Hun Kim

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

  19. Twisted rudder for reducing fuel-oil consumption

    Directory of Open Access Journals (Sweden)

    Kim Jung-Hun

    2014-09-01

    Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed

  20. 30 CFR 33.34 - Drilling test.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drilling test. 33.34 Section 33.34 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.34 Drilling test. (a) A drilling test shall consist of drilling a set of 10 test holes, without...

  1. Machinability Study of Hybrid Nanoclay-Glass Fibre Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    P. Prabhu

    2013-01-01

    Full Text Available Glass fibre reinforced polyester composites (GRP and hybrid nanoclay and glass fibre reinforced polyester nanocomposites (CGRP are fabricated by vacuum assisted resin infusion technique. The optimum mechanical properties are obtained for CGRP with 3 wt.% nanoclay. Three types of drills (carbide twist drill D 5407060, HSS twist drill BS-328, and HSS end mill (4 flutes “N”-type end mill RH-helical flute of 6 mm diameters are used to drill holes on GRP and CGRP. Three different speeds (600, 852, and 1260 rpm and two different feeds (0.045, 0.1 mm/rev are selected as process parameters. The effect of process parameter on thrust force and delamination during drilling CGRP is analyzed for optimizing the machining parameters. The delamination factor is low for the optimum process parameter (feed = 0.1 mm/rev and speed 852 rpm. Microstructural analysis confirms that at higher feeds, delamination is low for CGRP drilled with carbide tools. In order to analyze the effect of nanoclay in CGRP on tool wear, 200 holes were drilled on CGRP samples with 3 wt.% nanoclay, and the tool wear is analyzed under optimized parametric condition. Tool wear is high in HSS twist drill compared with carbide drill. The presence of nanoclay also accelerates the tool wear.

  2. Analysis of Harmonic Coupling and Stability in Back-to-Back Converter Systems for Wind Turbines using Harmonic State Space (HSS)

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    points and harmonic coupling analysis. Hence, it is critically needed to develop the advanced converter model, which can include almost all the possibilities. This paper develops the advanced Back to Back (BtB) converter model for wind farm application by means of Harmonic State Space (HSS) modeling...... method. The modeling and analysis results are remarkable that this model can include non-linear component and also show different operating points and harmonic coupling point, where this means each wind power converter can show the different impedance characteristics. The developed model can easily......Understanding about harmonic propagation in wind turbine converter is fundamental to research the influence of these on a large network harmonic distortion. Therefore, the analysis of wind turbine converter harmonic spectrum as well as the influence of converter operating point into the network...

  3. Case drilling - an innovative approach to reducing drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Madell, G.; Tessari, R. M. [Tesco Corp., Calgary, AB (Canada); Warren, T. [Tesco Drilling Technology, Calgary, AB (Canada)

    1999-11-01

    Casing drilling is introduced as a new drilling technique that uses standard oil field casing to simultaneously drill and case the well. The technology includes both rig and downhole equipment, customized to function effectively as an integrated drilling system. This paper describes the testing program designed to identify and overcome technical challenges. Although not fully optimized, it appears that the system is functional. Test results indicate the need for improvements in the pump down cement float equipment and the tools and procedures for drilling up the cement plugs. The pump down latch and retrieval system also needs to be further developed and tested for high angle directional applications. Cost savings in the range of 10 to 15 per cent are expected for trouble-free wells. By eliminating the cost of unscheduled events encountered in troublesome wells, cost savings may reach as high as 30 per cent. 3 refs., 7 figs.

  4. Design and Exploitation Problems of Drill String in Directional Drilling

    Directory of Open Access Journals (Sweden)

    Bednarz Stanislaw

    2004-09-01

    Full Text Available Drill string design for directional drilling requires accounting for a number of factors. First, types and expected values of loads should be determined. Then, elements of the drill string should be so selected as to enable realization of the plan at specified loads. Some of additional factors, e. g. purchase, exploitation cost, geological conditions in the bore-hole, washing of the bore-hole, stability, trajectory, rig parameters, accuracy of gauges, pumps parameters remain in conflict. Drill pipes are made of rolled pipes, upset and welded with tool joints to 9,5 m long; the shorter ones can be made of hot forged rods. Exploitation requirements, being a result of practical experience supported by theoretical and laboratory analyses should be a part of syllabuses of technical staff educational programs. Apart from designing the string, it is also vital to lower the risk of a drilling failure. The significance of these aspects seems to be unquestionable.

  5. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics

    Science.gov (United States)

    Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang

    2017-06-01

    Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.

  6. Immune-Inflammatory and Metabolic Effects of High Dose Furosemide plus Hypertonic Saline Solution (HSS) Treatment in Cirrhotic Subjects with Refractory Ascites

    Science.gov (United States)

    Bellia, Chiara; Clemente, Giuseppe; Pecoraro, Rosaria; Maida, Carlo; Simonetta, Irene; Vassallo, Valerio; Di Bona, Danilo; Gulotta, Eliana; Ciaccio, Marcello; Pinto, Antonio

    2016-01-01

    Introduction Patients with chronic liver diseases are usually thin as a result of hypermetabolism and malnutrition expressed by reduced levels of leptin and impairment of other adyponectins such as visfatin. Aims We evaluated the metabolic and inflammatory effects of intravenous high-dose furosemide plus hypertonic saline solutions (HSS) compared with repeated paracentesis and a standard oral diuretic schedule, in patients with cirrhosis and refractory ascites. Methods 59 consecutive cirrhotic patients with refractory ascites unresponsive to outpatient treatment. Enrolled subjects were randomized to treatment with intravenous infusion of furosemide (125–250mg⁄bid) plus small volumes of HSS from the first day after admission until 3 days before discharge (Group A, n:38), or repeated paracentesis from the first day after admission until 3 days before discharge (Group B, n: 21). Plasma levels of ANP, BNP, Leptin, visfatin, IL-1β, TNF-a, IL-6 were measured before and after the two type of treatment. Results Subjects in group A were observed to have a significant reduction of serum levels of TNF-α, IL-1β, IL-6, ANP, BNP, and visfatin, thus regarding primary efficacy endpoints, in Group A vs. Group B we observed higher Δ-TNF-α, Δ-IL-1β, Δ-IL-6, Δ-ANP, Δ-BNP, Δ-visfatin, Δ-Leptin at discharge. Discussion Our findings underline the possible inflammatory and metabolic effect of saline overload correction in treatment of cirrhosis complications such as refractory ascites, suggesting a possible role of inflammatory and metabolic-nutritional variables as severity markers in these patients. PMID:27941973

  7. Immune-Inflammatory and Metabolic Effects of High Dose Furosemide plus Hypertonic Saline Solution (HSS Treatment in Cirrhotic Subjects with Refractory Ascites.

    Directory of Open Access Journals (Sweden)

    Antonino Tuttolomondo

    Full Text Available Patients with chronic liver diseases are usually thin as a result of hypermetabolism and malnutrition expressed by reduced levels of leptin and impairment of other adyponectins such as visfatin.We evaluated the metabolic and inflammatory effects of intravenous high-dose furosemide plus hypertonic saline solutions (HSS compared with repeated paracentesis and a standard oral diuretic schedule, in patients with cirrhosis and refractory ascites.59 consecutive cirrhotic patients with refractory ascites unresponsive to outpatient treatment. Enrolled subjects were randomized to treatment with intravenous infusion of furosemide (125-250mg⁄bid plus small volumes of HSS from the first day after admission until 3 days before discharge (Group A, n:38, or repeated paracentesis from the first day after admission until 3 days before discharge (Group B, n: 21. Plasma levels of ANP, BNP, Leptin, visfatin, IL-1β, TNF-a, IL-6 were measured before and after the two type of treatment.Subjects in group A were observed to have a significant reduction of serum levels of TNF-α, IL-1β, IL-6, ANP, BNP, and visfatin, thus regarding primary efficacy endpoints, in Group A vs. Group B we observed higher Δ-TNF-α, Δ-IL-1β, Δ-IL-6, Δ-ANP, Δ-BNP, Δ-visfatin, Δ-Leptin at discharge.Our findings underline the possible inflammatory and metabolic effect of saline overload correction in treatment of cirrhosis complications such as refractory ascites, suggesting a possible role of inflammatory and metabolic-nutritional variables as severity markers in these patients.

  8. Symmetries and Boundary Conditions with a Twist

    Science.gov (United States)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  9. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...

  10. Twist Defect in Chiral Photonic Structures

    Science.gov (United States)

    Kopp, Victor I.; Genack, Azriel Z.

    2002-06-01

    We demonstrate that twisting one part of a chiral photonic structure about its helical axis produces a single circularly polarized localized mode that gives rise to an anomalous crossover in propagation. Up to a crossover thickness, this defect results in a peak in transmission and exponential scaling of the linewidth for a circularly polarized wave with the same handedness as structure. Above the crossover, however, the linewidth saturates and the defect mode can be excited only by the oppositely polarized wave, resulting in a peak in reflection instead of transmission.

  11. Twisting Light by Nonlinear Photonic Crystals

    Science.gov (United States)

    Bloch, Noa Voloch; Shemer, Keren; Shapira, Asia; Shiloh, Roy; Juwiler, Irit; Arie, Ady

    2012-06-01

    We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a Gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex’s structure and polarization.

  12. How fast is a twisted photon?

    OpenAIRE

    Roger, Thomas; Lyons, Ashley; Westerberg, Niclas; Vezzoli, Stefano; Maitland, Calum; Leach, Jonathan; Padgett, Miles; Faccio, Daniele

    2017-01-01

    Recent measurements have highlighted that spatially shaped photons travel slower than c, the speed of monochromatic, plane waves in vacuum. Here we investigate the intrinsic delay introduced by `twisting' a photon, i.e. by introducing orbital angular momentum (OAM). In order to do this we use a Hong-Ou-Mandel interferometer to measure the change in delay of single photons when we introduce OAM on a ring-shaped beam that is imaged through a focusing telescope. Our findings show that when all o...

  13. Superlubricity in quasicrystalline twisted bilayer graphene

    Science.gov (United States)

    Koren, Elad; Duerig, Urs

    2016-05-01

    The unique atomic positions in quasicrystals lead to peculiar self-similarity and fractal-like structural morphology. Accordingly, many of the material properties are supposed to manifest exceptional characteristics. In this Rapid Communication, we explain through numerical simulations the fundamental and peculiar aspects of quasicrystals wearless friction manifested in a 30° twisted bilayer graphene system. In particular, the sliding force exhibits a fractal structure with distinct area correlations due to the natural mixture between both periodic and aperiodic lateral modulations. In addition, zero power scaling of the sliding force with respect to the contact area is demonstrated for a geometric sequence of dodecagonal elements.

  14. Twist-off purification of hair bundles.

    Science.gov (United States)

    Shin, Jung-Bum; Pagana, James; Gillespie, Peter G

    2009-01-01

    Purification of hair bundles from inner-ear organs allows biochemical analysis of bundle constituents, including proteins and lipids. We describe here the "twist-off" method of bundle isolation, where dissected inner-ear organs are embedded in agarose, then subjected to a mechanical disruption that shears off bundles and leaves them in agarose blocks. With care in the dissection and in clean-up of the isolated bundles, contamination from cell bodies can be kept to a minimum. Isolated bundles can be analyzed by a variety of techniques, including immunocytochemistry, SDS-PAGE, immunoblotting, and mass spectrometry.

  15. Excimer laser drilling of polymers

    Science.gov (United States)

    Chen, Yihong; Zheng, HongYu; Wong, Terence K. S.; Tam, Siu Chung

    1997-08-01

    Laser micro-drilling technology plays a more and more important role in industry, especially in the fabrication of multi-layer electronic packages. In such applications, non- metals are often used as insulators, in which via holes are formed to provide vertical interconnections for densely packed 3D wiring networks. Mechanical punch tools have been the primary means to form holes in ceramic sheets and in polymer boards since the 1970's. As the cost of fabricating punch heads increases drastically and the demand for quick turn around part build becomes more routine, flexible via forming technologies, such as laser drilling, have become more prevalent. In laser drilling, CO2, Nd:YAG, and excimer lasers are often used. Their drilling capabilities, drilling mechanisms, and hole qualities are different because of the different laser beam characteristics such as wavelength and beam energy distribution. In this paper, the mechanisms of laser drilling are briefly reviewed. The results of the experiments on excimer laser drilling of two types of polymer: polyimide and polyethylene terephthalate, are reported. It is found that the etch rate increases with increase of fluence, an the wall angle of drilled holes is dependent on the fluence. The material removal by a laser pulse is highly controllable. There exists an optimal fluence range to obtain clean and smooth edges of quality holes for a given material at a given laser wavelength.

  16. DRILL BITS FOR HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Paolo Macini

    1996-12-01

    Full Text Available This paper underlines the importance of the correct drill bit application in horizontal wells. Afler the analysis of the peculiarities of horizontal wells and drainholes drilling techniques, advantages and disadvantages of the application of both roller cone and fixed cutters drill bits have been discussed. Also, a review of the potential specific featuries useful for a correct drill bit selection in horizontal small diameter holes has been highlighted. Drill bits for these special applications, whose importance is quickly increasing nowadays, should be characterised by a design capable to deliver a good penetration rate low WOB, and, at the same time, be able to withstand high RPM without premature cutting structure failure and undergauge. Formation properties will also determine the cutting structure type and the eventual specific features for additional gauge and shoulder protection.

  17. Ultrasonic rotary-hammer drill

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  18. Computational design of an automotive twist beam

    Directory of Open Access Journals (Sweden)

    Benki Aalae

    2016-07-01

    Full Text Available In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke׳s law. Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI algorithm coupling with a radial basis function (RBF metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

  19. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  20. Simulations of twisted bilayer orthorhombic black phosphorus

    Science.gov (United States)

    Pan, Douxing; Wang, Tzu-Chiang; Xiao, Wende; Hu, Dongmei; Yao, Yugui

    2017-07-01

    We identified, by means of coincidence site lattice theory, an evaluative stacking phase with a wavelike Moiré pattern, denoted as 2 O -t α P , from all potentially twisted bilayer orthorhombic black phosphorus. Such a twisted stacking comes with a low formation energy of -162.8 meV , very close to existing AB stacking, according to first-principles calculations. Particularly, classic molecular dynamic simulations verified that the stacking can be directly obtained in an in situ cleavage. The stability of 2 O -t α P stacking can be directly attributed to the corrugated configuration of black phosphorus leading to the van der Waals constraining forces, where the top layer can get stuck to the bottom when one layer rotates in plane relative to the other by ˜70 .5∘ . Tribological analysis further revealed that the interlayer friction of 2 O -t α P stacking reaches up to 1.3 nN, playing a key role in the origin of 2 O -t α P .

  1. Twisted geometries, twistors and conformal transformations

    CERN Document Server

    Långvik, Miklos

    2016-01-01

    The twisted geometries of spin network states are described by simple twistors, isomorphic to null twistors with a time-like direction singled out. The isomorphism depends on the Immirzi parameter, and reduces to the identity when the parameter goes to infinity. Using this twistorial representation we study the action of the conformal group SU(2,2) on the classical phase space of loop quantum gravity, described by twisted geometry. The generators of translations and conformal boosts do not preserve the geometric structure, whereas the dilatation generator does. It corresponds to a 1-parameter family of embeddings of T*SL(2,C) in twistor space, and its action preserves the intrinsic geometry while changing the extrinsic one - that is the boosts among polyhedra. We discuss the implication of this action from a dynamical point of view, and compare it with a discretisation of the dilatation generator of the continuum phase space, given by the Lie derivative of the group character. At leading order in the continuu...

  2. Microgravity Drill and Anchor System

    Science.gov (United States)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  3. Heat transfer and fluid friction in bundles of twisted tubes

    Science.gov (United States)

    Dzyubenko, B. V.; Dreitser, G. A.

    1986-06-01

    The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.

  4. Design optimization of a twist compliant mechanism with nonlinear stiffness

    Science.gov (United States)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  5. Two new twisted helical nickel (II) and cobalt (III) octahedral ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 6. Two new twisted helical nickel(II) and cobalt(III) octahedral monomer complexes: Synthesis and structural characterization. Malay Dolai ... Keywords. Coordination chemistry; nickel(II); cobalt(III); Schiff base; twisted helicity; supramolecular interactions.

  6. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    width twisted tape inserts, ASME Transactions, Vol. 122, pp. 143-149. Naphon P., 2006. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, International communications in Heat and Mass Transfer, Vol. 33, pp. 166-175. Promvonge P. and Eiamsa-ard S., 2007. Heat transfer ...

  7. Beyond the classical Rayleigh limit with twisted light.

    Science.gov (United States)

    Tong, Zhisong; Korotkova, Olga

    2012-07-01

    It is shown that twisted stochastic light can serve as illumination that may produce images with a resolution overcoming the Rayleigh limit by an order of magnitude. This finding is illustrated for an isoplanatic axially symmetric system with low angular aperture and twisted scalar Gaussian Schell-model illumination.

  8. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening ...

    Indian Academy of Sciences (India)

    tribpo

    corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the ...

  9. Incompressible magnetohydrodynamic modes in the thin magnetically twisted flux tube

    Science.gov (United States)

    Cheremnykh, O. K.; Fedun, V.; Kryshtal, A. N.; Verth, G.

    2017-08-01

    Context. Observations have shown that twisted magnetic fields naturally occur, and indeed are omnipresent in the Sun's atmosphere. It is therefore of great theoretical interest in solar atmospheric waves research to investigate the types of magnetohydrodynamic (MHD) wave modes that can propagate along twisted magnetic flux tubes. Aims: Within the framework of ideal MHD, the main aim of this work is to investigate small amplitude incompressible wave modes of twisted magnetic flux tubes with m ≥ 1. The axial magnetic field strength inside and outside the tube will be allowed to vary, to ensure the results will not be restricted to only cold plasma equilibria conditions. Methods: The dispersion equation for these incompressible linear MHD wave modes was derived analytically by implementing the long wavelength approximation. Results: It is shown, in the long wavelength limit, that both the frequency and radial velocity profile of the m = 1 kink mode are completely unaffected by the choice of internal background magnetic twist. However, fluting modes with m ≥ 2 are sensitive to the particular radial profile of magnetic twist chosen. Furthermore, due to background twist, a low frequency cut-off is introduced for fluting modes that is not present for kink modes. From an observational point of view, although magnetic twist does not affect the propagation of long wavelength kink modes, for fluting modes it will either work for or against the propagation, depending on the direction of wave travel relative to the sign of the background twist.

  10. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    ... developed for friction factors and Nusselt numbers for a fully developed turbulent swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 107-118 ...

  11. Gas reservoir evaluation for underbalanced horizontal drilling

    National Research Council Canada - National Science Library

    Li Gao; Meng Ying-Feng; Wei Na; Xu Zhao-Yang; Li Hong-Tao; Xiao Gui-Lin; Zhang Yu-Rui

    2014-01-01

    .... Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling...

  12. Effect of Cutting Parameters on Thrust Force and Surface Roughness in Drilling of Al-2219/B4C/Gr Metal Matrix Composites

    Science.gov (United States)

    Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.

    2016-09-01

    In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.

  13. Untwisting twisted NJL2 kinks by a bare fermion mass

    Science.gov (United States)

    Thies, Michael

    2017-12-01

    Twisted kinks in the massless NJL2 model interpolate between two distinct vacua on the chiral circle. If one approaches the chiral limit from finite bare fermion masses m0, the vacuum is unique and twist cannot exist. This issue is studied analytically in the nonrelativistic limit, using a no-sea effective theory. We conclude that even in the massless limit, the interpretation of the twisted kink has to be revised. One has to attribute the fermion number of the valence state to the twisted kink. Fermion density is spread out over the whole space due to the massless pion field. The result can be pictured as a composite of a twisted kink (carrying energy, but no fermion number) and a partial winding of the chiral spiral (carrying fermion number, but no energy). This solves at the same time the puzzle of missing baryons with fermion number Nf

  14. Analysis list: Twist1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  15. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  16. Expression of EMT Markers SLUG and TWIST in Breast Cancer.

    Science.gov (United States)

    Grzegrzolka, Jedrzej; Biala, Martyna; Wojtyra, Patrycja; Kobierzycki, Christopher; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Piotrowska, Aleksandra; Rys, Janusz; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-07-01

    The epithelial-mesenchymal transition (EMT) has been observed in progression of in situ breast cancer to the invasive form and might be initiated by snail family zinc finger 2 (SLUG) and twist family bHLH transcription factor 1 (TWIST) protein overexpression. During this phenomenon, cells lose their epithelial phenotype and acquire mesenchymal features. The aim of the study was to examine the association of EMT markers SLUG and TWIST with clinicopathological data and the possibility of using these proteins as prognostic markers of breast cancer. Immunohistochemical analysis (IHC) of SLUG and TWIST expression was performed on archival paraffin samples of 19 cases with fibrocystic breast changes (control group), 148 cases of invasive ductal breast cancer (IDC) and 26 of invasive lobular breast cancer (ILC). Laser capture microdissection for isolation of cells from 17 frozen samples of IDC was employed and subsequently SLUG and TWIST mRNA expression in cancer and stromal cells was detected separately by real-time polymerase chain reaction. SLUG and TWIST expression in IDC was significant higher in stromal cells regardless of the method of quantification used (p<0.001 for SLUG mRNA, and p<0.0001 for SLUG IHC, TWIST IHC and TWIST mRNA expression). Positive correlation of SLUG and TWIST protein and mRNA expression was observed in stromal cells of IDC (r=0.347; p<0.0001 and r=0.704; p<0.01, respectively). Expression of TWIST protein in IDC was higher in cancer cells of cases with shorter event-free survival period, as well as in stromal cells of cases with shorter overall survival period (p<0.05 for both). Stromal cells could play a role in the regulation of EMT in breast cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Science.gov (United States)

    2010-09-09

    ... green tubes suitable for drill pipe), without regard to the specific chemistry of the steel (i.e... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173...

  18. Newest mobile drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The weighing half of what a standard jackknife rig with the same drilling capacities weights this rig cuts transportation costs while reducing transportation time. Also, rig-up and rig-down time is shortened half-a-day each way because of the light structure and the ability to hydraulically raise and lower the substructure and mast. It is powered by three Caterpillar 3412 diesel engines - 600 hp each at 1,800 rpm - delivering 1,500 hp to the drawworks through single-stage torque converters. Chain-type drawworks, set on the trailer flatbed next to the diesel engines instead of on the rig floor, consist of a 25-in. diam by 50-in.-long drum barrel, 50-in. diam by 12-in.-wide brakes, and 1/one quarter/-in. line, capable of a 75,000-lb single line pull. The mast - a 127-ft API-rated, vertical freestanding, telescoping type - is extended and telescoped in the horizontal position before being hydraulically raised. Gross nominal capacity of the mast is 1 million lb, with a rotary load of 715,000 lb and a setback load of 400,000 lb.

  19. A drilling rig tower

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A.A.; Barashkov, V.A.; Bulgakov, E.S.; Kuldoshin, I.P.; Lebedev, A.I.; Papin, N.M.; Rebrik, B.M.; Sirotkin, N.V.

    1981-05-23

    Presentation is made of a drilling rig tower, comprising a gantry, a support shaft with a bracing strut and drawings out, and turn buckles. In order to increase the reliability of the tower in operation, to decrease the over all dimensions in a transport position, and to decrease the amount of time taken to transfer the tower from an operational position into a transportable one, and vice versa, the tower is equipped with a rotary frame made in the form of a triangular prism, whose lateral edges are connected by hinges: the first one with the lower part of the support shaft, the second with the gantry, and the third one to the upper part of the support shaft by means of the drawings out. The large boundary of the rotary frame is connected by a hinge to the support shaft by means of a bracing strut, which is equipped with a slide block connected to it by a hinge, and the rotary frame has a guide for the slide block reinforced to it on the large boundary. Besides this, the lateral edge of the rotary frame is connected to the gantry by means of turn buckles.

  20. Chiral Response of Twisted Bilayer Graphene

    Science.gov (United States)

    Stauber, T.; Low, T.; Gómez-Santos, G.

    2018-01-01

    We present an effective (minimal) theory for chiral two-dimensional materials. These materials possess an electromagnetic coupling without exhibiting a topological gap. As an example, we study the response of doped twisted bilayers, unveiling unusual phenomena in the zero frequency limit. An in-plane magnetic field induces a huge paramagnetic response at the neutrality point and, upon doping, also gives rise to a substantial longitudinal Hall response. The system also accommodates nontrivial longitudinal plasmonic modes that are associated with a longitudinal magnetic moment, thus endowing them with a chiral character. Finally, we note that the optical activity can be considerably enhanced upon doping and our general approach would enable systematic exploration of 2D material heterostructures with optical activity.

  1. Unusual presentation of twisted ovarian cyst

    Directory of Open Access Journals (Sweden)

    Vineet V Mishra

    2016-01-01

    Full Text Available Ovarian torsion (also termed as adnexal torsion refers to partial or complete rotation of the ovary and a portion of fallopian tube along its supplying vascular pedicle. It occurs commonly in reproductive age group; more on the right side (60% and often presents with acute lower abdominal pain lasting for few hours and up to 24 h, accounting for 2.7% of acute gynecological conditions. It is one of the devastating conditions, hampering blood supply of ovary which may lead to total necrosis of ovarian tissue and complications, if not diagnosed and managed in time. Hence, we present a case on a twisted ovarian cyst in postmenopausal woman with unusual symptomatology leading to delayed diagnosis and loss of an ovary.

  2. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey

    2015-01-01

    nonce misuse resistance, such as POET. The algebraic structure of polynomial hashing has given rise to security concerns: At CRYPTO 2008, Handschuh and Preneel describe key recovery attacks, and at FSE 2013, Procter and Cid provide a comprehensive framework for forgery attacks. Both approaches rely...... heavily on the ability to construct forgery polynomials having disjoint sets of roots, with many roots (“weak keys”) each. Constructing such polynomials beyond naïve approaches is crucial for these attacks, but still an open problem. In this paper, we comprehensively address this issue. We propose to use...... twisted polynomials from Ore rings as forgery polynomials. We show how to construct sparse forgery polynomials with full control over the sets of roots. We also achieve complete and explicit disjoint coverage of the key space by these polynomials. We furthermore leverage this new construction...

  3. Twisted Black Hole Is Taub-NUT

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner -- the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry.

  4. Bioinspired twisted composites based on Bouligand structures

    Science.gov (United States)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  5. Drilling Damage in Composite Material

    Directory of Open Access Journals (Sweden)

    Luís Miguel P. Durão

    2014-05-01

    Full Text Available The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  6. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  7. Limit of crustal drilling depth

    Directory of Open Access Journals (Sweden)

    Y.S. Zhao

    2017-10-01

    Full Text Available Deep drilling is becoming the direct and the most efficient means in exploiting deep mineral resources, facilitating to understanding the earthquake mechanism and performing other scientific researches on the Earth's crust. In order to understand the limit of drilling depth in the Earth's crust, we first conducted tests on granite samples with respect to the borehole deformation and stability under high temperature and high pressure using the triaxial servo-controlled rock testing system. Then the critical temperature-pressure coupling conditions that result in borehole instability are derived. Finally, based on the testing results obtained and the requirements for the threshold values of borehole deformations during deep drilling, the limit of drilling depth in the Earth's crust is formulated with ground temperature.

  8. Horizontal drilling activity in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.

    1997-04-01

    An update of horizontal well drilling in Manitoba was provided. Manitoba`s productive formations are: (1) the Bakken Formation, (2) the Lodgepole Formation, (3) the Mission Canyon Formation, (4) the Amaranth Formation, and (5) the Melita Formation. A total of 28 exploratory wells and 29 development wells, including 11 horizontal wells were drilled in 1996. The 11 horizontal wells accounted for 30 per cent of the drilling meterage. The leading drillers for horizontal wells in Manitoba are Tundra Oil and Gas, Chevron, Anderson and HCO. Production from horizontal wells in 1996 totaled 310 cubic meter per day. To date, no horizontal wells have been drilled in the Bakken Formation. The least successful horizontal well application has been in the Lodgepole Formation. A summary of horizontal well production was provided for each Formation. 4 tabs., 10 figs.

  9. Drilling Damage in Composite Material.

    Science.gov (United States)

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  10. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  11. Drilling Damage in Composite Material

    Science.gov (United States)

    Durão, Luís Miguel P.; Tavares, João Manuel R.S.; de Albuquerque, Victor Hugo C.; Marques, Jorge Filipe S.; Andrade, Oscar N.G.

    2014-01-01

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability. PMID:28788650

  12. Twist-2 controls myeloid lineage development and function.

    Directory of Open Access Journals (Sweden)

    Andrew B Sharabi

    2008-12-01

    Full Text Available Basic helix-loop-helix (bHLH transcription factors play critical roles in lymphoid and erythroid development; however, little is known about their role in myeloid lineage development. In this study, we identify the bHLH transcription factor Twist-2 as a key negative regulator of myeloid lineage development, as manifested by marked increases in mature myeloid populations of macrophages, neutrophils, and basophils in Twist-2-deficient mice. Mechanistic studies demonstrate that Twist-2 inhibits the proliferation as well as differentiation of granulocyte macrophage progenitors (GMP by interacting with and inhibiting the transcription factors Runx1 and C/EBPalpha. Moreover, Twist-2 was found to have a contrasting effect on cytokine production: inhibiting the production of proinflammatory cytokines such as interleukin-12 (IL-12 and interferon-gamma (IFNgamma while promoting the regulatory cytokine IL-10 by myeloid cells. The data from further analyses suggest that Twist-2 activates the transcription factor c-Maf, leading to IL-10 expression. In addition, Twist-2 was found to be essential for endotoxin tolerance. Thus, this study reveals the critical role of Twist-2 in regulating the development of myeloid lineages, as well as the function and inflammatory responses of mature myeloid cells.

  13. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  14. 30 CFR 77.1009 - Drill; operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill; operation. 77.1009 Section 77.1009... Control § 77.1009 Drill; operation. (a) While in operation drills shall be attended at all times. (b) Men... while the drill bit is in operation unless a safe platform is provided and safety belts are used. (d...

  15. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings..., 2009, by VAM Drilling USA Inc., Houston, TX; Rotary Drilling Tools, Beasley, TX; Texas Steel...

  16. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    Science.gov (United States)

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Tool Wear in Friction Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  18. Theoretical study of the double Compton effect with twisted photons

    Science.gov (United States)

    Sherwin, J. A.

    2017-05-01

    Double Compton scattering of high-energy twisted photons is investigated within the framework of relativistic quantum electrodynamics. We investigate the dependence of the angular distributions of the scattered photons on the parameters of the incident photon beam, such as momentum cone opening angle and projection of orbital angular momentum. Numerical calculations of the angular distributions of the scattered photons are presented for incoming twisted photons and compared to the standard case of incident plane-wave photons. The dependence of the angular distributions of the double-Compton-scattered photons for initially twisted photons prepared in a superposition of two vortex states is also presented.

  19. Topological duality twist and brane instantons in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova andINFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)

    2014-06-30

    A variant of the topological twist, involving SL(2,ℤ) dualities and hence named topological duality twist, is introduced and explicitly applied to describe a U(1) N=4 super Yang-Mills theory on a Kähler space with holomorphically space-dependent coupling. Three-dimensional duality walls and two-dimensional chiral theories naturally enter the formulation of the duality twisted theory. Appropriately generalized, this theory is relevant for the study of Euclidean D3-brane instantons in F-theory compactifications. Some of its properties and implications are discussed.

  20. The Heterodimeric TWIST1-E12 Complex Drives the Oncogenic Potential of TWIST1 in Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Laurent Jacqueroud

    2016-05-01

    Full Text Available The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells. Interestingly, cancer cells recurrently remain dependent on TWIST1 for their survival and/or proliferation, making TWIST1 their Achilles’ heel. TWIST1 has been reported to form either homodimeric or heterodimeric complexes mainly in association with the E bHLH class I proteins. These complexes display distinct, sometimes even antagonistic, functions during development and unequal prometastatic functions in prostate cancer cells. Using a tethered dimer strategy, we successively assessed the ability of TWIST1 dimers to cooperate with an activated version of RAS in human mammary epithelial cell transformation, to provide mice with the ability to spontaneously develop breast tumors, and lastly to maintain a senescence program at a latent state in several breast cancer cell lines. We demonstrate that the TWIST1-E12 complex, unlike the homodimer, is an oncogenic form of TWIST1 in mammary epithelial cells and that efficient binding of both partners is a prerequisite for its activity. The detection of the heterodimer in human premalignant lesions by a proximity ligation assay, at a stage preceding the initiation of the metastatic cascade, is coherent with such an oncogenic function. TWIST1-E protein heterodimeric complexes may thus constitute the main active forms of TWIST1 with regard to senescence inhibition over the time course of breast tumorigenesis.

  1. Polanski lavastas filmi "Oliver Twist" oma lastele / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm "Oliver Twist" Charles Dickensi romaani ainetel esilinastus Prahas, kus toimusid ka filmivõtted. Tšehhi, Suurbritannia, Prantsusmaa ja Itaalia koostöös valminud filmi lavastas Roman Polanski

  2. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  3. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  4. DNA twist stability changes with magnesium(2+) concentration

    CERN Document Server

    Broekmans, Onno D; Stephens, Greg J; Wuite, Gijs J L

    2014-01-01

    For an understanding of DNA elasticity at high mechanical loads (F > 30 pN), its helical nature needs to be taken into account, in the form of coupling between the twist and stretch degrees of freedom. The prevailing model for DNA elasticity, the worm-like chain, was previously extended to include this twist-stretch coupling, giving rise to the twistable worm-like chain. Motivated by DNA's charged nature, and the known effects of ionic charges on the molecule's persistence length and stretch modulus, we explored the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach for force-extension data, we find that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation.

  5. Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2005-01-01

    Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005

  6. Higher-twist dynamics in large transverse momentum hadron production.

    Science.gov (United States)

    Arleo, François; Brodsky, Stanley J; Hwang, Dae Sung; Sickles, Anne M

    2010-08-06

    A scaling law analysis of the world data on inclusive large-p(⊥) hadron production in hadronic collisions is carried out. Significant deviations from leading-twist perturbative QCD predictions at next-to-leading order are observed, particularly at high x(⊥)=2p(⊥)/sqrt[s]. In contrast, the production of prompt photons and jets exhibits near-conformal scaling behavior in agreement with leading-twist expectations. These results indicate a non-negligible contribution of higher-twist processes in large-p(⊥) hadron production, where the hadron is produced directly in the hard subprocess, rather than by quark and gluon fragmentation. Predictions for the scaling exponents at RHIC and LHC are given. Triggering on isolated large-p(⊥) hadron production will enhance the higher-twist processes. We also note that the use of isolated hadrons as a signal for new physics can be affected by the presence of direct hadron production.

  7. Twist-3 effects for polarized virtual photon structure function g2γ

    Science.gov (United States)

    Sasaki, K.

    2003-03-01

    We investigate twist-3 effects in the polarized virtual photon. The structure function g2γ, which exists only for the virtual photon target and can be measured in future polarized e+e- collider experiments, receives both twist-2 and twist-3 contributions. The twist-3 part is analyzed in pure QED interaction as well as in LO QCD. We find the twist-3 contribution is appreciable for the photon in contrast to the nucleon case.

  8. Off-axis excitation of hydrogenlike atoms by twisted photons

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Mukherjee, Asmita

    2013-09-01

    We show that the twisted-photon states, or photon states with large (>ℏ) angular momentum projection (mγ) in the direction of motion, can photoexcite atomic levels for a hydrogenlike atom that are novel and distinct and are not restricted by mγ, when the symmetry axis of the twisted-photon beam does not coincide with the center of the atomic target. Selection rules are given and interesting implications and observables for the above process are pointed out.

  9. The Hardy inequality and the heat equation in twisted tubes

    OpenAIRE

    Krejčiřík, David; Zuazua, Enrique

    2010-01-01

    We show that a twist of a three-dimensional tube of uniform cross-section yields an improved decay rate for the heat semigroup associated with the Dirichlet Laplacian in the tube. The proof employs Hardy inequalities for the Dirichlet Laplacian in twisted tubes and the method of self-similar variables and weighted Sobolev spaces for the heat equation. © 2010 Elsevier Masson SAS.

  10. Finite-dimensional representations of twisted hyper loop algebras

    OpenAIRE

    Bianchi, Angelo; Moura, Adriano

    2012-01-01

    We investigate the category of finite-dimensional representations of twisted hyper loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twi...

  11. Magnetic cloud fit by uniform-twist toroidal flux ropes

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2017-12-01

    Context. Detailed studies of magnetic cloud observations in the solar wind in recent years indicate that magnetic clouds are interplanetary flux ropes with a low twist. Commonly, their magnetic fields are fit by the axially symmetric linear force-free field in a cylinder (Lundquist field), which in contrast has a strong and increasing twist toward the boundary of the flux rope. Therefore another field, the axially symmetric uniform-twist force-free field in a cylinder (Gold-Hoyle field) has become employed to analyze magnetic clouds. Aims: Magnetic clouds are bent, and for some observations, a toroidal rather than a cylindrical flux rope is needed for a local approximation of the cloud fields. We therefore try to derive an axially symmetric uniform-twist force-free field in a toroid, either exactly, or approximately, and to compare it with observations. Methods: Equations following from the conditions of solenoidality and force-freeness in toroidally curved cylindrical coordinates were solved analytically. The magnetic field and velocity observations of a magnetic cloud were compared with solutions obtained using a nonlinear least-squares method. Results: Three solutions of (nearly) uniform-twist magnetic fields in a toroid were obtained. All are exactly solenoidal, and in the limit of high aspect ratios, they tend to the Gold-Hoyle field. The first solution has an exactly uniform twist, the other two solutions have a nearly uniform twist and approximate force-free fields. The analysis of a magnetic cloud observation showed that these fields may fit the observed field equally well as the already known approximately linear force-free (Miller-Turner) field, but it also revealed that the geometric parameters of the toroid might not be reliably determined from fits, when (nearly) uniform-twist model fields are used. Sets of parameters largely differing in the size of the toroid and its aspect ratio yield fits of a comparable quality.

  12. Development drilling paces oilfield activity

    Energy Technology Data Exchange (ETDEWEB)

    McNally, R.

    1978-01-01

    A graph represents the oil, gas, and dry development well completion trends during the past 12 yr in the U.S. Development drilling these days is setting a pace that has rig employment in the U.S. at a modern high, with gains at times exceeding activity during comparable periods a year earlier by more than 30%. Increased development drilling, of course, reflects economic incentives of increased prices for new oil and higher prices available on the intrastate gas market. It also reflects the confusion and apprehension caused by government activity (or lack of activity) during the past year, in the U.S. at least. For example, exploratory drilling has not kept pace with overall increases in well completions during the years following the 1973 Arab oil embargo. Since 1971, completion of development wells has increased by 61% compared with an overall completion increase of 53%. During the first 3 quarters of 1977, development drilling accounted for 78% of the 31,900 wells completed in the U.S. This was an improvement of 2 percentage points over the similar period in 1976. Development drilling footage exceeded 104,000,000 during the first 3 quarters of 1977, an 8% gain over the previous year. Overall footage was up 7%, to almost 146,000,000.

  13. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  14. The Application of Biodiesel as an Environmental Friendly Drilling Fluid to Drill Oil and Gas Wells

    OpenAIRE

    Ismail, Abdul Razak

    2014-01-01

    The oil and gas industries need to use oil based drilling fluids to drill troublesome rock layers such as sensitive shale formation or to drill very deep oil and gas wells. However, using oil based drilling fluids will create pollution and therefore, environmental regulations on discharge of such drilling fluids have become more stringent because it will give tremendous impacts on the marine life and ecosystem. This research is conducted to formulate a new environmental friendly drilling flui...

  15. Twisting short dsDNA with applied tension

    Science.gov (United States)

    Zoli, Marco

    2018-02-01

    The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.

  16. A new twist on the geometry of gravitational plane waves

    Science.gov (United States)

    Shore, Graham M.

    2017-09-01

    The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The rôle of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsváth-Schücking, `anti-Mach' plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the rôle of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.

  17. Twisted Single Crystals in Nonbiological Main-Chain Chiral Polyesters

    Science.gov (United States)

    Cheng, S.; Li, Y.; Bai, F.; Harris, F.; Yan, D.; Chen, L.

    1998-03-01

    A series of chiral Poly(R)-(-)-4-(w)-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1- nonyloxy-4-biphenyl carboxylic acid has been synthesized. Singe crystals were grown from the melt. Two very distinct morphological habits can be observed: an elongated flat-on morphology and a helical twist along its long axis. The twisted single crystals show a unique left-handed helical habit with typical pitch length of about 1-2 micrometers. It is expected that this twisted morphology results from a slight deviation of a 21 symmetry in chain packing. In the past, helical morphologies were report in two classes of materials: liquid crystals from the melt and biopolymers in solutions. Liquid crystals only show this kind of morphology when their order is lower than smectic F or I phase, while biopolmers, such as bombyx mori silk fibroin, exhibit similar morphology from solutions due to the existence of the twisted b-sheets. In this case, however, the twisted morphology was identified as crystals via ED and WAXD experiments. Furthermore, neither H-bonding nor b-sheet structure exists in the chemical structure. It is believed that our observation in the twisted single crystals from the melt may represent a class of phases which has not been fully classified.

  18. Review of casing while drilling technology

    Directory of Open Access Journals (Sweden)

    Pavković Bojan

    2016-01-01

    Full Text Available Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT but also leads to well control difficulties including wellbore instability and lost circulation. All this has led Oil and Gas industry, as well as any other engineering industry, to seek for new ways and methods in order to reduce these problems. Thanks to the advances in technical solutions and constant improvements of conventional drilling methods, a new drilling method - casing while drilling has been developed. Casing Drilling encompasses the process of simultaneously drilling and casing a well, using the active casing and thus optimizes the production. This paper presents a review of casing while drilling method (CwD and its practical usage in drilling wells. The comparison of conventional drilling method and casing while drilling is also presented. The CwD method achieves significantly better results than conventional drilling method.

  19. Twisted photons: new classical and quantum applications

    Science.gov (United States)

    Torres, Juan P.; Molina-Terriza, Gabriel; Torner, Lluis

    2005-09-01

    Twisted light, or light with orbital angular momentum (OAM), plays an emerging role in both classical and quantum science, with important applications in areas as diverse as biophotonics, micromachines, spintronics, or quantum information. It offers fascinating opportunities for exploring new fundamental ideas in physics, as well as for being used as a tool for practical applications. One important point is to determine how to generate single photons, and two-photon states, with an appropriate OAM content. Here we describe the paraxial orbital angular momentum of entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) in different non-collinear geometries. These geometries introduce a variety of new features. In particular, we find the OAM of entangled pairs generated in purely transverse-emitting configurations, where the entangled photons counter-propagate perpendicularly to the direction of propagation of the pump beam. The spatial walk-off of all interacting waves in the parametric process also determines the OAM content of the down-converted photons, and here its influence is also revealed.

  20. Dark Matter in a twisted bottle

    Science.gov (United States)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  1. Dark Matter in a twisted bottle

    CERN Document Server

    Arbey, Alexandre; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the ...

  2. Resonant Raman spectroscopy of twisted multilayer graphene

    Science.gov (United States)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  3. Quantitative Analysis of Force and Torque in Bone Drilling

    OpenAIRE

    Alam, K; Muhammad, R.; A. Shamsuzzoha; A. AlYahmadi; Ahmed, N.

    2017-01-01

    Bone drilling is an important and the most frequent operation in orthopaedics and other bone surgical procedures. Prediction and control of drilling force and torque are critical to safe and efficient surgeries. This paper studies the drilling force and torque arising from bone drilling process. Drilling parameters such as drilling speed, feed rate, drill size and drill condition (sharp and worn) were changed to measure the force and torque in the direction of the drill penetration. Experimen...

  4. Slimhole drilling for geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States). Geothermal Research Dept.

    1994-07-01

    Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration, made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research. Sandia negotiated an agreement with Far West Capital, which operates the Steamboat Hills geothermal field, to drill and test an exploratory slimhole on their lease. The principal objectives for the slimhole were development of slimhole testing methods, comparison of slimhole data with that from adjacent production-size wells, and definition of possible higher-temperature production zones lying deeper than the existing wells.

  5. Near-Term Developments in Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, James C.

    1989-03-21

    The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

  6. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer.

    Science.gov (United States)

    Galván, José A; Helbling, Melina; Koelzer, Viktor H; Tschan, Mario P; Berger, Martin D; Hädrich, Marion; Schnüriger, Beat; Karamitopoulou, Eva; Dawson, Heather; Inderbitzin, Daniel; Lugli, Alessandro; Zlobec, Inti

    2015-01-20

    Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.

  7. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  8. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  9. Drilling informatics: data-driven challenges of scientific drilling

    Science.gov (United States)

    Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny

    2017-04-01

    The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.

  10. Drilling systems for extraterrestrial subsurface exploration.

    Science.gov (United States)

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  11. An unexpected twist in viral capsid maturation

    Energy Technology Data Exchange (ETDEWEB)

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.; (Pitt); (Scripps); (UCSD)

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  12. An Unexpected Twist in Viral Capsid Maturation

    Science.gov (United States)

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-01-01

    Lambda-like dsDNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm. of pressure during genome packaging1. The extensive integration between subunits in capsids is unlikely to form in a single assembly step, therefore requiring formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Though various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage that undergoes large scale conformational changes. We present a procapsid x-ray structure at 3.65Å resolution, termed Prohead II, of the lambda like bacteriophage HK97, whose mature capsid structure was previously solved to 3.44 Å2. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and Hydrogen/Deuterium exchange data presented here demonstrates that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and β-sheet regions. We have also discovered conserved subunit interactions at each 3-fold of the virus capsid, from which capsid subunits maintain their integrity during refolding, facilitating the rotational and translational motions of maturation. Calormetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90KJ/mol of energy3. We propose the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process likely present in many ds

  13. Geothermal well drilling manual at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez P., A.; Flores S., M.

    1982-08-10

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimize hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.

  14. MELBORP (Math Drill and Practice).

    Science.gov (United States)

    Bardenstein, Linda

    1982-01-01

    MELBORP, a microcomputer software package designed to provide math drill and practice, allows hearing impaired students to practice on their own, compete against others, or compete against the computer. Teachers can specify objectives to be practiced and can identify student progress and scores. (CL)

  15. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  16. Review of casing while drilling technology

    OpenAIRE

    Pavković Bojan; Bizjak Renato; Petrović Bojan

    2016-01-01

    Conventional drilling methods have been plagued with huge operational and financial challenges, such as cost of purchasing, inspecting, handling, transporting the drill equipment and most importantly, tripping in-and-out of the drill string whenever the Bottom Hole Assembly (BHA) needs a replacement, needs of wiper trip or when total depth is reached. The tripping in-and-out of the drill string not only contributes to Non Productive Time (NPT) but also leads to well control difficulties inclu...

  17. Drill cuttings mount formation study

    Science.gov (United States)

    Teh, Su Yean; Koh, Hock Lye

    2014-07-01

    Oil, Gas and Energy sector has been identified as an essential driving force in the Malaysian Economic Transformation Programs (ETP). Recently confirmed discovery of many offshore oil and gas deposits in Malaysian waters has ignited new confidence in this sector. However, this has also spurred intense interest on safeguarding the health and environment of coastal waters in Malaysia from adverse impact resulting from offshore oil and gas production operation. Offshore discharge of spent drilling mud and rock cuttings is the least expensive and simplest option to dispose of large volumes of drilling wastes. But this onsite offshore disposal may have adverse environmental impacts on the water column and the seabed. It may also pose occupational health hazards to the workers living in the offshore platforms. It is therefore important to model the transport and deposition of drilling mud and rock cuttings in the sea to enable proper assessment of their adverse impacts on the environment and the workers. Further, accumulation of drill particles on the seabed may impede proper operation of pipelines on the seabed. In this paper, we present an in-house application model TUNA-PT developed to cater to local oil and gas industry needs to simulate the dispersion and mount formation of drill cuttings by offshore oil and gas exploration and production platforms. Using available data on Malaysian coastal waters, simulation analyses project a pile formation on the seabed with a maximum height of about 1 m and pile radius of around 30 to 50 m. Simulated pile heights are not sensitive to the heights of release of the cuttings as the sensitivity has been mitigated by the depth of water.

  18. Microhole Drilling Tractor Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a

  19. Multiple Twisted q-Euler Numbers and Polynomials Associated with p-Adic q-Integrals

    Directory of Open Access Journals (Sweden)

    Lee-Chae Jang

    2008-04-01

    Full Text Available By using p-adic q-integrals on ℤp, we define multiple twisted q-Euler numbers and polynomials. We also find Witt's type formula for multiple twisted q-Euler numbers and discuss some characterizations of multiple twisted q-Euler Zeta functions. In particular, we construct multiple twisted Barnes' type q-Euler polynomials and multiple twisted Barnes' type q-Euler Zeta functions. Finally, we define multiple twisted Dirichlet's type q-Euler numbers and polynomials, and give Witt's type formula for them.

  20. Reagent for treatment of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Seryakov, A.S.; Balitskaya, Z.A.; Bereshchaka, I.G.; Khariv, I.Yu.

    1979-10-05

    The use of arabinogalactan as a reagent for treatment of drilling fluids, useful for drilling footage in wells, improves the quality of the fluids, reduces their cost, allows starch to be replaced, and improves the performance in drilling footage in wells.

  1. 30 CFR 250.1605 - Drilling requirements.

    Science.gov (United States)

    2010-07-01

    ... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1605 Drilling requirements. (a) Lessees of OCS sulphur leases shall conduct drilling operations in accordance with §§ 250.1605 through 250... conditions for the proposed season and location of operations. (2) Prior to commencing operation, drilling...

  2. Atomic form factor for twisted vortex photons interacting with atoms

    Science.gov (United States)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  3. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  4. Comments on twisted indices in 3d supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Simons Center for Geometry and PhysicsState University of New York, Stony Brook, NY 11794 (United States); Kim, Heeyeon [Perimeter Institute for Theoretical Physics31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada)

    2016-08-09

    We study three-dimensional N=2 supersymmetric gauge theories on Σ{sub g}×S{sup 1} with a topological twist along Σ{sub g}, a genus-g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S{sup 1} can be computed exactly by supersymmetric localization. For g=1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ℝ{sup 2}×S{sup 1}. This also provides a powerful and simple tool to study 3d N=2 Seiberg dualities. Finally, we study A- and B-twisted indices for N=4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S{sup 2}×S{sup 1} twisted indices and the Hilbert series of N=4 moduli spaces.

  5. The epsilon regime with twisted mass Wilson fermions

    CERN Document Server

    Bar, Oliver; Shindler, Andrea

    2010-01-01

    We investigate the leading lattice spacing effects in mesonic two-point correlators computed with twisted mass Wilson fermions in the epsilon-regime. By generalizing the procedure already introduced for the untwisted Wilson chiral effective theory, we extend the continuum chiral epsilon expansion to twisted mass WChPT. We define different regimes, depending on the relative power counting for the quark masses and the lattice spacing. We explicitly compute, for arbitrary twist angle, the leading O(a^2) corrections appearing at NLO in the so-called GSM^* regime. As in untwisted WChPT, we find that in this situation the impact of explicit chiral symmetry breaking due to lattice artefacts is strongly suppressed. Of particular interest is the case of maximal twist, which corresponds to the setup usually adopted in lattice simulations with twisted mass Wilson fermions. The formulae we obtain can be matched to lattice data to extract physical low energy couplings, and to estimate systematic uncertainties coming from ...

  6. Higher twist effects in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pirnay, Bjoern Michael

    2016-08-01

    In this work we explore the effects of higher twist power corrections on the deeply virtual Compton scattering process. The calculation of the helicity amplitudes for all possible polarization combinations is performed within the framework of QCD operator product expansion. As a result the known accuracy of the amplitudes is improved to include the (kinematic) twist-4 contributions. For the most part the analysis focuses on spin-1/2 targets, the answers for scalar targets conveniently emerge as a byproduct. We investigate the analytical structure of these corrections and prove consistency with QCD factorization. We give an estimation of the numerical impact of the sub-leading twist contributions for proton targets with the help of a phenomenological model for the nonperturbative proton generalized parton distributions. We compare different twist approximations and relate predictions for physical observables to experiments performed by the Hall A, CLAS, HERMES, H1 and ZEUS collaborations. The estimate also includes a numerical study for planned COMPASS-II runs. Throughout the analysis special emphasis is put on the convention dependence induced by finite twist truncation of scattering amplitudes.

  7. Development of vertical drilling apparatus (Terra-Drill); Entwicklung eines Vertikal-Bohrgeraets (Terra-Drill) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D.

    2009-05-15

    This well-illustrated final report for the Swiss Federal Office of Energy (SFOE) reports on the development of a vertical drilling apparatus named Terra-Drill. The various stages of the development of the apparatus, which is based on earlier designs, is discussed. New norms issued in Germany for the size of boreholes for buried vertical heat-exchangers and the appropriate linings to be used are discussed. The new Terra Drill 4407 V drilling apparatus and its testing are discussed. The drill is quoted as being particularly suitable for cramped locations. Technical details are presented and a comprehensive collection of photographs is included. Various preliminary reports and development documentation are included.

  8. REDUCTION OF AN ADVERSE IMPACT DURING WELL DRILLING BY MEANS OF DRILLING WASTE USAGE

    Directory of Open Access Journals (Sweden)

    Vladimir Sergeevich Kuznetsov

    2017-03-01

    Full Text Available The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling waste water.

  9. Automatic real time drilling support on Ekofisk utilizing eDrilling

    Energy Technology Data Exchange (ETDEWEB)

    Rommetveit, Rolv; Bjorkevoll, Knut S.; Halsey, George W.; Kluge, Roald; Molde, Dag Ove; Odegard, Sven Inge [SINTEF Petroleum Research, Trondheim (Norway); Herbert, Mike [HITEC Products Drilling, Stavanger (Norway); ConocoPhillips Norge, Stavanger (Norway)

    2008-07-01

    eDrilling is a new and innovative system for real time drilling simulation, 3D visualization and control from a remote drilling expert centre. The concept uses all available real time drilling data (surface and downhole) in combination with real time modelling to monitor and optimize the drilling process. This information is used to visualize the wellbore in 3D in real time. eDrilling has been implemented in an Onshore Drilling Center in Norway. The system is composed of the following elements, some of which are unique and ground-breaking: an advanced and fast Integrated Drilling Simulator which is capable to model the different drilling sub-processes dynamically, and also the interaction between these sub-processes in real time; automatic quality check and corrections of drilling data; making them suitable for processing by computer models; real time supervision methodology for the drilling process using time based drilling data as well as drilling models / the integrated drilling simulator; methodology for diagnosis of the drilling state and conditions. This is obtained from comparing model predictions with measured data. Advisory technology for more optimal drilling. A Virtual Wellbore, with advanced visualization of the downhole process. Dat low and computer infrastructure. e-Drilling has been implemented in an Onshore Drilling Center on Ekofisk in Norway. The system is being used on drilling operations, and experiences from its use are presented. The supervision and diagnosis functionalities have been useful in particular, as the system has given early warnings on ECD and friction related problems. This paper will present the eDrilling system as well as experiences from its use. (author)

  10. The use of alternative materials for drill pipe to extend drilling reach in shallow reservoirs

    OpenAIRE

    Grindhaug, Erling

    2012-01-01

    Master's thesis in Petroleum engineering One of the limiting factors for extended reach and horizontal drilling is high torque and drag values. One way to reduce torque & drag is to reduce the weight of the drill pipe by exchanging the standard steel with other materials that weigh less. This technology has potential to extend drilling length and/or to be cost-effective in drilling some wells. This thesis focuses on whether alternative materials for the drill pipe could be an alternativ...

  11. REDUCTION OF AN ADVERSE IMPACT DURING WELL DRILLING BY MEANS OF DRILLING WASTE USAGE

    OpenAIRE

    Vladimir Sergeevich Kuznetsov; Igor Konstantinovich Suprun

    2017-01-01

    The problem of drilling waste utilisation is assumed to be resolved through the implementation of the complex of environment protection production engineering measures. This includes, firstly, the usage in the process of well drilling of drilling mud on the basis of water-soluble biodegradable polymers and a four-stage drilling mud refining system. Secondly, the usage of the well site construction with trenching for allocation of expressed bore mud and a temporary ground tank for drilling was...

  12. Quantitative Analysis of Force and Torque in Bone Drilling

    Directory of Open Access Journals (Sweden)

    K. Alam

    2017-03-01

    Full Text Available Bone drilling is an important and the most frequent operation in orthopaedics and other bone surgical procedures. Prediction and control of drilling force and torque are critical to safe and efficient surgeries. This paper studies the drilling force and torque arising from bone drilling process. Drilling parameters such as drilling speed, feed rate, drill size and drill condition (sharp and worn were changed to measure the force and torque in the direction of the drill penetration. Experimental results demonstrated lower drilling force using a sharp drill compared to a worn drill for similar drilling conditions. Contrary to the drilling force, lower torque was measured using a worn drill compared to a sharp drill. The drilling force was found to decrease with increase in drill speed and increased with rise in the feed rate using both types of drills. A linear drop in drilling torque was measured with increase in drilling speed. This study provided scientific information to orthopaedic surgeons and technicians to use appropriate surgical drill and cutting parameters to avoid overstressing of the bone tissue and drill breakage during drilling operations.

  13. Optical Activity in Twisted Solid-Core Photonic Crystal Fibers

    Science.gov (United States)

    Xi, X. M.; Weiss, T.; Wong, G. K. L.; Biancalana, F.; Barnett, S. M.; Padgett, M. J.; St. J. Russell, P.

    2013-04-01

    In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly polarized but carry a small amount of orbital angular momentum caused by the interaction between the core mode and the hollow channels.

  14. Chiral power change upon photoisomerization in twisted nematic liquid crystals.

    Science.gov (United States)

    Simoncelli, Sabrina; Aramendía, Pedro F

    2015-05-05

    In this work, we use the photoisomerization of azobenzenes, a phenanthrospirooxazine, and a fulgide in a twisted nematic liquid crystalline phase to change the chiral twisting power of the system. The changes are probed by the rotatory power of linearly polarized light. Time resolved and steady state experiments are carried out. The chiral change and the photoisomerization process have similar characteristic recovery times and activation energy, thus probing that the change is induced by the modification in the chemical composition of the photochromic dopant system. The amplitude of the light twisting power change correlates with the order change in the liquid crystal (LC) but not with the modification in the absorption characteristics of the system. This indicates that the driving force of the chiral change is the microscopic order modification in the LC phase that affects the helical pitch of the phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The N = 1 Triplet Vertex Operator Superalgebras: Twisted Sector

    Directory of Open Access Journals (Sweden)

    Drazen Adamovic

    2008-12-01

    Full Text Available We classify irreducible σ-twisted modules for the N = 1 super triplet vertex operator superalgebra SW(m introduced recently [Adamovic D., Milas A., Comm. Math. Phys., to appear, arXiv:0712.0379]. Irreducible graded dimensions of σ-twisted modules are also determined. These results, combined with our previous work in the untwisted case, show that the SL(2,Z-closure of the space spanned by irreducible characters, irreducible supercharacters and σ-twisted irreducible characters is (9m + 3-dimensional. We present strong evidence that this is also the (full space of generalized characters for SW(m. We are also able to relate irreducible SW(m characters to characters for the triplet vertex algebra W(2m + 1, studied in [Adamovic D., Milas A., Adv. Math. 217 (2008, 2664-2699, arXiv:0707.1857].

  16. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

    Science.gov (United States)

    Ham, J.-Y.; Lee, J.

    2016-09-01

    We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.

  17. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    Science.gov (United States)

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  18. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.

    Science.gov (United States)

    Cseke, Akos; Heinemann, Robert

    2018-01-01

    The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    Science.gov (United States)

    Briczinski, S. J.; Bernhardt, P. A.; Pedersen, T. R.; Rodriguez, S.; SanAntonio, G.

    2012-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using a "twisted beam" excitation mode. Unlike traditional heating beams used at HAARP or other heating facilities, the twisted beam attempts to impart orbital angular momentum (OAM) into the heating region. Analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region. The ring heating pattern may be more conducive to the creation of artificial airglow layers. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  20. Long hole waterjet drilling for gas drainage

    Energy Technology Data Exchange (ETDEWEB)

    Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)

    2003-04-01

    In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.

  1. Note on twisted elliptic genus of K3 surface

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)

    2011-01-03

    We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.

  2. Exponential reduction of finite volume effects with twisted boundary conditions

    Science.gov (United States)

    Cherman, Aleksey; Sen, Srimoyee; Wagman, Michael L.; Yaffe, Laurence G.

    2017-04-01

    Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with S U (Nf) light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large Nc volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.

  3. Methyltransferase G9A Regulates Osteogenesis via Twist Gene Repression.

    Science.gov (United States)

    Higashihori, N; Lehnertz, B; Sampaio, A; Underhill, T M; Rossi, F; Richman, J M

    2017-09-01

    Here we investigate the role of epigenetic factors in controlling the timing of cranial neural crest cell differentiation. The gene coding for histone H3 lysine 9 methyltransferase G9A was conditionally deleted in neural crest cells with Wnt1-Cre. The majority of homozygous-null animals survived to birth but thereafter failed to thrive. Phenotypic analysis of postnatal animals revealed that the mutants displayed incomplete ossification and 20% shorter jaws as compared to their wild-type littermates. At E13.5, patterns of expression of the osteogenic transcription factor RUNX2 and the mesenchymal transcription factor TWIST are similar in controls and mutants; both overlap in areas of future intramembranous bone formation. At E14.5, the nonosteogenic mesenchyme expressed TWIST, whereas the ossification center had strong RUNX2 and osteopontin expression. In the mutants, TWIST protein was present in the osteogenic mesenchyme, while osteopontin was not expressed until E15.5. In addition, in mutants, small regions of TWIST-positive osteogenic mesenchyme were visible until E15.5. The delay in ossification and reduction in size of the ossification centers were correlated with an earlier decrease in proliferation. We used micromass cultures of the face to investigate the direct effects of G9A inhibition on skeletal differentiation. Addition of a small molecule inhibitor for G9A, BIX-01294, to wild-type cells upregulated Twist genes similar to what was observed in vivo. The inhibitor also caused decreases in several osteogenic markers. Chromatin immunoprecipitation analysis of primary osteogenic mesenchyme from calvaria revealed that Twist1 and Twist2 regulatory regions contain the repressive H3K9me2 marks catalyzed by G9A, which are removed when BIX-01294 is added. Our results establish a role for G9A and H3K9me2 in the regulation of Twist genes and provide novel insights into the significance of epigenetic mechanisms in controlling temporal and tissue-specific gene

  4. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    AFRL-AFOSR-JP-TR-2017-0053 Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures Takeshi Seki TOHOKU UNIVERSITY Final Report 06/27...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      27-06-2017 2. REPORT TYPE Final...3. DATES COVERED (From - To) 12 Jun 2015 to 12 Dec 2016 4. TITLE AND SUBTITLE Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

  5. Color entanglement like effect in collinear twist-3 factorization

    Science.gov (United States)

    Zhou, Jian

    2017-12-01

    We study the color entanglement like effect for T-odd cases in collinear twist-3 factorization. For an example, we compute the transverse single spin asymmetry for direct photon production in pp collisions in a pure collinear twist-3 approach. By analyzing the gauge link structure of the collinear gluon distribution on the unpolarized target side, we demonstrate how the color entanglement-like effect arises in the presence of the additional gluon attachment from a polarized projectile. The result is consistent with that obtained from a hybrid approach calculation.

  6. A computational study of twist boundary structures in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Astala, R; Bristowe, P D [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom)

    2002-12-16

    A density functional plane-wave pseudopotential method is used to study various {sigma} = 5 (001) twist boundary models for strontium titanate. Results concerning the atom-level geometries and electronic structures are reported. The structures have varying SrO/TiO{sub 2} ratios and their relative stabilities are discussed in terms of the SrO chemical potential. A twist boundary containing a Sr-O pair of vacancies is found to be exceptionally stable and have a low volume expansion and is a possible candidate for showing impurity segregation.

  7. A computational study of twist boundary structures in strontium titanate

    Science.gov (United States)

    Astala, R.; Bristowe, P. D.

    2002-12-01

    A density functional plane-wave pseudopotential method is used to study various Sigma = 5 (001) twist boundary models for strontium titanate. Results concerning the atom-level geometries and electronic structures are reported. The structures have varying SrO/TiO2 ratios and their relative stabilities are discussed in terms of the SrO chemical potential. A twist boundary containing a Sr-O pair of vacancies is found to be exceptionally stable and have a low volume expansion and is a possible candidate for showing impurity segregation.

  8. Electric drill-string telemetry

    CERN Document Server

    Carcione, J M

    2003-01-01

    We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string. This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, depending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial derivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a voltage source.

  9. A drilling instrument centering device

    Energy Technology Data Exchange (ETDEWEB)

    Remizov, M.I.; Bogomazov, L.D.; Dudkin, M.P.; Kaplun, V.A.; Surma, K.Yu.

    1982-01-01

    A drilling instrument centering device is proposed which contains a body with fins, upper and lower wedge compression elements installed with the capability of interacting with the body, and a subassembly for locking the compression elements. To simplify the assembly and disassembly of the centering device, the upper and lower compressing elements are rigidly linked. The body is made of two parts, while the subassembly for locking the compressing elements is made in the form of a spring installed between the body parts.

  10. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis

    DEFF Research Database (Denmark)

    Tran, Phuoc T; Shroff, Emelyn H; Burns, Timothy F

    2012-01-01

    overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy....... mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor...... progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D) to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting...

  11. Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert

    2017-01-01

    Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending or deflection under load) or from the anisotropic properties of the blade material. Bend-twist coupling can...... a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist...... for flapwise (flap-twist coupling) or edgewise (edge-twist coupling) bending. Edge-twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge-twist to feather coupling for edgewise deflection towards...

  12. Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum

    Directory of Open Access Journals (Sweden)

    Qing Yin

    2017-01-01

    Full Text Available The structures and behaviors of grain boundaries (GBs have profound effects on the mechanical properties of polycrystalline materials. In this paper, twist GBs in aluminum were investigated with molecular dynamic simulations to reveal their atomic structures, energy and interactions with dislocations. One hundred twenty-six twist GBs were studied, and the energy of all these twist GBs were calculated. The result indicates that and twist GBs have lower energy than twist GBs because of their higher interplanar spacing. In addition, 12 types of twist GBs in aluminum were chosen to explore the deformation behaviors. Low angle twist GBs with high density of network structures can resist greater tension because mutually hindering behaviors between partial dislocations increase the twist GB strength.

  13. Simulating QCD at the Physical Point with $N_f=2$ Wilson Twisted Mass Fermions at Maximal Twist

    CERN Document Server

    Abdel-Rehim, A; Burger, F; Constantinou, M; Dimopoulos, P; Frezzotti, R; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Kostrzewa, B; Koutsou, G; Mangin-Brinet, M; Petschlies, M; Pientka, G; Rossi, G C; Urbach, C; Wenger, U

    2015-01-01

    We present simulations of QCD using Nf=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at ~0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  14. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    Science.gov (United States)

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.

  15. Geometry of the toroidal N-helix: optimal-packing and zero-twist

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2012-01-01

    Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....

  16. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  17. Mathematical simulation of a twisted pseudoplastic fluid flow in a cylindrical channel

    Science.gov (United States)

    Matvienko, O. V.; Bazuev, V. P.; Yuzhanova, N. K.

    2011-05-01

    The results of investigations of a pseudoplastic fluid twisted flow in a cylindrical channel are presented. With increase in the shear stresses caused by the flow twisting, the effective viscosity decreases. As a result, in the axial part of the channel a zone of lower pressure is formed which, at smaller flow twisting, leads to the formation of the zone of backward flows.

  18. Well control during extended reach drilling - conventional drilling compared to the reelwell drilling method

    OpenAIRE

    Veisene, Audun Tufte

    2014-01-01

    Master's thesis in Petroleum engineering Well control is always of great importance during well operations. The main purpose of well control is to keep downhole pressures in the operating window between pore and fracture pressure. In the case of a well control situation where either the formation is fractured causing loss of circulation or the pressure in the well drops below pore pressure causing a kick, measures have to be taken in order to get the situation under control. When drilling ...

  19. Contamination Control for Scientific Drilling Operations.

    Science.gov (United States)

    Kallmeyer, J

    2017-01-01

    Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Automation and integration improve underbalanced drilling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2004-11-01

    Unlike overbalanced drilling that uses heavy drilling muds to offset formation pressures, underbalanced drilling uses air or nitrogen as the drilling fluid, allowing wells to flow freely during drilling. As a general rule, underbalanced drilling requires a much more elaborate setup than conventional drilling, but the more complex setup is essential to prevent formation damage that occurs when water-based drilling fluids invade the formation around the wellbore and permanently clog the microscopic pores of the low permeability rock. This paper provides a detailed explanation of the Genesis One underbalanced drilling package developed by Ensign Resource Service Group's Red Deer, Alberta-based Enhanced Systems Division. Installed at a well site, this network of vessels and piping is a control system that takes a continuous flow from the well and adjusts it, cleans it, separates the solids and re-injects the nitrogen back into the well. The package costs about $4 million each, and there are currently 18 of them in operation, 15 of them hired by EnCana last winter to drill in the Helmet-Sierra tight gas area in northeastern British Columbia. Some of the challenges involved in underbalanced drilling are also discussed, not the least of which is to be underbalanced at the formation level and to stay underbalanced, i.e. to keep wellbore pressure at formation level lower than the formation pressure, to allow the well to flow freely and to avoid formation damage. In underbalanced drilling this task is accomplished by automation which allows the operator to set the pressure on the wellbore at surface, by opening and closing valves on the system, thus minimizing the risk of harmful pressure on the formation. More automation means less chance of injury, smaller crews, reduced environmental impact and enhanced recovery. As the growing demand for gas pushes the frontier into ever tighter formations, the use of underbalanced drilling is expected to rise significantly.

  1. Higher Twist Effects in Photon-Photon Collisions

    Science.gov (United States)

    Ahmadov, A. I.; Boztosun, I.; Soylu, A.; Dadashov, E. A.

    In this article, we investigate the contribution of the high twist Feynman diagrams to the large-pT single pseudoscalar and vector mesons inclusive production cross section in two-photon collisions and we present the general formulae for the high and leading twist differential cross sections. The pion wave function where two non-trivial Gegenbauer coefficients a2 and a4 have been extracted from the CLEO data, Braun-Filyanov pion wave function, the asymptotic and the Chernyak-Zhitnitsky wave functions are all used in the calculations. For ρ-meson we used the Ball-Braun wave function. The results of the calculations reveal that the high twist cross sections, the ratio R, the dependence transverse momentum pT and the rapidity y of meson in the ΦCLEO(x, Q2) wave function case is very close to the Φasy(x) asymptotic wave function case. It is shown that the high twist contribution to the cross section depends on the choice of the meson wave functions.

  2. Twist-induced birefringence in hexagonal photonic fibers

    Science.gov (United States)

    Tentori, D.; Garcia-Weidner, A.; Torres-Gómez, I.

    2011-09-01

    Photonic crystal optical fibers have much more degrees of freedom concerning the geometries and index contrasts than step-index fibers; therefore, the theoretical analysis of their performance is usually based on the finite element method. In this work, taking advantage of the similarities observed for twisted single-mode fibers: standard (SMF-28 and SMF- 28e) and hexagonal photonic fibers, we propose that in regard with polarization performance, photonic fibers can be described using a simpler model based on classical polarization optics. The main advantages of the matrix model we propose lie in its accuracy and generality: for each one of the selected wavelengths and input states of polarization, it allows a precise prediction of the output polarization state. The comparison of the experimental results measured for standard and photonic fibers with the theoretical model predictions indicates that in both cases, twist induced birefringence is produced not only by the medium's photoelasticity, but also by the waveguide (cladding/core structure and asymmetry) modification. In addition, for the photonic fiber, the non-symmetrical response to right and left twist allowed the identification of an initial twist as part of the residual elliptical birefringence.

  3. Quantum walks of photon pairs in twisted waveguide arrays

    Science.gov (United States)

    Vavulin, D. N.; Sukhorukov, A. A.

    2015-11-01

    We consider an array of closely spaced optical waveguides, which are twisted around a central axis along the propagation direction. We derive Schrodinger-type equation of the biphoton wavefunction, taking into account the waveguide bending through the appearance of additional phase in the coupling coefficients. We present an example of the evolution of quantum photon-pair state.

  4. Coherent nonlinear electromagnetic response in twisted bilayer and ...

    Indian Academy of Sciences (India)

    The same phenomena are also described in twisted bilayer graphene with and without an electric potential difference between the ... and conduction band touch one another. These chiral quasiparticles ... we find that the anomalous Rabi frequency (ARF) is highly sensitive to the low-energy band structure and therefore, ...

  5. Twist-2 Light-Cone Pion Wave Function

    OpenAIRE

    Belyaev, V. M.; Johnson, Mikkel B.

    1997-01-01

    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.

  6. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening. K. Sundara Raman K. B. Ramesh R. Selvendran P. S. M. Aleem K. M. Hiremath. Session V – Vector Magnetic Fields, Prominences, CMEs & Flares Volume 21 Issue 3-4 ...

  7. Twist of Magnetic Fields in Solar Active Regions Hongqi Zhang ...

    Indian Academy of Sciences (India)

    tribpo

    twisted field (current helicity) in the photosphere (Seehafer 1990; Pevtsov et al. 1995;. Bao & Zhang 1998). Bao & Zhang (1998) and Zhang & Bao (1999) computed the photospheric current helicity parameter h|| for 422 active regions, including most of the large ones observed in the period of 1988 1997 at Huairou Solar ...

  8. On the Cohomology of Twisting Sheaves on Toric Varieties

    OpenAIRE

    Nikbakht-Tehrani, M.

    1998-01-01

    Using the homogeneous coordinate ring construction of a toric variety IP defined by a complete simplicial fan and the methods of local cohomology theory we develop a framework for the calculation of cohomology groups H^{*}(IP, O(p)) of twisting sheaves O(p) on IP.

  9. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed ...

  10. Twist and its effect on ACL graft forces

    NARCIS (Netherlands)

    Arnold, M. P.; Blankevoort, L.; ten Ham, A.; Verdonschot, N.; van Kampen, A.

    2004-01-01

    Graft tension is a controversial topic in anterior cruciate ligament (ACL) surgery. Evidence suggests a narrow range of graft tensions, which allow the graft to remodel to a stable and mature neoligament. In previous cadaver experiments, we showed that twisting the graft could modulate the graft

  11. Would You Rather (WYR), with a Sexual Health Twist!

    Science.gov (United States)

    Rosen, Brittany; McNeill, Elisa Beth; Wilson, Kelly

    2014-01-01

    Would You Rather (WYR), with a Sexual Health Twist! teaching technique uses two youth games, "Would you rather…" and Twister®, to actively engage students in developing decision-making skills regarding human sexuality. Utilizing the "Would you rather" choices, the teacher provides a short scenario with two difficult choices.…

  12. Photoelectric effect for twist-deformed space-time

    OpenAIRE

    Daszkiewicz, Marcin

    2016-01-01

    In this article, we investigate the impact of twisted space-time on the photoelectric effect, \\ie, we derive the $\\theta$-deformed threshold frequency. In such a way, we indicate that the space-time noncommutativity strongly enhances the photoelectric process.

  13. Twisted Winged Endoparasitoids-An Enigma for Entomologists

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. EXFOLIATION AT WIRE TWISTING FOR TIRES BEAD RINGS

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2010-01-01

    Full Text Available It is shown that reduction of twisting numbers up to destruction of cold drawn wire for bead rings is stipulated by junction of microcracks formed in longitudinallyand transverse-oriented planes of deformation shift with creation of main crack.

  15. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  16. Structure-Function Studies of the bHLH Phosphorylation Domain of TWIST1 in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rajendra P. Gajula

    2015-01-01

    Full Text Available The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K-mammalian target of rapamycin (mTOR inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice.

  17. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  18. Western Canada SAGD drilling and completions performance

    Energy Technology Data Exchange (ETDEWEB)

    Turchin, S.; Tucker, R. [Ziff Energy Group (Canada)

    2011-07-01

    In the heavy oil industry, steam assisted gravity drainage (SAGD) is a thermal recovery method used to enhance oil recovery. In 2009, Ziff Energy carried out a study on SAGD drilling and completions performance in Western Canada. This paper presents the methodology used to assess drilling performances and the results obtained. This study was conducted on 159 SAGD well pairs and 1,833 delineation wells in the Western Canadian Sedimentary Basin from late 2004 to fall 2008. The drilling performance assessment was calculated from several aspects including well quality, drilling and completions cost performance and drilling time analysis. This study provided a detailed analysis of drilling and completions costs of SAGD which can help companies to improve their performance.

  19. Gas reservoir evaluation for underbalanced horizontal drilling

    Directory of Open Access Journals (Sweden)

    Li Gao

    2014-01-01

    Full Text Available A set of surface equipment for monitoring the parameters of fluid and pressure while drilling was developed, and mathematical models for gas reservoir seepage and wellbore two-phase flow were established. Based on drilling operation parameters, well structure and monitored parameters, the wellbore pressure and the gas reservoir permeability could be predicted theoretically for underbalanced horizontal drilling. Based on the monitored gas production along the well depth, the gas reservoir type could be identified.

  20. Diffusion bonding of Stratapax for drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.

  1. Data analytics for drilling operational states classifications

    OpenAIRE

    Veres, Galina; Sabeur, Zoheir

    2015-01-01

    This paper provides benchmarks for the identification of best performance classifiers for the detection of operational states in industrial drilling operations. Multiple scenarios for the detection of the operational states are tested on a rig with various drilling wells. Drilling data are extremely challenging due to their non-linear and stochastic natures, notwithstanding the embedded noise in them and unbalancing. Nevertheless, there is a possibility to deploy robust classifiers to overcom...

  2. Drill pipe threaded nipple connection design development

    OpenAIRE

    Saruev, Aleksey Lvovich; Saruev, Lev Alekseevich; Vasenin, S. S.

    2015-01-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but a...

  3. Advanced Seismic While Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII

  4. The analysis on coupling vibration of drill string and marine riser in deep-water drilling

    Directory of Open Access Journals (Sweden)

    C Han

    2016-09-01

    Full Text Available During drilling in the deep water, the system including marine riser and drill string over the wellhead exits strong dynamic response because of the motion of platform. The contact-collision problem between the drill string and marine riser under platform swaying is a highly non-linear dynamics problem, drill string and marine riser contact-collision position along the axis of marine riser is randomly distributed, and that there exits friction. In this paper, by using the method of finite element, the model of dynamical behavior of the system is set up, the state of contact between marine riser and drill string shows randomness. The rule of free lateral coupling vibration of drill string and marine riser has been obtained; the result shows the situation of random contact between drill string and marine rising. By case analysis the result shows that the platform swaying has great effect to the system of marine riser and drill string.

  5. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo

    2013-01-01

    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  6. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  7. Newberry exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  8. IMPACT OF DRILLING WASTE ON HYDROBIONTS

    Directory of Open Access Journals (Sweden)

    S. A. Guseinova

    2015-01-01

    Full Text Available Aim. The aim is to determine and make an analysis of the concentration of petroleum hydrocarbons and other metals in the waste drilling: drill cuttings (DC and mud (DM, collected in the area of drilling, to assess and forecast the state of biological resources of natural sea water.Methods. Experimental studies of DC and DM showed the petroleum hydrocarbons content, the concentration of which varies depending on the timing of exposure. By quantitative and qualitative indicators, the metal content in the drill cuttings and mud is nonequivalent and this depends on the structure and hardness achieved during drilling the rocks as well as on the degree of contamination with metals.Results. The concentration level of petroleum hydrocarbons and other metals in the drilling waste (drill cuttings and mud imposes a major problem associated with the conservation of biological resources of the Caspian Sea.Main conclusions. Environmental effects from the discharges of drilling waste on the high seas can be detected only during drilling operations and in close proximity (typically up to 200-500 m from the discharge point. Persistent damages in communities and ecosystems occur only at long exposures and are adaptive in nature.

  9. Drill pipe threaded nipple connection design development

    Science.gov (United States)

    Saruev, A. L.; Saruev, L. A.; Vasenin, S. S.

    2015-11-01

    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes.

  10. Investigation into the use of smartphone as a machine vision device for engineering metrology and flaw detection, with focus on drilling

    Science.gov (United States)

    Razdan, Vikram; Bateman, Richard

    2015-05-01

    This study investigates the use of a Smartphone and its camera vision capabilities in Engineering metrology and flaw detection, with a view to develop a low cost alternative to Machine vision systems which are out of range for small scale manufacturers. A Smartphone has to provide a similar level of accuracy as Machine Vision devices like Smart cameras. The objective set out was to develop an App on an Android Smartphone, incorporating advanced Computer vision algorithms written in java code. The App could then be used for recording measurements of Twist Drill bits and hole geometry, and analysing the results for accuracy. A detailed literature review was carried out for in-depth study of Machine vision systems and their capabilities, including a comparison between the HTC One X Android Smartphone and the Teledyne Dalsa BOA Smart camera. A review of the existing metrology Apps in the market was also undertaken. In addition, the drilling operation was evaluated to establish key measurement parameters of a twist Drill bit, especially flank wear and diameter. The methodology covers software development of the Android App, including the use of image processing algorithms like Gaussian Blur, Sobel and Canny available from OpenCV software library, as well as designing and developing the experimental set-up for carrying out the measurements. The results obtained from the experimental set-up were analysed for geometry of Twist Drill bits and holes, including diametrical measurements and flaw detection. The results show that Smartphones like the HTC One X have the processing power and the camera capability to carry out metrological tasks, although dimensional accuracy achievable from the Smartphone App is below the level provided by Machine vision devices like Smart cameras. A Smartphone with mechanical attachments, capable of image processing and having a reasonable level of accuracy in dimensional measurement, has the potential to become a handy low-cost Machine vision

  11. 46 CFR 169.833 - Fire and boat drills.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire and boat drills. 169.833 Section 169.833 Shipping... Operations Tests, Drills, and Inspections § 169.833 Fire and boat drills. (a) When the vessel is operating, the master shall conduct a fire and boat drill each week. The scheduling of drills is at the...

  12. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  13. 30 CFR 56.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  14. 30 CFR 56.7012 - Tending drills in operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tending drills in operation. 56.7012 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7012 Tending drills in operation. While in operation, drills shall be...

  15. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  16. High Expression of Twist Is Positively Correlated with the Differentiation of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Linping HUI

    2009-04-01

    Full Text Available Background and objective Twist has been identified as a promoting factor for epithelialmesenchymal transition (EMT, which enhances the metastatic potential of cancer. The aim of this study is to detect the expression of Twist in lung cancer tissues and cell lines, and analyze its relationship with clinicopathologiccharacteristics and biological behavior of lung cancer. Methods Twist expression was examined in 68 lung cancer specimens and 8 normal lung specimens using immunohistochemistry (S-P method. Expression levels of Twist1 and Twist2 mRNA were detected using transcription-polymerase chain reaction (RT-PCR in HBE and 8 lung cancer cell lines. Immunofluorescence was used to detect the Twist protein expression levels and subcellular localization in lungcancer cells and HBE (human normal bronchi epithelium cells. Results Among 68 lung cancer specimens, 9 samples showed weak expression of Twist 13.24% (9 of 68, 75.00% (51 of 68 lung cancer specimens showed moderate to strong Twist staining whereas 8 corresponding normal lung specimens showed weak staining extent. Twist expression level was positively correlated with differentiation (P =0.002 and age (P =0.012. Twist1 and Twist2 mRNA expression levels were incompatible in different histology types. The fluorescence signal of Twist protein was conspicuous in lung squamous cell carcinoma cells and adencarcinoma cells, primarily in cytoplasm, but low in HBE. Conclusion High expression of Twist in lung cancer was associated with differentiation. Twist could be used as a valuable biomarker to evaluate the progressionof lung cancer.

  17. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  18. Drilling technology advances on four fronts

    Energy Technology Data Exchange (ETDEWEB)

    Budd, G.

    2002-01-01

    Trends and advances in drilling technology are discussed. Four different major trends have been identified. One of these is proprietary case drilling which is said to allow operators to simultaneously drill, case, and evaluate oil and gas wells. In proprietary case drilling, the well is drilled with standard oil field casing which remains in the hole all the time, eliminating the need for tripping. Drill bits and other downhole tools are lowered via wireline inside the casing and latched to the last joint of casing. Wells are drilled either by rotating the casing or by using a downhole mud motor for steering, using conventional directional tools. This technology was introduced by Tesco and is marketed in 25 countries along with a full range of drilling products and services. Super single rigs are an other trend which, owing to their versatility, combined with relatively small environmental footprint have become the rig of choice in a growing number of drilling programs. Super single rigs use 45-ft. joints of drill pipe, more versatile top drives and they have an automated pipe handling system. Super singles can be used on both vertical and slant wells and offer advantages of lower costs, higher efficiencies and greater drilling depths. Given their low environmental impact hydraulic capability, super singles also find application where zero disturbance rules are in effect, as for example, in some parts of southern Alberta. Directional drilling and MWD are most associated with SAGD projects but they also have been used and made significant difference in other spheres of oil recovery as well. The fact is that about 35 percent of wells drilled today are drilled with some form of directional drilling; this will stimulate the growth of ever more advanced MWD technology. Northern rigs are in a class of their own in that here the emphasis is on keeping the crew warm, as opposed to lots of gadgets. The most immediately-visible heat-conserving modification is the 60-ft wind

  19. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and

  20. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Brian C. Gahan; Samih Batarseh

    2004-09-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  1. Evaluation of commercial drilling and geological software for deep drilling applications

    Science.gov (United States)

    Pierdominici, Simona; Prevedel, Bernhard; Conze, Ronald; Tridec Team

    2013-04-01

    The avoidance of operational delays, financial losses and drilling hazards are key indicators for successful deep drilling operations. Real-time monitoring of drilling operation data as well as geological and petrophysical information obtained during drilling provide valuable knowledge that can be integrated into existing geological and mechanical models in order to improve the drilling performance. We have evaluated ten different geological and drilling software packages capable to integrate real-time drilling and planning data (e.g. torque, drag, well path, cementing, hydraulic data, casing design, well control, geo-steering, cost and time) as well as other scientific and technical data (i.e. from drilling core, geophysical downhole logging, production test) to build geological and geophysical models for planning of further deep drillings in a given geological environment. To reach this goal, the software has to be versatile to handle different data formats from disciplines such as geology, geophysics, petrophysics, seismology and drilling engineering as well as data from different drilling targets, such as geothermal fluids, oil/gas, water reservoirs, mining purpose, CO2 sequestration, or scientific goals. The software must be capable to analyze, evaluate and plan in real-time the next drilling steps in the best possible way and under safe conditions. A preliminary geological and geophysical model with the available data from site surveys and literature is built to address a first drilling plan, in which technical and scientific aspects are taken into consideration to perform the first drilling (wildcat well). During the drilling, the acquired scientific and technical data will be used to refine the previous geological-drilling model. The geological model hence becomes an interactive object strongly linked to the drilling procedure, and the software should allow to make rapid and informed decisions while drilling, to maximize productivity and minimize drilling

  2. Progressive Audio-Lingual Drills in English.

    Science.gov (United States)

    Stieglitz, Francine

    This manual comprises the transcript of the recordings for "Progressive Audio-Lingual Drills in English." These drills are a grammar practice supplement for any basic course in English as a second language. Although intended for use by the instructor, the manual may be used by the student in individual study situations. Work with the recordings…

  3. New evolution at drilling geothermals wells

    Directory of Open Access Journals (Sweden)

    Wittenberger Gabriel

    2004-09-01

    Full Text Available Geothermal energy nowadays belongs to the most interesting, renewable, progressive and ecologically pure energies. Its utilization began long ago, but because development and exploration show that fossil fuels are depletable in outlook of 40 – 50 years, it is needed to pay greater attention to perspective and economically advantageous energies, among which geothermal energy indisputably belongs. Since development continually advances also in drilling technique and technology, it is necessary to conform to this trend and to develop such technologies, procedures and devices, which would, unlike to those currently used, save time, machinery, environment and would be economically more acceptable. This article deals with several possible new methods of drilling such as slimhole drilling, improved control of drilling rinse, using of new modern and better – quality drilling instruments – drilling bits etc. The combination of these new methods and materials brings considerable saving by drilling and thereby lowers financial expense of the whole project. Since Slovakia possesses considerable geothermal sources, which are needed to be drilled and utilized, the following of new trends and methods is of good significance for us, too.

  4. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  6. Experimental analysis of drilling process in cortical bone.

    Science.gov (United States)

    Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing

    2014-02-01

    Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. A torsional artificial muscle from twisted nitinol microwire

    Science.gov (United States)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2017-04-01

    Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.

  8. Splitting of Van Hove singularities in slightly twisted bilayer graphene

    Science.gov (United States)

    Li, Si-Yu; Liu, Ke-Qin; Yin, Long-Jing; Wang, Wen-Xiao; Yan, Wei; Yang, Xu-Qin; Yang, Jun-Kai; Liu, Haiwen; Jiang, Hua; He, Lin

    2017-10-01

    A variety of new and interesting electronic properties have been predicted in graphene monolayer doped to Van Hove singularities (VHSs) of its density of state. However, tuning the Fermi energy to reach a VHS of graphene by either gating or chemical doping is prohibitively difficult, owing to their large energy distance (˜3 eV). This difficulty can be easily overcome in twisted bilayer graphene (TBG). By introducing a small twist angle between two adjacent graphene sheets, we are able to generate two low-energy VHSs arbitrarily approaching the Fermi energy. Here, we report experimental studies of electronic properties around the VHSs of a slightly TBG through scanning tunneling microscopy measurements. The split of the VHSs is observed and the spatial symmetry breaking of electronic states around the VHSs is directly visualized. These exotic results provide motivation for further theoretical and experimental studies of graphene systems around the VHSs.

  9. Generalized Rogers-Ramanujan identities for twisted affine algebras

    Science.gov (United States)

    Genish, Arel; Gepner, Doron

    2017-07-01

    The characters of parafermionic conformal field theories are given by the string functions of affine algebras, which are either twisted or untwisted algebras. Expressions for these characters as generalized Rogers-Ramanujan algebras have been established for the untwisted affine algebras. However, we study the identities for the string functions of the twisted affine Lie algebras. A conjecture for the string functions was proposed by Hatayama et al., for the unit fields, which expresses the string functions as Rogers-Ramanujan type sums. Here we propose to check the Hatayama et al. conjecture, using Lie algebraic theoretic methods. We use Freudenthal’s formula, which we computerized, to verify the identities for all the algebras at low rank and low level. We find complete agreement with the conjecture.

  10. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  11. Helicity conservation and twisted Seifert surfaces for superfluid vortices

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  12. Twisted photon entanglement through turbulent air across Vienna

    OpenAIRE

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Zeilinger, Anton

    2015-01-01

    Photons with a twisted phase front can carry a discrete, in principle unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is p...

  13. X-Ray Perspective of the Twisted Magnetospheres of Magnetars

    Science.gov (United States)

    Weng, Shan-Shan; Göğüş, Ersin; Güver, Tolga; Lin, Lin

    2015-05-01

    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional (3D) twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle {Δ }φ , and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to a large sample of XMM-Newton spectra of magnetars. The model successfully fits nearly all spectra, and the obtained magnetic field for 7 out of the 11 sources are consistent with the values inferred from the spin-down rates. We conclude that the continuum-fitting by our model is a robust method to measure the magnetic field strength and magnetospheric configuration of AXPs and SGRs. Investigating the multiple observations of variable sources, we also study the mechanism of their spectral evolution. Our results suggest that the magnetospheres in these sources are highly twisted ({Δ }φ \\gt 1), and the behavior of magnetospheric twisting and untwisting is revealed in the 2002 outburst of 1E 2259+586.

  14. Regularity of critical circles in non-twist maps.

    CERN Document Server

    Apte, A; Petrov, N

    2004-01-01

    We study critical invariant circles of several noble rotation numbers at the edge of breakdown for area preserving maps of the cylinder which violate the twist conditions. These circles admit essentially unique parameterizations by rotational coordinates. We present a high accuracy computation of about $10^7$ Fourier coefficients. This allows us to compute the regularity of the conjugating maps and show that, to the extent of the precision, it only depends on the tail of the continued fraction expansion.

  15. Gate induced monolayer behavior in twisted bilayer black phosphorus

    Science.gov (United States)

    Sevik, Cem; Wallbank, John R.; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz

    2017-09-01

    Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90°. These calculations are complemented with a simple k\\centerdot p model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90° twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90° simply by changing the direction of the applied electric field. In particular, a + 0.4 (-0.4) V {{{\\mathringA}}-1} out-of-plane electric field results in a  ˜60% increase in the hole effective mass along the \\mathbf{y} (\\mathbf{x} ) axis and enhances the m\\mathbf{y}\\ast/m\\mathbf{x}\\ast (m\\mathbf{x}\\ast/m\\mathbf{y}\\ast ) ratio as much as by a factor of 40. Our DFT and k\\centerdot p simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.

  16. Full Lutz twist along the binding of an open book

    OpenAIRE

    Ozbagci, Burak; Pamuk, Mehmetcik

    2009-01-01

    Let $T$ denote a binding component of an open book $(\\Sigma, \\phi)$ compatible with a closed contact 3-manifold $(M, \\xi)$. We describe an explicit open book $(\\Sigma', \\phi')$ compatible with $(M, \\zeta)$, where $\\zeta$ is the contact structure obtained from $\\xi$ by performing a full Lutz twist along $T$. Here, $(\\Sigma', \\phi')$ is obtained from $(\\Sigma, \\phi)$ by a \\emph{local} modification near the binding.

  17. Some new quasi-twisted ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2015-09-01

    Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].

  18. Study on Monitoring Rock Burst through Drill Pipe Torque

    National Research Council Canada - National Science Library

    Li, Zhonghua; Zhu, Liyuan; Yin, Wanlei; Song, Yanfang

    2015-01-01

      This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method...

  19. Innovative drilling improves THUMS islands operations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.D.

    1983-08-01

    During the last 2 years, THUMS Long Beach Co. has made tremendous improvements in drilling and production efficiencies. The company implemented several innovative ideas which have reduced drilling time by as much as 25%, as well as increased well productivity. THUMS' engineering and drilling staffs should be credited with willingness to explore and to try state-of-the-art technology to improve ongoing operations. The company as one of the first to use computer optimization for well bore planning, measurement-while-drilling (MWD) tools for monitoring directional drilling parameters, and more recently for using the combination of polycrystalline diamond compact (PDC) underreamers and high-torque, low-speed mud motors to underream selected intervals.

  20. Removal of hydrogen sulfide from drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan Jr., T. J.

    1985-10-22

    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  1. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.

    Science.gov (United States)

    Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee

    2017-02-01

    Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.

  2. Peculiarities of carbon fiber drilling

    Directory of Open Access Journals (Sweden)

    Ruslan Yu. Melentiev

    2014-12-01

    Full Text Available At polymeric composite materials (PCM machining we face a number of specific features. The research refers to PCMs classification, exposing an overview of known specific features described in the latest advances and techniques to improve the quality and efficiency in PCM processing. To study the carbon fiber drilling a preliminary experiment has been conducted, which essential parameters and issues have been described with respective data Tables and numerous images. The holes surface quality and edges dimensional accuracy have been compared for samples obtained using a blade and a diamond tool; established is the instrument blade material impact on the edges’ precision parameters. Confirmed are the typical and revealed some new types of imperfections and their occurrence conditions. The problem of rapid clogging and related diamond tool clogging problem are identified. Some promising ways of processing of carbon fiber are offered.

  3. Electrically controlled optical bandgap in a twisted photonic liquid crystal

    Science.gov (United States)

    Molina, Ismael; Adrián Reyes, J.; Avendaño, Carlos G.

    2011-06-01

    We consider a one-dimensional twisted photonic liquid crystal, which consists of N nematic liquid crystal slabs in a twisted configuration alternated by N isotropic dielectric layers under the action of a dc electric field (Edc) aligned along the periodicity axis. We write and solve numerically the corresponding Euler-Lagrange equations describing the nematic layer configuration. We express Maxwell's equations in a 4×4 matrix representation, and by using the transfer matrix formalism, we obtain the optical band structures at arbitrary incidence angles and different external electric fields. We have found that there exists a strong dependence of electric field on the transmission and reflection spectra in enhancing and extinguishing bandgaps. The analysis presented here allow us to propose an electrically shiftable universal rejection filter for incident waves of left- and right-circular polarization. It is observed that by increasing the electric field we can highly enhance the cross-polarized reflection bandgaps and suppress the co-polarized ones. We analyzed the optical spectra for different values of twist angle, different ratios between dielectric and nematic layer thicknesses and number of layers N. Also, we showed that the cross-polarized bandgaps are blue-shifted as the incidence angle gets larger.

  4. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  5. Bend-twist coupling potential of wind turbine blades

    Science.gov (United States)

    Fedorov, V.; Berggreen, C.

    2014-06-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.

  6. Flap double twist technique for prevention of LASIK flap striae

    Directory of Open Access Journals (Sweden)

    Nabil KM

    2016-11-01

    Full Text Available Karim Mahmoud Nabil Department of Ophthalmology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt Abstract: A novel flap double twist technique was applied to reduce the incidence of post-laser-assisted in situ keratomileusis (LASIK flap striae. The flap is floated and stroked in the same way as is done for management of first postoperative day striae, where the method is to float and irrigate the flap into position, followed by applying gentle pressure on the flap with a wet Merocel microsponge and moving the flap away from the hinge position. The sponge is then manually squeezed to become drier, and the flap is continuously stroked in a direction opposite to the hinge. Next, the flap is carefully twisted obliquely and sequentially in two opposite directions while applying gentle pressure on the flap in order to completely dehydrate the flap and stromal bed. Finally, the flap is repositioned while applying gentle horizontal pressure in two opposite directions. This novel flap double twist technique shows great success in post-LASIK striae prevention. Keywords: laser-assisted in situ keratomileusis, wrinkles, pressure, microsponge

  7. Wrinkles, loops, and topological defects in twisted ribbons

    Science.gov (United States)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  8. The $SU(\\infty)$ twisted gradient flow running coupling

    CERN Document Server

    Pérez, Margarita García; Keegan, Liam; Okawa, Masanori

    2015-01-01

    We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...

  9. Twist and Snail expression in tumor and stromal cells of epithelial odontogenic tumors.

    Science.gov (United States)

    Oh, Kyu-Young; Yoon, Hye-Jung; Lee, Jae-Il; Ahn, Sun-Ha; Hong, Seong-Doo

    2017-02-01

    The aims of this study were to evaluate expression of Twist and Snail in tumor and stromal cells of epithelial odontogenic tumors and to analyze relationships between Twist and Snail expression and between tumor and stromal expression. Immunohistochemistry was performed using Twist and Snail antibodies in 60 ameloblastomas (AMs; 20 solid/multicystic, 20 unicystic, and 20 recurrent), six ameloblastic carcinomas (ACs), 10 adenomatoid odontogenic tumors (AOTs), and six calcifying epithelial odontogenic tumors (CEOTs). A higher rate of tumor cells strongly positive for Twist was observed in AC compared to the other tumors (P = 0.019). The rate of tumor cells strongly positive for Snail tended to be higher in AC than in AM (P = 0.060). AM and AC showed a higher rate of Twist-positive stromal cells than AOT and CEOT (P Tumor cells of recurrent AM showed stronger expression of Twist (P tumor expression of Twist and Snail (r = 0.376, P = 0.001) and between tumor and stromal expression of Snail (r = 0.334, P = 0.002). Twist and Snail may affect the epithelial-mesenchymal transition in AC and be involved in recurrence of AM. Stromal Twist expression may be associated with aggressive clinical behavior of epithelial odontogenic tumors. A Twist-Snail pathway may participate in the development and progression of odontogenic tumors, and tumor-stroma interaction in odontogenic tumors may be mediated by Snail. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  11. Role of left ventricular twist mechanics in cardiomyopathies, dance of the helices.

    Science.gov (United States)

    Kauer, Floris; Geleijnse, Marcel Leonard; van Dalen, Bastiaan Martijn

    2015-08-26

    Left ventricular twist is an essential part of left ventricular function. Nevertheless, knowledge is limited in "the cardiology community" as it comes to twist mechanics. Fortunately the development of speckle tracking echocardiography, allowing accurate, reproducible and rapid bedside assessment of left ventricular twist, has boosted the interest in this important mechanical aspect of left ventricular deformation. Although the fundamental physiological role of left ventricular twist is undisputable, the clinical relevance of assessment of left ventricular twist in cardiomyopathies still needs to be established. The fact remains; analysis of left ventricular twist mechanics has already provided substantial pathophysiological understanding on a comprehensive variety of cardiomyopathies. It has become clear that increased left ventricular twist in for example hypertrophic cardiomyopathy may be an early sign of subendocardial (microvascular) dysfunction. Furthermore, decreased left ventricular twist may be caused by left ventricular dilatation or an extensive myocardial scar. Finally, the detection of left ventricular rigid body rotation in noncompaction cardiomyopathy may provide an indispensible method to objectively confirm this difficult diagnosis. All this endorses the value of left ventricular twist in the field of cardiomyopathies and may further encourage the implementation of left ventricular twist parameters in the "diagnostic toolbox" for cardiomyopathies.

  12. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar

    2008-07-01

    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  13. Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma.

    Science.gov (United States)

    Lee, Keun-Woo; Lee, Nam Kyung; Ham, Seokjin; Roh, Tae-Young; Kim, Seok-Hyung

    2014-02-01

    Synovial sarcoma is an aggressive mesenchymal tumor with dual differentiation; epithelial and mesenchymal differentiation. However, the molecular mechanisms behind tumorigenesis and dual differentiation have remained elusive. In this study, we investigated whether Twist1 is an essential transcription factor for maintaining tumor-initiating cell properties in synovial sarcoma. First, we identified that Twist1 is overexpressed in most cases of synovial sarcoma (SS) samples as well as in two synovial sarcoma cell lines (HSSYII, SW982). Additionally, Twist1 depletion led to down-regulation of mesenchymal markers and up-regulation of epithelial markers in SS cell lines. The migratory and invasive abilities of SS cell lines were also significantly reduced following the loss of Twist1. These results indicate that Twist1 plays an essential role in the maintenance of mesenchymal character in SS. Furthermore, knock-down of Twist1 induced G1 cycle arrest and apoptosis as well as remarkable reduction in the sphere-forming cell subpopulation and side population cells. Moreover, Twist1 knock-down profoundly inhibited the growth of synovial sarcoma xenograft in nude mice compared to controls indicating that Twist1 is essential for tumor initiating cell properties. To explore transcriptional regulation by Twist1 at the genomic level, Chromatin immunoprecipiation-solexa whole genome sequencing (ChIP-SEQ) and cDNA microarray analysis were performed. Mesenchymal differentiation/proliferation and PDGF related genes were found to be affected by Twist1. Finally, depletion of SS18-SSX fusion oncoprotein by RNA inference induced down-regulation of Twist1, implying that Twist1 is regulated by SS18-SSX. Hence, our results suggest that Twist1 is an essential transcription factor for the maintenance of mesenchymal characters and tumor initiating properties of synovial sarcoma. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  15. Exclusive processes beyond leading twist: {gamma}*T {yields} {rho}T impact factor with twist three accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Anikin, Igor V. [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation); Ivanov, Dmitry Yu [Sobolev Institute of Mathematics, Acad. Koptyug pr., 4, 630090 Novosibirsk (Russian Federation); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-07-01

    We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method is based on the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light-cone. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised {rho}-meson up to the twist 3 accuracy. (Phys.Lett.B682:413-418,2010 and Nucl.Phys.B828:1-68,2010.). (authors)

  16. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  17. Steamboat Hills exploratory slimhole: Drilling and testing

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  18. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  19. The Auto-Gopher Deep Drill

    Science.gov (United States)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  20. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  1. A Valence-Bond Nonequilibrium Solvation Model for a Twisting Cyanine Dye

    CERN Document Server

    McConnell, Sean; Olsen, Seth

    2014-01-01

    We study a two-state valence-bond electronic Hamiltonian model of non-equilibrium solvation during the excited-state twisting reaction of monomethine cyanines. These dyes are of interest because of the strong environment-dependent enhancement of their fluorescence quantum yield that results from suppression of competing non-radiative decay via twisted internal charge-transfer (TICT) states. For monomethine cyanines, where the ground state is a superposition of structures with different bond and charge localization, there are two twisting pathways with different charge localization in the excited state. The Hamiltonian designed to be as simple as possible consistent with a few well-enumerated assumptions. It is defined by three parameters and is a function of two $\\pi$-bond twisting angle coordinates and a single solvation coordinate. For parameters corresponding to symmetric monomethines, there are two low-energy twisting channels on the excited-state surface that lead to a manifold of twisted intramolecular ...

  2. Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singh

    2017-08-01

    Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.

  3. A numerical study on helical vortices induced by a short twisted tape in a circular pipe

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2015-03-01

    Full Text Available Helical vortices, as one kind of secondary flows, are recently observed downstream of the short twisted tape. The behaviors of vortices, which have significant effects on the efficiency of twisted tape, are not well understood. As such, the formation and development of helical vortices induced by the short twisted tape are studied numerically. The results show that two symmetrical stable helical vortices are present downstream of the twisted tape. The values of radial velocities cannot be neglected due to the presence of the vortices. The vortices form in the twisted tape and remain the structure downstream of the twisted tape. Torsion promotes the formation of helical vortices. The intensities of helical vortices decay along the streamwise direction. With the increasing Reynolds numbers, the intensities of helical vortices increase, and the trend is in agreement with the swirl intensities. The intensities of helical vortices decay slowly compared with the intensities of swirling flow.

  4. The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT.

    Science.gov (United States)

    Mao, Yubin; Xu, Jinfei; Li, Zhihan; Zhang, Nini; Yin, Hao; Liu, Zuguo

    2013-01-01

    Twist2 has been shown to promote human tumor invasion as in breast cancer and cervical cancer. However, whether Twist2 promotes human ovarian cancer progression remains to be elucidated. Here, we investigate the role of Twist2 in ovarian cancer invasion and metastasis as well as the underlying molecular mechanisms. Twist2 expression was detected by Immunohistochemistry (IHC) on tissue microarray of human ovarian cancers with scoring procedure according to the staining intensity and pattern. Twist2 gene was stably introduced into SKOV-3 ovarian cancer cells to examine the changes of cellular morphology, motility, invasiveness, and EMT molecular markers. Twist2 expression is significantly increased in ovarian cancers along with the FIGO disease stage, indicating that Twist2 may be associated with ovarian cancer metastasis. Overexpression of Twist2 induced the EMT phenotype including downregulation of E-cadherin, and upregulation of N-cadherin and β-catenin in human ovarian cancer cells, suggesting that Twist2 might promote β-catenin release from the E-cadherin/β-catenin complex through inhibition of E-cadherin. Thus, β-catenin degradation was inhibited due to inhibition of APC, and the Wnt/β-catenin pathway was then activated by nuclear β-catenin accumulation, which may activate transcription of downstream target genes to promote tumor invasion and metastasis. Collectively, these data indicated that β-catenin is involved in Twist2-induced EMT in ovarian cancer. Our data indicates that upregulation of Twist2 is correlated with the FIGO stage in human ovarian cancers. In this report, we demonstrated that nuclear β-catenin is accumulated in Twist2-induced EMT cells to facilitates ovarian cancer invasion and metastasis.

  5. The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT.

    Directory of Open Access Journals (Sweden)

    Yubin Mao

    Full Text Available BACKGROUND: Twist2 has been shown to promote human tumor invasion as in breast cancer and cervical cancer. However, whether Twist2 promotes human ovarian cancer progression remains to be elucidated. Here, we investigate the role of Twist2 in ovarian cancer invasion and metastasis as well as the underlying molecular mechanisms. METHODS: Twist2 expression was detected by Immunohistochemistry (IHC on tissue microarray of human ovarian cancers with scoring procedure according to the staining intensity and pattern. Twist2 gene was stably introduced into SKOV-3 ovarian cancer cells to examine the changes of cellular morphology, motility, invasiveness, and EMT molecular markers. RESULTS: Twist2 expression is significantly increased in ovarian cancers along with the FIGO disease stage, indicating that Twist2 may be associated with ovarian cancer metastasis. Overexpression of Twist2 induced the EMT phenotype including downregulation of E-cadherin, and upregulation of N-cadherin and β-catenin in human ovarian cancer cells, suggesting that Twist2 might promote β-catenin release from the E-cadherin/β-catenin complex through inhibition of E-cadherin. Thus, β-catenin degradation was inhibited due to inhibition of APC, and the Wnt/β-catenin pathway was then activated by nuclear β-catenin accumulation, which may activate transcription of downstream target genes to promote tumor invasion and metastasis. Collectively, these data indicated that β-catenin is involved in Twist2-induced EMT in ovarian cancer. CONCLUSION: Our data indicates that upregulation of Twist2 is correlated with the FIGO stage in human ovarian cancers. In this report, we demonstrated that nuclear β-catenin is accumulated in Twist2-induced EMT cells to facilitates ovarian cancer invasion and metastasis.

  6. Hole fluids for deep ice core drilling

    OpenAIRE

    Talalay, P.G.; Gundestrup, N.S.

    2002-01-01

    This paper is based on the data published in research report of P. G. Talalay and N. S. Gundestrup; Hole fluids for deep ice core drilling : A review. Copenhagen University, Copenhagen, 1999,120p. In the practice of deep ice core drilling only three types of bore-hole fluids have been used : 1) petroleum oil products (fuels or solvents) containing densifier, 2) aqueous ethylene glycol or ethanol solutions, 3) n-butyl acetate. The main parameters of drilling fluids are 1) density and fluid top...

  7. DRILLING FLUIDS DIFFERENTIAL STICKING TENDENCY DETERMINATION

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2005-12-01

    Full Text Available Differential sticking is defined as stuck pipe caused by the differential pressure forces from an overbalanced mud column acting on the drillstring against filter cake deposited on a permeable formation. It is influenced by drilling fluid properties and characteristics of rock formations and has major impact on drilling efficiency and well costs respectively. Differential sticking tendency of two drilling fluids were determined in laboratory using sticking tester as well as influence of lubricant and increase of solids content on fluid properties. Results of the testing are presented in the paper.

  8. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  9. Study Fatigue in Materials of Drill Pipes

    Directory of Open Access Journals (Sweden)

    J. Argirov

    2016-02-01

    Full Text Available Upon examination of a fracture burst, it was found out that the main reason for this is the fatigue of the material in the annular section of the pipes. Analysis was made of the stress state and its impact on the nature of the destruction. In a working conditions, especially in rotor drilling, a direct correlation between the loss of stability of the column in the compression zone and the destruction of drill piping due to fatigue failures in material is established. Object of study is the nature of the destruction of defective drill pipe

  10. Higher-twist effects in the direct photon production and the role of infrared renormalons

    Science.gov (United States)

    Ahmadov, A. I.; Aydin, C.; Uzun, O.

    2013-01-01

    We calculate the contribution of the higher-twist effects to the large-pT inclusive single direct photon production cross section in πp collisions in the running coupling and frozen coupling approaches within holographic QCD. We obtain the structure of infrared renormalon singularities of the higher-twist subprocess cross section. For a full analysis we compare the resummed higher-twist cross sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross section.

  11. On the scenario of reconnection in non-twist cubic maps

    Energy Technology Data Exchange (ETDEWEB)

    Tigan, Gheorghe [Department of Mathematics, ' Politehnica' University of Timisoara, Pta Victoriei, No. 2, 300006 Timisoara, Timis (Romania)]. E-mail: gtigan73@yahoo.com

    2006-12-15

    In this paper, we study the reconnection process in the dynamics of cubic non-twist maps, introduced in [Howard JE, Humpherys J. Nonmonotonic twist maps. Physica D 1995; 256-76]. In order to describe the route to reconnection of the involved Poincare-Birkhoff chains we investigate an approximate interpolating Hamiltonian of the map under study. Our study reveals that the scenario of reconnection of cubic non-twist maps is different from that occurring in the dynamics of quadratic non-twist maps.

  12. Measurement of curvature and twist of a deformed object using digital holography.

    Science.gov (United States)

    Chen, Wen; Quan, Chenggen; Jui Tay, Cho

    2008-05-20

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method.

  13. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Rome-2 Univ. (Italy). Dipt. di Fisica; Farchioni, F. [Muenster Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-03-15

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  14. On Interpolation Functions of the Generalized Twisted (h,q-Euler Polynomials

    Directory of Open Access Journals (Sweden)

    Kyoung Ho Park

    2009-01-01

    Full Text Available The aim of this paper is to construct p-adic twisted two-variable Euler-(h,q-L-functions, which interpolate generalized twisted (h,q-Euler polynomials at negative integers. In this paper, we treat twisted (h,q-Euler numbers and polynomials associated with p-adic invariant integral on ℤp. We will construct two-variable twisted (h,q-Euler-zeta function and two-variable (h,q-L-function in Complex s-plane.

  15. Prediction of the temperature of a drill in drilling lunar rock simulant in a vacuum

    Directory of Open Access Journals (Sweden)

    Cui Jinsheng

    2017-01-01

    Full Text Available In this article, the temperature of a sampling drill in drilling lunar rock simulant in a high-vacuum environment was studied. The thermal problem was viewed as a 1-D transient heat transfer problem in a semi-infinite object. The simplified drill was modeled using heat conduction differential equation and a fast numerical calculation method is proposed on this basis, with time and the drill discretized. The model was modified to consider the effects of radiation, drill bit configuration, and non-constant heat source. A thermal analysis was conducted using ANSYS Workbench to determine the value of the equivalent correction coefficient proposed in this paper. Using fiber Bragg grating temperature measurement method, drilling experiments were conducted in a vacuum, and the results were compared to the model. The agreement between model and experiment was very good.

  16. Satellite Gravity Drilling the Earth

    Science.gov (United States)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  17. DEVELOPMENT OF NEW DRILLING FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  18. Temperature analysis in CFRP drilling

    Science.gov (United States)

    Matsumura, Takashi; Tamura, Shoichi

    2016-10-01

    The cutting temperature in drilling of carbon fiber reinforced plastics (CFRPs) is simulated numerically in finite difference analysis. The cutting force is predicted to estimate heat generation on the shear plane and the rake face by an energy approach. In the force model, three dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model. The cutting temperature distribution is simulated with the thermal conductions, the thermal convections and the heat generations in the discrete elements of the tool, the chip and the workpiece. The heat generations on the shear plane and the rake face are given by stress distributions based on the cutting force predicted. The cutting temperature is analyzed on assumption that all mechanical works contribute the heat generation. The temperature of CFRP is compared with that of carbon steel in the numerical simulation. The maximum temperature of CFRP is much lower than carbon steel. The position at the maximum temperature is near the tool tip due to a low thermal conductivity of CFRP.

  19. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  20. Evaluation of delamination in drilling of bone.

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2015-07-01

    In this paper, delamination of bone associated with drilling is investigated using design of experiments. Experiments have been planned based on L25 design of the orthogonal arrays with different conditions of drill bit, spindle speed and feed rate. Regression analysis is used to develop a mathematical model of delamination as a function of bone drilling process parameters. Analysis of variance (ANOVA) is carried out to find the significance of the developed model along with the percentage contribution of each factor on delamination. Optimum setting of bone drilling parameters for minimum delamination is determined using Taguchi optimization methodology. Finally, the results obtained are validated by conducting confirmation experiments. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Recompletion by horizontal drilling pays off

    Energy Technology Data Exchange (ETDEWEB)

    Holifield, R.H.; Rehm, B.

    1989-03-01

    More than 20 wells have been recompleted in the Giddings field by drilling a new, horizontal interval from existing 5 1/2-in. cased wells for distances of 300 to 1,250 ft. Recompleting existing wells is much cheaper than drilling a new well. Plus, the new completions, overall, produce better. The horizontal wells are routinely profitable now, and pay out occurs in 3 to 24 months. During this program, the techniques for slim-hole- medium-radius, horizontal drilling in Giddings have been mastered and costs have dropped 75%. It is believed that this program may be the first (or among the first) continuing horizontal project drilled out of cased wells with repeatable profitability as opposed to projected viability.

  2. Extreme Temperature Motor and Drill System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the need for motors, actuators and drilling systems that can operate in the harsh venusian environment for extended periods of time, on the order of...

  3. 75 FR 8113 - Drill Pipe From China

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Drill Pipe From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  4. Environment-friendly drilling operation technology

    Science.gov (United States)

    Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun

    2017-01-01

    Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.

  5. A reagent for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, G.A.; Khon-Pak, A.T.; Khon, A.V.; Normatov, L.N.; Telegin, B.V.

    1983-01-01

    A reagent is proposed for processing drilling muds. It contains an acrylic polymer and potassium permanganate. The reagent is distinguished by the fact that in order to improve the quality of the drilling muds by increasing their salt resistance, the reagent contains hydrolized nitron fiber as the acrylic polymer with the following component relationship (in percent by weight): potassium permanganate, 0.015 to 0.065 and hydrolyzed nitron fiber, the remainder.

  6. Drill Embedded Nanosensors For Planetary Subsurface Exploration

    Science.gov (United States)

    Li, Jing

    2014-01-01

    We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit for collecting sensor data and transmit it to a computer wirelessly.This capability will enable the real time measurement of ice during drilling. With this real time and in-situ measurement, subsurface ice detection can be easy, fast, precise and low cost.

  7. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  8. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    Science.gov (United States)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  9. Removal of chromium and lead from drill cuttings using activated ...

    African Journals Online (AJOL)

    user

    2009-07-14

    Jul 14, 2009 ... the application of agricultural wastes for heavy metal removal from drill cuttings. Key words: Drill cuttings, heavy metals removal, palm kernel shell, adsorption. INTRODUCTION. The drill cuttings produced by an oil based drilling fluid are rather heavily contaminated by the oil base and addi- tives used for ...

  10. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  11. 30 CFR 250.463 - Who establishes field drilling rules?

    Science.gov (United States)

    2010-07-01

    ... GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.463 Who establishes field drilling rules? (a) The District Manager may... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who establishes field drilling rules? 250.463...

  12. 30 CFR 57.7012 - Tending drills in operation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tending drills in operation. 57.7012 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7012 Tending drills in operation. While in operation...

  13. Thermal numerical assessment of jawbone drilling factor during implantology

    Directory of Open Access Journals (Sweden)

    Adel Pirjamali Neisiani

    2016-03-01

    Full Text Available Background and Aims: Optimization drilling parameters in order to temperature decrease during creation of hole in the bone is an interested issue. The aim of this study was to achieve optimum values of drilling parameters based on the creation of minimum temperature during jawbone drilling. Materials and Methods: In this study two models of mandible and maxilla was created and teeth 2, 5 and 8 from maxilla and teeth 25, 28 and 31 from mandible were removed. The drilling operation was performed under different conditions on jawbone models using finite element analysis and the maximum temperatures were measured in adjacent of holes. Results: Drill bit head angle of 70 degrees was created the lowest maximum temperature during drilling operation. The lowest maximum temperatures were observed in the drill bit rotational speed, drill bit feed rate and the force exerted on the drill bit equal to 200 rpm, 120 mm/min and 60 N, respectively. The use of irrigation can decrease the maximum bone temperature about 7ºC. The maximum temperature differences in various regions of mandible and maxilla were approximately about 1ºC. Conclusion: Sharpness of drill bit head angle, reduction of drill bit rotational speed, increasing drill bit feed rate and exerted force on drill bit and also the use of irrigation played effective roles in temperature decrease during jawbone drilling. Drilling site did not have important effect on the temperature changes during jawbone drilling.

  14. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  15. Twisting dirac fermions: circular dichroism in bilayer graphene

    Science.gov (United States)

    Suárez Morell, E.; Chico, Leonor; Brey, Luis

    2017-09-01

    Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.

  16. Metal microneedle fabrication 
using twisted light with spin

    OpenAIRE

    Omatsu, Takashige; Chujo, Keisuke; Miyamoto, Katsuhiko; Okida, Masahito; Nakamura, Kazuki; Aoki, Nobuyuki; Morita, Ryuji

    2010-01-01

    Microneedle fabrication on a metal surface based on laser ablation using twisted light with spin was demonstrated, for the first time. The resulting needle showed a height of at least 10 μm above the target surface and a tip diameter of less than 0.3 μm. We also demonstrated the fabrication of a two-dimensional 5 × 6 microneedle array. The needles were uniformly well shaped with an average length and tip diameter of about 10 and 0.5 μm, respectively.

  17. Metal microneedle fabrication using twisted light with spin.

    Science.gov (United States)

    Omatsu, Takashige; Chujo, Keisuke; Miyamoto, Katsuhiko; Okida, Masahito; Nakamura, Kazuki; Aoki, Nobuyuki; Morita, Ryuji

    2010-08-16

    Microneedle fabrication on a metal surface based on laser ablation using twisted light with spin was demonstrated, for the first time. The resulting needle showed a height of at least 10 microm above the target surface and a tip diameter of less than 0.3 microm. We also demonstrated the fabrication of a two-dimensional 5 x 6 microneedle array. The needles were uniformly well shaped with an average length and tip diameter of about 10 and 0.5 microm, respectively.

  18. Twisted L-Functions and Monodromy (AM-150)

    CERN Document Server

    Katz, Nicholas M

    2002-01-01

    For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves?Nicholas Katz answers these questions for families of ''big'' twists of elliptic curves in the f

  19. Near-field interaction of twisted split-ring resonators

    CERN Document Server

    Powell, David A; Shadrivov, Ilya V; Kivshar, Yuri S

    2011-01-01

    We present experimental, numerical and analytical results for the study of near-field interaction of twisted split-ring resonators, the basic elements of the so-called stereometamaterials. In contrast to previous results, we observe a crossing point in the dispersion curves where the symmetric and antisymmetric modes become degenerate. We introduce a model to describe the interplay between magnetic and electric near-field interactions and demonstrate how this model describes the crossing of the dispersion curves, initially considering lossless identical resonators. Finally, we apply the theory of Morse critical points to demonstrate the competition between losses and fabrication errors in determining whether or not symmetric and antisymmetric modes cross.

  20. ABOUT THE GEOMETRY AND THE APPLICATIONS OF THE TWISTED SURFACES

    Directory of Open Access Journals (Sweden)

    MÂRZA Carmen

    2015-06-01

    Full Text Available The helical and spiral surfaces are used in various fields. These surfaces are obtained by rotating a segment line called generatrix around directrices lines, respectively the spiral surfaces are obtained by composing simultaneously the movements of translation and rotation of a plane figure around an axis - which can be a straight line or a curved line, or around a real or imaginary surface - called core. After an overview of these surfaces, the attention of the authors will be focused on the geometrical and graphical analysis of the twisted surfaces in civil engineering branch, such as: columns, helical ramps and stairs, respectively buildings having a futuristic design.

  1. Stretching, twisting and supercoiling in short, single DNA molecules

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2018-02-01

    We had combined the Neukirch-Marko model that describes the extension, torque and supercoiling in single, stretched and twisted DNA of infinite contour length, with a form of the free energy suggested by Sinha and Samuels to describe short DNA, with contour length only a few times the persistence length. We find that the free energy of the stretched but untwisted DNA, is significantly modified from its infinitely length value and this in turn modifies significantly the torque and supercoiling. We show that this is consistent with short DNA being more flexible than infinitely long DNA. We hope our results will stimulate experimental investigation of torque and supercoiling in short DNA.

  2. Analysis of the British Industrial Revolution in cinema: Oliver Twist

    OpenAIRE

    Fuente Diez, Óscar

    2015-01-01

    La Revolución Industrial británica fue un fenómeno histórico que incluso a día de hoy continúa atrayendo miradas. Sus dimensiones fueron tales que actualmente sus consecuencias aún son visibles. El objetivo de este proyecto es analizar el impacto social de la Revolución Industrial británica y las causas que llevaron a este punto como retrata Oliver Twist, la película seleccionada. Desde la perspectiva de las injusticias laborales y las desigualdades sociales, el estudio se centra en las conse...

  3. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  4. Twisted-order parameter applied to dimerized ladders

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J; Martin-Delgado, M A [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain); Sierra, G [Instituto de Fisica Teorica, C.S.I.C.-U.A.M., Madrid (Spain)

    2008-12-05

    We apply the twisted-order parameter (TOP) for dimerized quantum spin ladders to locate the critical points that separate gapped phases representing quantum spin liquids of various types. Using the density matrix renormalization group (DMRG), method, we find that the TOP is a good order parameter for these systems regardless of the number of legs. As a check, we reproduce with the DMRG and periodic boundary conditions the computations previously done with quantum Monte Carlo for one-dimensional S = 1/2, S = 1, S = 3/2 and S = 2 Heisenberg chains with alternating bonds.

  5. Diffraction effects from (111) twist boundaries in gold

    Energy Technology Data Exchange (ETDEWEB)

    Majid, I.; Wang, D.; Bristowe, P.D.

    1990-12-05

    The structural characteristics of (111) twist boundaries in gold are investigated using a combination of x-ray diffraction and computer modeling techniques. Comparison of the measured scattering effects with those generated from EAM computer models reveals that the (111) boundary displacement field is weak, rotational in form and centered on O' lattice sites. Furthermore, the measured intensities of the strong O' lattice reflections decrease smoothly with increasing boundary angle up to 30{degree}, as calculated from the model. The effect of double positioning on the diffraction pattern and the structural analysis is discussed. 9 refs., 2 figs.

  6. Diffraction effects from (111) twist boundaries in gold

    Science.gov (United States)

    Majid, I.; Wang, D.; Bristowe, P. D.

    1990-12-01

    The structural characteristics of (111) twist boundaries in gold are investigated using a combination of x ray diffraction and computer modeling techniques. Comparison of the measured scattering effects with those generated from EAM computer models reveals that the (111) boundary displacement field is weak, rotational in form and centered on O lattice sites. Furthermore, the measured intensities of the strong O lattice reflections decrease smoothly with increasing boundary angle up to 30 degrees, as calculated from the model. The effect of double positioning on the diffraction pattern and the structural analysis is discussed.

  7. Portable top drive cuts horizontal drilling costs

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

    1993-11-01

    Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

  8. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  9. Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model.

    Science.gov (United States)

    Strbac, Georg D; Unger, Ewald; Donner, René; Bijak, Manfred; Watzek, Georg; Zechner, Werner

    2014-06-01

    The purpose of this study was to evaluate the temperature changes during implant osteotomies with a combined irrigation system as compared to the commonly used external and internal irrigation under standardized conditions. Drilling procedures were performed on VII bovine ribs using a computer-aided surgical system that ensured automated intermittent drilling cycles to simulate clinical conditions. A total of 320 drilling osteotomies were performed with twist (2 mm) and conical implant drills (3.5/4.3/5 mm) at various drilling depths (10/16 mm) and with different saline irrigation (50 ml/min) methods (without/external/internal/combined). Temperature changes were recorded in real time by two custom-built thermoprobes with 14 temperature sensors (7 sensors/thermoprobe) at defined measuring depths. The highest temperature increase during osteotomies was observed without any coolant irrigation (median, 8.01°C), followed by commonly used external saline irrigation (median, 2.60°C), combined irrigation (median, 1.51°C) and ultimately with internal saline irrigation (median, 1.48°C). Temperature increase with different drill diameters showed significant differences (P irrigation showed a significantly smaller temperature increase (P irrigation. A combined irrigation procedure appears to be preferable (P irrigation method primarily with higher osteotomy depths. Combined irrigation provides sufficient reduction in temperature changes during drilling, and it may be more beneficial in deeper site osteotomies. Further studies to optimize the effects of a combined irrigation are needed. © 2012 John Wiley & Sons A/S.

  10. Laser Drilling - Drilling with the Power of Light

    Energy Technology Data Exchange (ETDEWEB)

    Brian C. Gahan; Samih Batarseh

    2005-09-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of

  11. Drilling Waste Management Strategy for Field ‘X'

    OpenAIRE

    Wibowo, Risyad Ramadhan; Kasmungin, Sugiatmo; Rudiantoro, Agung Budi

    2015-01-01

    Drilling waste management is a planing and implementation of a prudent drilling waste collection,treatment and final disposal. A well planned drilling waste management system not only ensure thehealth and safety of the surrounding environment, it also brings advantages to the drilling operationeffectivity and economics. The drilling waste management technologies and practices can begrouped into three major categories : waste minimization, recylce/reuse and disposal. This essaywill later discu...

  12. Assessment of subendocardial vs. subepicardial left ventricular twist using tagged MRI images.

    Science.gov (United States)

    Tavakoli, Vahid; Sahba, Nima

    2014-04-01

    The objective of this study is to determine the normal value of 3D left ventricular (LV) twist in subendocardial, mid-wall and subepicardial layers, as well as to study the effects of aging on 3D LV twist by tagged MR motion tracking techniques. Three dimensional motion detection based on 3D tagged MR images is robust to out-of-plane motion error; while 2D motion detection is inherently unable to analyze the 3D cardiac motion and may lead to inaccurate results. The 3D LV volumetric images were acquired in 52 normal adult subjects (aged 21-82) and were analyzed by using 3D HARmonic phase (HARP) technique. HARP technique provided the 3D displacement fields and the displacements were utilized to compute the rotational values. LV twist was defined as apical rotation relative to the basal rotation, in the 3D coordinates. The LV twist values of subendocardial, mid-wall and subepicardial layers were analyzed separately. The measured parameters in this study were: peak apical rotation, peak basal rotation, and peak LV twist. Looking at the apex, the normal LV maintains a clockwise rotation in the LV basal plane and a counterclockwise rotation in the LV apical plane. In general, the apical and basal rotation values increase during the aging process, leading to an increased value of LV twist. Peak epicardial LV twist is (10.4±2.6 degrees) which is lower than the mid-wall LV twist (11.3±2.2 degrees) and endocardial LV twist (12.1±2.6 degrees) in the young group (21-35 years old). Also, peak epicardial LV twist is (12.2±2.6 degrees) which is lower than the mid-wall LV twist (14.4±2.8 degrees) and endocardial LV twist (14.7±2.5 degrees) in the middle aged group (21-35 years old). In a similar way, peak epicardial LV twist is (14.8±2.9 degrees) which is lower than the mid-wall LV twist (15.7±3.6 degrees) and endocardial LV twist (16.7±3.0 degrees) in the old group (50-65 years old). Regarding the older group (more than 65 years old), peak epicardial LV twist is (15.9±3

  13. Twist defect in chiral photonic structures with spatially varying pitch

    Science.gov (United States)

    Chen, Jiun-Yeu; Chen, Lien-Wen

    2005-04-01

    The properties of photonic defect modes in a chiral photonic structure were investigated using the finite element method. By stacking two cholesteric liquid crystal (ChLC) films, the defect mode due to the introduction of a twist defect was considered in both cases of chiral structures with constant pitch and spatially varying pitch. Two types of linear pitch gradients for achieving a broadband reflection were analysed, and the number of chiral pitches required for establishing the stop band was simulated. The effect of a finite sample thickness on the energy density distribution of the defect mode and on the required polarization of the incident light to excite the defect mode was studied. In both cases of constant pitch and spatially varying pitch, an unusual crossover behaviour in reflection at the defect resonance wavelength of a single circularly polarized mode appears when the structure thickness increases beyond a specific value. The energy distribution inside the sample also reveals the unusual distribution. Two different resonance wavelengths can be created by a twist defect in the ChLC composite film with linearly varying pitch, while only one resonance wavelength can be created in the identical film with constant pitch.

  14. Dickens's Dichotomous Formula for Social Reform In Oliver Twist

    Directory of Open Access Journals (Sweden)

    Taher Badinjki

    2016-11-01

    Full Text Available Oliver Twist was a direct appeal to society to take action against poverty, exploitation of children, oppression of women, and was meant to be a picture of the "dregs of life” in all their deformity and wretchedness. Among the most miserable inhabitants of the world of Oliver Twist, Nancy appears as a key figure.  Dickens was anxious to expose the truth about such a woman because he believed it would be a service to society. Dickens's portrayal of Nancy illustrates the power of the dual conception of womanhood  held at the time. On the one hand, a woman might be conceived as someone refined and somewhat remote from ordinary life like Rose Maylie. On the other hand, there was a certain fascination in a woman's degradation, even though that could be shown only indirectly.  Nancy is a demonstration of the two elements combined together. Dickens took the ideal nature of womanhood  and the depravity of the prostitute, and combined them in a remarkable dramatization which he had some right to claim was also true to life. The book is an astounding rebuttal of contemporary prejudice, and a call for more humane and liberal attitudes. These attitudes  are based on the concepts that there is now a radically different way of looking at human nature, that everything ought to depend on what one is in oneself, and that it is only in love that humans can live purposefully and happily with each other.

  15. Determination of instantaneous curvature and twist by digital shearography

    Science.gov (United States)

    Fu, Yu; Guo, Min; Liu, Huan

    2012-08-01

    Shearography is a whole-field, noncontact optical technique that allows the direct measurement of first-order derivatives of deflection on spatial coordinates, depending on the measurement setup. In many cases, the curvatures and twists of an object provide more interesting parameters, as they are directly related to the induced stresses when an object is subjected to external loads. We describe the use of digital shearography for the measurement of these stress-related parameters through phase retrieval when an object is undergoing continuous deformation. A sequence of shearograms is captured by a high-speed camera during the deformation. To avoid the problem of phase ambiguity, either a spatial or temporal carrier is introduced. A comparison of spatial and temporal carrier is also presented. The obtained three-dimensional matrix is then analyzed by Fourier and windowed-Fourier transform in a spatial and temporal domain and a high-quality spatial distribution of the deflection derivative, curvature and twist are extracted at any instant.

  16. Noncommutative Geometry And Twisted Little-string Theories (instantons)

    CERN Document Server

    Krogh, M

    1999-01-01

    In this thesis we will discuss various aspects of noncommutative geometry and compactified Little-String theories. First we will give an introduction to the use of noncommutative geometry in string theory. Thereafter we will present a proof of the connection between D-brane dynamics and noncommutative geometry. This proof was made in collaboration with Edna Cheung. Then we will explain the concept of instantons in noncommutative gauge theories which will be relevant for the last chapters. The last chapters shift the focus to Little-String- and (2, 0)- theories. We study compactifications of these theories on tori with twists. First we study the case of two coinciding branes in detail. This is based on work with Edna Cheung and Ori Ganor. Finally we study the case of an arbitrary number of coinciding branes. The main result here is that the moduli spaces of vacua for the twisted compactifications are equal to moduli spaces of instantons on a noncommutative torus. This work was done in collaboration with Edna C...

  17. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  18. Twisting all the way: from algebras to morphisms and connections

    CERN Document Server

    Aschieri, Paolo

    2012-01-01

    Given a Hopf algebra H and an algebra A that is an H-module algebra we consider the category of left H-modules and A-bimodules, where morphisms are just right A-linear maps (not necessarily H-equivariant). Given a twist F of H we then quantize (deform) H to H^F, A to A_\\star and correspondingly the category of left H-modules and A-bimodules to the category of left H^F-modules and A_\\star-bimodules. If we consider a quasitriangular Hopf algebra H, a quasi-commutative algebra A and quasi-commutative A-bimodules, we can further construct and study tensor products over A of modules and of morphisms, and their twist quantization. This study leads to the definition of arbitrary (i.e., not necessarily H-equivariant) connections on quasi-commutative A-bimodules, to extend these connections to tensor product modules and to quantize them to A_\\star-bimodule connections. Their curvatures and those on tensor product modules are also determined.

  19. Improvement Of Wilson Fermions And Twisted Mass Lattice Qcd

    CERN Document Server

    Wu, J M

    2005-01-01

    In order for Wilson fermions to be a competitive option to use in lattice QCD (LQCD) simulations, the large inherent discretization errors starting at O(a) (a being the lattice spacing) have to be removed. This can be accomplished through the Symanizk improvement program, where improvement terms have to be added to both the action and the operators of interest with coefficients appropriately chosen so that the rate of convergence to the continuum limit is quadratic in a. For this to be applicable to numerical simulations, improvement coefficients have to be determined non-perturbatively. A program for doing so has been pioneered by the Alpha collaboration. In this work, an extension of that program is made to improve all bilinear operators in QCD with two, three, and four flavours of non-degenerate quarks. With even numbers of quark flavours, an alternative approach is afforded by twisted mass LQCD (tmLQCD), where O(a) improvement in physical quantities can be achieved automatically at maximal twist. In this ...

  20. NGC 5626: a massive fast rotator with a twist

    Science.gov (United States)

    Viaene, S.; Sarzi, M.; Baes, M.; Puerari, I.

    2018-02-01

    We present a kinematic analysis of the dust-lane elliptical NGC 5626 based on MUSE observations. These data allow us to robustly classify this galaxy as a fast rotator and to infer a virial mass of 1011.7 M⊙, making it one of the most massive fast rotators known. In addition, the depth and extent of the MUSE data reveal a strong kinematic twist in the stellar velocity field (by up to 45° beyond 1.5Re). A comparison with the ATLAS3D sample underlines the rareness of this system, although we show that such a large-scale kinematic twist could have been missed by the ATLAS3D data due to the limited spatial sampling of this survey (typically extending to 0.6Re for massive early-type galaxies). MUSE thus has the potential to unveil more examples of this type of galaxies. We discuss the environment and possible formation history of NGC 5626 and finally argue how a merger between the Milky Way and Andromeda could produce a galaxy of the same class as NGC 5626.

  1. Polarized virtual photon structure function gγ2 and twist-3 effects in QCD

    Science.gov (United States)

    Baba, Hideshi; Sasaki, Ken; Uematsu, Tsuneo

    2002-06-01

    We investigate twist-3 effects in the polarized virtual photon structure. The structure functions gγ1 and gγ2 of a polarized photon could be experimentally studied in future polarized ep or e+e- colliders. The leading contributions to gγ1 are twist-2 effects, while another structure function gγ2, which exists only for the virtual photon target, receives not only twist-2 but also twist-3 contributions. We first show that twist-3 effects actually exist in the box-diagram contributions and we extract the twist-3 part, which can also be reproduced by the pure QED operator product expansion. We then calculate the nontrivial lowest moment (n=3) of the twist-3 contribution to gγ2 in QCD. For large Nc (the number of colors), the QCD analysis of twist-3 effects in the flavor nonsinglet part of gγ2 becomes tractable and we can obtain its moments in a compact form for all n.

  2. Broadband terahertz polarization rotator based on a twisted parallel plate waveguide

    DEFF Research Database (Denmark)

    Kristensen, T. Bjørk; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    A broadband polarization rotator for terahertz waves is developed by 3D printing. The device is based on a twisted parallel plate waveguide.......A broadband polarization rotator for terahertz waves is developed by 3D printing. The device is based on a twisted parallel plate waveguide....

  3. Bubble generation in a twisted and bent DNA-like model

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Christiansen, Peter Leth; Bang, Ole

    2004-01-01

    The DNA molecule is modeled by a parabola embedded chain with long-range interactions between twisted base pair dipoles. A mechanism for bubble generation is presented and investigated in two different configurations. Using random normally distributed initial conditions to simulate thermal fluctu...... fluctuations, a relationship between bubble generation, twist and curvature is established. An analytical approach supports the numerical results....

  4. Fundamental aeroelastic properties of a bend–twist coupled blade section

    DEFF Research Database (Denmark)

    Stäblein, Alexander R.; Hansen, Morten Hartvig; Pirrung, Georg

    2017-01-01

    The effects of bend–twist coupling on the aeroelastic modal properties and stability limits of a two-dimensional blade section in attached flow are investigated. Bend–twist coupling is introduced in the stiffness matrix of the structural blade section model. The structural model is coupled with a...

  5. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xin-Hong [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Lv, Xin-Quan [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China); Li, Hui-Xiang, E-mail: Lihuixiang1955@163.com [Department of Pathology, The Basic Medical College of Zhengzhou University, Zhengzhou, Henan (China); Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan (China)

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  6. Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    Bend-twist coupling of wind turbine blades is known as a means to reduce the structural loads of the turbine. While the load reduction is desirable, bend-twist coupling also leads to a decrease in the annual energy production of the turbine. The reduction is mainly related to a no longer optimal ...

  7. Correlators of arbitrary untwisted operators and excited twist operators for N branes at angles

    Directory of Open Access Journals (Sweden)

    Igor Pesando

    2014-09-01

    Full Text Available We compute the generic correlator with L untwisted operators and N (excited twist fields for branes at angles on T2 and show that it is given by a generalization of the Wick theorem. We give also the recipe to compute efficiently the generic OPE between an untwisted operator and an excited twisted state.

  8. Concentric tube heat exchanger installed by twisted tapes using various wings with alternate axes

    Science.gov (United States)

    Yaningsih, Indri; Wijayanta, Agung Tri

    2017-01-01

    The effects of twisted tapes using various wings with alternate axes on heat transfer, flow friction and thermal performance characteristics in a concentric tube heat exchanger are experimentally investigated. The influence of wing shape including triangle, rectangle and trapezoid are also studied. The experiments are performed using twisted tape with the constant wing-chord ratio (d/W) of 0.31, constant wing-span ratio (b/W) of 0.23 and constant twist ratio (y/W) of 3.8, over a Reynolds number range of 5800-18,500. The alternate axes are made by arranging each plane of twisted tape to 60-degree difference about the adjacent plane. The tests using the plain tube and tube with typical twisted tape were also conducted for a comparison. The results show that both heat transfer rate and friction factor associated with all twisted tape are consistently higher than those without twisted tape. Under the similar operating conditions, Nusselt number, friction factor as well as thermal performance factor given by the tape with alternate-axes and trapezoidal wings are higher than those given by the others. The maximum thermal performance factor of 1.44 is found with the use of twisted tape with alternate-axes and trapezoidal wings, where the heat transfer rate and friction factor increase to 1.91 and 5.2 times of those in the plain tube, respectively.

  9. Orbital angular momentum modes by twisting of a hollow core antiresonant fiber

    DEFF Research Database (Denmark)

    Stefani, Alessio; Kuhlmey, Boris T.; Fleming, Simon

    2017-01-01

    physical phenomena [2]. We previously reported the ability to create helical hollow fibers by mechanically twisting a tube lattice fiber made of polyurethane, the twist of which can be adjusted and reversed [3]. In this work we report how such deformation induces a mode transformation to an OAM mode...

  10. The geometrical origin of the strain-twist coupling in double helices

    DEFF Research Database (Denmark)

    Olsen, Kasper; Bohr, Jakob

    2011-01-01

    A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends...

  11. Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Kavari, Ghazale; Masdari, Mehran

    2017-01-01

    This study is aimed to aerodynamically design a 1 mega-Watt horizontal axis wind turbine in order to obtain the maximum power coefficient by linearizing the chord and twist distributions. A new linearization method has been used for chord and twist distributions by crossing tangent line through...

  12. Genetic heterogeneity of Saethre-Chotzen syndrome, due to TWIST and FGFR mutations.

    Science.gov (United States)

    Paznekas, W A; Cunningham, M L; Howard, T D; Korf, B R; Lipson, M H; Grix, A W; Feingold, M; Goldberg, R; Borochowitz, Z; Aleck, K; Mulliken, J; Yin, M; Jabs, E W

    1998-01-01

    Thirty-two unrelated patients with features of Saethre-Chotzen syndrome, a common autosomal dominant condition of craniosynostosis and limb anomalies, were screened for mutations in TWIST, FGFR2, and FGFR3. Nine novel and three recurrent TWIST mutations were found in 12 families. Seven families were found to have the FGFR3 P250R mutation, and one individual was found to have an FGFR2 VV269-270 deletion. To date, our detection rate for TWIST or FGFR mutations is 68% in our Saethre-Chotzen syndrome patients, including our five patients elsewhere reported with TWIST mutations. More than 35 different TWIST mutations are now known in the literature. The most common phenotypic features, present in more than a third of our patients with TWIST mutations, are coronal synostosis, brachycephaly, low frontal hairline, facial asymmetry, ptosis, hypertelorism, broad great toes, and clinodactyly. Significant intra- and interfamilial phenotypic variability is present for either TWIST mutations or FGFR mutations. The overlap in clinical features and the presence, in the same genes, of mutations for more than one craniosynostotic condition-such as Saethre-Chotzen, Crouzon, and Pfeiffer syndromes-support the hypothesis that TWIST and FGFRs are components of the same molecular pathway involved in the modulation of craniofacial and limb development in humans. PMID:9585583

  13. Exact zero vacuum energy in twisted SU(N) principal chiral field

    Energy Technology Data Exchange (ETDEWEB)

    Leurent, Sebastien [Univ. de Bourgogne Franche-Comte, Dijon (France). Inst. de Mathematique de Bourgogne; Sobko, Evgeny [DESY, Hamburg (Germany). Theory Group

    2015-11-15

    We present a finite set of equations for twisted PCF model. At the special twist in the root of unity we demonstrate that the vacuum energy is exactly zero at any size L. Also in SU(2) case we numerically calculate the energy of the single particle state with zero rapidity, as a function of L.

  14. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Science.gov (United States)

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  15. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    Science.gov (United States)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  16. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    Science.gov (United States)

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  17. An improved hazard rate twisting approach for the statistic of the sum of subexponential variates

    KAUST Repository

    Rached, Nadhir B.

    2015-01-01

    In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted.

  18. Twisting Effects on Carbon Nanotubes: A First-Principles Study with Helical Symmetry Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichiro; Koretsune, Takashi; Saito, Susumu, E-mail: kato@stat.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-Ku, Tokyo 152-8550 (Japan)

    2011-07-20

    We report the energetics and the electronic properties of twisted carbon nanotubes (CNTs). We use a real-space density functional theory with helical-symmetry operation, and apply it for several CNTs with the diameters of around 0.8 nm including the experimentally abundant (6,5) nanotube. By using this computational code, one can now obtain the total energies with enough accuracies to optimize the CNT geometries including quasi-continuous twisting levels for any type of nanotube in principle. As a result, it is found that chiral nanotubes possess twisted geometries at their ground states. The electronic structures of CNTs depend sensitively on twisting levels in this diameter region, and the twisting effects on their fundamental gap values can be judged by the value of mod(n - m, 3), where n and m are the chiral indices.

  19. A photometric determination of twists in three early-type galaxies

    Science.gov (United States)

    Williams, T. B.; Schwarzschild, M.

    1979-01-01

    Detailed photometric data have been obtained for three early-type galaxies by using the Cerro Tololo 1.5-m telescope and an SEC television camera. The aim of this photometry is to gain further accurate information on the occurrence of twists in such galaxies; i.e., on any variations with radius of the position angle of the major axes of the isophotes. The results of the photometry are: (1) the finding of no detectable twist within the bulge of the S0 galaxy NGC 5102; (2) confirmation of a substantial twist (about 10 deg) in the inner portion of the E3 galaxy IC 1459; and (3) determination of a moderate twist (about 5 deg) within the E4 galaxy NGC 4697, possibly too small to have been previously detected. If such moderate twists should turn out to be common in elliptical galaxies, the suspicion of triaxiality for most such galaxies would be enhanced.

  20. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  1. Direction of Umbilical Cord Twist and its Characteristics – a Pilot Study

    Directory of Open Access Journals (Sweden)

    Althea V. Pinto

    2013-12-01

    Full Text Available Background: A right-sided umbilical cord twist is associated with the presence of a single umbilical artery, congenital malformations and placenta praevia. Methods: It was an observational study. Data was collected from 137 umbilical cords, all from live births and their patient records. The gestational ages ranged from 28 weeks to 41 weeks. The umbilical cords were categorized into right or left, based on the direction of twist. The independent sample T test and the Chi square test were used to analyze the differences between groups. Results: The prevalence of left twist was 84%. Right twist was significantly associated with a larger Hyrtl’s anastomosis (p=0.029 and gestational diabetes (p=0.027. Conclusion:Two previously unreported associations with right twist of the umbilical cord, gestational diabetes and an increase in the diameter of Hyrtl’s anastomosis, were noted in the present study.

  2. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Bin; Wang, Peng; Pan, Cheng; Miao, Tengfei; Wu, Yong; Lau, C. N.; Bockrath, M., E-mail: marc.bockrath@ucr.edu [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Taniguchi, T.; Watanabe, K. [Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine the twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.

  3. Post-drilling analysis of underbalanced drilled wells in Hassi-Messaoud Field, Algeria : case studies

    Energy Technology Data Exchange (ETDEWEB)

    Salim, K. [Sonatrach Inc., Alger (Algeria); Osisanya, S.O. [Oklahoma Univ., Norman, OK (United States); Madi, Y. [Algerian Petroleum Inst. (Algeria)

    2004-07-01

    Underbalanced drilling (UBD) is often undertaken in fractured reservoirs, in depleted formations that are susceptible to well bore damage or mud loss, and in medium to hard rock with problematic drilling rates. UBD involves manipulating the bottom hole circulating pressure so that it will be less than the static reservoir pressure, allowing formation fluids to flow into the well. UBD has increased profits at several oil and gas drilling properties including the Hassi Messaoud Field in Algeria where Sonatrach conducted trials in depleted oil production zones to assess the operational feasibility and commercial benefits of UBD. The technique was found to prevent lost circulation and differential pipe sticking; improve penetration rates; provide real-time reservoir evaluation while drilling; eliminate well stimulation costs; and, improve well bore productivity as a result of reduced formation damage. UBD also provides access to reserves that would otherwise not be produced, and substantially reduces total drilling and completion costs. 3 refs., 4 tabs., 9 figs.

  4. Higher-twist contributions to high-pT inclusive meson production in two-photon collisions

    Science.gov (United States)

    Bagger, J. A.; Gunion, J. F.

    1984-01-01

    The most important higher-twist subprocess contributing to inclusive single-meson production at high pT is photon + quark-->meson + quark. We consider two-photon collisions and compare this higher-twist contribution to that arising from the leading-twist subprocess, photon + photon-->quark + antiquark. We find that the higher-twist subprocess, while not important for direct π production, is significant for ρ production, especially when enhanced by suitable trigger requirements.

  5. Breast tumor cell-specific knockout ofTwist1inhibits cancer cell plasticity, dissemination, and lung metastasis in mice.

    Science.gov (United States)

    Xu, Yixiang; Lee, Dong-Kee; Feng, Zhen; Xu, Yan; Bu, Wen; Li, Yi; Liao, Lan; Xu, Jianming

    2017-10-24

    Twist1 is an epithelial-mesenchymal transition (EMT)-inducing transcription factor (TF) that promotes cell migration and invasion. To determine the intrinsic role of Twist1 in EMT and breast cancer initiation, growth, and metastasis, we developed mouse models with an oncogene-induced mammary tumor containing wild-type (WT) Twist1 or tumor cell-specific Twist1 knockout (Twist1 TKO ). Twist1 knockout showed no effects on tumor initiation and growth. In both models with early-stage tumor cells, Twist1, and mesenchymal markers were not expressed, and lung metastasis was absent. Twist1 expression was detected in ∼6% of the advanced WT tumor cells. Most of these Twist1 + cells coexpressed several other EMT-inducing TFs (Snail, Slug, Zeb2), lost ERα and luminal marker K8, acquired basal cell markers (K5, p63), and exhibited a partial EMT plasticity (E-cadherin + /vimentin + ). In advanced Twist1 TKO tumor cells, Twist1 knockout largely diminished the expression of the aforementioned EMT-inducing TFs and basal and mesenchymal markers, but maintained the expression of the luminal markers. Circulating tumor cells (CTCs) were commonly detected in mice with advanced WT tumors, but not in mice with advanced Twist1 TKO tumors. Nearly all WT CTCs coexpressed Twist1 with other EMT-inducing TFs and both epithelial and mesenchymal markers. Mice with advanced WT tumors developed extensive lung metastasis consisting of luminal tumor cells with silenced Twist1 and mesenchymal marker expression. Mice with advanced Twist1 TKO tumors developed very little lung metastasis. Therefore, Twist1 is required for the expression of other EMT-inducing TFs in a small subset of tumor cells. Together, they induce partial EMT, basal-like tumor progression, intravasation, and metastasis. Published under the PNAS license.

  6. Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival

    Directory of Open Access Journals (Sweden)

    Alimujiang Wushou

    2014-11-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.

  7. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  8. Measured and modelled static and dynamic axial trunk torsion during twisting in males and females.

    Science.gov (United States)

    McGill, S M; Hoodless, K

    1990-09-01

    Study of the mechanics of trunk twisting is of special interest given epidemiological evidence linking occupational twisting to increased incidence of low back pain. An anatomically detailed, three-dimensional model of the trunk (rib cage, pelvis, five lumbar vertebrae and 50 muscles), was used to predict maximum axial trunk torque. Predicted axial torques were compared with measured torques. Thirty-one (10 male and 21 female) subjects performed maximum effort isometric twisting exertions, at 0 degrees of twist and +/- 30 degrees of twist together with dynamic exertions, at 30 degrees s-1 and 60 degrees s-1. Females were able to generate approximately two-thirds of the torque of males (males, 97Nm; females 60Nm, isometric at 0 degrees). When the trunk was prerotated to 30 degrees, subjects were able to generate greater torque when the effort was toward the 0 degree position (approximately 105Nm by males and 68Nm by females). Experimental data indicated that velocity of rotation and amount of twist are important modulators of axial torque. Changes in muscle length were demonstrated to be minimal from model output as most muscle length changes during a twist from 0 degrees to 30 degrees, measured between the pelvis and the shoulder harness, were less than 1%, although some portions of the abdominal obliques underwent a length excursion of 5%. The small changes in the individual muscle force components that contribute to twist, i.e. the muscle unit vector about the axial twist axis and its moment arm that change as a function of twisted position, do not entirely account for the measured differences in torque, suggesting that additional mechanisms influence axial torque generation.

  9. Physical demand of seven closed agility drills.

    Science.gov (United States)

    Atkinson, Mark; Rosalie, Simon; Netto, Kevin

    2016-11-01

    The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.

  10. Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

    Science.gov (United States)

    Smith, Sarah Mitchell

    A heliogyro spacecraft is a specific type of solar sail that generates thrust from the reflection of solar photons. It consists of multiple long (200 to 600 meters), thin blades, similar to a helicopter. The heliogyro's blades remain in tension by spinning around the central hub of the spacecraft. The individual blades are pitched collectively or cyclically to produce the desired maneuver profile. The propellant-free heliogyro is a long-duration sustainable spacecraft whose maneuverability allows it to attain previously inaccessible orbits for traditional spacecraft. The blades are constructed from thin Mylar sheets, approximately 2.5 ?m thick, which have very little inherent damping making it necessary to include some other way of attenuating blade vibration caused by maneuvering. The most common approach is to incorporate damping through the root pitch actuator. However, due to the small root pitch control torques required, on the order of 2 ?Nm, compared to the large friction torques associated with a root pitch actuator, it is challenging to design a root control system that takes friction into account and can still add damping to the blade. The purpose of this research is to address the limitations of current control designs for a heliogyro spacecraft and to develop a physically realizable root pitch controller that effectively damps the torsional structural modes of a single heliogyro blade. Classical control theory in conjunction with impedance control techniques are used to design a position-source root pitch controller to dominate friction with high gains, wrapped with an outer loop that adds damping to the blade by sensing differential twist outboard of the blade root. First, modal parameter characterization experiments were performed on a small-scale heliogyro blade in a high vacuum chamber to determine a damping constant to be used in the membrane ladder finite element model of the blade. The experimental damping ratio of the lowest frequency torsional

  11. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  12. Drilling on Mars---Mathematical Model for Rotary-Ultrasonic Core Drilling of Brittle Materials

    Science.gov (United States)

    Horne, Mera Fayez

    The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet's surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. In 2001, NASA's Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. On August 6, 2012, the team of engineers landed the spacecraft Curiosity on the surface of Mars by using a revolutionary hovering platform. The results from the Curiosity mission suggested the next logical step, which is drilling six meters deep in the red planet in search of life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor or approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing a new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling of brittle materials. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks' material properties, that have effect on rate of penetration is developed. Analytical and experimental

  13. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  14. Drill hole logging with infrared spectroscopy

    Science.gov (United States)

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  15. Using MPC for Managed Pressure Drilling

    Directory of Open Access Journals (Sweden)

    Johannes Møgster

    2013-07-01

    Full Text Available As production on the Norwegian shelf enters tail production, drilling wells with vanishing pressure windows become more attractive. This motivates use of automatic control systems for improved control of downhole pressure using Managed Pressure Drilling (MPD techniques. PID SISO control solutions for MPD are by now relatively standard, and well understood. This article explores the potential benefits of using linear Model Predictive Control (MPC for MPD. It is shown that in combination with wired drill pipe, the downhole pressure can be controlled at multiple locations in the open wellbore, by using both pumps and choke in applied backpressure MPD. Also, downhole pressure constraints (pore and fracture pressures fit naturally in MPC. Illustrative simulations are presented from using a high fidelity well simulator called WeMod, and Statoil's MPC software SEPTIC.

  16. Experimental evaluation of training accelerators for surgical drilling

    Directory of Open Access Journals (Sweden)

    Gosselin Florian

    2011-12-01

    Full Text Available In some specific maxillo-facial surgeries, like the Epker, the cortical part of the lower maxilla must be drilled with minimum penetration into the spongy bone to avoid the trigeminal nerve. The result of the surgery is highly dependent on the quality of the drill. Drilling must therefore be mastered by students before acting as surgeon. The study compares the efficiency of two punctual drilling training programs developed on a virtual reality platform with non medical participants. The results show better benefit of training on relevant haptic aspects of the task before introducing multimodal drilling over repeated multimodal simulated drilling exercises.

  17. Use of Hardware Battery Drill in Orthopedic Surgery.

    Science.gov (United States)

    Satish, Bhava R J; Shahdi, Masood; Ramarao, Duddupudi; Ranganadham, Atmakuri V; Kalamegam, Sundaresan

    2017-03-01

    Among the power drills (Electrical/Pneumatic/Battery) used in Orthopedic surgery, battery drill has got several advantages. Surgeons in low resource settings could not routinely use Orthopedic battery drills (OBD) due to the prohibitive cost of good drills or poor quality of other drills. "Hardware" or Engineering battery drill (HBD) is a viable alternative to OBD. HBD is easy to procure, rugged in nature, easy to maintain, durable, easily serviceable and 70 to 75 times cheaper than the standard high end OBD. We consider HBD as one of the cost effective equipment in Orthopedic operation theatres.

  18. Synthetic drilling muds: Environmental gain deserves regulatory recognition

    Energy Technology Data Exchange (ETDEWEB)

    Burke, C.J.; Veil, J.A.

    1995-06-01

    Efficient drilling technology is essential to meet the needs of the oil industry. Both the challenges of new oil provinces, especially in offshore waters, and the demands for efficient environmental protection have driven the development of new technology. Drilling mud is a key factor influencing drilling technology use in modern drilling operations. New oil industry developments involve directional and horizontal drilling as well as drilling in frontier areas at greater and greater depths. Such capabilities and conditions demand careful attention to the selection and engineering of efficient mud systems.

  19. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  20. Topologically twisted renormalization group flow and its holographic dual

    Science.gov (United States)

    Nakayama, Yu

    2017-03-01

    Euclidean field theories admit more general deformations than usually discussed in quantum field theories because of mixing between rotational symmetry and internal symmetry (also known as topological twist). Such deformations may be relevant, and if the subsequent renormalization group flow leads to a nontrivial fixed point, it generically gives rise to a scale invariant Euclidean field theory without conformal invariance. Motivated by an ansatz studied in cosmological models some time ago, we develop a holographic dual description of such renormalization group flows in the context of AdS /CFT . We argue that the nontrivial fixed points require fine-tuning of the bulk theory, in general, but remarkably we find that the O (3 ) Yang-Mills theory coupled with the four-dimensional Einstein gravity in the minimal manner supports such a background with the Euclidean anti-de Sitter metric.

  1. Persistence of homoclinic orbits for billiards and twist maps

    CERN Document Server

    Bolotin, S; Ramírez-Ros, R

    2003-01-01

    We consider the billiard motion inside a C2-small perturbation of a n-dimensional ellipsoid Q with a unique major axis. The diameter of the ellipsoid Q is a hyperbolic two-periodic trajectory whose stable and unstable invariant manifolds are doubled, so that there is a n-dimensional invariant set W of homoclinic orbits for the unperturbed billiard map. The set W is a stratified set with a complicated structure. For the perturbed billiard map the set W generically breaks down into isolated homoclinic orbits. We provide lower bounds for the number of primary homoclinic orbits of the perturbed billiard which are close to unperturbed homoclinic orbits in certain strata of W. The lower bound for the number of persisting primary homoclinic billiard orbits is deduced from a more general lower bound for exact perturbations of twist maps possessing a manifold of homoclinic orbits.

  2. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-10-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  3. Simplicity and maximal commutative subalgebras of twisted generalized Weyl algebras

    DEFF Research Database (Denmark)

    Hartwig, J.T.; Öinert, Per Johan

    2013-01-01

    In this paper we prove three theorems about twisted generalized Weyl algebras (TGWAs). First, we show that each non-zero ideal of a TGWA has non-zero intersection with the centralizer of the distinguished subalgebra R . This is analogous to earlier results known to hold for crystalline graded rings....... Second, we give necessary and sufficient conditions for the centralizer of R to be commutative (hence maximal commutative), generalizing a result by V. Mazorchuk and L. Turowska. And third, we generalize results by D.A. Jordan and V. Bavula on generalized Weyl algebras by giving necessary and sufficient...... conditions for certain TGWAs to be simple, in the case when R is commutative. We illustrate our theorems by considering some special classes of TGWAs and providing concrete examples. We also discuss how simplicity of a TGWA is related to the maximal commutativity of R and the (non-)existence of non...

  4. Terahertz chiral metamaterial based on twisted closed ring resonators

    Science.gov (United States)

    Stojanović, Danka B.; Beličev, Petra P.; Gligorić, Goran; Hadžievski, Ljupčo

    2018-01-01

    We present a chiral metamaterial (CMM) made of periodically distributed compact elements in a form of twisted closed ring resonators designed to be operational in terahertz (THz) frequency range. We analyze the three observed resonances in the absorption spectra and electric field distribution of linearly polarized incident electromagnetic waves. It has been shown that they arise due to excitation of symmetric and antisymmetric modes and are dependent on the geometry of resonant elements as well as the periodicity of the system. For the case of incident circularly polarized waves, a phenomenon of circular dichroism was observed, and its origin and dependency on the geometrical parameters and metal and dielectric losses was examined. This study indicates that the proposed CMM has a high potential for applications in the design of different THz components.

  5. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  6. Topological susceptibility from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We present results of our computation of the topological susceptibility with N{sub f}=2 and N{sub f}= +1+1 flavours of maximally twisted mass fermions, using the method of spectral projectors. We perform a detailed study of the quark mass dependence and discretization effects. We make an attempt to confront our data with chiral perturbation theory and extract the chiral condensate from the quark mass dependence of the topological susceptibility. We compare the value with the results of our direct computation from the slope of the mode number. We emphasize the role of autocorrelations and the necessity of long Monte Carlo runs to obtain results with good precision. We also show our results for the spectral projector computation of the ratio of renormalization constants Z{sub P}/Z{sub S}.

  7. DNA origami-based nanoribbons: assembly, length distribution, and twist.

    Science.gov (United States)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Günther; Castro, Carlos E; Simmel, Friedrich C

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  8. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  9. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    Science.gov (United States)

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  10. Accelerating Twisted Mass LQCD with QPhiX

    Energy Technology Data Exchange (ETDEWEB)

    Schröck, Mario [INFN, Rome3; Simula, Silvano [INFN, Rome3; Strelchenko, Alexei [Fermilab

    2016-07-08

    We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80\\% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding implementation in the tmLQCD library by a factor of $\\sim 5\\times$ in single precision. We strong scale the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.

  11. A method for processing drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, L.K.; Khramchenko, L.N.; Rybalchenko, V.S.; Zavorotnyy, V.L.

    1983-01-01

    The purpose of the invention is to increase the speed of bonding hydrogen sulfide with a simultaneous preservation of its absorptive capability and the rheological properties of the muds with a high content of solid phase. This is achieved through processing the drilling muds by introducing an additive which bonds the hydrogen sulfide, which is based on iron oxides, which are the dehydrated residue from the production of aminotoluenes through reduction of nitrotoluene in a volume of 5 to 50 percent by weight of the drilling mud.

  12. Drilling with fiber-transmitted, visible lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.; Werve, M.E.; Warner, B.E.

    1994-02-17

    High power and radiance copper-vapor laser technology developed at Lawrence Livermore National Laboratory shows great promise for many materials processing tasks. The authors recently transmitted the visible light produced by these lasers through fiber optics to perform hole drilling experiments. They found the tolerances on the hole circulatory and cylindricity to be excellent when compared to that produced by conventional optics. This technique lends itself to many applications that are difficult to perform when using conventional optics, including robotic manipulation and hole drilling in non-symmetric parts.

  13. Validating Acquisition IS Integration Readiness with Drills

    DEFF Research Database (Denmark)

    Wynne, Peter J.

    2017-01-01

    To companies, mergers and acquisitions are important strategic tools, yet they often fail to deliver their expected value. Studies have shown the integration of information systems is a significant roadblock to the realisation of acquisition benefits, and for an IT department to be ready......), to understand how an IT department can use them to validate their integration plans. The paper presents a case study of two drills used to validate an IT department’s readiness to carry out acquisition IS integration, and suggests seven acquisition IS integration drill characteristics others could utilise when...

  14. Monitoring of Drill System Behavior for Water-Powered In-The-Hole (ITH Drilling

    Directory of Open Access Journals (Sweden)

    Rajib Ghosh

    2017-07-01

    Full Text Available A detailed understanding of the drilling system and the drilling control is required to correctly interpret rock mass conditions based on monitored drilling data. This paper analyses data from hydraulic in-the-hole (ITH drills used in LKAB’s Malmberget mine in Sweden. Drill parameters, including penetration rate, percussive pressure, feed pressure, and rotation pressure, are monitored in underground production holes. Calculated parameters, penetration rate variability, rotation pressure variability, and fracturing are included in the analysis to improve the opportunity to predict rock mass conditions. Principal component analysis (PCA is used to address non-linearity and variable interactions. The results show that the data contain pronounced hole length-dependent trends, both linear and step-wise linear, for most parameters. It is also suggested that monitoring can be an efficient way to optimize target values for drill parameters, as demonstrated for feed force. Finally, principal component analysis can be used to transfer a number of drill parameters into single components with a more straightforward geomechanical meaning.

  15. Compton upconversion of twisted photons: backscattering of particles with non-planar wave functions

    Science.gov (United States)

    Jentschura, U. D.; Serbo, V. G.

    2011-03-01

    Twisted photons are not plane waves, but superpositions of plane waves with a defined projection ℏm of the orbital angular momentum onto the propagation axis ( m is integer and may attain values m≫1). Here, we describe in detail the possibility to produce high-energy twisted photons by backward Compton scattering of twisted laser photons on ultra-relativistic electrons with a Lorentz-factor γ= E/( m e c 2)≫1. When a twisted laser photon with the energy ℏω˜1 eV performs a collision with an electron and scatters backward, the final twisted photon conserves the angular momentum m, but its energy ℏω' is increased considerably: ω'/ ω=4 γ 2/(1+ x), where x=4 Eℏω/( m e c 2)2. The S matrix formalism for the description of scattering processes is particularly simple for plane waves with definite 4-momenta. However, in the considered case, this formalism must be enhanced because the quantum state of twisted particles cannot be reduced to plane waves. This implies that the usual notion of a cross section is inapplicable, and we introduce and calculate an averaged cross section for a quantitative description of the process. The energetic upconversion of twisted photons may be of interest for experiments with the excitation and disintegration of atoms and nuclei, and for studying the photo-effect and pair production off nuclei in previously unexplored regimes.

  16. Torsional and bending resistance of WaveOne Gold, Reciproc and Twisted File Adaptive instruments.

    Science.gov (United States)

    Elsaka, S E; Elnaghy, A M; Badr, A E

    2017-11-01

    To compare the torsional and bending resistance of WaveOne Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), Reciproc (VDW, Munich, Germany) and Twisted File Adaptive (Axis/SybronEndo, Orange, CA, USA) instruments. Torsional strength of WaveOne Gold primary size 25, .07 taper, Reciproc size 25, .08 taper and Twisted File Adaptive M-L1 size 25, .08 taper was measured by fastening the apical 3 mm of the instrument firmly and applying a constant rotation at 2 rpm to the instrument using a torsiometer. The fractured instruments were examined using a scanning electron microscope (SEM). The bending resistance of the instruments was measured using the cantilever bending test. The data were statistically analysed using one-way analysis of variance (anova) and Tukey post hoc tests. The statistical significance level was set at P resistance than Reciproc and Twisted File Adaptive (P resistance than Twisted File Adaptive (P resistance to bend than Reciproc and Twisted File Adaptive (P resistance between Reciproc and Twisted File Adaptive instruments (P resistance to torsional stress and flexibility compared with Reciproc and Twisted File Adaptive instruments. Torsional resistance and flexibility properties of the instruments could be affected by the alloy from which the instrument is manufactured and different cross-sectional design. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Hydrodynamic characteristics of X-Twisted rudder for large container carriers

    Directory of Open Access Journals (Sweden)

    Kyoungsoo Ahn

    2012-09-01

    Full Text Available This paper shows the numerical and experimental results about the hydrodynamic characteristics of X-Twisted rudders having continuous twist of the leading edge along the span. All the results were compared with those of the semi-balanced rudder. Calculation through the Reynolds-Averaged Navier-Stokes Equation (RANSE code with propeller sliding meshes shows large inflow angle and fast inflow velocity in the vicinity of ±0.7 R from the shaft center, so it may cause cavitation. Also, X-Twisted rudder has relatively small inflow angles along the rudder span compared with semi-balanced rudder. For the performance validation, rudders for two large container carriers were designed and tested. Cavitation tests at the medium sized cavitation tunnel with respect to the rudder types and twisted angles showed the effectiveness of twist on cavitation and the tendency according to the twist. And the resistance, self-propulsion and manoeuvring tests were also carried out at the towing tank. As a result, in the case of X-Twisted rudder, ship speed was improved with good manoeuvring performance. Especially, it was found out that manoeuvring performance between port and starboard was well balanced compared with semi-balanced rudders.

  18. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-01-01

    Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.

  19. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  20. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    Energy Technology Data Exchange (ETDEWEB)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.