WorldWideScience

Sample records for hsp72 depletion suppresses

  1. Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Directory of Open Access Journals (Sweden)

    Antoni Gawron

    2011-08-01

    Full Text Available The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.

  2. Hsp90 depletion goes wild

    OpenAIRE

    Siegal, Mark L; Masel, Joanna

    2012-01-01

    Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to r...

  3. Hsp90 depletion goes wild

    Directory of Open Access Journals (Sweden)

    Siegal Mark L

    2012-02-01

    Full Text Available Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation. See research article http://wwww.biomedcentral.com/1471-2148/12/25

  4. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    Science.gov (United States)

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormones.

    Science.gov (United States)

    Fleshner, Monika; Campisi, Jay; Amiri, Leila; Diamond, David M

    2004-10-01

    Heat-shock proteins (Hsp) play an important role in stress physiology. Exposure to a variety of stressors will induce intracellular Hsp72, and this induction is believed to be beneficial for cell survival. In contrast, Hsp72 released during stress (extracellular Hsp72; eHsp72) activates pro-inflammatory responses. Clearly, physical stressors such as heat, cold, H(2)O(2), intense exercise and tail shock will induce both intra- and extracellular Hsp72. The current study tested whether a psychological stressor, cat exposure, would also trigger this response. In addition, the potential role of adrenal hormones in the Hsp72 response was examined. Adult, male Sprague Dawley rats were either adrenalectomized (ADX) or sham operated. Ten days post-recovery, rats were exposed to either a cat with no physical contact or control procedures (n = 5-6/group) for 2 h. Levels of intracellular Hsp72 were measured in the brain (frontal cortex, hippocampus, hypothalamus, dorsal vagal complex) and pituitary (ELISA). Levels of eHsp72 (ELISA) and corticosterone (RIA) were measured from serum obtained at the end of the 2-h stress period. Rats that were exposed to a cat had elevated intracellular Hsp72 in hypothalamus and dorsal vagal complex, and elevated eHsp72 and corticosterone in serum. Both the intra- and extracellular Hsp72 responses were blocked or attenuated by ADX. This study demonstrates that cat exposure can stimulate the Hsp72 response and that adrenal hormones contribute to this response.

  6. Radiation therapy induces circulating serum Hsp72 in patients with prostate cancer

    International Nuclear Information System (INIS)

    Hurwitz, Mark D.; Kaur, Punit; Nagaraja, Ganachari M.; Bausero, Maria A.; Manola, Judith; Asea, Alexzander

    2010-01-01

    Background and purpose: Hsp72 found in the extracellular milieu has been shown to play an important role in immune regulation. The impact of common cancer therapies on extracellular release of Hsp72 however, has been to date undefined. Materials and methods: Serum from 13 patients undergoing radiation therapy (XRT) for prostate cancer with or without hormonal therapy (ADT) was measured for levels of circulating serum Hsp72 and pro-inflammatory cytokines (IL-6 and TNF-α) using the classical sandwich ELISA technique and the relative expression of CD8 + T lymphocytes and natural killer (NK) cells was measured using flow cytometry. Mouse orthotopic xenograft of human prostate cancer tumors (DU-145 and PC-3) were used to validate and further characterize the response noted in the clinical setting. The biological significance of tumor released Hsp72 was studied in human dendritic cells (DC) in vitro. Results: Circulating serum Hsp72 levels increased an average of 3.5-fold (median per patient 4.8-fold) with XRT but not with ADT (p = 0.0002). Increases in IL-6 (3.3-fold), TNF-α (1.8-fold), CD8 + CTL (2.1-fold) and NK cells (3.2-fold) also occurred. Using PC-3 and DU-145 human prostate cancer xenograft models in mice, we confirmed that XRT induces Hsp72 release primarily from implanted tumors. In vitro studies using supernatant recovered from irradiated human prostate cancer cells point to exosomes containing Hsp72 as a possible stimulator of pro-inflammatory cytokine production and costimulatory molecules expression in human DC. Conclusions: The current study confirms for the first time in an actual clinical setting elevation of circulating serum Hsp72 with XRT. The accompanying studies in mice and in vitro identify the released exosomes containing Hsp72 as playing a pivotal role in stimulating pro-inflammatory immune responses. These findings, if validated, may lead to new treatment paradigms for common human malignancies.

  7. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans.

    Science.gov (United States)

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R P; Lima, Nilo R V; Soares, Danusa Dias; Oliveira, Edilamar Menezes; Rodrigues, Luiz Oswaldo Carneiro

    2010-11-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL(-1); p  0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p  0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.

  8. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture ...

    Indian Academy of Sciences (India)

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the ...

  9. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Science.gov (United States)

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  10. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity.

    Science.gov (United States)

    Périard, Julien D; Ruell, Patricia; Caillaud, Corinne; Thompson, Martin W

    2012-05-01

    Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.

  11. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Science.gov (United States)

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  12. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role. Copyright © 2016 the American Physiological Society.

  13. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Febbraio, Mark A; Steensberg, Adam; Walsh, Rory

    2002-01-01

    To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects...... and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery for the measurement of arterial-venous differences in serum HSP72. Plasma creatine kinase (CK) was also measured from arterial blood samples. Pre-exercise muscle...

  14. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    Science.gov (United States)

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  15. Chronic probiotic supplementation with or without glutamine does not influence the eHsp72 response to a multi-day ultra-endurance exercise event.

    Science.gov (United States)

    Marshall, Hannah; Chrismas, Bryna Catherine Rose; Suckling, Craig Anthony; Roberts, Justin D; Foster, Josh; Taylor, Lee

    2017-08-01

    Probiotic and glutamine supplementation increases tissue Hsp72, but their influence on extracellular Hsp72 (eHsp72) has not been investigated. The aim of this study was to investigate the effect of chronic probiotic supplementation, with or without glutamine, on eHsp72 concentration before and after an ultramarathon. Thirty-two participants were split into 3 independent groups, where they ingested probiotic capsules (PRO; n = 11), probiotic + glutamine powder (PGLn; n = 10), or no supplementation (CON; n = 11), over a 12-week period prior to commencement of the Marathon des Sables (MDS). eHsp72 concentration in the plasma was measured at baseline, 7 days pre-race, 6-8 h post-race, and 7 days post-race. The MDS increased eHsp72 concentrations by 124% (F [1,3] = 22.716, p 0.05). In conclusion, the MDS caused a substantial increase in eHsp72 concentration, indicating high levels of systemic stress. However, chronic PRO or PGLn supplementation did not affect eHsp72 compared with control pre- or post-MDS. Given the role of eHsp72 in immune activation, the commercially available supplements used in this study are unlikely to influence this cascade.

  16. Up-regulation of Hsp72 and keratin16 mediates wound healing in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Rasha R. Ahmed

    2015-01-01

    Full Text Available BACKGROUND: Impaired wound healing is a complication of diabetes and a serious problem in clinical practice. We previously found that whey protein (WP was able to regulate wound healing normally in streptozotocin (STZ-dia-betic models. This subsequent study was designed to assess the effect of WP on heat shock protein-72 (Hsp72 and keratin16 (Krt16 expression during wound healing in diabetic rats. METHODS: WP at a dosage of 100 mg/kg of body weight was orally administered daily to wounded normal and STZ-diabetic rats for 8 days. RESULTS: At day 4, the WP-treated diabetic wound was significantly reduced compared to that in the corresponding control. Diabetic wounded rats developed severe inflammatory infiltration and moderate capillary dilatation and regeneration. Treated rats had mild necrotic formation, moderate infiltration, moderate to severe capillary dilatation and regeneration, in addition to moderate epidermal formation. Hsp72 and Krt16 densities showed low and dense activity in diabetic wounded and diabetic wounded treated groups, respectively. At day 8, WP-treatment of diabetic wounded animals revealed great amelioration with complete recovery and closure of the wound. Reactivity of Hsp72 and Krt16 was reversed, showing dense and low, or medium and low, activity in the diabetic wounded and diabetic wounded treated groups, respectively. Hsp72 expression in the pancreas was found to show dense reactivity with WP-treated diabetic wound rats. CONCLUSION: This data provides evidence for the potential impact of WP in the up-regulation of Hsp72 and Krt16 in T1D, resulting in an improved wound healing process in diabetic models.

  17. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    Science.gov (United States)

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  18. Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats.

    Science.gov (United States)

    Garcia, J J; Martin-Cordero, L; Hinchado, M D; Bote, M E; Ortega, E

    2013-06-01

    Regular exercise is a good non-pharmacological treatment of metabolic syndrome in that it improves obesity, diabetes, and inflammation. The 72 kDa extracellular heat shock protein (eHsp72) is released during exercise, thus stimulating the inflammatory responses. The aim of the present work was to evaluate the effect of regular exercise on the eHsp72-induced release of IL-1β, IL-6, and TNFα by macrophages from genetically obese Zucker rats (fa/fa) (ObZ), using lean Zucker (LZ) rats (Fa/fa) to provide reference values. ObZ presented a higher plasma concentration of eHsp72 than LZ, and exercise increased that concentration. In response to eHsp72, the macrophages from ObZ released less IL-1β and TNFα, but more IL-6, than macrophages from LZ. While eHsp72 stimulated the release of IL-1β, TNFα, and IL-6 in the macrophages from healthy LZ (with respect to the constitutive release), it inhibited the release of IL-1β and IL-6 in macrophages from ObZ. The habitual exercise improved the release of inflammatory cytokines by macrophages from ObZ in response to eHsp72 (it increased IL-1β and TNFα, and decreased IL-6), tending to values closer to those determined in healthy LZ. A deregulated macrophage inflammatory and stress response induced by eHsp72 underlies MS, and this is improved by habitual exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model.

    Directory of Open Access Journals (Sweden)

    Mimi Cushman-Nick

    Full Text Available There are no effective therapeutics that antagonize or reverse the protein-misfolding events underpinning polyglutamine (PolyQ disorders, including Spinocerebellar Ataxia Type-3 (SCA3. Here, we augment the proteostasis network of Drosophila SCA3 models with Hsp104, a powerful protein disaggregase from yeast, which is bafflingly absent from metazoa. Hsp104 suppressed eye degeneration caused by a C-terminal ataxin-3 (MJD fragment containing the pathogenic expanded PolyQ tract, but unexpectedly enhanced aggregation and toxicity of full-length pathogenic MJD. Hsp104 suppressed toxicity of MJD variants lacking a portion of the N-terminal deubiquitylase domain and full-length MJD variants unable to engage polyubiquitin, indicating that MJD-ubiquitin interactions hinder protective Hsp104 modalities. Importantly, in staging experiments, Hsp104 suppressed toxicity of a C-terminal MJD fragment when expressed after the onset of PolyQ-induced degeneration, whereas Hsp70 was ineffective. Thus, we establish the first disaggregase or chaperone treatment administered after the onset of pathogenic protein-induced degeneration that mitigates disease progression.

  20. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha\\/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  1. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2010-07-01

    Full Text Available Endoplasmic reticulum (ER stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR. Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  2. Hsp105 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells

    International Nuclear Information System (INIS)

    Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei; Hatayama, Takumi

    2006-01-01

    Hsp105 (Hsp105α and Hsp105β), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105α has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105α regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105α or Hsp105β by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105α or Hsp105β. In addition, we found that overexpression of Hsp105α or Hsp105β suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105α or Hsp105β. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells

  3. Hsp72 (HSPA1A Prevents Human Islet Amyloid Polypeptide Aggregation and Toxicity: A New Approach for Type 2 Diabetes Treatment.

    Directory of Open Access Journals (Sweden)

    Paola C Rosas

    Full Text Available Type 2 diabetes is a growing public health concern and accounts for approximately 90% of all the cases of diabetes. Besides insulin resistance, type 2 diabetes is characterized by a deficit in β-cell mass as a result of misfolded human islet amyloid polypeptide (h-IAPP which forms toxic aggregates that destroy pancreatic β-cells. Heat shock proteins (HSP play an important role in combating the unwanted self-association of unfolded proteins. We hypothesized that Hsp72 (HSPA1A prevents h-IAPP aggregation and toxicity. In this study, we demonstrated that thermal stress significantly up-regulates the intracellular expression of Hsp72, and prevents h-IAPP toxicity against pancreatic β-cells. Moreover, Hsp72 (HSPA1A overexpression in pancreatic β-cells ameliorates h-IAPP toxicity. To test the hypothesis that Hsp72 (HSPA1A prevents aggregation and fibril formation, we established a novel C. elegans model that expresses the highly amyloidogenic human pro-IAPP (h-proIAPP that is implicated in amyloid formation and β-cell toxicity. We demonstrated that h-proIAPP expression in body-wall muscles, pharynx and neurons adversely affects C. elegans development. In addition, we demonstrated that h-proIAPP forms insoluble aggregates and that the co-expression of h-Hsp72 in our h-proIAPP C. elegans model, increases h-proIAPP solubility. Furthermore, treatment of transgenic h-proIAPP C. elegans with ADAPT-232, known to induce the expression and release of Hsp72 (HSPA1A, significantly improved the growth retardation phenotype of transgenic worms. Taken together, this study identifies Hsp72 (HSPA1A as a potential treatment to prevent β-cell mass decline in type 2 diabetic patients and establishes for the first time a novel in vivo model that can be used to select compounds that attenuate h-proIAPP aggregation and toxicity.

  4. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowicz-Gil, Joanna, E-mail: jjgil@poczta.umcs.lublin.pl [Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland); Langner, Ewa [Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Bądziul, Dorota [Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland); Wertel, Iwona [1st Department of Gynaecology, University School of Medicine, Staszica 16, 20-081 Lublin (Poland); Rzeski, Wojciech [Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Department of Immunology and Virology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland)

    2013-12-15

    The aim of the present study was to investigate whether silencing of Hsp27 or Hsp72 expression in glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cells increases their sensitivity to programmed cell death induction upon temozolomide and/or quercetin treatment. Transfection with specific siRNA was performed for the Hsp gene silencing. As revealed by microscopic observation and flow cytometry, the inhibition of Hsp expression was correlated with severe apoptosis induction upon the drug treatment studied. No signs of autophagy were detected. This was correlated with a decreased mitochondrial membrane potential, increased level of cytochrome c in the cytoplasm, and activation of caspase 3 and caspase 9. All these results suggest that the apoptotic signal was mediated by an internal pathway. Additionally, in a large percentage of cells treated with temozolomide, with or without quercetin, granules within the ER system were found, which was accompanied by an increased level of caspase 12 expression. This might be correlated with ER stress. Quercetin and temozolomide also changed the shape of nuclei from circular to “croissant like” in both transfected cell lines. Our results indicate that blocking of Hsp27 and Hsp72 expression makes T98G cells and MOGGCCM cells extremely vulnerable to apoptosis induction upon temozolomide and quercetin treatment and that programmed cell death is initiated by an internal signal. - Highlights: • Hsps gene silencing induced severe apoptosis upon temozolomide–quercetin treatment • Apoptosis in transfected glioma cells was initiated by internal signal • Programmed cell death was preceded by ER stress • Temozolomide–quercetin treatment changed nuclei shape in transfected glioma cells.

  5. Níveis distintos de Hsp72 no miocárdio de ratas em resposta aos exercícios voluntário e forçado Niveles distintos de Hsp72 en el miocardio de ratas en respuesta a los ejercicios voluntario y forzado Different levels of Hsp72 in female rat myocardium in response to voluntary exercise and forced exercise

    Directory of Open Access Journals (Sweden)

    Stéphano Freitas Soares Melo

    2009-11-01

    Full Text Available FUNDAMENTO: O exercício físico promove estresse hemodinâmico. OBJETIVO: Testar se programas de treinamento com corridas voluntária e forçada induzem níveis distintos de expressão de Hsp72 no miocárdio de ratas Wistar. MÉTODOS: Ratas Wistar foram alocadas em três grupos (n = 6, cada: treinadas com corrida voluntária (TCV, treinadas com corrida forçada (TCF e grupo controle (C. Os animais do TCV tiveram livre acesso à roda de corrida voluntária, enquanto os do TCF foram submetidos à corrida forçada em esteira (18 m/min, 0% inclinação, 60 m/min, 5 dias/sem durante oito semanas. Fragmentos dos ventrículos esquerdo (VE e direito (VD foram coletados para análise dos níveis de Hsp72. RESULTADOS: As ratas do grupo TCV correram, em média, 4,87 km, e as do TCF, 4,88 km por semana. Os animais dos grupos TCV e TCF ganharam menos peso (p 0,05 entre os grupos TCV, TCF e C (4,54 ± 0,79 mg/g vs 4,94 ± 0,89 mg/g vs 4,34 ± 0,87 mg/g, respectivamente. Ratas treinadas com corrida forçada apresentaram níveis de Hsp72 maiores (p FUNDAMENTO: El ejercicio físico promueve estrés hemodinámico. OBJETIVO: Probar si programas de entrenamiento con carreras voluntaria y forzada inducen niveles distintos de expresión de Hsp72 en el miocardio de ratas hembra Wistar. MÉTODOS: Ratas hembra Wistar fueron distribuidas en tres grupos (n = 6, cada uno: entrenadas con carrera voluntaria (ECV, entrenadas con carrera forzada (ECF y grupo control (C. Los animales del ECV tuvieron libre acceso a la rueda de carrera voluntaria, mientras que los del ECF fueron sometidos a carrera forzada en cinta sin fin (18 m/min, 0% inclinación, 60 m/min, 5 días/sem durante ocho semanas. Fragmentos de los ventrículos izquierdo (VI y derecho (VD se recolectaron para análisis de los niveles de Hsp72. RESULTADOS: Las ratas del grupo ECV corrieron, en promedio 4,87 km, y las del ECF, 4,88 km por semana. Los animales de los grupos ECV y ECF ganaron menos peso (p0,05 entre

  6. The Effect of One Session Continuous and Intermittent Aerobic Exercise on Blood Responses of HSP72 , Cortisol and Creatine Kinase

    Directory of Open Access Journals (Sweden)

    M. Amani

    2013-10-01

    Full Text Available Introduction & Objective: Heat shock proteins help the cells’ ability to keep their structures against different stresses. The purpose of this study was to investigate the effect of one ses-sion continuous and intermittent aerobic exercise on blood responses of HSP72, cortisol and creatine kinase (CK. Materials & Methods: This study is semi-experimental in which 21 male student athletes were divided in continuous group (n=7, intermittent group (n=7 and control group (n=7. Exer-cise protocol of continuous group included 1 hour running with 80% maximum heart rate in-tensity and that of intermittent group was 3 stages of 20 minute running with the same inten-sity as of continuous group . Blood sampling of basal, pre exercise, immediately after exer-cise and 90 minutes after exercise were gathered and the amounts of HSP72, cortisol and CK, were measured by ELISA, RIA and Enzymatic methods respectively. The data was analyzed with one way ANOVA and repeated measure analysis of variance at P?0.05 significance level. Results: HSP72 levels in the continuous group and intermittent group despite an increase in the average did not show a statistically significant difference. Changes between the groups were significant in immediately after exercise and 90 minutes after exercise (P.values respectively 0.017 and 0.002. CK changes in continuous group were significant but cortisol changes in different stages hadn’t significant difference Conclusion: Exercise with its role associated with cortisol and CK will stimulate HSP72 and continuous exercise will make further increase in HSP72 and CK increasing leads to a greater HSP72 response. (Sci J Hamadan Univ Med Sci 2013; 20 (3:223-231

  7. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Tran, Phan LCHB; Kim, Soo-A; Choi, Hong Seok; Yoon, Jung-Hoon; Ahn, Sang-Gun

    2010-01-01

    Epigallocatechin-3-gallate (EGCG), one of the major catechins in green tea, is a potential chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression of heat shock proteins (HSPs) and tumor suppression. Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen bromide (CNBr)-activated Sepharose 4B. In vivo effect of EGCG on tumor growth was examined in a xenograft model. Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h) or oxidative stress (H 2 O 2 , 500 μM for 24 h). Moreover, treatment with EGCG (10 mg/kg) in a xenograft model resulted in delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression. Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and suggest EGCG as a drug candidate for the treatment of human cancer

  8. Hsp70-Bag3 interactions regulate cancer-related signaling networks.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Gong, Jianlin; Calderwood, Stuart K; Li, Hu; Gummuluru, Suryaram; Matchuk, Olga N; Smirnova, Svetlana G; Orlova, Nina V; Zamulaeva, Irina A; Garcia-Marcos, Mikel; Li, Xiaokai; Young, Z T; Rauch, Jennifer N; Gestwicki, Jason E; Takayama, Shinichi; Sherman, Michael Y

    2014-09-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here, we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling by modulating the activity of the transcription factors NF-κB, FoxM1, Hif1α, the translation regulator HuR, and the cell-cycle regulators p21 and survivin. We also identified a small-molecule inhibitor, YM-1, that disrupts the Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anticancer target. ©2014 American Association for Cancer Research.

  9. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  10. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11.

    Science.gov (United States)

    Paduch, Roman; Jakubowicz-Gil, Joanna; Kandefer-Szerszen, Martyna

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  11. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  12. Enhanced J/psi suppression due to gluon depletion

    OpenAIRE

    Hwa, R. C.; Pisut, J.; Pisutova, N.

    1997-01-01

    The nonlinear effect of gluon depletion in the collision of large nuclei can be large. It is due to multiple scatterings among comoving partons initiated by primary scattering of partons in the colliding nuclei. The effect can give rise to substantial suppression of $J/\\psi$ production in very large nuclei, even if the linear depletion effect is insignificant for the collisions of nuclei of smaller sizes. This mechanism offers a natural explanation of the enhanced suppression in the Pb-Pb dat...

  13. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy.

    Science.gov (United States)

    Liu, Sheng-Hung; Lin, Chao-Hsiung; Liang, Fong-Ping; Chen, Pei-Fen; Kuo, Cheng-Deng; Alam, Mohd Mujahid; Maiti, Barnali; Hung, Shih-Kai; Chi, Chin-Wen; Sun, Chung-Ming; Fu, Shu-Ling

    2014-01-15

    Andrographolide is a diterpenoid compound isolated from Andrographis paniculata that exhibits anticancer activity. We previously reported that andrographolide suppressed v-Src-mediated cellular transformation by promoting the degradation of Src. In the present study, we demonstrated the involvement of Hsp90 in the andrographolide-mediated inhibition of Src oncogenic activity. Using a proteomics approach, a cleavage fragment of Hsp90α was identified in andrographolide-treated cells. The concentration- and time-dependent induction of Hsp90 cleavage that accompanied the reduction in Src was validated in RK3E cells transformed with either v-Src or a human truncated c-Src variant and treated with andrographolide. In cancer cells, the induction of Hsp90 cleavage by andrographolide and its structural derivatives correlated well with decreased Src levels, the suppression of transformation, and the induction of apoptosis. Moreover, the andrographolide-induced Hsp90 cleavage, Src degradation, inhibition of transformation, and induction of apoptosis were abolished by a ROS inhibitor, N-acetyl-cysteine. Notably, Hsp90 cleavage, decreased levels of Bcr-Abl (another known Hsp90 client protein), and the induction of apoptosis were also observed in human K562 leukemia cells treated with andrographolide or its active derivatives. Together, we demonstrated a novel mechanism by which andrographolide suppressed cancer malignancy that involved inhibiting Hsp90 function and reducing the levels of Hsp90 client proteins. Our results broaden the molecular basis of andrographolide-mediated anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis

    Directory of Open Access Journals (Sweden)

    James A. Tuttle

    2017-07-01

    Full Text Available The leukocyte heat shock response (HSR is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle, and whether an acute preconditioning strategy (e.g., downhill running can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6 completed two trials (HPC1HOTDOWN and HPC2HOTDOWN of 30 min running at lactate threshold (LT on −10% gradient in 30°C and 50% relative humidity (RH separated by 7 d. A temperate preconditioning group (TPC; n = 5 completed 30 min running at LT on a −1% gradient in 20°C and 50% (TPC1TEMPFLAT and 7 d later completed 30 min running at LT on −10% gradient in 30°C and 50% RH (TPC2HOTDOWN. Venous blood samples and muscle biopsies (vastus lateralis; VL were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05 and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05 responses accompanied reductions (p < 0.05 in physiological strain [exercising rectal temperature (−0.3°C and perceived muscle soreness (~ −14%] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect. Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05 simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01 of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy

  15. Early Response Roles for Prolactin Cortisol and Circulating and Cellular Levels of Heat Shock Proteins 72 and 90α in Severe Sepsis and SIRS

    Directory of Open Access Journals (Sweden)

    K. Vardas

    2014-01-01

    Full Text Available Objective. To evaluate the early heat shock protein (HSP and hormonal stress response of intensive care unit (ICU patients with severe sepsis/septic shock (SS or systemic inflammatory response syndrome (SIRS compared to healthy subjects (H. Methods. Patients with early (first 48 hrs SS (n=29 or SIRS (n=29 admitted to a university ICU and 16 H were enrolled in the study. Serum prolactin, cortisol, and plasma ACTH were determined using immunoassay analyzers. ELISA was used to evaluate extracellular HSPs (eHSP90α, eHSP72 and interleukins. Mean fluorescence intensity (MFI values for intracellular HSPs (iHSP72, iHSP90α were measured using 4-colour flow-cytometry. Results. Prolactin, cortisol, and eHSP90α levels were significantly increased in SS patients compared to SIRS and H (P<0.003. ACTH and eHSP72 were significantly higher in SS and SIRS compared to H (P<0.005. SS monocytes expressed lower iHSP72 MFI levels compared to H (P=0.03. Prolactin was related with SAPS III and APACHE II scores and cortisol with eHSP90α, IL-6, and lactate (P<0.05. In SS and SIRS eHSP90α was related with eHSP72, IL-6, and IL-10. Conclusion. Prolactin, apart from cortisol, may have a role in the acute stress response in severe sepsis. In this early-onset inflammatory process, cortisol relates to eHSP90α, monocytes suppress iHSP72, and plasma eHSP72 increases.

  16. Imbalance of Hsp70 family variants fosters tau accumulation.

    Science.gov (United States)

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants

  17. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space

    Science.gov (United States)

    Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.

    2018-01-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106

  18. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

    Directory of Open Access Journals (Sweden)

    Amanda O Veri

    2018-03-01

    Full Text Available The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.

  19. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

    Science.gov (United States)

    Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E

    2018-03-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.

  20. Influence of exercise on NA- and Hsp72-induced release of IFNγ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats.

    Science.gov (United States)

    Martín-Cordero, L; García, J J; Hinchado, M D; Bote, E; Ortega, E

    2013-03-01

    Regular physical exercise is recognized as a nonpharmacological therapeutic strategy in the treatment of metabolic syndrome, and has been proposed for improving obesity, diabetic status, insulin resistance, and immune response. The aim of the present study was to evaluate the effect of a regular exercise program (treadmill running, 5 days/week for 14 weeks at 35 cm/s for 35 min in the last month) on the release of the pro-inflammatory cytokine interferon gamma (IFNγ) by peritoneal cells (macrophages and lymphocytes) from obese Zucker rats (fa/fa) in response to noradrenaline (NA) and heat shock proteins of 72 kDa (Hsp72), and the possible adaptation due to training for a bout acute exercise (a single session of 25-35 min at 35 cm/s). In healthy (lean Fa/fa) and obese animals, peritoneal cells released greater concentrations of IFNγ in response to Hsp72 and lower concentrations in response to NA. The regular exercise training protocol, evaluated in the obese animals, produced a clear change in the regulation of the release of IFNγ. Peritoneal immune cells from trained animals released more IFNγ in response to NA, but there was a reduction in the release of IFNγ in response to Hsp72. In the obese animals, regular exercise caused a change in the inhibitory effect of NA (which now becomes stimulatory) and the stimulatory effect of Hsp72e (which now becomes inhibitory) in relation to the release of IFNγ. This reflects that Hsp72, induced by the prior release of NA following exercise-induced stress, plays a role in the homeostatic balance of release of IFNγ by peritoneal immune cells in obese animals during exercise.

  1. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation.

    Science.gov (United States)

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-08-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation.

  2. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes.

    Directory of Open Access Journals (Sweden)

    Julia Eckl

    Full Text Available Hsp90 is a molecular chaperone involved in the regulation and maturation of kinases and transcription factors. In Caenorhabditis elegans, it contributes to the development of fertility, maintenance of muscle structure, the regulation of heat-shock response and dauer state. To understand the consequences of Hsp90-depletion, we studied Hsp90 RNAi-treated nematodes by DNA microarrays and mass spectrometry. We find that upon development of phenotypes the levels of chaperones and Hsp90 cofactors are increased, while specific proteins related to the innate immune response are depleted. In microarrays, we further find many differentially expressed genes related to gonad and larval development. These genes form an expression cluster that is regulated independently from the immune response implying separate pathways of Hsp90-involvement. Using fluorescent reporter strains for the differentially expressed immune response genes skr-5, dod-24 and clec-60 we observe that their activity in intestinal tissues is influenced by Hsp90-depletion. Instead, effects on the development are evident in both gonad arms. After Hsp90-depletion, changes can be observed in early embryos and adults containing fluorescence-tagged versions of SEPA-1, CAV-1 or PUD-1, all of which are downregulated after Hsp90-depletion. Our observations identify molecular events for Hsp90-RNAi induced phenotypes during development and immune responses, which may help to separately investigate independent Hsp90-influenced processes that are relevant during the nematode's life and development.

  4. Heat shock protein 72: release and biological significance during exercise.

    Science.gov (United States)

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  5. The expression of HSP27 is associated with poor clinical outcome in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Romani, Antonello A; Crafa, Pellegrino; Desenzani, Silvia; Graiani, Gallia; Lagrasta, Costanza; Sianesi, Mario; Soliani, Paolo; Borghetti, Angelo F

    2007-01-01

    The heat shock proteins (HSPs) 27-kDa (HSP27) and 72-kDa (HSP72), are ubiquitous chaperone molecules inducible in cells exposed to different stress conditions. Increased level of HSPs are reported in several human cancers, and found to be associated with the resistance to some anticancer treatments and poor prognosis. However, there is no study of the relationship between HSPs expression and patient's prognosis in intrahepatic cholangiocarcinoma (IHCCA). In this exploratory retrospective study, we investigated the expressions of HSP27 and HSP72 as potential prognostic factors in IHCCA. Thirty-one paraffin-embedded samples were analyzed by immunohistochemical methods using HSP27 and HSP72 monoclonal antibodies. Proliferation rate was assessed in the same specimens by using monoclonal antibody against phosphorylated histone H3 (pHH3). Fisher's exact test was used to assess the hypothesis of independence between categorical variables in 2 × 2 tables. The ANOVA procedure was used to evaluate the association between ordinal and categorical variables. Estimates of the survival probability were calculated using the Kaplan-Meier method, and the log rank test was employed to test the null hypothesis of equality in overall survival among groups. The hazard ratio associated with HSP27 and HSP72 expression was estimated by Cox hazard-proportional regression. The expression of HSP27 was related to mitotic index, tumor greatest dimension, capsular and vascular invasion while the expression of HSP72 was only related to the presence of necrosis and the lymphoid infiltration. Kaplan-Maier analysis suggested that the expression of HSP27 significantly worsened the patients' median overall survival (11 ± 3.18 vs 55 ± 4.1 months, P-value = 0.0003). Moreover HSP27-positive patients exhibited the worst mean survival (7.0 ± 3.2 months) in the absence of concomitant HSP72 expression. The expression of HSP27, likely increasing cell proliferation, tumor mass, vascular and

  6. Mesothelioma Cells Escape Heat Stress by Upregulating Hsp40/Hsp70 Expression via Mitogen-Activated Protein Kinases

    Directory of Open Access Journals (Sweden)

    Michael Roth

    2009-01-01

    Full Text Available Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP, which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39–42°C induced the phosphorylation of two mitogen activated kinases (MAPK Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.

  7. Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion.

    Science.gov (United States)

    Zininga, Tawanda; Achilonu, Ikechukwu; Hoppe, Heinrich; Prinsloo, Earl; Dirr, Heini W; Shonhai, Addmore

    2016-05-01

    The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.

  8. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90

    Directory of Open Access Journals (Sweden)

    Xu Yuan-Ji

    2011-08-01

    Full Text Available Abstract Background Multiple myeloma (MM is a B-cell malignancy that is largely incurable and is characterized by the accumulation of malignant plasma cells in the bone marrow. Apigenin, a common flavonoid, has been reported to suppress proliferation in a wide variety of solid tumors and hematological cancers; however its mechanism is not well understood and its effect on MM cells has not been determined. Results In this study, we investigated the effects of apigenin on MM cell lines and on primary MM cells. Cell viability assays demonstrated that apigenin exhibited cytotoxicity against both MM cell lines and primary MM cells but not against normal peripheral blood mononuclear cells. Together, kinase assays, immunoprecipitation and western blot analysis showed that apigenin inhibited CK2 kinase activity, decreased phosphorylation of Cdc37, disassociated the Hsp90/Cdc37/client complex and induced the degradation of multiple kinase clients, including RIP1, Src, Raf-1, Cdk4 and AKT. By depleting these kinases, apigenin suppressed both constitutive and inducible activation of STAT3, ERK, AKT and NF-κB. The treatment also downregulated the expression of the antiapoptotic proteins Mcl-1, Bcl-2, Bcl-xL, XIAP and Survivin, which ultimately induced apoptosis in MM cells. In addition, apigenin had a greater effects in depleting Hsp90 clients when used in combination with the Hsp90 inhibitor geldanamycin and the histone deacetylase inhibitor vorinostat. Conclusions Our results suggest that the primary mechanisms by which apigenin kill MM cells is by targeting the trinity of CK2-Cdc37-Hsp90, and this observation reveals the therapeutic potential of apigenin in treating multiple myeloma.

  9. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  10. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  11. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x.

    Directory of Open Access Journals (Sweden)

    Michael O Daniyan

    Full Text Available Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1 or a human Hsp70 (HSPA1A, indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.

  12. HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells.

    Science.gov (United States)

    Rao, Rekha; Fiskus, Warren; Yang, Yonghua; Lee, Pearl; Joshi, Rajeshree; Fernandez, Pravina; Mandawat, Aditya; Atadja, Peter; Bradner, James E; Bhalla, Kapil

    2008-09-01

    Histone deacetylase 6 (HDAC6) is a heat shock protein 90 (hsp90) deacetylase. Treatment with pan-HDAC inhibitors or depletion of HDAC6 by siRNA induces hyperacetylation and inhibits ATP binding and chaperone function of hsp90. Treatment with 17-allylamino-demothoxy geldanamycin (17-AAG) also inhibits ATP binding and chaperone function of hsp90, resulting in polyubiquitylation and proteasomal degradation of hsp90 client proteins. In this study, we determined the effect of hsp90 hyperacetylation on the anti-hsp90 and antileukemia activity of 17-AAG. Hyperacetylation of hsp90 increased its binding to 17-AAG, as well as enhanced 17-AAG-mediated attenuation of ATP and the cochaperone p23 binding to hsp90. Notably, treatment with 17-AAG alone also reduced HDAC6 binding to hsp90 and induced hyperacetylation of hsp90. This promoted the proteasomal degradation of HDAC6. Cotreatment with 17-AAG and siRNA to HDAC6 induced more inhibition of hsp90 chaperone function and depletion of BCR-ABL and c-Raf than treatment with either agent alone. In addition, cotreatment with 17-AAG and tubacin augmented the loss of survival of K562 cells and viability of primary acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) samples. These findings demonstrate that HDAC6 is an hsp90 client protein and hyperacetylation of hsp90 augments the anti-hsp90 and antileukemia effects of 17-AAG.

  13. Suppression of cadmium-induced JNK/p38 activation and HSP70 family gene expression by LL-Z1640-2 in NIH3T3 cells

    International Nuclear Information System (INIS)

    Sugisawa, Nobusuke; Matsuoka, Masato; Okuno, Takeo; Igisu, Hideki

    2004-01-01

    When NIH3T3 cells were exposed to CdCl 2 , the three major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase (ERK), c-Jun NH 2 -terminal kinase (JNK), and p38, were phosphorylated in a time (1-9 h)- and dose (1-20 μM)-dependent manner. Treatment with a macrocyclic nonaketide compound, LL-Z1640-2 (10-100 ng/ml), suppressed the phosphorylation of MAPKs without affecting the total protein level in cells exposed to 10 μM CdCl 2 for 6 h. CdCl 2 -induced phosphorylation of c-Jun on Ser63 and that on Ser73, and resultant accumulation of total c-Jun protein were also suppressed by LL-Z1640-2 treatment. The in vitro kinase assays also showed significant inhibitory effects of LL-Z1640-2 (at 10 or 25 ng/ml) on JNK and p38 but less markedly. In contrast to JNK and p38, ERK activity was inhibited moderately only at 50 or 100 ng/ml LL-Z1640-2. On the other hand, other JNK inhibitors, SP600125 and L-JNKI1, failed to suppress CdCl 2 -induced activation of the JNK pathway. Among the mouse stress response genes upregulated in response to CdCl 2 exposure, the expressions of hsp68 (encoding for heat shock 70 kDa protein 1; Hsp70-1) and grp78 (encoding for 78 kDa glucose-regulated protein; Grp78) genes were suppressed by treatment with 25 ng/ml LL-Z1640-2. Thus, LL-Z1640-2 could suppress CdCl 2 -induced activation of JNK/p38 pathways and expression of HSP70 family genes in NIH3T3 cells. LL-Z1640-2 seems to be useful to analyze functions of toxic metal-induced JNK/p38 activation

  14. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2011-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT TM ). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.

  15. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s

    International Nuclear Information System (INIS)

    Geraci, Fabiana; Pinsino, Annalisa; Turturici, Guiseppina; Savona, Rosalia; Giudice, Giovanni; Sconzo, Gabriella

    2004-01-01

    Treatment with heavy metals, such as nickel, lead or cadmium, elicits different cellular stress responses according to the metal used and the length of treatment. In Paracentrotus lividus embryos the inducible forms of HSP70 (HSP70/72) are different in molecular mass from the constitutively expressed HSP75, and they can be used as markers of cellular stress. Even a short treatment with each metal induces the synthesis of HSP70/72 which remain stable for at least 20 h and differ little in their isoelectric points. Continuous treatment from fertilization with nickel or lead produces late irregular pluteus embryos, with peak HSP70/72 synthesis at blastula followed by the arrest of synthesis by pluteus. On the contrary, the same treatment with cadmium induces continuous HSP70/72 synthesis and produces irregular gastrula embryos which then degenerate. Moreover, a long treatment induces over control embryos a slight increase in the amount of constitutive HSP75 during development while lead treatment depresses constitutive HSP75 at early stages and doubles its quantity at late stages

  16. Exercise induces the release of heat shock protein 72 from the human brain in vivo

    OpenAIRE

    Lancaster, G. I.; Møller, K.; Nielsen, B.; Secher, N. H.; Febbraio, M. A.; Nybo, L.

    2004-01-01

    The present study tested the hypothesis that in response to physical stress the human brain has the capacity to release heat shock protein 72 (Hsp72) in vivo. Therefore, 6 humans (males) cycled for 180 minutes at 60% of their maximal oxygen uptake, and the cerebral Hsp72 response was determined on the basis of the internal jugular venous to arterial difference and global cerebral blood flow. At rest, there was a net balance of Hsp72 across the brain, but after 180 minutes of exercise, we were...

  17. HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2.

    Science.gov (United States)

    Qi, Shimei; Xin, Yinqiang; Qi, Zhilin; Xu, Yimiao; Diao, Ying; Lan, Lei; Luo, Lan; Yin, Zhimin

    2014-03-01

    Heat shock protein 27 (HSP27) regulates critical cellular functions such as development, differentiation, cell growth and apoptosis. A variety of stimuli induce the phosphorylation of HSP27, which affects its cellular functions. However, most previous studies focused on the role of HSP27 protein itself in apoptosis, the particular role of its phosphorylation state in signaling transduction remains largely unclear. In the present study, we reported that HSP27 phosphorylation modulated TRAIL-triggered pro-survival signaling transduction. In HeLa cells, suppression of HSP27 phosphorylation by specific inhibitor KRIBB3 or MAPKAPK2 (MK2) knockdown and by overexpression of non-phosphorylatable HSP27(3A) mutant demonstrated that hindered HSP27 phosphorylation enhanced the TRAIL-induced apoptosis. In addition, reduced HSP27 phosphorylation by KRIBB3 treatment or MK2 knockdown attenuated the TRAIL-induced activation of Akt and ERK survival signaling through suppressing the phosphorylation of Src. By overexpression of HSP27(15A) or HSP27(78/82A) phosphorylation mutant, we further showed that phosphorylation of HSP27 at serine 78/82 residues was essential to TRAIL-triggered Src-Akt/ERK signaling transduction. Co-immunoprecipitation and confocal microscopy showed that HSP27 interacted with Src and scaffolding protein β-arrestin2 in response of TRAIL stimulation and suppression of HSP27 phosphorylation apparently disrupted the TRAIL-induced interaction of HSP27 and Src or interaction of HSP27 and β-arrestin2. We further demonstrated that β-arrestin2 mediated HSP27 action on TRAIL-induced Src activation, which was achieved by recruiting signaling complex of HSP27/β-arrestin2/Src in response to TRAIL. Taken together, our study revealed that HSP27 phosphorylation modulates TRAIL-triggered activation of Src-Akt/ERK pro-survival signaling via interacting with β-arrestin2 in HeLa cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  19. Schiff Base Metal Derivatives Enhance the Expression of HSP70 and Suppress BAX Proteins in Prevention of Acute Gastric Lesion

    Directory of Open Access Journals (Sweden)

    Shahram Golbabapour

    2013-01-01

    Full Text Available Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg, the positive control (Tween 20 5% v/v, 5 mL/kg, and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg. After 1 h, all of the groups received ethanol 95% (5 mL/kg but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg. The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E, immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  20. Schiff base metal derivatives enhance the expression of HSP70 and suppress BAX proteins in prevention of acute gastric lesion.

    Science.gov (United States)

    Golbabapour, Shahram; Gwaram, Nura Suleiman; Al-Obaidi, Mazen M Jamil; Soleimani, A F; Ali, Hapipah Mohd; Abdul Majid, Nazia

    2013-01-01

    Schiff base complexes have appeared to be promising in the treatment of different diseases and disorders and have drawn a lot of attention to their biological activities. This study was conducted to evaluate the regulatory effect of Schiff base metal derivatives on the expression of heat shock proteins (HSP) 70 and BAX in protection against acute haemorrhagic gastric ulcer in rats. Rats were assigned to 6 groups of 6 rats: the normal control (Tween 20 5% v/v, 5 mL/kg), the positive control (Tween 20 5% v/v, 5 mL/kg), and four Schiff base derivative groups named Schiff_1, Schiff_2, Schiff_3, and Schiff_4 (25 mg/kg). After 1 h, all of the groups received ethanol 95% (5 mL/kg) but the normal control received Tween 20 (Tween 20 5% v/v, 5 mL/kg). The animals were euthanized after 60 min and the stomachs were dissected for histology (H&E), immunohistochemistry, and western blot analysis against HSP70 and BAX proteins. The results showed that the Schiff base metal derivatives enhanced the expression of HSP70 and suppressed the expression of BAX proteins during their gastroprotection against ethanol-induced gastric lesion in rats.

  1. Crystal structures of Hsp104 N-terminal domains from Saccharomyces cerevisiae and Candida albicans suggest the mechanism for the function of Hsp104 in dissolving prions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Weaver, Clarissa; Lucius, Aaron; Sha, Bingdong

    2017-03-31

    Hsp104 is a yeast member of the Hsp100 family which functions as a molecular chaperone to disaggregate misfolded polypeptides. To understand the mechanism by which the Hsp104 N-terminal domain (NTD) interacts with its peptide substrates, crystal structures of the Hsp104 NTDs fromSaccharomyces cerevisiae(ScHsp104NTD) andCandida albicans(CaHsp104NTD) have been determined at high resolution. The structures of ScHsp104NTD and CaHsp104NTD reveal that the yeast Hsp104 NTD may utilize a conserved putative peptide-binding groove to interact with misfolded polypeptides. In the crystal structures ScHsp104NTD forms a homodimer, while CaHsp104NTD exists as a monomer. The consecutive residues Gln105, Gln106 and Lys107, and Lys141 around the putative peptide-binding groove mediate the monomer–monomer interactions within the ScHsp104NTD homodimer. Dimer formation by ScHsp104NTD suggests that the Hsp104 NTD may specifically interact with polyQ regions of prion-prone proteins. The data may reveal the mechanism by which Hsp104 NTD functions to suppress and/or dissolve prions.

  2. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    Science.gov (United States)

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  3. Plasmodium falciparum Hep1 Is Required to Prevent the Self Aggregation of PfHsp70-3.

    Directory of Open Access Journals (Sweden)

    David O Nyakundi

    Full Text Available The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70; however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1, to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria.

  4. Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Sherman, Michael Y

    2014-01-01

    Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.

  5. A Novel Therapeutic Strategy for the Treatment of Glioma, Combining Chemical and Molecular Targeting of Hsp90α

    International Nuclear Information System (INIS)

    Mehta, Adi; Shervington, Leroy; Munje, Chinmay; Shervington, Amal

    2011-01-01

    Hsp90α's vital role in tumour survival and progression, together with its highly inducible expression profile in gliomas and its absence in normal tissue and cell lines validates it as a therapeutic target for glioma. Hsp90α was downregulated using the post-transcriptional RNAi strategy (sihsp90α) and a post-translational inhibitor, the benzoquinone antibiotic 17-AAG. Glioblastoma U87-MG and normal human astrocyte SVGp12 were treated with sihsp90α, 17-AAG and concurrent sihsp90α/17-AAG (combined treatment). Both Hsp90α gene silencing and the protein inhibitor approaches resulted in a dramatic reduction in cell viability. Results showed that sihsp90α, 17-AAG and a combination of sihsp90α/17-AAG, reduced cell viability by 27%, 75% and 88% (p < 0.001), respectively, after 72 h. hsp90α mRNA copy numbers were downregulated by 65%, 90% and 99% after 72 h treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG, respectively. The relationship between Hsp90α protein expression and its client Akt kinase activity levels were monitored following treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG. Akt kinase activity was downregulated as a direct consequence of Hsp90α inhibition. Both Hsp90α and Akt kinase levels were significantly downregulated after 72 h. Although, 17-AAG when used as a single agent reduces the Hsp90α protein and the Akt kinase levels, the efficacy demonstrated by combinatorial treatment was found to be far more effective. Combination treatment reduced the Hsp90α protein and Akt kinase levels to 4.3% and 43%, respectively, after 72 h. hsp90α mRNA expression detected in SVGp12 was negligible compared to U87-MG, also, the combination treatment did not compromise the normal cell viability. Taking into account the role of Hsp90α in tumour progression and the involvement of Akt kinase in cell signalling and the anti-apoptotic pathways in tumours, this double targets treatment infers a novel therapeutic strategy

  6. Essential oil from Cymbopogon flexuosus as the potential inhibitor for HSP90.

    Science.gov (United States)

    Gaonkar, Roopa; Shiralgi, Yallappa; Lakkappa, Dhananjaya B; Hegde, Gurumurthy

    2018-01-01

    The essential oil of Cymbopogon flexuosus or lemongrass oil (LO) is reported to have antibacterial, antifungal and anticancerous effects. HSP90 is one of the major chaperones responsible for the proper folding of cancer proteins. In this paper we show that the essential oil of C. flexuosus significantly suppresses the HSP90 gene expression. The cytotoxicity of the compounds was tested by MTT assay and the gene expression studies were carried out using HEK-293 and MCF-7 cells. Also we tested the efficacy of the major component of this essential oil viz. citral and geraniol in inhibiting the HSP90 expression. The oil was found to be more cytotoxic to MCF-7 cells with different IC 50 values for the oil (69.33 μg/mL), citral (140.7 μg/mL) and geraniol (117 μg/mL). The fold change of expression was calculated by RT-qPCR using ΔΔCt (2 ^-ΔΔCt ) method and it was 0.1 and 0.03 in MCF-7 cells at 80 μg/mL and 160 μg/mL of LO. Western blot results showed suppression of HSP90 protein expression and HSP90 - ATPase activity inhibition was also observed using LO. This study shows the anticancer mechanism exhibited by the essential oil of C. flexuosus is by the inhibition of the important chaperone protein HSP90.

  7. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

    Directory of Open Access Journals (Sweden)

    Michael Reidy

    2014-10-01

    Full Text Available Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.

  8. Geranylgeranylacetone ameliorates lung ischemia/reperfusion injury by HSP70 and thioredoxin redox system: NF-kB pathway involved.

    Science.gov (United States)

    Cao, Weijun; Li, Manhui; Li, Jianxiong; Li, Chengwei; Xu, Xin; Gu, Weiqing

    2015-06-01

    Geranylgeranylacetone (GGA) has been clinically used as an anti-ulcer drug. In the present study, we explored the protective effects of GGA on lung ischemia/reperfusion injury (IRI) and the underlying mechanism. The results demonstrated that GGA ameliorated the lung biochemical and histological alterations induced by IRI, which was reversed by HSP70 inhibition. To further explore the mechanism of GGA action, we focused on NF-kB and thioredoxin (Trx) redox system. It was shown that GGA induced the HSP70 and Trx-1 expression, NF-kB nuclear translocation and activated thioredoxin reductase (TrxR). The Trx-1 expression and TrxR activity was suppressed by HSP70 and NF-kB inhibition, while the nuclear NF-kB p65 expression was suppressed by HSP70 inhibitor. These results indicated that GGA may protect rat lung against IRI by HSP70 and Trx redox system, in which NF-kB pathway may be involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...... healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access...... insulin sensitivity. Skeletal muscle and subcutaneous adipose tissue biopsies were obtained by percutaneous needle biopsy. HSP72 protein expression in skeletal muscle was inversely related to percentage body fat (r = -0.54, P

  10. Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis.

    Science.gov (United States)

    Zhu, Yongfei; Ren, Chuanlu; Wan, Xuying; Zhu, Yuping; Zhu, Jiangbo; Zhou, Hongyuan; Zhang, Tianbao

    2013-11-01

    Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.

  11. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  12. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 protein family

    NARCIS (Netherlands)

    Titorenko, Vladimir I.; Evers, Melchior E.; Diesel, Andre; Samyn, Bart; Beeumen, Josef van; Roggenkamp, Rainer; Kiel, Jan A.K.W.; Klei, Ida J. van der; Veenhuis, Marten

    We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was

  13. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    Directory of Open Access Journals (Sweden)

    Brigitte Picard

    2016-05-01

    Full Text Available Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1, contraction (TnnT3, energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1 and the Hsp proteins family (HspA9. These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  14. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  15. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E; Randell, Rachel L; Marando, Catherine M; Rubenstein, Ronald C

    2011-12-30

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.

  16. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    Science.gov (United States)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  17. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis.

    Science.gov (United States)

    Goettems-Fiorin, Pauline Brendler; Grochanke, Bethânia Salamoni; Baldissera, Fernanda Giesel; Dos Santos, Analu Bender; Homem de Bittencourt, Paulo Ivo; Ludwig, Mirna Stela; Rhoden, Claudia Ramos; Heck, Thiago Gomes

    2016-12-01

    Exposure to fine particulate matter (PM 2.5 ) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM 2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM 2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM 2.5 , HFD, and HFD + PM 2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM 2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM 2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.

  18. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    Science.gov (United States)

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Differences in the curing of [PSI+] prion by various methods of Hsp104 inactivation.

    Directory of Open Access Journals (Sweden)

    Yang-Nim Park

    Full Text Available [PSI(+] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+] and inactivation of Hsp104 cures [PSI(+] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.

  20. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

    Directory of Open Access Journals (Sweden)

    Sheena D Singh

    2009-07-01

    Full Text Available Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely

  1. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

    International Nuclear Information System (INIS)

    Milanović, Dušan; Firat, Elke; Grosu, Anca Ligia; Niedermann, Gabriele

    2013-01-01

    Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72 hours after irradiation with 4 Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis

  2. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  3. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  4. Heat shock proteins (Hsp 70) response is not systematic to cell stress

    International Nuclear Information System (INIS)

    Hassen, Wafa; Ayed-Boussema, Imen; Bouslimi, Amel; Bacha, Hassen

    2007-01-01

    Ochratoxin A (OTA) is a mycotoxin routinely detected in improperly stored animal and human food supplies as well as in human sera worldwide. OTA has multiple toxic effects; however, the most prominent is nephrotoxicity. Thus, OTA is involved in the pathogenesis of human nephropathy in Balkan areas. In this study, we address the question of the appropriate functioning of the basal cellular defense mechanisms, after exposure to OTA, which, up to now, has not been investigated satisfactorily. In this context, we have monitored the effect of OTA on (i) the inhibition of cell viability, (ii) the oxidative damage using the GSH depletion, (iii) the inhibition of protein synthesis through the incorporation of [ 3 H] Leucine and (iv) the induction of Hsp 70 gene expression as a parameter of cytotoxicity, oxidative damage and particularly as a protective and adaptative response. This study was conducted using the Human Hep G2 hepatocytes and monkey kidney Vero cells under exposure conditions ranging from non-cytotoxic to sub-lethal. Our results clearly showed that OTA inhibits cell proliferation, strongly reduces protein synthesis and induces the decrease of GSH in concentration-dependent manner in both Hep G2 and Vero cells. However, although cytotoxicity and oxidative damage (main inducers of Hsp expression) occur, no change was observed in Hsp 70 level under the multiple tested conditions. Inhibition of protein synthesis could not explain the absence of Hsp 70 response since concentrations, which did not influence protein synthesis, also failed to display the expected Hsp 70 response. Our data are consistent with recently published reports where considerable differences were noticed in the ability of relevant toxicants to induce Hsp. These results raised doubt about the universal character of Hsp induction which seems to be more complex than originally envisioned. It could be concluded that Hsp 70 induction is not systematic to cell stress

  5. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    Science.gov (United States)

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  6. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats.

    Directory of Open Access Journals (Sweden)

    Carolina Soares Moura

    Full Text Available Whey protein hydrolysate (WPH intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed and exercised (stressed groups, and were fed with three different sources of protein: whey protein (WP, whey protein hydrolysate (WPH and casein (CAS as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85, GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.

  7. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  8. HspB8 Participates in Protein Quality Control by a Non-chaperone-like Mechanism That Requires eIF2 alpha Phosphorylation

    NARCIS (Netherlands)

    Carra, Serena; Brunsting, Jeanette F.; Lambert, Herman; Landry, Jacques; Kampinga, Harm H.

    2009-01-01

    Aggregation of mutated proteins is a hallmark of many neurodegenerative disorders, including Huntington disease. We previously reported that overexpression of the HspB8 . Bag3 chaperone complex suppresses mutated huntingtin aggregation via autophagy. Classically, HspB proteins are thought to act as

  9. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  10. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    Directory of Open Access Journals (Sweden)

    Schultz Chad R

    2012-04-01

    Full Text Available Abstract Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ, followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1 SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2 Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3 Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4 Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5 However, inhibiting pAKT suppresses tumor cell survival. 6 Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7 There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8 This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1 SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2 Despite this enhanced signaling, SPARC protects cells against TMZ. 3 This protection can be reduced

  11. HIF-1α-induced HSP70 regulates anabolic responses in articular chondrocytes under hypoxic conditions.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Takahashi, Kenji A; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Ueshima, Keiichiro; Matsuki, Tomohiro; Mazda, Osam; Kubo, Toshikazu

    2014-08-01

    We assessed whether heat shock protein 70 (HSP70) is involved in hypoxia inducible factor 1 alpha (HIF-1α)-dependent anabolic pathways in articular chondrocytes under hypoxic conditions. Primary rabbit chondrocytes were cultured under normoxia (20% oxygen condition) or hypoxia (1% oxygen condition). Alternatively, cells cultured under normoxia were treated with CoCl2 , which induces HIF-1α, to simulate hypoxia, or transfected with siRNAs targeting HIF-1α (si-HIF-1α) and HSP70 (si-HSP70) under hypoxia. HSP70 expression was enhanced by the increased expression of HIF-1α under hypoxia or simulated hypoxia, but not in the presence of si-HIF-1α. Hypoxia-induced overexpression of ECM genes was significantly suppressed by si-HIF-1α or si-HSP70. Cell viability positively correlated with hypoxia, but transfection with si-HIF-1α or si-HSP70 abrogated the chondroprotective effects of hypoxia. Although LDH release from sodium nitroprusside-treated cells and the proportion of TUNEL positive cells were decreased under hypoxia, transfection with si-HIF-1α or si-HSP70 almost completely blocked these effects. These findings indicated that HIF-1α-induced HSP70 overexpression increased the expression levels of ECM genes and cell viability, and protected chondrocytes from apoptosis. HIF-1α may regulate the anabolic effects of chondrocytes under hypoxic conditions by regulating HSP70 expression. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  13. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2007-07-08

    Mismatch repair (MMR) deficiency and higher expression levels of heat shock proteins (Hsps) have been implicated with drug resistance to topoisomerase II poisons (doxorubicin) and to platinum compounds (cisplatin). This study was designed to determine individual influences of doxorubicin and cisplatin treatment on the expression of Hsp27, Hsp70, hMLH1 and hMSH2 proteins and in the DNA damage status in peripheral blood lymphocytes (PBLs). In addition, we studied whether these proteins and the DNA damage correlated with the survival of cancer patients. PBLs from 10 healthy donors and 25 cancer patients (before and after three cycles of chemotherapy) were exposed to in vitro treatments: C (control), HS (heat shock at 42 degrees C), Do or Pt (doxorubicin or cisplatin alone), and HS+Do or HS+Pt (heat shock+doxorubicin or heat shock+cisplatin). PBLs were collected at time 0 (T0: immediately after drug treatment) and after 24h of repair (T24). Hsp27, Hsp70, hMLH1 and hMSH2 were studied by immunocytochemistry and the DNA damage by alkaline comet assay. Immunofluorescence studies and confocal microscopy revealed that hMLH1 and hMSH2 colocalized with Hsp27 and Hsp72 (inducible form of Hsp70). hMLH1 and hMSH2 were significantly induced by Pt and HS+Pt at T24 in cancer patients, but only modestly influenced by Do. Cancer patients presented higher basal expression of total and nuclear Hsp27 and Hsp70 than controls, and these proteins were also increased by HS, Do and HS+Do. The Hsp70 induction by Pt and HS+Pt was noted in cancer patients, especially nuclear Hsp70. In cancer patients, basal DNA damage was slightly higher than in healthy persons; and after Pt and HS+Pt treatments, DNA migration and number of apoptotic cells were higher than controls. Hsps accomplished a cytoprotective function in pre-chemotherapy PBLs (HS before Do or Pt), but not in post-chemotherapy samples. In Pt-treated patients the ratio N/C (nuclear/cytoplasmic) of Hsp27 was related to disease free survival

  14. Suppression of serotonin hyperinnervation does not alter the dysregulatory influences of dopamine depletion on striatal neuropeptide gene expression in rodent neonates.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-10-15

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

  15. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  16. Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism.

    Directory of Open Access Journals (Sweden)

    H Akiko Popiel

    Full Text Available The polyglutamine (polyQ diseases such as Huntington's disease (HD, are neurodegenerative diseases caused by proteins with an expanded polyQ stretch, which misfold and aggregate, and eventually accumulate as inclusion bodies within neurons. Molecules that inhibit polyQ protein misfolding/aggregation, such as Polyglutamine Binding Peptide 1 (QBP1 and molecular chaperones, have been shown to exert therapeutic effects in vivo by crossing of transgenic animals. Towards developing a therapy using these aggregation inhibitors, we here investigated the effect of viral vector-mediated gene therapy using QBP1 and molecular chaperones on polyQ disease model mice. We found that injection of adeno-associated virus type 5 (AAV5 expressing QBP1 or Hsp40 into the striatum both dramatically suppresses inclusion body formation in the HD mouse R6/2. AAV5-Hsp40 injection also ameliorated the motor impairment and extended the lifespan of R6/2 mice. Unexpectedly, we found even in virus non-infected cells that AAV5-Hsp40 appreciably suppresses inclusion body formation, suggesting a non-cell autonomous therapeutic effect. We further show that Hsp40 inhibits secretion of the polyQ protein from cultured cells, implying that it inhibits the recently suggested cell-cell transmission of the polyQ protein. Our results demonstrate for the first time the therapeutic effect of Hsp40 gene therapy on the neurological phenotypes of polyQ disease mice.

  17. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Andreas M Gaiser

    Full Text Available The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21 has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21 appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.

  18. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth.

    Science.gov (United States)

    Cramer, Shira L; Saha, Achinto; Liu, Jinyun; Tadi, Surendar; Tiziani, Stefano; Yan, Wupeng; Triplett, Kendra; Lamb, Candice; Alters, Susan E; Rowlinson, Scott; Zhang, Yan Jessie; Keating, Michael J; Huang, Peng; DiGiovanni, John; Georgiou, George; Stone, Everett

    2017-01-01

    Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than do non-malignant cells because of genetic alterations and abnormal growth; as a result, maintenance of the antioxidant glutathione (GSH) is essential for their survival and proliferation. Under conditions of elevated ROS, endogenous L-cysteine (L-Cys) production is insufficient for GSH synthesis. This necessitates uptake of L-Cys that is predominantly in its disulfide form, L-cystine (CSSC), via the xCT(-) transporter. We show that administration of an engineered and pharmacologically optimized human cyst(e)inase enzyme mediates sustained depletion of the extracellular L-Cys and CSSC pool in mice and non-human primates. Treatment with this enzyme selectively causes cell cycle arrest and death in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS; yet this treatment results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in both prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53 -/- mice, which develop disease resembling human chronic lymphocytic leukemia. It was observed that enzyme-mediated depletion of the serum L-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods, suggesting that cyst(e)inase represents a safe and effective therapeutic modality for inactivating antioxidant cellular responses in a wide range of malignancies.

  19. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Lin Jie

    2010-04-01

    Full Text Available Abstract Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC. We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7-transfected RKO cells, including albumin (ALB, 60 kDa heat shock protein(HSP60, Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2, beta subunit of phenylalanyl-tRNA synthetase(FARSB and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC.

  20. Effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on NEU/HER2 overexpressing mammary tumours in MMTV-NEU-NT mice monitored by Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Rodrigues, Loreta M; Chung, Yuen-Li; Al Saffar, Nada M S; Sharp, Swee Y; Jackson, Laura E; Banerji, Udai; Stubbs, Marion; Leach, Martin O; Griffiths, John R; Workman, Paul

    2012-05-23

    The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. ERBB2 is an oncoprotein client that is highly dependent on HSP90. This and other oncogenic client proteins (e.g. B-RAF, C-RAF, ALK and CDK4) are depleted by 17-AAG in both animal tumours and patients. Here we investigate by Magnetic Resonance Spectroscopy (MRS) the metabolic response of 17-AAG in spontaneous, NEU/HER2 driven mammary tumours in transgenic MMTV-NEU-NT mice and in cells isolated and cultured from these tumours. Mammary tumours were monitored by 31P MRS in vivo and in tumour extracts, comparing control and 17-AAG treated mice. A cell line derived from NEU/HER2 mammary tumours was also cultured and the effect of 17-AAG was measured by 31P MRS in cell extracts. Molecular biomarkers were assessed by immunoblotting in extracts from cells and tumours. For comparison of tumour volume, metabolite concentrations and Western blot band intensities, two-tailed unpaired t-tests were used. The NEU/HER2 mammary tumours were very sensitive to 17-AAG and responded in a dose-dependent manner to 3 daily doses of 20, 40 and 80mg/kg of 17-AAG, all of which caused significant regression. At the higher doses, 31P MRS of tumour extracts showed significant decreases in phosphocholine (PC) and phosphoethanolamine (PE) whereas no significant changes were seen at the 20mg/kg dose. Extracts of isolated cells cultured from the mammary carcinomas showed a significant decrease in viable cell number and total PME after 17-AAG treatment. Western blots confirmed the expected action of 17-AAG in inducing HSP72 and significantly depleting HSP90 client proteins, including NEU/HER2 both in tumours and in isolated cells. The data demonstrate the high degree of sensitivity of this clinically relevant NEU/HER2-driven tumour model to HSP90 inhibition by 17-AAG, consistent with the

  1. Requirement of Hsp105 in CoCl{sub 2}-induced HIF-1α accumulation and transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Hiroki; Saito, Youhei, E-mail: ysaito@mb.kyoto-phu.ac.jp; Okamoto, Namiko; Kakihana, Ayana; Kuga, Takahisa; Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp

    2017-03-15

    The mammalian stress protein Hsp105α protects cells from stress conditions. Several studies have indicated that Hsp105α is overexpressed in many types of solid tumors, which contain hypoxic microenvironments. However, the role of Hsp105α in hypoxic tumors remains largely unknown. We herein demonstrated the involvement of Hsp105α in HIF-1 functions induced by the hypoxia-mimetic agent CoCl{sub 2}. While Hsp105α is mainly localized in the cytoplasm under normal conditions, a treatment with CoCl{sub 2} induces the nuclear localization of Hsp105α, which correlated with HIF-1α expression levels. The overexpression of degradation-resistant HIF-1α enhances the nuclear localization of Hsp105α without the CoCl{sub 2} treatment. The CoCl{sub 2}-dependent transcriptional activation of HIF-1, which is measured using a reporter gene containing a HIF-responsive element, is reduced by the knockdown of Hsp105α. Furthermore, the CoCl{sub 2}-induced accumulation of HIF-1α is enhanced by heat shock, which results in the nuclear localization of Hsp105, and is suppressed by the knockdown of Hsp105. Hsp105 associates with HIF-1α in CoCl{sub 2}-treated cells. These results suggest that Hsp105α plays an important role in the functions of HIF-1 under hypoxic conditions, in which Hsp105α enhances the accumulation and transcriptional activity of HIF-1 through the HIF-1α-mediated nuclear localization of Hsp105α. - Highlights: • Hsp105α is required for the CoCl{sub 2}-induced transcriptional activation and accumulation of HIF-1. • Hsp105α localizes to the nucleus and interacts with HIF-1α in CoCl{sub 2}-treated cells. • Hsp105 enhances the CoCl{sub 2}-induced accumulation of HIF-1α under heat shock conditions.

  2. Expression of Helicobacter pylori hspA Gene in Lactococcus lactis NICE System and Experimental Study on Its Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Zhang

    2015-01-01

    Full Text Available Aim. The aim of this study was to develop an oral Lactococcus lactis (L. lactis vaccine against Helicobacter pylori (H. pylori. Methods. After L. lactis NZ3900/pNZ8110-hspA was constructed, growth curves were plotted to study whether the growth of recombinant L. lactis was affected after hspA was cloned into L. lactis and whether the growth of empty bacteria, empty plasmid bacteria, and recombinant L. lactis was affected by different concentrations of Nisin; SDS-PAGE and Western blot were adopted, respectively, to detect the HspA expressed by recombinant L. lactis and its immunoreactivity. Results. There was no effect observed from the growth curve after exogenous gene hspA was cloned into L. lactis NZ3900; different concentrations of Nisin did not affect the growth of NZ3900 and NZ3900/pNZ8110, while different concentrations of Nisin inhibited the growth of NZ3900/pNZ8110-hspA except 10 ng/mL Nisin. No HspA strip was observed from SDS-PAGE. Western blot analysis showed that HspA expressed by recombinant bacteria had favorable immunoreactivity. Conclusion. The growth of recombinant L. lactis was suppressed even though a small amount of HspA had been induced to express. Therefore recombinant L. lactis only express HspA which was not suitable to be oral vaccine against Helicobacter pylori.

  3. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  4. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy

    Directory of Open Access Journals (Sweden)

    G. Tomasello

    2011-10-01

    Full Text Available Ulcerative colitis (UC is a form of inflammatory bowel disease (IBD characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics, suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level.

  5. The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase

    International Nuclear Information System (INIS)

    Cappello, Francesco; David, Sabrina; Rappa, Francesca; Bucchieri, Fabio; Marasà, Lorenzo; Bartolotta, Tommaso E; Farina, Felicia; Zummo, Giovanni

    2005-01-01

    The involvement of Heat Shock Proteins (HSP) in cancer development and progression is a widely debated topic. The objective of the present study was to evaluate the presence and expression of HSP60 and HSP10 in a series of large bowel carcinomas and locoregional lymph nodes with and without metastases. 82 Astler and Coller's stage C2 colorectal cancers, of which 48 well-differentiated and 34 poorly-differentiated, were selected along with 661 lymph nodes, including 372 with metastases and 289 with reactive hyperplasia only, from the same tumours. Primitive tumours and both metastatic and reactive lymph nodes were studied; specifically, three different compartments of the lymph nodes, secondary follicle, paracortex and medullary sinus, were also analysed. An immunohistochemical research for HSP60 and HSP10 was performed and the semiquantitative results were analysed by statistical analysis to determine the correlation between HSPs expression and 1) tumour grading; 2) degree of inflammation; 3) number of lymph nodes involved; 4) lymph node compartment hyperplasia. Moreover, western blotting was performed on a smaller group of samples to confirm the immunohistochemical results. Our data show that the expression of HSP60, in both primary tumour and lymph node metastasis, is correlated with the tumoral grade, while the HSP10 expression is not. Nevertheless, the levels of HSP10 are commonly higher than the levels of HSP60. In addition, statistical analyses do not show any correlation between the degree of inflammation and the immunopositivity for both HSP60 and HSP10. Moreover, we find a significant correlation between the presence of lymph node metastases and the positivity for both HSP60 and HSP10. In particular, metastatic lymph nodes show a higher percentage of cells positive for both HSP60 and HSP10 in the secondary follicles, and for HSP10 in the medullary sinuses, when compared with hyperplastic lymph nodes. HSP60 and HSP10 may have diagnostic and prognostic

  6. Extra source implantation for suppression floating-body effect in partially depleted SOI MOSFETs

    International Nuclear Information System (INIS)

    Chen Jing; Luo Jiexin; Wu Qingqing; Chai Zhan; Huang Xiaolu; Wei Xing; Wang Xi

    2012-01-01

    Silicon-on-insulate (SOI) MOSFETs offer benefits over bulk competitors for fully isolation and smaller junction capacitance. The performance of partially depleted (PD) SOI MOSFETs, though, is not good enough. Since the body is floating, the extra holes (for nMOSFETs) in this region accumulate, causing body potential arise, which of course degrades the performance of the device. How to suppress the floating-body effect becomes critical. There are mainly two ways for the goal. One is to employ body-contact structures, and the other SiGe source/drain structures. However, the former consumes extra area, not welcomed in the state-of-the-art chips design. The latter is not compatible with the traditional CMOS technology. Finding a structure both saving area and compatible technology is the most urgent for PD SOI MOSFETs. Recently, we have developed a new structure with extra heavy boron implantation in the source region for PD SOI nMOSFETs. It consumes no extra area and is also compatible with CMOS technology. The device is found to be free of kink effect in simulation, which implies the floating-body effect is greatly suppressed. In addition, the mechanisms of the kink-free, as well as the impact of different implanting conditions are interpreted.

  7. Altered Cross-linking of HSP27 by Zerumbone as a Novel Strategy for Overcoming HSP27- mediated Resistance

    International Nuclear Information System (INIS)

    Choi, Seo Hyun; Lee, Yoon Jin; Lee, Hae June; Lee, Yun Sil; Kim, Joon; Seo, Woo Duck; Nam, Joo Won; Lee, Yoo Jin; Seo, Eun Kyung

    2010-01-01

    HSPs have diverse roles in the regulation of signal transduction and in numerous aspects of cell growth and death. Indeed, HSP90, HSP70, and HSP27 have each been implicated in promoting cancer. Most HSP27 exists as large oligomeric complexes ranging from 100- 800 kDa, which are probably stabilized by complex interactions between dimeric building blocks. The functional properties of HSP27 are dependent on the quaternary structure of the protein. For example, HSP27 acts as a chaperone and binds to cytochrome c or Daxx as a dimer. Therefore, the oligomerization pattern of HPS27 is believed to have HSP27-mediated protective functions. In this study, zerumbone (ZER), the cytotoxic component isolated from Zingiber zerumbet Smith, induced cross-linking of HSP27 protein by its insertion between the disulfide bond of HSP27, and ZERmediated altered cross-linking of HSP27 modified normal HSP27 dimerization, which resulted in a sensitizing effect to tumors after treatment with radiation. Therefore, altered cross-linking by ZER may be a novel strategy for inhibition of HSP27-mediated resistance

  8. An RNA aptamer specific to Hsp70-ATP conformation inhibits its ATPase activity independent of Hsp40.

    Science.gov (United States)

    Thirunavukarasu, Deepak; Shi, Hua

    2015-04-01

    The highly conserved and ubiquitous molecular chaperone heat shock protein 70 (Hsp70) plays a critical role in protein homeostasis (proteostasis). Controlled by its ATPase activity, Hsp70 cycles between two conformations, Hsp70-ATP and Hsp70-ADP, to bind and release its substrate. Chemical tools with distinct modes of action, especially those capable of modulating the ATPase activity of Hsp70, are being actively sought after in the mechanistic dissection of this system. Here, we report a conformation-specific RNA aptamer that binds only to Hsp70-ATP but not to Hsp70-ADP. We have refined this aptamer and demonstrated its inhibitory effect on Hsp70's ATPase activity. We have also shown that this inhibitory effect on Hsp70 is independent of its interaction with the Hsp40 co-chaperone. As Hsp70 is increasingly being recognized as a drug target in a number of age related diseases such as neurodegenerative, protein misfolding diseases and cancer, this aptamer is potentially useful in therapeutic applications. Moreover, this work also demonstrates the feasibility of using aptamers to target ATPase activity as a general therapeutic strategy.

  9. Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems.

    Science.gov (United States)

    Tsuboyama, Kotaro; Tadakuma, Hisashi; Tomari, Yukihide

    2018-05-17

    Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.

    Science.gov (United States)

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; Sun, Yuan; You, Qi-Dong

    2017-01-01

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein- protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90

    International Nuclear Information System (INIS)

    Picard, Didier

    2006-01-01

    p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the 'fluorescence recovery after photobleaching' (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions

  12. Synergistic role of HSP90α and HSP90β to promote myofibroblast persistence in lung fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Yanagihara, Toyoshi; Carlson, David A; Hughes, Philip; Upagupta, Chandak; Sato, Seidai; Wheildon, Nolan; Haystead, Timothy; Ask, Kjetil; Kolb, Martin

    2018-02-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90β, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90β was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-β1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90β stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF. Copyright ©ERS 2018.

  13. Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2010-04-01

    Full Text Available Abstract Background The antiproliferative effect of the Hsp90 inhibitor 17-AAG (17-allylamino-17-demethoxygeldanamycin on human retinal pigment epithelial cells is investigated. Methods MTT and flow cytometry were used to study the antiproliferative effects of the 17-AAG treatment of ARPE-19 cells. 2D gel electrophoresis (2-DE and mass spectrometry were applied to detect the altered expression of proteins, which was verified by real-time PCR. Gene Ontology analysis and Ingenuity Pathway Analysis (IPA were utilized to analyze the signaling pathways, cellular location, function, and network connections of the identified proteins. And SOD assay was employed to confirm the analysis. Results 17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis. Proteomic analysis revealed that the expression of 94 proteins was altered by a factor of more than 1.5 following exposure to 17-AAG. Of these 94, 87 proteins were identified. Real-time PCR results indicated that Hsp90 and Hsp70, which were not identified by proteomic analysis, were both upregulated upon 17-AAG treatment. IPA revealed that most of the proteins have functions that are related to oxidative stress, as verified by SOD assay, while canonical pathway analysis revealed glycolysis/gluconeogenesis. Conclusions 17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis, and possibly by oxidative stress.

  14. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    Science.gov (United States)

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  15. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia.

    Science.gov (United States)

    Hangzo, Hnunlalliani; Banerjee, Bodhisattwa; Saha, Shrabani; Saha, Nirmalendu

    2017-02-01

    The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH 4 Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.

  16. Altered Cross-Linking of HSP27 by Zerumbone as a Novel Strategy for Overcoming HSP27-Mediated Radioresistance

    International Nuclear Information System (INIS)

    Choi, Seo-Hyun; Lee, Yoon-Jin; Seo, Woo Duck; Lee, Hae-June; Nam, Joo-Won; Lee, Yoo Jin; Kim, Joon; Seo, Eun-Kyoung; Lee, Yun-Sil

    2011-01-01

    Purpose: HSP27 or HSP25 negatively regulates apoptosis pathways after radiation or chemotherapeutic agents. Abrogation of HSP27 function may be a candidate target for overcoming radio- and chemoresistance. Methods and Materials: Zerumbone (ZER), a cytotoxic component isolated from Zingiber zerumbet smith. Clonogenic survival assay and flow cytometry after Annexin V staining were performed to determine in vitro sensitization effects of ZER with ionizing radiation. A nude mouse xenografting system was also applied to detect in vivo radiosensitizing effects of ZER. Results: ZER produced cross-linking of HSP27, which was dependent on inhibition of the monomeric form of HSP27. ZER was directly inserted between the disulfide bond in the HSP27 dimer and modified normal HSP27 dimerization. Pretreatment with ZER before radiation inhibited the binding affinity between HSP27 and apoptotic molecules, such as cytochrome c and PKCδ, and induced sensitization in vitro and in an in vivo xenografted nude mouse system. Structural analogs lacking only the carbonyl group in ZER, such as α-humulene (HUM) and 8-hydroxy-humulen (8-OH-HUM), did not affect normal cross-linking of HSP27 and did not induce radiosensitization. Conclusions: We suggest that altered cross-linking of HSP27 by ZER is a good strategy for abolishing HSP27-mediated resistance.

  17. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Gehrmann MK

    2015-09-01

    Full Text Available Mathias K Gehrmann,1 Melanie A Kimm,2 Stefan Stangl,1 Thomas E Schmid,1 Peter B Noël,2 Ernst J Rummeny,2 Gabriele Multhoff11Department of Radiation Oncology, 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, GermanyAbstract: Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo.Keywords: heat shock protein 70, tumor biomarker, theranostics, multimodal CT, multispectral CT, k-edge

  18. Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment

    International Nuclear Information System (INIS)

    Stangl, Stefan; Themelis, George; Friedrich, Lars; Ntziachristos, Vasilis; Sarantopoulos, Athanasios; Molls, Michael; Skerra, Arne; Multhoff, Gabriele

    2011-01-01

    Background and purpose: The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in highly aggressive tumors, and elevated intracellular Hsp70 levels mediate protection against apoptosis. Following therapeutic intervention, such as ionizing irradiation, translocation of cytosolic Hsp70 to the plasma membrane is selectively increased in tumor cells and therefore, membrane Hsp70 might serve as a therapy-inducible, tumor-specific target structure. Materials and methods: Based on the IgG1 mouse monoclonal antibody (mAb) cmHsp70.1, we produced the Hsp70-specific recombinant Fab fragment (Hsp70 Fab), as an imaging tool for the detection of membrane Hsp70 positive tumor cells in vitro and in vivo. Results: The binding characteristics of Hsp70 Fab towards mouse colon (CT26) and pancreatic (1048) carcinoma cells at 4 deg. C were comparable to that of cmHsp70.1 mAb, as determined by flow cytometry. Following a temperature shift to 37 deg. C, Hsp70 Fab rapidly translocates into subcellular vesicles of mouse tumor cells. Furthermore, in tumor-bearing mice Cy5.5-conjugated Hsp70 Fab, but not unrelated IN-1 control Fab fragment (IN-1 ctrl Fab), gradually accumulates in CT26 tumors between 12 and 55 h after i.v. injection. Conclusions: In summary, the Hsp70 Fab provides an innovative, low immunogenic tool for imaging of membrane Hsp70 positive tumors, in vivo.

  19. Tumour eradication using synchronous thermal ablation and Hsp90 chemotherapy with protein engineered triblock biopolymer-geldanamycin conjugates.

    Science.gov (United States)

    Chen, Yizhe; Youn, Pilju; Pysher, Theodore J; Scaife, Courtney L; Furgeson, Darin Y

    2014-12-01

    Hepatocellular carcinoma (HCC) suffers high tumour recurrence rate after thermal ablation. Heat shock protein 90 (Hsp90) induced post-ablation is critical for tumour survival and progression. A combination therapy of thermal ablation and polymer conjugated Hsp90 chemotherapy was designed and evaluated for complete tumour eradication of HCC. A thermo-responsive, elastin-like polypeptide (ELP)-based tri-block biopolymer was developed and conjugated with a potent Hsp90 inhibitor, geldanamycin (GA). The anti-cancer efficacy of conjugates was evaluated in HCC cell cultures with and without hyperthermia (43 °C). The conjugates were also administered twice weekly in a murine HCC model as a single treatment or in combination with single electrocautery as the ablation method. ELP-GA conjugates displayed enhanced cytotoxicity in vitro and effective heat shock inhibition under hyperthermia. The conjugates alone significantly slowed the tumour growth without systemic toxicity. Four doses of thermo-responsive ELP-GA conjugates with concomitant simple electrocautery accomplished significant Hsp90 inhibition and sustained tumour suppression. Hsp90 inhibition plays a key role in preventing the recurrence of HCC, and the combination of ablation with targeted therapy holds great potential to improve prognosis and survival of HCC patients.

  20. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease.

    Science.gov (United States)

    Riebold, Mathias; Kozany, Christian; Freiburger, Lee; Sattler, Michael; Buchfelder, Michael; Hausch, Felix; Stalla, Günter K; Paez-Pereda, Marcelo

    2015-03-01

    One function of the glucocorticoid receptor (GR) in corticotroph cells is to suppress the transcription of the gene encoding proopiomelanocortin (POMC), the precursor of the stress hormone adrenocorticotropin (ACTH). Cushing disease is a neuroendocrine condition caused by partially glucocorticoid-resistant corticotroph adenomas that excessively secrete ACTH, which leads to hypercortisolism. Mutations that impair GR function explain glucocorticoid resistance only in sporadic cases. However, the proper folding of GR depends on direct interactions with the chaperone heat shock protein 90 (HSP90, refs. 7,8). We show here that corticotroph adenomas overexpress HSP90 compared to the normal pituitary. N- and C-terminal HSP90 inhibitors act at different steps of the HSP90 catalytic cycle to regulate corticotroph cell proliferation and GR transcriptional activity. C-terminal inhibitors cause the release of mature GR from HSP90, which promotes its exit from the chaperone cycle and potentiates its transcriptional activity in a corticotroph cell line and in primary cultures of human corticotroph adenomas. In an allograft mouse model, the C-terminal HSP90 inhibitor silibinin showed anti-tumorigenic effects, partially reverted hormonal alterations, and alleviated symptoms of Cushing disease. These results suggest that the pathogenesis of Cushing disease caused by overexpression of heat shock proteins and consequently misregulated GR sensitivity may be overcome pharmacologically with an appropriate HSP90 inhibitor.

  1. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  2. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Jennifer L Bandura

    Full Text Available The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+ reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C, suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  3. The molecular chaperone Hsp90 is required for cell cycle exit in Drosophila melanogaster.

    Science.gov (United States)

    Bandura, Jennifer L; Jiang, Huaqi; Nickerson, Derek W; Edgar, Bruce A

    2013-01-01

    The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.

  4. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  5. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock

    CSIR Research Space (South Africa)

    Botha, M

    2011-07-01

    Full Text Available M, and growth was 385 continued at 30?C for 4 h. Cells were pelleted by 386 centrifugation, quick-frozen, and stored at ?80?C. To 387 isolate the expressed PfHsp40, the cell pellets were thawed 388 and resuspended in 10 ml of lysis buffer (10 mM Tris, 389 p... (Shonhai et al. 2008), ATP has been 522included to demonstrate the nucleotide dependence of the 523MDH aggregation suppression; this control was not repeated 524here. Protein concentrations were calculated assuming the 525monomeric forms of the relevant...

  6. Extracellular Hsp90 serves as a co-factor for MAPK activation and latent viral gene expression during de novo infection by KSHV

    International Nuclear Information System (INIS)

    Qin Zhiqiang; DeFee, Michael; Isaacs, Jennifer S.; Parsons, Chris

    2010-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an important cause of morbidity and mortality in immunocompromised patients. KSHV interaction with the cell membrane triggers activation of specific intracellular signal transduction pathways to facilitate virus entry, nuclear trafficking, and ultimately viral oncogene expression. Extracellular heat shock protein 90 localizes to the cell surface (csHsp90) and facilitates signal transduction in cancer cell lines, but whether csHsp90 assists in the coordination of KSHV gene expression through these or other mechanisms is unknown. Using a recently characterized non-permeable inhibitor specifically targeting csHsp90 and Hsp90-specific antibodies, we show that csHsp90 inhibition suppresses KSHV gene expression during de novo infection, and that this effect is mediated largely through the inhibition of mitogen-activated protein kinase (MAPK) activation by KSHV. Moreover, we show that targeting csHsp90 reduces constitutive MAPK expression and the release of infectious viral particles by patient-derived, KSHV-infected primary effusion lymphoma cells. These data suggest that csHsp90 serves as an important co-factor for KSHV-initiated MAPK activation and provide proof-of-concept for the potential benefit of targeting csHsp90 for the treatment or prevention of KSHV-associated illnesses.

  7. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  8. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  9. Analysis of oligomeric transition of silkworm small heat shock protein sHSP20.8 using high hydrostatic pressure native PAGE

    Science.gov (United States)

    Fujisawa, Tetsuro; Ueda, Toshifumi; Kameyama, Keiichi; Aso, Yoichi; Ishiguro, Ryo

    2013-06-01

    The small heat shock proteins (sHSPs) solubilize thermo-denatured proteins without adenosine triphosphate energy consumption to facilitate protein refolding. sHSP20.8 is one of the silkworm (Bombyx mori) sHSPs having only one cystein in the N-terminal domain: Cys43. We report a simple measurement of oligomeric transition of sHSP20.8 using high hydrostatic pressure native polyacrylamide gel electrophoresis (high hydrostatic pressure (HP) native polyacrylamide gel electrophoresis (PAGE)). At ambient pressure under oxydative condition, the native PAGE of thermal transition of sHSP20.8 oligomer displayed a cooperative association. In contrast, HP native PAGE clearly demonstrated that sHSP20.8 dissociated at 80 MPa and 25°C, and the resultant molecular species gradually reassociated with time under that condition. In addition, the reassociation process was suppressed in the presence of the reductant. These results are consistent with the idea that sHSP20.8 oligomer temporally dissociates at the first thermo-sensing step and reassociates with the oxidation of Cys43.

  10. Comparative baseline levels of mercury, Hsp 70 and Hsp 60 in subsistence fish from the Yukon-Kuskokwim delta region of Alaska.

    Science.gov (United States)

    Duffy, L K; Scofield, E; Rodgers, T; Patton, M; Bowyer, R T

    1999-10-01

    In subsistence fish; northern pike (Esox lucius), burbot (Lota lota), whitefish (Coregonus nelsoni), grayling (Thymallus arcticus) and sheefish (Stenodus lencichthys), we determined the Hsp 60 and Hsp 70 levels in 31 samples from adult fish gills. A dot-blot analysis using antibodies to either Hsp 70 or Hsp 60 showed the average Hsp 70 concentration was 9.1 microg/mg protein, while the average Hsp 60 concentration was 147.4 microg/mg protein. Mercury levels in muscle tissue in these fish averaged 0.382 ppm. Using a subset of samples (n = 24), we determined that the major component in the muscle of Alaskan subsistence fish was methyl mercury. No correlation was observed between Hsp 60 or Hsp 70 expression in gill tissue and mercury concentrations in muscle tissue. Hsp 60 and Hsp 70 protein levels in the gills were correlated.

  11. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor.

    Science.gov (United States)

    Onuma, Takashi; Tanabe, Kumiko; Kito, Yuko; Tsujimoto, Masanori; Uematsu, Kodai; Enomoto, Yukiko; Matsushima-Nishiwaki, Rie; Doi, Tomoaki; Nagase, Kiyoshi; Akamatsu, Shigeru; Tokuda, Haruhiko; Ogura, Shinji; Iwama, Toru; Kozawa, Osamu; Iida, Hiroki

    2017-08-01

    Sphingosine 1-phosphate (S1P) is as an extracellular factor that acts as a potent lipid mediator by binding to specific receptors, S1P receptors (S1PRs). However, the precise role of S1P in human platelets that express S1PRs has not yet been fully clarified. We previously reported that heat shock protein 27 (HSP27) is released from human platelets accompanied by its phosphorylation stimulated by collagen. In the present study, we investigated the effect of S1P on the collagen-induced platelet activation. S1P pretreatment markedly attenuated the collagen-induced aggregation. Co-stimulation with S1P and collagen suppressed collagen-induced platelet activation, but the effect was weaker than that of S1P-pretreatment. The collagen-stimulated secretion of platelet-derived growth factor (PDGF)-AB and the soluble CD40 ligand (sCD40L) release were significantly reduced by S1P. In addition, S1P suppressed the collagen-induced release of HSP27 as well as the phosphorylation of HSP27. S1P significantly suppressed the collagen-induced phosphorylation of p38 mitogen-activated protein kinase. S1P increased the levels of GTP-bound Gαi and GTP-bound Gα13 coupled to S1PPR1 and/or S1PR4. CYM50260, a selective S1PR4 agonist, but not SEW2871, a selective S1PR1 agonist, suppressed the collagen-stimulated platelet aggregation, PDGF-AB secretion and sCD40L release. In addition, CYM50260 reduced the release of phosphorylated-HSP27 by collagen as well as the phosphorylation of HSP27. The selective S1PR4 antagonist CYM50358, which failed to affect collagen-induced HSP27 phosphorylation, reversed the S1P-induced attenuation of HSP27 phosphorylation by collagen. These results strongly suggest that S1P inhibits the collagen-induced human platelet activation through S1PR4 but not S1PR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  13. 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation.

    Science.gov (United States)

    Niikura, Y; Ohta, S; Vandenbeldt, K J; Abdulle, R; McEwen, B F; Kitagawa, K

    2006-07-13

    The Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG), which is currently in clinical trials, is thought to exert antitumor activity by simultaneously targeting several oncogenic signaling pathways. Here we report a novel mechanism by which 17-AAG inhibits cell proliferation, and we provide the first evidence that HSP90 is required for the assembly of kinetochore protein complexes in humans. 17-AAG caused delocalization of several kinetochore proteins including CENP-I and CENP-H but excluding CENP-B and CENP-C. Consistently, 17-AAG induced a mitotic arrest that depends on the spindle checkpoint and induced misalignment of chromosomes and aneuploidy. We found that HSP90 associates with SGT1 (suppressor of G2 allele of skp1; SUGT1) in human cells and that depletion of SGT1 sensitizes HeLa cells to 17-AAG. Overexpression of SGT1 restored the localization of specific kinetochore proteins and chromosome alignment in cells treated with 17-AAG. Biochemical and genetic results suggest that HSP90, through its interaction with SGT1 (SUGT1), is required for kinetochore assembly. Furthermore, time-course experiments revealed that transient treatment with 17-AAG between late S and G2/M phases causes substantial delocalization of CENP-H and CENP-I, a finding that strongly suggests that HSP90 participates in kinetochore assembly in a cell cycle-dependent manner.

  14. Cloning of three heat shock protein genes (HSP70, HSP90α and HSP90β) and their expressions in response to thermal stress in loach (Misgurnus anguillicaudatus) fed with different levels of vitamin C.

    Science.gov (United States)

    Yan, Jie; Liang, Xiao; Zhang, Yin; Li, Yang; Cao, Xiaojuan; Gao, Jian

    2017-07-01

    Heat shock protein 70 (HSP70) and 90 (HSP90) are the most broadly studied proteins in HSP families. They play key roles in cells as molecular chaperones, in response to stress conditions such as thermal stress. In this study, full-length cDNA sequences of HSP70, HSP90α and HSP90β from loach Misgurnus anguillicaudatus were cloned. The full-length cDNA of HSP70 in loach was 2332bp encoding 644 amino acids, while HSP90α and HSP90β were 2586bp and 2678bp in length, encoding 729 and 727 amino acids, respectively. The deduced amino acid sequences of HSP70 in loach shared the highest identity with those of Megalobrama amblycephala and Cyprinus carpio. The deduced amino acid sequences of HSP90α and HSP90β in loach both shared the highest identity with those of M. amblycephala. Their mRNA tissue expression results showed that the maximum expressions of HSP70, HSP90α and HSP90β were respectively present in the intestine, brain and kidney of loach. Quantitative real-time PCR was employed to analyze the temporal expressions of HSP70, HSP90α and HSP90β in livers of loaches fed with different levels of vitamin C under thermal stress. Expression levels of the three HSP genes in loach fed the diet without vitamin C supplemented at 0 h of thermal stress were significantly lower than those at 2 h, 6 h, 12 h and 24 h of thermal stress. It indicated that expressions of the three HSP genes were sensitive to thermal stress in loach. The three HSP genes in loaches fed with 1000 mg/kg vitamin C expressed significantly lower than other vitamin C groups at many time points of thermal stress, suggesting 1000 mg/kg dietary vitamin C might decrease the body damages caused by the thermal stress. This study will be of value for further studies into thermal stress tolerance in loach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Deletion in HSP110 T17: correlation with wild-type HSP110 expression and prognostic significance in microsatellite-unstable advanced gastric cancers.

    Science.gov (United States)

    Kim, Kyung-Ju; Lee, Tae Hun; Kim, Jung Ho; Cho, Nam-Yun; Kim, Woo Ho; Kang, Gyeong Hoon

    2017-09-01

    Deletion of the HSP110 T 17 mononucleotide repeat has recently been identified as a prognostic marker that is correlated with wild-type HSP110 (HSP110wt) expression in microsatellite instability-high (MSI-H) colorectal cancers. The aim of this study was to assess the correlation between deletion of the HSP110 T 17 repeat and expression of HSP110wt using DNA testing and immunohistochemistry and to determine the prognostic implications of HSP110 T 17 deletion in MSI-H advanced gastric cancers (GCs). The status of HSP110wt expression was evaluated by immunohistochemistry using an HSP110wt-specific antibody in 142 MSI-H advanced GCs. The size of the HSP110 T 17 repeat deletion was analyzed in 96 MSI-H advanced GCs; deletions were divided into small (0-2base pairs) and large deletions (3-5base pairs). Low and high expressions of HSP110wt were detected in 38 (26.8%) and 104 (73.2%) of the 142 cases, respectively. The HSP110 T 17 deletion was observed in 45 (46.9%) of the 96 MSI-H GC samples. Tumors with high expression of HSP110wt showed a tendency to have small or no deletion of HSP110 T 17 . In Kaplan-Meier survival analysis, tumors with a large HSP110 T 17 deletion were associated with favorable overall survival and disease-free survival compared with those with small/no deletion of HSP110 T 17 . However, HSP110 T 17 deletion size was not an independent prognostic factor in multivariate analysis. In summary, deletion of the HSP110 T 17 repeat was frequently observed in MSI-H GCs, and HSP110 T 17 deletion size was inversely correlated with HSP110wt expression status. Large HSP110 T 17 was not a prognostic indicator in MSI-H GCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  17. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.

    Directory of Open Access Journals (Sweden)

    Shane Zaidi

    Full Text Available Heat shock protein 90 (HSP90 is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001. NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G(2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line

  18. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study.

    Science.gov (United States)

    Wang, Yongfei; Lin, Shoukai; Song, Qi; Li, Kuan; Tao, Huan; Huang, Jian; Chen, Xinhai; Que, Shufu; He, Huaqin

    2014-05-07

    Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

  19. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction

    NARCIS (Netherlands)

    Fuchs, Margit; Poirier, Dominic J.; Seguin, Samuel J.; Lambert, Herman; Carra, Serena; Charette, Steve J.; Landry, Jacques

    2010-01-01

    The molecular chaperone HspB8 [Hsp (heat-shock protein) B8] is member of the B-group of Hsps. These proteins bind to unfolded or misfolded proteins and protect them from aggregation. HspB8 has been reported to form a stable molecular complex with the chaperone cohort protein Bag3 (Bcl-2-associated

  20. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  1. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    Science.gov (United States)

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  2. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members

    Directory of Open Access Journals (Sweden)

    R.C. Heinen

    2006-11-01

    Full Text Available Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  3. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70

    Science.gov (United States)

    Endo, H; Yano, M; Okumura, Y; Kido, H

    2014-01-01

    Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance. PMID:24481441

  4. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.

    Science.gov (United States)

    Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K

    1990-01-01

    Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal enzymes. Using affinity chromatography, we had previously isolated a protein that binds to clofibric acid. We now show that this protein is homologous with the heat shock protein HSP70 family by analysis of amino acid sequences of isolated peptides from trypsin-treated clofibric acid binding protein and by cross-reactivity with a monoclonal antibody raised against the conserved region of the 70-kDa heat shock proteins. The clofibric acid-Sepharose column could bind HSP70 proteins isolated from various species, which could then be eluted with either clofibric acid or ATP. Conversely, when a rat liver cytosol containing multiple members of the HSP70 family was passed through an ATP-agarose column, and eluted with clofibric acid, only P72 (HSC70) was eluted. These results suggest that clofibric acid, a peroxisome proliferator, preferentially interacts with P72 at or near the ATP binding site. Images PMID:2371272

  5. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  6. HSP90 Shapes the Consequences of Human Genetic Variation.

    Science.gov (United States)

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Relationship between the ability of sunscreens containing 2-ethylhexyl-4'-methoxycinnamate to protect against UVR-induced inflammation, depletion of epidermal Langerhans (Ia+) cells and suppression of alloactivating capacity of murine skin in vivo.

    Science.gov (United States)

    Walker, S L; Morris, J; Chu, A C; Young, A R

    1994-01-01

    The UVB sunscreen 2-ethylhexyl-4'-methoxycinnamate was evaluated in hairless albino mouse skin for its ability to inhibit UVR-induced (i) oedema, (ii) epidermal Langerhans cell (Ia+) depletion and (iii) suppression of the alloactivating capacity of epidermal cells (mixed epidermal cell-lymphocyte reaction, MECLR). The sunscreen, prepared at 9% in ethanol or a cosmetic lotion, was applied prior to UVB/UVA irradiation. In some experiments there was a second application halfway through the irradiation. Single applications in both vehicles gave varying degrees of protection from oedema and Langerhans cell depletion but afforded no protection from suppression of MECLR. When the sunscreens were applied twice there was improved protection from oedema and Langerhans cell depletion and complete protection was afforded from suppression of MECLR. There was a clear linear relationship between Langerhans cell numbers and oedema with and without sunscreen application. The relationship between Langerhans cell numbers and MECLR was more complex. These data confirm published discrepancies between protection from oedema (a model for human erythema) and endpoints with immunological significance, but show that 2-ethylhexyl-4'-methoxycinnamate can afford complete immunoprotection, although protection is dependent on the application rate and vehicle.

  8. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    Science.gov (United States)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  9. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  10. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins.

    Science.gov (United States)

    Baindur-Hudson, Swati; Edkins, Adrienne L; Blatch, Gregory L

    2015-01-01

    The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

  11. Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    International Nuclear Information System (INIS)

    Bohonowych, Jessica ES; Peng, Shuping; Gopal, Udhayakumar; Hance, Michael W; Wing, Shane B; Argraves, Kelley M; Lundgren, Karen; Isaacs, Jennifer S

    2011-01-01

    Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC. Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589. The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays. We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression

  12. Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation

    Directory of Open Access Journals (Sweden)

    Bohonowych Jessica ES

    2011-12-01

    Full Text Available Abstract Background Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF function in a von Hippel-Lindau (VHL independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC. Methods Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC inhibitor LBH589. Results The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays. Conclusions We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.

  13. 3D-QSAR, molecular docking, and molecular dynamic simulations for prediction of new Hsp90 inhibitors based on isoxazole scaffold.

    Science.gov (United States)

    Abbasi, Maryam; Sadeghi-Aliabadi, Hojjat; Amanlou, Massoud

    2018-05-01

    Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.

  14. The expression and correlation of Hsp 70 and Hsp 27 in serous middle ear effusion fluids of pediatric patients-a preliminary study.

    Science.gov (United States)

    Min, Hyun Jin; Choe, Ji Won; Chang, Moon Young; Kim, Kyung Soo; Lee, Sei Young; Mun, Seog-Kyun

    2017-10-01

    Several cytokines and innate immune-associated molecules are present in middle ear effusions, but damage-associated molecular patterns (DAMPs) in middle ear effusion have not been studied. Therefore, we evaluated the role of heat shock proteins (Hsps) in the development of otitis media with effusion (OME). Serous middle ear effusions from 22 pediatric patients who were diagnosed with OME and underwent ventilation tube insertion from June 2015 to March 2017 were evaluated in our study. The levels of Hsp 90, 70, 27, IL-8, and TNF-α in effusion fluids were evaluated by enzyme-linked immunosorbent assays. The associations between the levels of these molecules and the degree of tympanic membrane inflammation were statistically evaluated. Finally, the relationships among these molecules were also evaluated. Hsp 70 and Hsp 27 were detected in all middle ear effusions, but Hsp 90 was detected in only five effusion fluid samples. IL-8 was also detected in all middle ear effusions, but TNF-α was detected in only four effusion fluid samples. When we compared the degree of tympanic membrane inflammation with the levels of Hsp 70, Hsp 27, and IL-8, which were detected in all effusion fluids, we could not find statistical significance. However, Hsp 70, Hsp 27, and IL-8 were significantly associated with each other (p effusions. Furthermore, the levels of Hsp 70 and Hsp 27 were positively correlated with each other, and were also positively associated with the neutrophil chemoattractant, IL-8. Our findings suggested that Hsp 70 and Hsp 27 might be involved in the pathophysiology of pediatric OME. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Involvement of p27CIP/KIP in HSP25 or HSP70 Mediated Adaptive Response by Low Dose Radiation

    International Nuclear Information System (INIS)

    Seo, Hang Rhan; Lee, Yoon Jin; Lee, Su Jae; Bae, Sang woo; Lee, Yun Sil

    2005-01-01

    Adaptive responses that reduce the harmful effects of subsequent exposure to high-dose radiation have demonstrated in chromosome aberration, cell survival, sister chromatid exchanges, micronucleus induction, mutation and neoplastic transformation. The mechanisms and conditions for the adaptive response to radiation have not been clarified, although the continuous production of free radicals from radiation and other sources has stimulated cells to evolve a repair system for chromosome breaks. An alteration of the DNA molecule triggers the repair system, and frequent activation may increase the general repair capacity, irrespective of the cause of the damage. Besides, cell cycle regulation systems, antioxidant defense systems, molecular chaperone or stress-response systems. Our previous data showed that when cells were preirradiated with 1cGy, they showed the adaptive response. A reduction of apoptosis by low-dose preirradiation is another potential mechanism for this effect. We previously demonstrated that mouse RIF cells, which did not induce HSP25 and HSP70 did not exhibit a adaptive response after 1cGy preirradiation. whereas the thermoresistant TR cells, which expressed inducible HSP25 and HSP70 showed a response. Moreover, when HSP70 and HSP25 were transfected to RIF cells, the cells acquired adaptive response. In this study, to elucidate the mechanisms in induction of adaptiveresponse, we compared cell cycle distribution by low dose radiation after HSP25 or HSP70 transfected cells and p27CIP/KIP is responsible for the different induction of adaptive response

  16. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78.

    Directory of Open Access Journals (Sweden)

    Magdalena Wisniewska

    2010-01-01

    Full Text Available The 70-kDa heat shock proteins (Hsp70 are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD with ATPase activity, and a C-terminal substrate binding domain (SBD. We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  17. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78.

    Science.gov (United States)

    Wisniewska, Magdalena; Karlberg, Tobias; Lehtiö, Lari; Johansson, Ida; Kotenyova, Tetyana; Moche, Martin; Schüler, Herwig

    2010-01-11

    The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins. This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  18. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    Science.gov (United States)

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  19. Blocking the chaperone kinome pathway: Mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Abhinav [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Shandilya, Ashutosh [Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Agrawal, Vibhuti; Pratik, Piyush; Bhasme, Divya; Bisaria, Virendra S. [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India)

    2011-01-07

    Research highlights: {yields} Withaferin A and 17-DMAG synergistically inhibit the Hsp90-Cdc37 chaperone pair. {yields} Binding of WA to Cdc37 cleft suppresses its kinase binding activity. {yields} 17-DMAG binding to the association complex results in H-bonds with 60% clustering. {yields} The ligands' bound complex was found structurally and thermodynamically stable. -- Abstract: The chaperone Hsp90 is involved in regulating the stability and activation state of more than 200 'client' proteins and takes part in the cancer diseased states. The major clientele-protein kinases depend on Hsp90 for their proper folding and functioning. Cdc37, a kinase targeting co-chaperone of Hsp90, mediates the interactions between Hsp90 and protein kinases. Targeting of Cdc37 has the prospect of delivering predominantly kinase-selective molecular responses as compared to the current pharmacologic Hsp90 inhibitors. The present work reports a bio-computational study carried out with the aim of exploring the dual inhibition of Hsp90/Cdc37 chaperone/co-chaperone association complex by the naturally occurring drug candidates withaferin A and 17-DMAG along with their possible modes of action. Our molecular docking studies reveal that withaferin A in combination with 17-DMAG can act as potent chaperone system inhibitors. The structural and thermodynamic stability of the ligands' bound complex was also observed from molecular dynamics simulations in water. Our results suggest a novel tumor suppressive action mechanism of herbal ligands which can be looked forward for further clinical investigations for possible anticancer drug formulations.

  20. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction.

    Science.gov (United States)

    Dhamad, Ahmed E; Zhou, Zhenqi; Zhou, Jianhong; Du, Yuchun

    2016-01-01

    Heat shock proteins (Hsps) are known to associate with estrogen receptors (ER) and regulate ER-mediated cell proliferation. Historically, the studies in this area have focused on Hsp90. However, some critical aspects of the Hsp-ERα interactions remain unclear. For example, we do not know which Hsps are the major or minor ERα interactants and whether or not different Hsp isoforms associate equally with ERα. In the present study, through a quantitative proteomic method we found that 21 Hsps and 3 Hsp cochaperones were associated with ERα in human 293T cells that were cultured in a medium containing necessary elements for cell proliferation. Four Hsp70s (Hsp70-1, Hsc70, Grp75, and Grp78) were the most abundant Hsps identified to associate with ERα, followed by two Hsp90s (Hsp90α and Hsp90β) and three Hsp110s (Hsp105, HspA4, and HspA4L). Hsp90α was found to be 2-3 times more abundant than Hsp90β in the ERα-containing complexes. Among the reported Hsp cochaperones, we detected prostaglandin E synthase 3 (p23), peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP51), and E3 ubiquitin-protein ligase CHIP (CHIP). Studies with the two most abundant ERα-associated Hsps, Hsp70-1 and Hsc70, using human breast cancer MCF7 cells demonstrate that the two Hsps interacted with ERα in both the cytoplasm and nucleus when the cells were cultured in a medium supplemented with fetal bovine serum and phenol red. Interestingly, the ERα-Hsp70-1/Hsc70 interactions were detected only in the cytoplasm but not in the nucleus under hormone starvation conditions, and stimulation of the starved cells with 17β-estradiol (E2) did not change this. In addition, E2-treatment weakened the ERα-Hsc70 interaction but had no effect on the ERα-Hsp70-1 interaction. Further studies showed that significant portions of Hsp70-1 and Hsc70 were associated with transcriptionally active chromatin and inactive chromatin, and the two Hsps interacted with ERα in both forms of the chromatins in MCF7 cells.

  1. Cloning and expression of the coding regions of the heat shock proteins HSP10 and HSP16 from Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    VIVIAN WILHELM

    2003-01-01

    Full Text Available The genes encoding the heat shock proteins HSP10 and HSP16 of the salmon pathogen Piscirickettsia salmonis have been isolated and sequenced. The HSP10 coding sequence is located in an open reading frame of 291 base pairs encoding 96 aminoacids. The HSP16 coding region was isolated as a 471 base pair fragment encoding a protein of 156 aminoacids. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from other prokaryotic organisms. Both proteins were expressed in E. coli as fusion proteins with thioredoxin and purified by chromatography on Ni-column. A rabbit serum against P. salmonis total proteins reacts with the recombinant HSP10 and HSP16 proteins. Similar reactivity was determined by ELISA using serum from salmon infected with P. salmonis. The possibility of formulating a vaccine containing these two proteins is discussed

  2. ANTI-HSP60 and ANTI-HSP70 antibody levels and micro/ macrovascular complications in type 1 diabetes: the EURODIAB Study

    DEFF Research Database (Denmark)

    Gruden, G.; Bruno, G.; Chaturvedi, N.

    2009-01-01

    OBJECTIVES: The heat shock proteins 60 and 70 (HSP60, HSP70) play an important role in cytoprotection. Under stress conditions they are released into the circulation and elicit an immune response. Anti-HSP60 and anti-HSP70 antibody levels have been associated with cardiovascular disease. Type 1......-control study from the EURODIAB Study of 531 type 1 diabetic patients was performed. SUBJECTS: Cases (n = 363) were defined as those with one or more complications of diabetes; control subjects (n = 168) were all those with no evidence of any complication. We measured anti-HSP60 and anti-HSP70 antibody levels...... quartiles were associated with a 47% reduced odds ratio of micro/macrovascular complications, independently of conventional risk factors, markers of inflammation and endothelial dysfunction [odds ratio (OR) = 0.53, 95% confidence intervals (CI): 0.28-1.02]. CONCLUSIONS: In this large cohort of type 1...

  3. HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus.

    Science.gov (United States)

    Cellura, Cinzia; Toubiana, Mylène; Parrinello, Nicolo; Roch, Philippe

    2006-01-01

    Complete sequence of HSP70 cDNA from the mussel, Mytilus galloprovincialis was established before quantifying its expression following moderate heat shock or injection of heat-killed bacteria. HSP70 cDNA is comprised of 2378 bp including one ORF of 654 aa, with a predicted 70 bp 5'-UTR and a 343 bp 3'-UTR (GenBank, 18 Jan 05, AY861684). Alignment identity ranged from 89% for Crassostrea ariakensis to 72% for C. virginica. Curiously, HSP70 gene and cDNA sequences from M. galloprovincialis, deposited later (03 and 27 May), show only 73% identity with the present sequence. Meanwhile, characteristic motifs of the HSP70 family were located in conserved positions. Expression of HSP70 gene was quantified on circulating hemocyte mRNA using Q-PCR after RT using random hexaprimers. Housekeeping gene was 28S rRNA. Four stresses were applied: heat shock that consisted of immersing mussels for 90 min at 30 degrees C and returning them to 20 degrees C sea water, one injection of heat-killed Gram-negative bacteria, Vibrio splendidus LGP32, one injection of heat-killed Gram-negative bacteria Vibrio anguillarum, one injection of heat-killed Gram-positive bacteria Micrococcus lysodeikticus. We found no significant modification of 28S rRNA gene expression. Significant increase of 5.2 +/- 0.4 fold the ratio HSP70/28S rRNA was observed 6 h after heat shock and was maximum at 15 h (6.1 +/- 1.1), and still significant after 24 h (1.7 +/- 0.03). Similarly, injecting V. anguillarum resulted in a significant increase of 2.7 +/- 0.1 after 12 h. Expression was maximum after 48 h (5.2 +/- 0.05) and returned to baseline after 72 h. In contrast, injecting V. splendidus or M. lysodeikticus failed to significantly modulate HSP70 gene expression at least during the first 3 days post-injection. Consequently, mussel hemocytes appeared to discriminate between pathogenic and non-pathogenic Vibrios, as well as between Gram-negative and Gram-positive bacteria.

  4. Hereditary spastic paraplegia is not associated with C9ORF72 repeat expansions in a Danish cohort

    DEFF Research Database (Denmark)

    Nielsen, T T; Svenstrup, K; Duno, M

    2014-01-01

    ) in C9ORF72 have been found to cause frontotemporal dementia (FTD), amyotrophic lateral sclerosis and FTD with motor neuron disease. Owing to the overlapping phenotypes among HSP, amyotrophic lateral sclerosis and FTD with motor neuron disease along with shared pathological findings, we hypothesized...

  5. Stressing Out Hsp90 in Neurotoxic Proteinopathies.

    Science.gov (United States)

    Inda, Carmen; Bolaender, Alexander; Wang, Tai; Gandu, Srinivasa R; Koren, John

    2016-01-01

    A toxic accumulation of proteins is the hallmark pathology of several neurodegenerative disorders. Protein accumulation is regularly prevented by the network of molecular chaperone proteins, including and especially Hsp90. For reasons not yet elucidated, Hsp90 and the molecular chaperones interact with, but do not degrade, these toxic proteins resulting in the pathogenic accumulation of proteins such as tau, in Alzheimer's Disease, and α-synuclein, in Parkinson's Disease. In this review, we describe the associations between Hsp90 and the pathogenic and driver proteins of several neurodegenerative disorders. We additionally describe how the inhibition of Hsp90 promotes the degradation of both mutant and pathogenic protein species in models of neurodegenerative diseases. We also examine the current state of Hsp90 inhibitors capable of crossing the blood-brain barrier; compounds which may be capable of slowing, preventing, and possible reversing neurodegenerative diseases.

  6. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    2006-03-26

    Mar 26, 2006 ... ... and regulatory circuits, accounting for the important role Hsp90 plays in ... by environmental stress, genetic or pharmaceutical targeting of Hsp90. The ... Here, we discuss the role of Hsp90 in canalization and organismal ...

  7. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells.

    Science.gov (United States)

    Schaefer, Susanne; Svenstrup, Tina H; Guerra, Barbara

    2017-01-01

    Many types of cancer express high levels of heat shock proteins (HSPs) that are molecular chaperones regulating protein folding and stability ensuring protection of cells from potentially lethal stress. HSPs in cancer cells promote survival, growth and spreading even in situations of growth factors deprivation by associating with oncogenic proteins responsible for cell transformation. Hence, it is not surprising that the identification of potent inhibitors of HSPs, notably HSP90, has been the primary research focus, in recent years. Exposure of cancer cells to HSP90 inhibitors, including 17-AAG, has been shown to cause resistance to chemotherapeutic treatment mostly attributable to induction of the heat shock response and increased cellular levels of pro-survival chaperones. In this study, we show that treatment of glioblastoma cells with 17-AAG leads to HSP90 inhibition indicated by loss of stability of the EGFR client protein, and significant increase in HSP70 expression. Conversely, co-treatment with the small-molecule kinase inhibitor D11 leads to suppression of the heat shock response and inhibition of HSF1 transcriptional activity. Beside HSP70, Western blot and differential mRNA expression analysis reveal that combination treatment causes strong down-regulation of the small chaperone protein HSP27. Finally, we demonstrate that incubation of cells with both agents leads to enhanced cytotoxicity and significantly high levels of LC3-II suggesting autophagy induction. Taken together, results reported here support the notion that including D11 in future treatment regimens based on HSP90 inhibition can potentially overcome acquired resistance induced by the heat shock response in brain cancer cells.

  8. Substrate Discrimination by ClpB and Hsp104

    Directory of Open Access Journals (Sweden)

    Danielle M. Johnston

    2017-05-01

    Full Text Available ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1.

  9. Hsp90: Friends, clients and natural foes.

    Science.gov (United States)

    Verma, Sharad; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-08-01

    Hsp90, a homodimeric ATPase, is responsible for the correct folding of a number of newly synthesized polypeptides in addition to the correct folding of denatured/misfolded client proteins. It requires several co-chaperones and other partner proteins for chaperone activity. Due to the involvement of Hsp90-dependent client proteins in a variety of oncogenic signaling pathways, Hsp90 inhibition has emerged as one of the leading strategies for anticancer chemotherapeutics. Most of Hsp90 inhibitors blocks the N terminal ATP binding pocket and prevents the conformational changes which are essential for the loading of co-chaperones and client proteins. Several other inhibitors have also been reported which disrupt chaperone cycle in ways other than binding to N terminal ATP binding pocket. The Hsp90 inhibition is associated with heat shock response, mediated by HSF-1, to overcome the loss of Hsp90 and sustain cell survival. This review is an attempt to give an over view of all the important players of chaperone cycle. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  11. Production and immune response of recombinant Hsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    VIVIAN WILHELM

    2005-01-01

    Full Text Available We have isolated and sequenced the genes encoding the heat shock proteins 60 (Hsp60 and 70 (Hsp70 of the salmon pathogen Piscirickettsia salmonis. The sequence analysis revealed the expected two open reading frames that encode proteins with calculated molecular weights of 60,060 and 70,400. The proteins exhibit a 70-80% homology with other known prokaryotic Hsp60 and Hsp70 sequences. The coding regions have been expressed in E. coli as thioredoxin fusion proteins. Both recombinant proteins were shown to elicit a humoral response when injected intraperitoneally in Atlantic salmon and also conferred protection to fish challenged with P. salmonis. The present data will facilitate further studies on the involvement of heat shock proteins in protective immunity of fish to infection by P. salmonis and their potential use in recombinants vaccines against this intracellular pathogen.

  12. Modulation of ASK1 expression during overexpression of Trx and HSP70 in stressed fish liver mitochondria.

    Science.gov (United States)

    Padmini, Ekambaram; Vijaya Geetha, Bose

    2009-09-01

    Mitochondrial heat shock protein 70 (mtHSP70) is found to play a primary role in cellular defense against physiological stress like exposure to environmental contaminants and helpful in the maintenance of cellular homeostasis by promoting the cell survival. In the present investigation, the environmental-stress-induced increase in mtHSP70 levels along with the quantification of apoptosis signal regulating kinase 1 (ASK1) and thioredoxin (Trx) were measured in the liver mitochondria of grey mullets (Mugil cephalus) collected from the polluted Ennore estuary and the unpolluted Kovalam estuary for a period of 2 years. The results showed elevated lipid peroxide (LPO) and decreased total antioxidant capacity along with the decrease in mitochondrial viability percentage. Mitochondrial HSP70, ASK1, and Trx levels were increased under this stress condition. A 42% increase in LPO levels and 18% decrease in mitochondrial survivality were observed in the polluted-site fish liver mitochondria when compared to the results of unpolluted estuary. We also report that, under observed oxidative stress condition in Ennore fish samples, the ASK1 levels are only moderately elevated (13% increase). This may be due to mitochondrial-HSP70-induced adaptive tolerance signaling for the activation of Trx (22% increase) which suppresses the ASK1 expression thereby promoting the cell survival that leads to the maintenance of the cellular homeostasis.

  13. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  14. Reduced Hsp70 and Glutamine in Pediatric Severe Malaria Anemia

    DEFF Research Database (Denmark)

    Kempaiah, Prakasha; Dokladny, Karol; Karim, Zachary

    2016-01-01

    by decreased HSPA1A, a heat shock protein (Hsp) 70 coding gene. Hsp70 is a ubiquitous chaperone that regulates Nuclear Factor-kappa B (NF-κB) signaling and production of pro-inflammatory cytokines known to be important in malaria pathogenesis (e.g., IL-1β, IL-6 and TNF-α). Since the role of host Hsp70...... in malaria pathogenesis is unexplored, we investigated Hsp70 and molecular pathways in children with SMA. Validation experiments revealed that leukocytic HSP70 transcripts were reduced in SMA relative to non-severe malaria, and that intraleukocytic hemozoin (PfHz) was associated with lower HSP70. HSP70...... was correlated with reticulocyte production and Hb. Since glutamine (Gln) up-regulates Hsp70, modulates NF-κB activation, and attenuates over-expression of pro-inflammatory cytokines, circulating Gln was measured in children with malaria. Reduced Gln was associated with increased risk of developing SMA...

  15. Role of membrane Hsp70 in radiation sensitivity of tumor cells

    International Nuclear Information System (INIS)

    Murakami, Naoya; Kühnel, Annett; Schmid, Thomas E.; Ilicic, Katarina; Stangl, Stefan; Braun, Isabella S.; Gehrmann, Mathias; Molls, Michael; Itami, Jun; Multhoff, Gabriele

    2015-01-01

    The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. The isogenic human colon carcinoma sublines CX + with stable high and CX − with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. CX + /CX − tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX − and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After

  16. Improved Metabolic Control in Diabetes, HSP60, and Proinflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Claudio Blasi

    2012-01-01

    Full Text Available The diabetes-atherosclerosis relationship remains to be fully defined. Repeated prolonged hyperglycemia, increased ROS production and endothelial dysfunction are important factors. One theory is that increased blood levels of heat shock protein (HSP60 are proinflammatory, through activation of innate immunity, and contribute to the progression of vascular disease. It was hypothesized that improvement of diabetes control in patients presenting with metabolic syndrome would lower HSP60, and anti-HSP60 antibody levels and decrease inflammatory markers. Paired sera of 17 Italian patients, before and after intensive treatment, were assayed for cytokines, HSP60 and anti-HSP60 antibodies. As expected, intensive treatment was associated with a decrease in HgbA1C (P<0.001 and BMI (P<0.001. After treatment, there was a significant decrease in IL-6 (P<0.05. HSP60 levels were before treatment −6.9+1.9, after treatment −7.1+2.0 ng/mL (P=ns. Overall HSP60 concentrations were lower than published reports. Anti-HSP60 antibody titers were high and did not decrease with treatment. In conclusion, improvement of diabetic control did not alter HSP60 concentrations or antiHSP60 antibody titers, but led to a reduction of IL-6 levels.

  17. Systemic and mucosal immunization with Candida albicans hsp90 elicits hsp90-specific humoral response in vaginal mucosa which is further enhanced during experimental vaginal candidiasis.

    Science.gov (United States)

    Raska, Milan; Belakova, Jana; Horynova, Milada; Krupka, Michal; Novotny, Jiri; Sebestova, Martina; Weigl, Evzen

    2008-08-01

    The Candida albicans heat shock protein 90 kDa (hsp90-CA) is an important target for protective antibodies in disseminated candidiasis of experimental mice and humans. Hsp90-CA is present in the cell wall of Candida pseudohyphae or hyphae--typical pathogenic morphotypes in both mucosal and systemic Candida infections. However, the potential protective effects of hsp90-CA-specific antibodies in vaginal candidiasis has not yet been reported. In the present study we used various vaccine formulations (recombinant hsp90-CA protein and hsp90-CA-encoding DNA vaccine) and routes of administration (intradermal, intranasal, and intravenous) to induce both hsp90-CA-specific systemic and vaginal mucosa immune responses in experimental BALB/c mice. The results showed that intradermal recombinant hsp90-CA protein priming, followed by intranasal or intradermal recombinant hsp90-CA protein boosting induced significant increases in both serum and vaginal hsp90-CA-specific IgG and IgA antibodies compared to the control group, as well as enhanced hsp90-CA-specific splenocyte responses in vitro. In the intradermally boosted group, subsequent experimental vaginal Candida infection induced additional increases in the hsp90-CA specific IgG isotype, suggesting that Candida has the ability to induce a local hsp90-specific antibody (IgG) response during vulvovaginal candidiasis. Further work is required to elucidate the importance of immunity to highly conserved antigens during infection of the human female reproductive tract where a balance between immunity to and tolerance for commonly antigens such as hsp90 is necessary for the maintenance of fertility.

  18. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  19. Structure, Function and Regulation of the Hsp90 Machinery

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-06-01

    Full Text Available Heat shock protein 90 (Hsp90 is an ATP-dependent molecular chaperone which is essential in eukaryotes. It is required for the activation and stabilization of a wide variety of client proteins and many of them are involved in important cellular pathways. Since Hsp90 affects numerous physiological processes such as signal transduction, intracellular transport, and protein degradation, it became an interesting target for cancer therapy. Structurally, Hsp90 is a flexible dimeric protein composed of three different domains which adopt structurally distinct conformations. ATP binding triggers directionality in these conformational changes and leads to a more compact state. To achieve its function, Hsp90 works together with a large group of cofactors, termed co-chaperones. Co-chaperones form defined binary or ternary complexes with Hsp90, which facilitate the maturation of client proteins. In addition, posttranslational modifications of Hsp90, such as phosphorylation and acetylation, provide another level of regulation. They influence the conformational cycle, co-chaperone interaction, and inter-domain communications. In this review, we discuss the recent progress made in understanding the Hsp90 machinery.

  20. The Complex Function of Hsp70 in Metastatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Kata; Lipp, Anna-Maria; Nimmervoll, Benedikt; Sonnleitner, Alois; Hesse, Jan; Haselgruebler, Thomas; Balogi, Zsolt, E-mail: zsolt.balogi@cbl.at [Center for Advanced Bioanalysis GmbH, Gruberstr. 40-42, A-4020 Linz (Austria)

    2013-12-20

    Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a “chaperokine”, activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.

  1. Accumulation of hepatic Hsp70 and plasma cortisol in Oreochromis ...

    African Journals Online (AJOL)

    The hepatic isoforms Hsp70, Hsp74 and Hsp76 were identified and quantified from copper exposures. Long-term DDT exposure did not result in significant induction of hepatic Hsp70. An increase in plasma cortisol concentration was associated with a decrease in heat shock protein accumulation after cadmium exposure, ...

  2. Erythrocyte depletion from bone marrow: performance evaluation after 50 clinical-scale depletions with Spectra Optia BMC.

    Science.gov (United States)

    Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard

    2017-08-11

    Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.

  3. HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujita

    Full Text Available Heat shock protein 90 (HSP90 that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α, a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6 through p44/p42 mitogen-activated protein (MAP kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1, a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.

  4. PREFERENTIAL SECRETION OF INDUCIBLE HSP70 BY VITILIGO MELANOCYTES UNDER STRESS

    Science.gov (United States)

    Mosenson, Jeffrey A.; Flood, Kelsey; Klarquist, Jared; Eby, Jonathan M.; Koshoffer, Amy; Boissy, Raymond E.; Overbeck, Andreas; C.Tung, Rebecca; Poole, I. Caroline Le

    2014-01-01

    SUMMARY Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses. We compared expression of HSP70i in skin samples, evaluated the viability of primary vitiligo and control melanocytes exposed to bleaching phenols, and measured secreted HSP70i. We determined whether HSP70i traffics to melanosomes to contact immunogenic proteins by cell fractionation, western blotting, electron microscopy and confocal microscopy. Viability of vitiligo and control melanocytes was equally affected under stress. However, vitiligo melanocytes secreted increased amounts of HSP70i in response to MBEH, corroborating with aberrant HSP70i expression in patient skin. Intracellular HSP70i colocalized with melanosomes, and more so in response to MBEH in vitiligo melanocytes. Thus whereas either agent is cytotoxic to melanocytes, MBEH preferentially induces immune responses to melanocytes. PMID:24354861

  5. Phenomenological Evidence for Gluon Depletion in pA Collisions

    OpenAIRE

    Hwa, R. C.; Pisut, J.; Pisutova, N.

    2000-01-01

    The data of J/psi suppression at large x_F in pA collisions are used to infer the existence of gluon depletion as the projectile proton traverses the nucleus. The modification of the gluon distribution is studied by use of a convolution equation whose non-perturbative splitting function is determined phenomenologically. The depletion factor at x_1=0.8 is found to be about 25% at A=100.

  6. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Science.gov (United States)

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  7. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA.

    Directory of Open Access Journals (Sweden)

    Ying Wen Huang

    Full Text Available Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3' untranslated region (3' UTR of BaMV genomic RNA, but not with the 3' UTR of BaMV-associated satellite RNA (satBaMV RNA or that of genomic RNA of other viruses, such as Potato virus X (PVX or Cucumber mosaic virus (CMV. Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3' UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3' UTR of BaMV RNA during the initiation of BaMV RNA replication.

  8. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Biochemistry and Molecular Biology

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  9. Vascular endothelial growth factor in skeletal muscle following glycogen-depleting exercise in humans

    DEFF Research Database (Denmark)

    Jensen, Line; Gejl, Kasper Degn; Ørtenblad, Niels

    2015-01-01

    unclear. However, as VEGF is also considered very important for the regulation of vascular permeability, it is possible that metabolic stress may trigger muscle VEGF release. PURPOSE: To study the role of metabolic stress induced by glycogen-depleting exercise on muscle VEGF expression. METHODS: Fifteen......Vascular endothelial growth factor (VEGF) is traditionally considered important for skeletal muscle angiogenesis. VEGF is released from vascular endothelium as well as the muscle cells in response to exercise. The mechanism and the physiological role of VEGF secreted from the muscle cells remain...... levels by 24h irrespective of treatment. CONCLUSIONS: Muscle glycogen depletion induced by prolonged exercise leads to up-regulation as well as co-localization of HSP70 and VEGF primarily in type I fibers, thus suggesting that VEGF released from muscle is involved in the maintenance of muscle metabolic...

  10. 77 FR 74381 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances-Fire...

    Science.gov (United States)

    2012-12-14

    ... Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances--Fire Suppression... a companion proposed rule issuing listings for three fire suppressants under EPA's Significant New... companion proposed rule issuing listings for three fire suppressants under EPA's Significant New...

  11. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2011-07-28

    We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70\\/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90-dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2). Hop in conditioned media co-immunoprecipitates with MMP-2, implicating a possible extracellular function for Hop. Knockdown of Hop expression also reduced expression levels of Hsp90 client proteins, HER2, Bcr-Abl, c-MET and v-Src. Furthermore, Hop is strongly expressed in high grade PanINs compared to lower PanIN grades, displaying differential localisation in invasive ductal pancreatic cancer, indicating that the localisation of Hop is an important factor in pancreatic tumours. Our data suggests that the attenuation of Hop expression inactivates key signal transduction proteins which may decrease the invasiveness of pancreatic cancer cells possibly through the modulation of Hsp90 activity. Therefore, targeting Hop in pancreatic cancer may constitute a viable strategy for targeted cancer therapy.

  12. Suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

    Directory of Open Access Journals (Sweden)

    Dhong Hyun Lee

    2017-05-01

    Full Text Available We have established two mouse models of central nervous system (CNS demyelination that differ from most other available models of multiple sclerosis (MS in that they represent a mixture of viral and immune triggers. In the first model, ocular infection of different strains of mice with a recombinant HSV-1 that expresses murine IL-2 constitutively (HSV-IL-2 causes CNS demyelination. In the second model, depletion of macrophages causes CNS demyelination in mice that are ocularly infected with wild-type (WT HSV-1. In the present study, we found that the demyelination in macrophage-intact mice infected with HSV-IL-2 was blocked by depletion of FoxP3-expressing cells, while concurrent depletion of macrophages restored demyelination. In contrast, demyelination was blocked in the macrophage-depleted mice infected with wild-type HSV-1 following depletion of FoxP3-expressing cells. In macrophage-depleted HSV-IL-2-infected mice, demyelination was associated with the activity of both CD4+ and CD8+ T cells, whereas in macrophage-depleted mice infected with WT HSV-1, demyelination was associated with CD4+ T cells. Macrophage depletion or infection with HSV-IL-2 caused an imbalance of T cells and TH1 responses as well as alterations in IL-12p35 and IL-12p40 but not other members of the IL-12 family or their receptors. Demyelination was blocked by adoptive transfer of macrophages that were infected with HSV-IL-12p70 or HSV-IL-12p40 but not by HSV-IL-12p35. These results indicate that suppression of IL-12p70 formation by IL-2 or following macrophage depletion causes T-cell autoreactivity leading to CNS demyelination in HSV-1-infected mice.

  13. Neonatal Death and Heart Failure in Mouse with Transgenic HSP60 Expression

    Directory of Open Access Journals (Sweden)

    Tsung-Hsien Chen

    2015-01-01

    Full Text Available Mitochondrial heat shock proteins, such as HSP60, are chaperones responsible for the folding, transport, and quality control of mitochondrial matrix proteins and are essential for maintaining life. Both prosurvival and proapoptotic roles have been proposed for HSP60, and HSP60 is reportedly involved in the initiation of autoimmune, metabolic, and cardiovascular diseases. The role of HSP60 in pathogenesis of these diseases remains unclear, partly because of the lack of mouse models expressing HSP60. In this study we generated HSP60 conditional transgenic mice suitable for investigating in vivo outcomes by expressing HSP60 at the targeted organ in disease models. Ubiquitous HSP60 induction in the embryonic stage caused neonatal death in mice at postnatal day 1. A high incidence of atrial septal defects was observed in HSP60-expressing mice, with increased apoptosis and myocyte degeneration that possibly contributed to massive hemorrhage and sponge-like cardiac muscles. Our results showed that neonatal heart failure through HSP60 induction likely involves developmental defects and excessive apoptosis. The conditional HSP60 mouse model is useful for studying crucial biological questions concerning HSP60.

  14. 17-AAG enhances the cytotoxicity of flavopiridol in mantle cell lymphoma via autophagy suppression.

    Science.gov (United States)

    Xiao, Y; Guan, J

    2015-01-01

    Flavopiridol, a cyclin-dependent kinase inhibitor (CDKI), shows promising anti-tumor activity in hematologic malignancies. However, Flavopiridol-induced protective autophagy may lead to drug resistance. Here we found that Hsp90 inhibitor 17-AAG can sensitize mantle cell lymphoma (MCL) cells to flavopiridol by suppressing flavopiridol-triggered protective autophagy. The suppressing effect of 17-AAG on autophgy was mediated by Beclin1 degradation and ERK inactivation. Furthermore, 17-AAG enhanced flavopiridol-induced apoptosis and growth suppression in MCL cells. Our study may provide some insights into CDKI -targeted chemotherapies.

  15. HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain

    International Nuclear Information System (INIS)

    Han Chaofeng; Chen Taoyong; Li Nan; Yang Mingjin; Wan Tao; Cao Xuetao

    2007-01-01

    HSP40s are a subfamily of heat shock proteins (HSPs) and play important roles in regulation of cell proliferation, survival and apoptosis by serving as chaperones for HSP70s. Up to date hundreds of HSP40 proteins derived from various species ranging from Escherichia coli to homo sapiens have been identified. Here we report the cloning and characterization of a novel human type C DnaJ homologue, HDJC9, containing a typical N-terminal J domain. HDJC9 is upregulated at both mRNA and protein levels upon various stress and mitogenic stimulations. HDJC9 is mainly localized in cell nuclei under normal culture conditions while it is transported into cytoplasm and plasma membrane upon heat shock stress through a non-classical and lipid-dependent pathway. HDJC9 can interact with HSP70s and activate the ATPase activity of HSP70s, both of which are dependent on the J domain. Our data suggest that HDJC9 is a novel cochaperone for HSP70s

  16. Exploring the Functional Complementation between Grp94 and Hsp90.

    Directory of Open Access Journals (Sweden)

    Kevin A Maharaj

    Full Text Available Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.

  17. Plant Hsp90 Proteins Interact with B-Cells and Stimulate Their Proliferation

    Science.gov (United States)

    Corigliano, Mariana G.; Maglioco, Andrea; Laguía Becher, Melina; Goldman, Alejandra; Martín, Valentina; Angel, Sergio O.; Clemente, Marina

    2011-01-01

    Background The molecular chaperone heat shock protein 90 (Hsp90) plays an important role in folding stabilization and activation of client proteins. Besides, Hsp90 of mammals and mammalian pathogens displays immunostimulatory properties. Here, we investigated the role of plant-derived Hsp90s as B-cell mitogens by measuring their proliferative responses in vitro. Methodology Plant cytosolic Hsp90 isoforms from Arabidopsis thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) were expressed in E. coli. Over-expression of recombinant plant Hsp90s (rpHsp90s) was confirmed by SDS-PAGE and western blot using and anti-AtHsp81.2 polyclonal anti-body. Both recombinant proteins were purified by Ni-NTA affinity chromatography and their identity confirmed by MALDI-TOF-TOF. Recombinant AtHsp81.2 and NbHsp90.3 proteins induced prominent proliferative responses in spleen cells form BALB/c mice. Polymyxin-B, a potent inhibitor of lipopolysaccharide (LPS), did not eliminate the rpHsp90-induced proliferation. In addition, in vitro incubation of spleen cells with rpHsp90 led to the expansion of CD19-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. This effect was confirmed by immunofluorescence analysis, where a direct binding of rpHsp90 to B- but not to T-cells was observed in cells from BALB/c and C3H/HeN mice. Finally, we examined the involvement of Toll Like Receptor 4 (TLR4) molecules in the rpHsp90s induction of B-cell proliferation. Spleen cells from C3H/HeJ mice, which carry a point mutation in the cytoplasmic region of TLR4, responded poorly to prAtHsp90. However, the interaction between rpHsp90 and B-cells from C3H/HeJ mice was not altered, suggesting that the mutation on TLR4 would be affecting the signal cascade but not the rpHsp90-TLR4 receptor interaction. Conclusions Our results show for the first time that spleen cell proliferation can be stimulated by a non-pathogen-derived Hsp90. Furthermore, our data provide a new example of

  18. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows.

    Science.gov (United States)

    Zhang, F J; Weng, X G; Wang, J F; Zhou, D; Zhang, W; Zhai, C C; Hou, Y X; Zhu, Y H

    2014-07-01

    Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.

  19. Effects of depletion of dihydropyrimidine dehydrogenase on focus formation and RPA phosphorylation.

    Science.gov (United States)

    Someya, Masanori; Sakata, Koh-ichi; Matsumoto, Yoshihisa; Tauchi, Hiroshi; Kai, Masahiro; Hareyama, Masato; Fukushima, Masakazu

    2012-01-01

    Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase (DPYD), partially inhibits homologous recombination (HR) repair and has a radiosensitizing effect as well as enhanced sensitivity to Camptothecin (CPT). DPYD is the target protein for radiosensitization by Gimeracil. We investigated the mechanisms of sensitization of radiation and CPT by DPYD inhibition using DLD-1 cells treated with siRNA for DPYD. We investigated the focus formation of various kinds of proteins involved in HR and examined the phosphorylation of RPA by irradiation using Western blot analysis. DPYD depletion by siRNA significantly restrained the formation of radiation-induced foci of Rad51 and RPA, whereas it increased the number of foci of NBS1. The numbers of colocalization of NBS1 and RPA foci in DPYD-depleted cells after radiation were significantly smaller than in the control cells. These results suggest that DPYD depletion is attributable to decreased single-stranded DNA generated by the Mre11/Rad50/NBS1 complex-dependent resection of DNA double-strand break ends. The phosphorylation of RPA by irradiation was partially suppressed in DPYD-depleted cells, suggesting that DPYD depletion may partially inhibit DNA repair with HR by suppressing phosphorylation of RPA. DPYD depletion showed a radiosensitizing effect as well as enhanced sensitivity to CPT. The radiosensitizing effect of DPYD depletion plus CPT was the additive effect of DPYD depletion and CPT. DPYD depletion did not have a cell-killing effect, suggesting that DPYD depletion may not be so toxic. Considering these results, the combination of CPT and drugs that inhibit DPYD may prove useful for radiotherapy as a method of radiosensitization.

  20. Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils.

    Science.gov (United States)

    Lian, Hui-Yong; Zhang, Hong; Zhang, Zai-Rong; Loovers, Harriët M; Jones, Gary W; Rowling, Pamela J E; Itzhaki, Laura S; Zhou, Jun-Mei; Perrett, Sarah

    2007-04-20

    Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion curing by Ydj1 remains unclear. Here we tested the effect of overexpression of Hsp40 members Ydj1, Sis1, and Apj1 and also Hsp70 co-chaperones Cpr7, Cns1, Sti1, and Fes1 in vivo and found that only Ydj1 showed a strong curing effect on [URE3]. We also investigated the interaction of Ydj1 with Ure2 in vitro. We found that Ydj1 was able to suppress formation of amyloid-like fibrils of Ure2 by delaying the process of fibril formation, as monitored by thioflavin T binding and atomic force microscopy imaging. Controls using bovine serum albumin, Sis1, or the human Hsp40 homologues Hdj1 or Hdj2 showed no significant inhibitory effect. Ydj1 was only effective when added during the lag phase of fibril formation, suggesting that it interacts with Ure2 at an early stage in fibril formation and delays the nucleation process. Using surface plasmon resonance and size exclusion chromatography, we demonstrated a direct interaction between Ydj1 and both wild type and N-terminally truncated Ure2. In contrast, Hdj2, which did not suppress fibril formation, did not show this interaction. The results suggest that Ydj1 inhibits Ure2 fibril formation by binding to the native state of Ure2, thus delaying the onset of oligomerization.

  1. Hsp90 selectively modulates phenotype in vertebrate development.

    Directory of Open Access Journals (Sweden)

    Patricia L Yeyati

    2007-03-01

    Full Text Available Compromised heat shock protein 90 (Hsp90 function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.

  2. Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90.

    Science.gov (United States)

    Geiler-Samerotte, Kerry A; Zhu, Yuan O; Goulet, Benjamin E; Hall, David W; Siegal, Mark L

    2016-10-01

    The protein-folding chaperone Hsp90 has been proposed to buffer the phenotypic effects of mutations. The potential for Hsp90 and other putative buffers to increase robustness to mutation has had major impact on disease models, quantitative genetics, and evolutionary theory. But Hsp90 sometimes contradicts expectations for a buffer by potentiating rapid phenotypic changes that would otherwise not occur. Here, we quantify Hsp90's ability to buffer or potentiate (i.e., diminish or enhance) the effects of genetic variation on single-cell morphological features in budding yeast. We corroborate reports that Hsp90 tends to buffer the effects of standing genetic variation in natural populations. However, we demonstrate that Hsp90 tends to have the opposite effect on genetic variation that has experienced reduced selection pressure. Specifically, Hsp90 tends to enhance, rather than diminish, the effects of spontaneous mutations and recombinations. This result implies that Hsp90 does not make phenotypes more robust to the effects of genetic perturbation. Instead, natural selection preferentially allows buffered alleles to persist and thereby creates the false impression that Hsp90 confers greater robustness.

  3. Spatio-temporal regulation of Hsp90-ligand complex leads to immune activation.

    Directory of Open Access Journals (Sweden)

    Yasuaki eTamura

    2016-05-01

    Full Text Available Hsp90 is the most abundant cytosolic HSP and is known to act as a molecular chaperone. We found that an Hsp90-cancer antigen peptide complex was efficiently cross-presented by human monocyte-derived dendritic cells and induced peptide-specific cytotoxic T lymphocytes. Furthermore, we observed that the internalized Hsp90-peptide complex was strictly sorted to the Rab5+, EEA1+ static early endosome and the Hsp90-chaperoned peptide was processed and bound to MHC class I molecules through a endosome-recycling pathway. We also found that extracellular Hsp90 complexed with CpG-A or self-DNA stimulates production of a large amount of IFN-α from pDCs via static early endosome targeting. Thus, extracellular Hsp90 can target the antigen or nucleic acid to a static early endosome by spatio-temporal regulation. Moreover, we showed that Hsp90 associates with and delivers TLR7/9 from the ER to early endosomes for ligand recognition. Hsp90 inhibitor, geldanamycin derivative inhibited the Hsp90 association with TLR7/9, resulting in inhibition IFN-α production, leading to improvement of SLE symptoms. Interstingly, we observed that serum Hsp90 is clearly increased in patients with active SLE compared with that in patients with inactive disease. Serum Hsp90 detected in SLE patients binds to self-DNA and/or anti-DNA Ab, thus leading to stimulation of pDCs to produce IFN-α. Thus, Hsp90 plays a crucial role in the pathogenesis of SLE and that an Hsp90 inhibitor will therefore provide a new therapeutic approach to SLE and other nucleic acid-related autoimmune diseases. We will discuss how spatio-temporal regulation of Hsp90-ligand complexes within antigen-presenting cells affects the innate immunity and adaptive immunity.

  4. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Flora Ambre Honoré

    2017-04-01

    Full Text Available The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.

  5. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    Science.gov (United States)

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  6. Influência do biofármaco DNA-hsp65 na lesão pulmonar induzida por bleomicina Influence of a DNA-hsp65 vaccine on bleomycin-induced lung injury

    Directory of Open Access Journals (Sweden)

    Adriana Ignacio de Padua

    2008-11-01

    Full Text Available OBJETIVO: Avaliar a influência do biofármaco DNA-hsp65 em um modelo de distúrbio fibrosante pulmonar experimental. MÉTODOS: Foram estudados 120 camundongos machos C57BL/6, divididos em quatro grupos: grupo SS, animais tratados com salina (placebo e injetados com salina intratraqueal (IT; grupo SB, tratados com salina (placebo e injetados com bleomicina IT; grupo PB, tratados com plasmídeo, sem gene bacteriano, e injetados com bleomicina IT; e grupo BB, tratados com DNA-hsp65 e injetados com bleomicina IT. A bleomicina foi injetada 15 dias após a última imunização, e os animais sacrificados seis semanas após o uso da droga IT. O pulmão esquerdo retirado foi utilizado para análise morfológica, e o pulmão direito para dosagens de hidroxiprolina. RESULTADOS: A proporção de camundongos que apresentaram morte não-programada depois de 48 h da injeção IT foi maior no grupo SB em comparação ao grupo SS (57,7% vs. 11,1%. A área percentual média de interstício septal foi maior nos grupos SB e PB (53,1 ± 8,6% e 53,6 ± 9,3%, respectivamente em comparação aos grupos SS e BB (32,9 ± 2,7% e 34,3 ± 6,1%, respectivamente. Os grupos SB, PB e BB mostraram aumentos nos valores médios da área de interstício septal corada por picrosirius em comparação ao grupo SS (SS: 2,0 ± 1,4%; SB: 8,2 ± 4,9%; PB: 7,2 ± 4,2%; e BB:6,6±4,1%.O conteúdo pulmonar de hidroxiprolina no grupo SS foi inferior ao dos demais grupos (SS: 104,9 ± 20,9 pg/pulmão; SB: 160,4 ±47,8 pg/pulmão; PB:170,0 ± 72,0 pg/pulmão; e BB: 162,5 ± 39,7 pg/pulmão. CONCLUSÕES: A imunização com o biofármaco DNA-hsp65 interferiu na deposição de matriz não-colágena em um modelo de lesão pulmonar induzida por bleomicina.OBJECTIVE: To evaluate the effects of immunization with a DNA-hsp65 vaccine in an experimental model of pulmonary fibrosis. METHODS: A total of 120 male C57BL/6 mice were distributed into four groups: SS, injected with saline (placebo and then

  7. Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study

    International Nuclear Information System (INIS)

    Zagouri, Flora; Patsouris, Effstratios; Zografos, George; Sergentanis, Theodoros; Nonni, Afrodite; Papadimitriou, Christos; Pazaiti, Anastasia; Michalopoulos, Nikolaos V; Safioleas, Panagiotis; Lazaris, Andreas; Theodoropoulos, George

    2010-01-01

    Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i) the percentage of positive cells and ii) the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3). Statistical analysis followed. All infiltrative lobular carcinoma foci mainly presented with a positive cytoplasmic immunoreaction for Hsp90. Compared to the adjacent normal ducts and lobules, infiltrative lobular carcinoma exhibited a statistically significant decrease in Hsp90 expression, both in terms of Hsp90 positive cells (%) and Allred score (74.2 ± 11.2 vs. 59.1 ± 14.2 p = 0.0001; 7.00 ± 0.95 vs. 6.22 ± 1.01, p = 0.007, Wilcoxon matched-pairs signed-ranks test). Concerning the intensity of Hsp90 immunostaining only a marginal decrease was noted (2.16 ± 0.68 vs. 1.84 ± 0.63, p = 0.087, Wilcoxon matched-pairs signed-ranks test). ILC lesions seem to exhibit decreased Hsp90 expression, a finding contrary to what might have been expected, given that high Hsp90 expression is a trait of invasive ductal carcinomas

  8. A novel biomarker for marine environmental pollution of HSP90 from Mytilus coruscus

    International Nuclear Information System (INIS)

    Liu, Huihui; Wu, Jiong; Xu, Mengshan; He, Jianyu

    2016-01-01

    Heat shock protein 90 (HSP90) is a conserved molecular chaperone contributing to cell cycle control, organism development and the proper regulation of cytosolic proteins. The full-length HSP90 cDNA of Mytilus coruscus (McHSP90, KT946644) was 2420 bp, including an ORF of 2169 bp encoding a polypeptide of 722 amino acids with predicted pI/MW 4.89/83.22 kDa. BLASTp analysis and phylogenetic relationship strongly suggested McHSP90 was a member of HSP90 family, and it was highly conserved with other known HSP90, especially in the HSP90 family signatures, ATP/GTP-Binding sites and ‘EEVD’ motif. The mRNA of McHSP90 in haemolymph was upregulated in all treatments including Vibrio alginolyticus and Vibrio harveyi challenge, metals stresses (copper and cadmium) and 180 CST fuel exposure. All the results implied the expression of McHSP90 could be affected by Vibrio challenge and environmental stress, which might help us gain more insight into the molecular mechanism of HSP against adverse stresses in mollusca. - Highlights: • A novel HSP90 (McHSP90) was identified from Mytilus coruscus. • McHSP90 significantly affected by Vibrio challenge for immune defense. • McHSP90 mRNA was obviously up-regulated under stress of heavy metals and 180CST fuel. • McHSP90 might be an ideal marine pollution indicator.

  9. The Hsp60C gene in the 25F cytogenetic region in Drosophila ...

    Indian Academy of Sciences (India)

    Unknown

    Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the ..... C. Genomic organization and the predicted.

  10. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    International Nuclear Information System (INIS)

    Aloy, Marie-Therese; Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-01-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to γ-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors

  12. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli.

    Science.gov (United States)

    Petit, M A; Bedale, W; Osipiuk, J; Lu, C; Rajagopalan, M; McInerney, P; Goodman, M F; Echols, H

    1994-09-23

    Replication-blocking lesions generate a signal in Escherichia coli that leads to the induction of the multigene SOS response. Among the SOS-induced genes are umuD and umuC, whose products are necessary for the increased mutation rate in induced bacteria. The mutations are likely to result from replication across the DNA lesion, and such a bypass event has been reconstituted in vitro (Rajagopalan, M., L, C., Woodgate, R., O'Donnel, M., Goodman, M. F., Echols, H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10777-10781). In this work, we show that the chaperone proteins promote the proper folding of UmuC protein in vitro. We treated purified and inactive UmuC with Hsp70 and Hsp60. After Hsp70 treatment, the DNA binding activity of UmuC was recovered, but the ability to promote replication across DNA lesions was not. However, lesion bypass activity was recovered upon further treatment with Hsp60. The biological significance of such a folding pathway for UmuC protein is strengthened by in vivo evidence for a role of DnaK in UV-induced mutagenesis.

  13. Decreased Hsp90 expression in infiltrative lobular carcinoma: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Zagouri Flora

    2010-08-01

    Full Text Available Abstract Background Elevated Hsp90 expression has been documented in breast ductal carcinomas, whereas decreased Hsp90 expression has been reported in precursor lobular lesions. This study aims to assess Hsp90 expression in infiltrative lobular carcinomas of the breast. Methods Tissue specimens were taken from 32 patients with infiltrative lobular carcinoma. Immunohistochemical assessment of Hsp90 was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. Concerning Hsp90 assessment: i the percentage of positive cells and ii the intensity were separately analyzed. Subsequently, the Allred score was adopted and calculated. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3. Statistical analysis followed. Results All infiltrative lobular carcinoma foci mainly presented with a positive cytoplasmic immunoreaction for Hsp90. Compared to the adjacent normal ducts and lobules, infiltrative lobular carcinoma exhibited a statistically significant decrease in Hsp90 expression, both in terms of Hsp90 positive cells (% and Allred score (74.2 ± 11.2 vs. 59.1 ± 14.2 p = 0.0001; 7.00 ± 0.95 vs. 6.22 ± 1.01, p = 0.007, Wilcoxon matched-pairs signed-ranks test. Concerning the intensity of Hsp90 immunostaining only a marginal decrease was noted (2.16 ± 0.68 vs. 1.84 ± 0.63, p = 0.087, Wilcoxon matched-pairs signed-ranks test. Conclusion ILC lesions seem to exhibit decreased Hsp90 expression, a finding contrary to what might have been expected, given that high Hsp90 expression is a trait of invasive ductal carcinomas.

  14. Stability of the Human Hsp90-p50Cdc37 Chaperone Complex against Nucleotides and Hsp90 Inhibitors, and the Influence of Phosphorylation by Casein Kinase 2

    Directory of Open Access Journals (Sweden)

    Sanne H. Olesen

    2015-01-01

    Full Text Available The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2 did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM, while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.

  15. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo

    International Nuclear Information System (INIS)

    Grossmann, Michael E.; Madden, Benjamin J.; Gao, Fan; Pang, Yuan-Ping; Carpenter, John E.; McCormick, Daniel; Young, Charles Y.F.

    2004-01-01

    Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed

  16. Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide.

    Directory of Open Access Journals (Sweden)

    Mathias Gehrmann

    Full Text Available We have previously used a unique mouse monoclonal antibody cmHsp70.1 to demonstrate the selective presence of a membrane-bound form of Hsp70 (memHsp70 on a variety of leukemia cells and on single cell suspensions derived from solid tumors of different entities, but not on non-transformed cells or cells from corresponding 'healthy' tissue. This antibody can be used to image tumors in vivo and target them for antibody-dependent cellular cytotoxicity. Tumor-specific expression of memHsp70 therefore has the potential to be exploited for theranostic purposes. Given the advantages of peptides as imaging and targeting agents, this study assessed whether a 14-mer tumor penetrating peptide (TPP; TKDNNLLGRFELSG, the sequence of which is derived from the oligomerization domain of Hsp70 which is expressed on the cell surface of tumor cells, can also be used for targeting membrane Hsp70 positive (memHsp70+ tumor cells, in vitro.The specificity of carboxy-fluorescein (CF- labeled TPP (TPP to Hsp70 was proven in an Hsp70 knockout mammary tumor cell system. TPP specifically binds to different memHsp70+ mouse and human tumor cell lines and is rapidly taken up via endosomes. Two to four-fold higher levels of CF-labeled TPP were detected in MCF7 (82% memHsp70+ and MDA-MB-231 (75% memHsp70+ cells compared to T47D cells (29% memHsp70+ that exhibit a lower Hsp70 membrane positivity. After 90 min incubation, TPP co-localized with mitochondrial membranes in memHsp70+ tumors. Although there was no evidence that any given vesicle population was specifically localized, fluorophore-labeled cmHsp70.1 antibody and TPP preferentially accumulated in the proximity of the adherent surface of cultured cells. These findings suggest a potential association between membrane Hsp70 expression and cytoskeletal elements that are involved in adherence, the establishment of intercellular synapses and/or membrane reorganization.This study demonstrates the specific binding and rapid

  17. The role of HSP70 in mediating age-dependent mortality in sepsis

    Science.gov (United States)

    McConnell, Kevin W.; Fox, Amy C.; Clark, Andrew T.; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A.; Farris, Alton B.; Buchman, Timothy G.; Hunt, Clayton R.; Coopersmith, Craig M.

    2011-01-01

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6–12week old) and aged (16–17 month old) HSP70−/− and wild type (WT) mice to determine if HSP70 modulated outcome in an age-dependent fashion. Young HSP70−/− and WT mice subjected to cecal ligation and puncture (CLP), Pseudomonas aeruginosa pneumonia or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70−/− mice than aged WT mice subjected to CLP (p=0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared to WT mice, aged septic HSP70−/− mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70−/−mice had increased systemic levels of TNF-α, IL-6, IL-10 and IL-1β compared to WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  18. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... In plants, Hsp90 function remained little characterized until recent .... unknown if Hsp90 and chromatin remodeling factors act independently or in ..... protein 90 in plant disease resistance; EMBO J. 22 5690–5699. Maloof J N ...

  19. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  20. A primate specific extra domain in the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Vishwadeepak Tripathi

    Full Text Available Hsp90 (heat shock protein 90 is an essential molecular chaperone that mediates folding and quality control of client proteins. Many of them such as protein kinases, steroid receptors and transcription factors are involved in cellular signaling processes. Hsp90 undergoes an ATP hydrolysis dependent conformational cycle to assist folding of the client protein. The canonical Hsp90 shows a typical composition of three distinct domains and interacts with individual cochaperone partners such as Hop, Cdc37 and Aha1 (activator of Hsp90 ATPase that regulate the reaction cycle of the molecular chaperone. A bioinformatic survey identified an additional domain of 122 amino acids in front of the canonical Hsp90 sequence. This extra domain (E domain is specific to the Catarrhini or drooping nose monkeys, a subdivision of the higher primates that includes man, the great apes and the old world monkeys but is absent from all other species. Our biochemical analysis reveals that Hsp103 associates with cochaperone proteins such as Hop, Cdc37 and Aha1 similar to Hsp90. However, the extra domain reduces the ATP hydrolysis rate to about half when compared to Hsp90 thereby acting as a negative regulator of the molecular chaperonés intrinsic ATPase activity.

  1. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.

    Science.gov (United States)

    Antonietti, Patrick; Linder, Benedikt; Hehlgans, Stephanie; Mildenberger, Iris C; Burger, Michael C; Fulda, Simone; Steinbach, Joachim P; Gessler, Florian; Rödel, Franz; Mittelbronn, Michel; Kögel, Donat

    2017-01-01

    Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Science.gov (United States)

    2011-01-01

    Heat shock proteins (Hsp) perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease. PMID:21314976

  3. Changes in HSP gene and protein expression in natural scrapie with brain damage

    Directory of Open Access Journals (Sweden)

    Serrano Carmen

    2011-01-01

    Full Text Available Abstract Heat shock proteins (Hsp perform cytoprotective functions such as apoptosis regulation and inflammatory response control. These proteins can also be secreted to the extracellular medium, acting as inflammatory mediators, and their chaperone activity permits correct folding of proteins and avoids the aggregation of anomalous isoforms. Several studies have proposed the implication of Hsp in prion diseases. We analysed the gene expression and protein distribution of different members of the Hsp27, Hsp70, and Hsp90 families in the central nervous system of sheep naturally infected with scrapie. Different expression profiles were observed in the areas analysed. Whereas changes in transcript levels were not observed in the cerebellum or medulla oblongata, a significant decrease in HSP27 and HSP90 was detected in the prefrontal cortex. In contrast, HSP73 was over-expressed in diencephalons of scrapie animals. Western blotting did not reveal significant differences in Hsp90 and Hsp70 protein expression between scrapie and control animals. Expression rates identified by real-time RT-PCR and western blotting were compared with the extent of classical scrapie lesions using stepwise regression. Changes in Hsp gene and protein expression were associated with prion protein deposition, gliosis and spongiosis rather than with apoptosis. Finally, immunohistochemistry revealed intense Hsp70 and Hsp90 immunolabelling in Purkinje cells of scrapie sheep. In contrast, controls displayed little or no staining in these cells. The observed differences in gene expression and protein distribution suggest that the heat shock proteins analysed play a role in the natural form of the disease.

  4. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  5. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  6. Hsp90: A New Player in DNA Repair?

    Directory of Open Access Journals (Sweden)

    Rosa Pennisi

    2015-10-01

    Full Text Available Heat shock protein 90 (Hsp90 is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis, transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR pathways that include: (i cell cycle arrest; (ii transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.

  7. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-05-01

    Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Anatolii V Dobrodumov,4 Anastasiy S Dayneko,5 Alexey A Shmonin,5,6 Timur D Vlasov,5 Elena V Melnikova,5 Alexander D Vilisov,4,5 Irina V Guzhova,1 Alexander M Ischenko,3 Anastasiya L Mikhrina,7 Oleg V Galibin,5 Igor V Yakovenko,2 Boris A Margulis1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2AL Polenov Russian Research Scientific Institute of Neurosurgery, St Petersburg, Russia; 3Research Institute of Highly Pure Biopreparations, St Petersburg, Russia; 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 5First St Petersburg IP Pavlov State Medical University, St Petersburg, Russia; 6Federal Almazov Medical Research Centre, St Petersburg, Russia; 7IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, Russia Abstract: Recombinant 70 kDa heat shock protein (Hsp70 is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg. To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia. Rats were then kept alive for 72 hours. The

  8. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    Heat shock proteins (HSPs) are highly conserved molecules, which support folding of proteins under physiological conditions and mediate protection against lethal damage after various stress stimuli. Five HSP families exist defined by their molecular size (i.e. HSP100, HSP90, HSP70, HSP60, and the......Heat shock proteins (HSPs) are highly conserved molecules, which support folding of proteins under physiological conditions and mediate protection against lethal damage after various stress stimuli. Five HSP families exist defined by their molecular size (i.e. HSP100, HSP90, HSP70, HSP60...... clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...... hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 surface expression was confined to the apoptotic Annexin V positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis...

  9. Both cladribine and alemtuzumab may effect MS via B-cell depletion.

    Science.gov (United States)

    Baker, David; Herrod, Samuel S; Alvarez-Gonzalez, Cesar; Zalewski, Lukasz; Albor, Christo; Schmierer, Klaus

    2017-07-01

    To understand the efficacy of cladribine (CLAD) treatment in MS through analysis of lymphocyte subsets collected, but not reported, in the pivotal phase III trials of cladribine and alemtuzumab induction therapies. The regulatory submissions of the CLAD Tablets Treating Multiple Sclerosis Orally (CLARITY) (NCT00213135) cladribine and Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis, study one (CARE-MS I) (NCT00530348) alemtuzumab trials were obtained from the European Medicine Agency through Freedom of Information requests. Data were extracted and statistically analyzed. Either dose of cladribine (3.5 mg/kg; 5.25 mg/kg) tested in CLARITY reduced the annualized relapse rate to 0.16-0.18 over 96 weeks, and both doses were similarly effective in reducing the risk of MRI lesions and disability. Surprisingly, however, T-cell depletion was rather modest. Cladribine 3.5 mg/kg depleted CD4 + cells by 40%-45% and CD8 + cells by 15%-30%, whereas alemtuzumab suppressed CD4 + cells by 70%-95% and CD8 + cells by 47%-55%. However, either dose of cladribine induced 70%-90% CD19 + B-cell depletion, similar to alemtuzumab (90%). CD19 + cells slowly repopulated to 15%-25% of baseline before cladribine redosing. However, alemtuzumab induced hyperrepopulation of CD19 + B cells 6-12 months after infusion, which probably forms the substrate for B-cell autoimmunities associated with alemtuzumab. Cladribine induced only modest depletion of T cells, which may not be consistent with a marked influence on MS, based on previous CD4 + T-cell depletion studies. The therapeutic drug-response relationship with cladribine is more consistent with lasting B-cell depletion and, coupled with the success seen with monoclonal CD20 + depletion, suggests that B-cell suppression could be the major direct mechanism of action.

  10. Stress-induced localization of HSPA6 (HSP70B') and HSPA1A (HSP70-1) proteins to centrioles in human neuronal cells.

    Science.gov (United States)

    Khalouei, Sam; Chow, Ari M; Brown, Ian R

    2014-05-01

    The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B') and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.

  11. Perbedaan Kadar HSP90 pada Preeklamsi Berat dengan Kehamilan Normal

    Directory of Open Access Journals (Sweden)

    Soetrisno

    2015-06-01

    Full Text Available Severe pre-eclampsia is the second highest cause of maternal mortality. Free radicals that stimulate heat shock protein 90 (HSP 90 are believed to determine severe pre-eclampsia. HSP90 is an important protein that helps the establishment and maintenance of other proteins. It also increases the life time of cells after various pathological conditions (chaperone function. The chaperone function is the adaptation key factor to endogenous stress in tissues. By recognizing HSP90 level in early detection of severe pre-eclampsia, prevention and management can be started early. This study aimed to prove that the HSP90 level in pregnancy with severe pre-eclampsia is higher than normal pregnancy. This was a quantitative study using cross sectional approach by testing the HSP90 level. The study was conducted during the period of September to November 2013, at the Obstetrics and Gynecological Unit, Moewardi Hospital Surakarta and Prodia Laboratory Jakarta. The number of subjects was 30 patients, consisting of 15 normal pregnant mothers and 15 pregnant mothers with pre-eclampsia . The calculation of serum HSP90 level was conducted using enzyme-linked immunosorbent assay (ELISA. Data were analyzed using t-test using SPSS for Windows version 17 for Windows. The mean of HSP90 in the severe pre-eclampsia group was 131.91±26.66 while the mean in the normal pregnancy group was 80.28±13.39 with p=0.00 (p<0.05. Level of HSP90 serum in severe pre-eclampsia is higher than in normal pregnancy, due to the occurrence of oxidative stress in severe pre-eclampsia

  12. Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family

    Directory of Open Access Journals (Sweden)

    Luciano G. Fietto

    2007-01-01

    Full Text Available The completion of the genome sequencing of the Arabidopsis thaliana model system provided a powerful molecular tool for comparative analysis of gene families present in the genome of economically relevant plant species. In this investigation, we used the sequences of the Arabidopsis Hsp70 gene family to identify and annotate the Citrus Hsp70 genes represented in the CitEST database. Based on sequence comparison analysis, we identified 18 clusters that were further divided into 5 subgroups encoding four mitochondrial mtHsp70s, three plastid csHsp70s, one ER luminal Hsp70 BiP, two HSP110/SSE-related proteins and eight cytosolic Hsp/Hsc70s. We also analyzed the expression profile by digital Northern of each Hsp70 transcript in different organs and in response to stress conditions. The EST database revealed a distinct population distribution of Hsp70 ESTs among isoforms and across the organs surveyed. The Hsp70-5 isoform was highly expressed in seeds, whereas BiP, mitochondrial and plastid HSp70 mRNAs displayed a similar expression profile in the organs analyzed, and were predominantly represented in flowers. Distinct Hsp70 mRNAs were also differentially expressed during Xylella infection and Citrus tristeza viral infection as well as during water deficit. This in silico study sets the groundwork for future investigations to fully characterize functionally the Citrus Hsp70 family and underscores the relevance of Hsp70s in response to abiotic and biotic stresses in Citrus.

  13. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: sol4@pitt.edu [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2014-04-18

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  14. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    International Nuclear Information System (INIS)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang; Sun, Ming; Stolz, Donna B.; He, Fengtian; Fan, Jie; Xie, Wen; Li, Song

    2014-01-01

    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl 4 -treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation

  15. Expression of Hsp27 and Hsp70 and vacuolization in the pituitary glands in cases of fatal hypothermia.

    Science.gov (United States)

    Doberentz, Elke; Markwerth, Philipp; Wagner, Rebecca; Madea, Burkhard

    2017-09-01

    Hypothermia causes systemic cellular stress. The pituitary gland is an endocrine gland and plays an important role in thermoregulation. When the core body temperature drops, the pituitary gland is activated by stimulation of hypothalamic hormones. In this study, we investigated morphological alterations of the pituitary gland in cases of fatal hypothermia. Several morphological alterations of the anterior lobe of the pituitary gland, such as hemorrhage, vacuolization, and hyperemia, have been previously described in fatal hypothermia. However, the diagnostic value of these findings is controversial. We compared 11 cases of fatal hypothermia with 10 cases lacking antemortem hypothermic influences. In the presence of thermal cellular stress, the expression of heat shock proteins increases to protect cellular structures. Therefore, we immunohistochemically analyzed Hsp27 and Hsp70. Hsp27 expression was detected in 27.3% of the cases of fatal hypothermia and in 10.0% of the control cases, whereas Hsp70 expression was not detected in any case. Additionally, Sudan staining was performed to quantify fatty degeneration. A positive reaction was found in 45.5% of the study group and in 10.0% of the control group. This indicates that fatty degeneration might be a valuable marker when other macroscopic signs of hypothermia are absent.

  16. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    Science.gov (United States)

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-07-14

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato.

  17. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, A.V. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Taylor, C. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Johnson C. Smith University, 100 Beatties Ford Rd., Charlotte, NC 28216 (United States); Sokolova, I.M. [Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)], E-mail: isokolov@uncc.edu

    2009-02-19

    Stress proteins such as heat shock proteins (HSPs) and metallothioneins (MTs) play a key role in cellular protection against environmental stress. Marine ectotherms such as eastern oysters Crassostrea virginica are commonly exposed to multiple stressors including temperature and pollution by metals such as cadmium (Cd) in estuaries and coastal zones; however, the combined effects of these stressors on their cellular protection mechanisms are poorly understood. We acclimated C. virginica from populations adapted to different thermal regimes (Washington, North Carolina and Texas) at a common temperature of 12 deg. C, and analyzed their expression of MTs and HSPs (cytosolic HSP69, HSC72-77, HSP90 and mitochondrial HSP60) in response to the combined acute temperature stress and long-term Cd exposure. Overall, HSP and MT induction patterns were similar in oysters from the three studied geographically distant populations. HSP69 and MTs were significantly up-regulated by Cd and temperature stress implying their important role in cellular stress protection. In contrast, HSC72-77, HSP60 and HSP90 were not consistently induced by either acute heat or Cd exposure. The induction temperature for MTs was higher than for HSP69 (>28 deg. C vs. 20 deg. C, respectively), and MTs were more strongly induced by Cd than by temperature stress (to up to 38-94-fold compared by 3.5-7.5-fold, respectively) consistent with their predominant role in metal detoxification. Notably, heat stress did not result in an additional increase in metallothionein expression in Cd-exposed oysters suggesting a capacity limitation during the combined exposure to Cd and temperature stress. Levels of HSP69 and in some cases, HSC72-77 and HSP90 were lower in Cd-exposed oysters as compared to their control counterparts during heat stress indicating that simultaneous exposure to these two stressors may have partially suppressed the cytoprotective upregulation of molecular chaperones. These limitations of stress

  18. Transient Treg depletion enhances therapeutic anti‐cancer vaccination

    Science.gov (United States)

    Aston, Wayne J.; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L.; Solin, Jessica N.; Ma, Shaokang; Lesterhuis, W. Joost; Dick, Ian; Holt, Robert A.; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A.

    2016-01-01

    Abstract Introduction Regulatory T cells (Treg) play an important role in suppressing anti‐ immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti‐cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Methods Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. Results DTX specifically depleted Treg in a transient, dose‐dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor‐peptide vaccination. Conclusions BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti‐tumor immunity. DTX‐mediated Treg depletion is transient, dose‐dependent, and leads to strong anti‐tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor‐specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies. PMID:28250921

  19. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation

    International Nuclear Information System (INIS)

    Shen, S.-C.; Yang, L.-Y.; Lin, H.-Y.; Wu, C.-Y.; Su, T.-H.; Chen, Y.-C.

    2008-01-01

    The effects of six arsenic compounds including As +3 , MMA +3 , DMA +3 , As +5 , MMA +5 , and DMA +5 on the viability of NIH3T3 cells were examined. As +3 and MMA +3 , but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As +3 and MMA +3 were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As +3 and MMA +3 treatments. An increase in the intracellular peroxide level was examined in As +3 - and MMA +3 -treated NIH3T3 cells, and As +3 - and MMA +3 -induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As +3 - and MMA +3 -induced cytotoxicity. Suppression of JNKs significantly inhibited As +3 - and MMA +3 -induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As +3 - and MMA +3 -induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As +3 or MMA +3 . These data provide the first evidence to indicate that apoptosis induced by As +3 and MMA +3 is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved

  20. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  1. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter.

    Science.gov (United States)

    Kim, Joo Ae; Lee, Somyoung; Kim, Da-Eun; Kim, Moonil; Kwon, Byoung-Mog; Han, Dong Cho

    2015-06-01

    Heat shock factor 1 (HSF1) is a transcription factor for heat shock proteins (HSPs) expression that enhances the survival of cancer cells exposed to various stresses. HSF1 knockout suppresses carcinogen-induced cancer induction in mice. Therefore, HSF1 is a promising therapeutic and chemopreventive target. We performed cell-based screening with a natural compound collection and identified fisetin, a dietary flavonoid, as a HSF1 inhibitor. Fisetin abolished heat shock-induced luciferase activity with an IC50 of 14 μM in HCT-116 cancer cells. The treatment of HCT-116 with fisetin inhibited proliferation with a GI50 of 23 μM. When the cells were exposed to heat shock in the presence of fisetin, the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 (Bcl-2-associated athanogene domain 3), were inhibited. HSP70/BAG3 complexes protect cancer cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. The downregulation of HSP70/BAG3 by fisetin significantly reduced the amounts of Bcl-2, Bcl-xL and Mcl-1 proteins, subsequently inducing apoptotic cell death. Chromatin immunoprecipitation assays showed that fisetin inhibited HSF1 activity by blocking the binding of HSF1 to the hsp70 promoter. Intraperitoneal treatment of nude mice with fisetin at 30mg/kg resulted in a 35.7% (P < 0.001) inhibition of tumor growth. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. KADAR MDA DAN HSP 70 PADA PLASENTA PENDERITA PREEKLAMPSIA

    Directory of Open Access Journals (Sweden)

    Arleni

    2008-12-01

    Full Text Available The MDA and HSP70 Concentration in Preeclamptic Patient Placenta’s. Objective: Preeclampsia is a disease in pregnancy and characterized by hypertension and proteinuria. Preeclampsia and eclampsia are the most causes of maternal and fetal mortality and morbidity in Indonesia. Placental and systemic oxidative stress caused endothelial cell dysfunction and injury. Placental oxidative stress also linked to fetal growth restriction. HSP70 is essential for cellular recovery, survival and maintenance of homeostasis. The purpose of this study was to compare the MDA, a marker for oxidative stress and HSP70 production in placental of severe preeclampsia, mild preeclampsia and normotensive pregnant women. Placenta were collected after delivery from normotensive pregnancies (N=10, severe preeclampsia (N=10 and mild preeclampsia (N=10. Placenta was cultured in RPMI and 20% FBS, and supernatant were collected in day 3. MDA was measured using spectrophotometer and absorbance read in 530nm. HSP70 was measured using enzyme-linked immunosorbent assay. The mean MDA concentration did not differ significantly between patients with severe preeclampsia (7.13+5.36 nmol/ml and mild preeclampsia (4.82+2.47 nmol/ml when compared with normotensive pregnancies (4.57+2.4 nmol/ml. The mean HSP70 concentration in mild preeclampsia is highest (10.15+12.39 nmo/ml when compared with severe preeclampsia (3.78 +3.07 nmol/ml and normotensive pregnant women (3.76+4.65nmol/ml, but the difference was not significant. Although the difference was not significant, is indicates homeostasis response in mild preclampsia women is relative good. This response was abated in severe preeclampstic women. Although MDA and HSP70 concentration did not differ significantly between groups, however the high HSP70 concentration is indicates homeostasis response relatively good in mild preeclamptic women.

  3. Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-parsley PAL2 chimera gene.

    Science.gov (United States)

    Moriwaki, M; Yamakawa, T; Washino, T; Kodama, T; Igarashi, Y

    1999-01-01

    The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at 44 degrees C for 5 h, the PAL activity in both transgenic and normal (untransformed) plants was 35-38% lower than that before HS. At normal temperature (25-26 degrees C), the PAL activity recovered within 5 h of ending the HS treatment in normal plants, but not until 12-24 h in transgenic plants containing the HSP18.2-PAL2 gene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of parsley PAL2 mRNA in transgenic plants, which remained for 8-12 h following 5-h HS at 44 degrees C; the mRNA was not observed before HS. The content of chlorogenic acid (CGA; 3-caffeoylquinic acid) decreased drastically 8-12 h after HS in transgenic plants, but only slightly in normal plants. Thus, the decrease in PAL activity accompanied by expression of the parsley PAL2 gene after HS treatment corresponded to the decrease in CGA synthesis. These results might be attributed to post-transcriptional degradation of endogenous PAL mRNA triggered by transcription of the transgene.

  4. Expression profile of HSP genes during different seasons in goats (Capra hircus).

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Maurya, Divakar; Yadav, Vijay Prakash; Panda, Rudra Prasanna; Singh, Gyanendra; Mohan, Nitai Haridas; Bhure, Sanjeev Kumar; Das, Bikash Chandra; Bag, Sadhan; Mahapatra, Ramkrishna; Taru Sharma, Guttalu; Sarkar, Mihir

    2012-12-01

    The present study has demonstrated the expression of HSP60, HSP70, HSP90, and UBQ in peripheral blood mononuclear cells (PBMCs) during different seasons in three different age groups (Groups I, II, and III with age of 0-2, 2-5, and >5 years, respectively) of goats of tropical and temperate regions. Real-time polymerase chain reaction was applied to investigate mRNA expression of examined factors. Specificity of the desired products was documented using analysis of the melting temperature and high-resolution gel electrophoresis to verify that the transcripts are of the exact molecular size predicted. The mRNA expression of HSP60, HSP90, and UBQ was significantly higher (P tropical and temperate region goats. HSP70 mRNA expression was significantly higher (P tropical region goats. However, in the temperate region, in goats from all the three age groups studied, a non-significant difference of HSP70 expression between summer and winter seasons was noticed. In conclusion, results demonstrate that (1) HSP genes are expressed in caprine PBMCs and (2) higher expression of HSPs during thermal stress suggest possible involvement of them to ameliorate deleterious effect of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  5. Heat Shock Protein 90 (Hsp90 Expression and Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christos A. Papadimitriou

    2012-09-01

    Full Text Available Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc. are currently under evaluation.

  6. Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27’s Phosphorylation Status, and Is Mediated by Exosome Liberation

    Directory of Open Access Journals (Sweden)

    Matthias B. Stope

    2017-01-01

    Full Text Available The heat shock protein HSP27 has been correlated in ovarian cancer (OC patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.

  7. Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells.

    Science.gov (United States)

    Tanimoto, Azusa; Yamada, Tadaaki; Nanjo, Shigeki; Takeuchi, Shinji; Ebi, Hiromichi; Kita, Kenji; Matsumoto, Kunio; Yano, Seiji

    2014-07-15

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.

  8. Effects of HSP27 chaperone on THP-1 tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Maroshkina, A N; Belkina, M V

    2012-11-01

    The role of Hsp27 (heat shock protein 27) chaperone in regulation of THP-1 tumor cell apoptosis was studied. Realization of tumor cell apoptosis under conditions of in vitro culturing with Hsp27 specific inhibitor (KRIBB3) was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Measurements of Bcl-2 family proteins (Bcl-2, Bax, Bad) in tumor cells incubated with Hsp27 inhibitor were carried out by Western blotting. Chaperone Hsp27 acted as apoptosis inhibitor in THP-1 tumor cells modulating the proportion of antiapoptotic (Bcl-2) and proapoptotic (Bax and Bad) proteins.

  9. Review: The HSP90 molecular chaperone-an enigmatic ATPase.

    Science.gov (United States)

    Pearl, Laurence H

    2016-08-01

    The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc.

  10. Increased levels of IgG antibodies against human HSP60 in patients with spondyloarthritis

    DEFF Research Database (Denmark)

    Hjelholt, Astrid; Carlsen, Thomas Gelsing; Deleuran, Bent Winding

    2013-01-01

    Introduction: Spondyloarthritis (SpA) comprises a heterogeneous group of inflammatory diseases, with strong association to human leukocyte antigen (HLA)-B27. SpA is suggested triggered by bacterial infection, and bacterial heat shock protein (HSP) seems to be a strong T cell antigen. Since...... against human HSP60, but not antibodies against bacterial HSP60, were elevated in the SpA group compared with the control group. Association between IgG3 antibodies against human HSP60 and BASMI was shown in HLA-B27+ patients. Only weak correlation between antibodies against bacterial and human HSP60...... was seen, and there was no indication of cross-reaction. Conclusion: These results suggest that antibodies against human HSP60 is associated with SpA, however, the theory that antibodies against human HSP60 is a specific part of the aetiology, through cross-reaction to bacterial HSP60, cannot be supported...

  11. Recovery From Radiation-induced Bone Marrow Damage by HSP25 Through Tie2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kwon, Hee-Chung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chung, Hee-Yong [College of Medicine, Hanyang University, Seoul (Korea, Republic of); Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yun-Sil, E-mail: yslee0425@ewha.ac.kr [College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Woman' s University, Seoul (Korea, Republic of)

    2012-09-01

    Purpose: Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Methods and Materials: Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. Results: HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. Conclusions: HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM.

  12. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  13. Depletion of rat cortical norepinephrine and the inhibition of [3H]norepinephrine uptake by xylamine does not require monoamine oxidase activity

    International Nuclear Information System (INIS)

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [ 3 H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine

  14. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization.

    Science.gov (United States)

    He, Qiuxia; Liu, Kechun; Tian, Zhenjun; Du, Shao Jun

    2015-01-01

    Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.

  15. Structural model of dodecameric heat-shock protein Hsp21

    DEFF Research Database (Denmark)

    Rutsdottir, Gudrun; Härmark, Johan; Weide, Yoran

    2017-01-01

    for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer...

  16. Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Science.gov (United States)

    Cappello, Francesco; Conway de Macario, Everly; Di Felice, Valentina; Zummo, Giovanni; Macario, Alberto J. L.

    2009-01-01

    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician. PMID:19714222

  17. Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin.

    Directory of Open Access Journals (Sweden)

    Francesco Cappello

    2009-08-01

    Full Text Available Chlamydia trachomatis (CT infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60 and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician.

  18. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  19. A role for anti-HSP60 antibodies in arthritis

    DEFF Research Database (Denmark)

    Carlsen, Thomas Gelsing; Bennike, Tue; Christiansen, Gunna

    2013-01-01

    As a result of the high sequence similarity between HSP60 proteins, found in both prokaryotic and eukaryotic cells, it has been suggested, but never concluded, that anti-HSP60 antibodies could be of importance in the pathology of arthritis diseases explained by a concept named molecular mimicry...

  20. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity.

    Science.gov (United States)

    Jin, Yi; Hoxie, Reyal S; Street, Timothy O

    2017-06-01

    Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open-to-closed-to-open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH-dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation-specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti-correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255-ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255-ATP salt-bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH-dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site-specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity. © 2017 The Protein Society.

  1. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  2. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome.

    Science.gov (United States)

    Weiss, Yoram G; Maloyan, Alina; Tazelaar, John; Raj, Nichelle; Deutschman, Clifford S

    2002-09-01

    The acute respiratory distress syndrome (ARDS) provokes three pathologic processes: unchecked inflammation, interstitial/alveolar protein accumulation, and destruction of pulmonary epithelial cells. The highly conserved heat shock protein HSP-70 can limit all three responses but is not appropriately expressed in the lungs after cecal ligation and double puncture (2CLP), a clinically relevant model of ARDS. We hypothesize that restoring expression of HSP-70 using adenovirus-mediated gene therapy will limit pulmonary pathology following 2CLP. We administered a vector containing the porcine HSP-70 cDNA driven by a CMV promoter (AdHSP) into the lungs of rats subjected to 2CLP or sham operation. Administration of AdHSP after either sham operation or 2CLP increased HSP-70 protein expression in lung tissue, as determined by immunohistochemistry and Western blot hybridization. Administration of AdHSP significantly attenuated interstitial and alveolar edema and protein exudation and dramatically decreased neutrophil accumulation, relative to a control adenovirus. CLP-associated mortality at 48 hours was reduced by half. Modulation of HSP-70 production reduces pathologic changes and may improve outcome in experimental ARDS.

  3. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  4. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  5. Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium

    International Nuclear Information System (INIS)

    Bonham, Rita T.; Fine, Michael R.; Pollock, Fiona M.; Shelden, Eric A.

    2003-01-01

    Cadmium is a widely distributed industrial and environmental toxin. The principal target organ of chronic sublethal cadmium exposure is the kidney. In renal epithelial cells, acute high-dose cadmium exposure induces differential expression of proteins, including heat shock proteins. However, few studies have examined heat shock protein expression in cells after prolonged exposure to cadmium at sublethal concentrations. Here, we assayed total cell protein, neutral red uptake, cell death, and levels of metallothionein and heat shock proteins Hsp27 and inducible Hsp70 in cultures of MDCK and LLC-PK1 renal epithelial cells treated with cadmium for 3 days. Treatment with cadmium at concentrations equal to or greater than 10 μM (LLC-PK1) or 25 μM (MDCK) reduced measures of cell vitality and induced cell death. However, a concentration-dependent increase in Hsp27 was detected in both cell types treated with as little as 5 μM cadmium. Accumulation of Hsp70 was correlated only with cadmium treatment at concentrations also causing cell death. Metallothionein was maximally detected in cells treated with cadmium at concentrations that did not reduce cell vitality, and further increases were not detected at greater concentrations. These results reveal that heat shock proteins accumulate in renal epithelial cells during prolonged cadmium exposure, that cadmium induces differential expression of heat shock protein in epithelial cells, and that protein expression patterns in epithelial cells are specific to the cadmium concentration and degree of cellular injury. A potential role for Hsp27 in the cellular response to sublethal cadmium-induced injury is also implicated by our results

  6. The Double-Edged Sword: Conserved Functions of Extracellular Hsp90 in Wound Healing and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hance, Michael W.; Nolan, Krystal D.; Isaacs, Jennifer S., E-mail: isaacsj@musc.edu [Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC 29412 (United States)

    2014-05-06

    Heat shock proteins (Hsps) represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90) chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90), recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression.

  7. TAS-116, a novel Hsp90 inhibitor, selectively enhances radio-sensitivity of human cancer cells to X-rays and carbon ion radiation

    Science.gov (United States)

    Lee, Younghyun; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A.; Okayasu, Ryuichi

    2016-01-01

    Hsp90 inhibitors have been investigated as cancer therapeutics in mono-therapy and to augment radiotherapy, however serious adverse effects of early generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here we investigated the radio-sensitizing effects of TAS-116 in low LET X-ray, and high LET carbon ion irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of non-cancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci, and delayed the repair of DNA double-strand breaks (DSBs). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and non-homologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell cycle progression marker, markedly increasing G2/M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared to either individual treatment. These results demonstrate that TAS-116 radio-sensitizes human cancer cells to both X rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell cycle arrest. The promising results of combination TAS-116 + carbon ion radiation therapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. PMID:28062703

  8. Administration of Mycobacterium leprae rHsp65 aggravates experimental autoimmune uveitis in mice.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available The 60 kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10.RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+IL-17(+, CD4(+IFN-gamma(+ and CD4(+Foxp3(+ cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+IFN-gamma(+ and CD4(+IL-17(+ T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.

  9. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Stephen J Bentley

    Full Text Available Tsetse flies (Glossina spp. are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70 is regulated by interactions with its J-protein (Hsp40 co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70 and J-protein (Hsp40 families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.

  10. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis.

    Science.gov (United States)

    Chung-Davidson, Yu-Wen; Yeh, Chu-Yin; Bussy, Ugo; Li, Ke; Davidson, Peter J; Nanlohy, Kaben G; Brown, C Titus; Whyard, Steven; Li, Weiming

    2015-12-01

    Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.

  11. Monocyte Proteomics Reveals Involvement of Phosphorylated HSP27 in the Pathogenesis of Osteoporosis

    Directory of Open Access Journals (Sweden)

    Bhavna Daswani

    2015-01-01

    Full Text Available Peripheral monocytes, precursors of osteoclasts, have emerged as important candidates for identifying proteins relevant to osteoporosis, a condition characterized by low Bone Mineral Density (BMD and increased susceptibility for fractures. We employed 4-plex iTRAQ (isobaric tags for relative and absolute quantification coupled with LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry to identify differentially expressed monocyte proteins from premenopausal and postmenopausal women with low versus high BMD. Of 1801 proteins identified, 45 were differentially abundant in low versus high BMD, with heat shock protein 27 (HSP27 distinctly upregulated in low BMD condition in both premenopausal and postmenopausal categories. Validation in individual samples (n=80 using intracellular ELISA confirmed that total HSP27 (tHSP27 as well as phosphorylated HSP27 (pHSP27 was elevated in low BMD condition in both categories (P<0.05. Further, using transwell assays, pHSP27, when placed in the upper chamber, could increase monocyte migration (P<0.0001 and this was additive in combination with RANKL (receptor activator of NFkB ligand placed in the lower chamber (P=0.05. Effect of pHSP27 in monocyte migration towards bone milieu can result in increased osteoclast formation and thus contribute to pathogenesis of osteoporosis. Overall, this study reveals for the first time a novel link between monocyte HSP27 and BMD.

  12. Hsp70 in the atrial neuroendocrine units of the snail, Achatina fulica.

    Science.gov (United States)

    Martynova, M G; Bystrova, O A; Shabelnikov, S V; Margulis, B A; Prokofjeva, D S

    2007-04-01

    Heat shock proteins (Hsps) are evolutionary conserved peptides well known as molecular chaperones and stress proteins. Elevated levels of extracellular Hsps in blood plasma have been observed during the stress responses and some diseases. Information on the cellular sources of extracellular Hsps and mechanisms regulating their release is still scanty. Here we showed the presence and localization of Hsp70 in the neuroendocrine system in the atrium of the snail, Achatina fulica. The occurrence of the peptide in snail atrium lysate was detected by Western blot analysis. Immunoperoxidase and immunogold staining demonstrated that Hsp70-immunoreactivity is mainly confined to the peculiar atrial neuroendocrine units which are formed by nerve fibers tightly contacted with large granular cells. Immunolabelling intensity differed in morphologically distinct types of secretory granules in the granular cells. The pictures of exocytosis of Hsp70-immunolabeled granules from the granular cells were observed. In nerve bundles, axon profiles with Hsp70-immunoreactive and those with non-immunoreactive neurosecretory granules were found. In addition, Hsp70-like material was also revealed in the granules of glia-interstitial cells that accompanied nerve fibers. Our findings provide an immuno-morphological basis for a role of Hsp70 in the functioning of the neuroendocrine system in the snail heart, and show that the atrial granular cells are a probable source of extracellular Hsp70 in the snail hemolymph.

  13. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  14. The evolutionary capacitor HSP90 buffers the regulatory effects of mammalian endogenous retroviruses.

    Science.gov (United States)

    Hummel, Barbara; Hansen, Erik C; Yoveva, Aneliya; Aprile-Garcia, Fernando; Hussong, Rebecca; Sawarkar, Ritwick

    2017-03-01

    Understanding how genotypes are linked to phenotypes is important in biomedical and evolutionary studies. The chaperone heat-shock protein 90 (HSP90) buffers genetic variation by stabilizing proteins with variant sequences, thereby uncoupling phenotypes from genotypes. Here we report an unexpected role of HSP90 in buffering cis-regulatory variation affecting gene expression. By using the tripartite-motif-containing 28 (TRIM28; also known as KAP1)-mediated epigenetic pathway, HSP90 represses the regulatory influence of endogenous retroviruses (ERVs) on neighboring genes that are critical for mouse development. Our data based on natural variations in the mouse genome show that genes respond to HSP90 inhibition in a manner dependent on their genomic location with regard to strain-specific ERV-insertion sites. The evolutionary-capacitor function of HSP90 may thus have facilitated the exaptation of ERVs as key modifiers of gene expression and morphological diversification. Our findings add a new regulatory layer through which HSP90 uncouples phenotypic outcomes from individual genotypes.

  15. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  16. Identification of HSP90 gene from the Chinese oak silkworm ...

    African Journals Online (AJOL)

    ajl user 1

    2012-06-28

    Jun 28, 2012 ... College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, Peoples ... program consisted of 5 min at 94°C followed by 35 cycles of 94°C ... HSP90 and 73.1% identity with Bombyx mori HSP90.

  17. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    International Nuclear Information System (INIS)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.; Prodromou, Chrisostomos

    2015-01-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90) 2 –Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes

  18. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H., E-mail: laurence.pearl@sussex.ac.uk; Prodromou, Chrisostomos, E-mail: laurence.pearl@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom)

    2015-05-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.

  19. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum.

    Science.gov (United States)

    Smith, T; Ferreira, L R; Hebert, C; Norris, K; Sauk, J J

    1995-08-04

    Hsp47 and cyclophilin B (CyPB) are residents of the endoplasmic reticulum (ER). Both of these proteins are closely associated with polysome-associated alpha 1(I) procollagen chains. Hsp47 possesses chaperone properties early during the translation of procollagen while the cis/trans-isomerase properties of CyPB facilitate procollagen folding. In this report, we further investigate the interaction of these proteins with procollagen I during export from the ER. To inhibit vesicular budding and retain procollagen within the ER, cells were treated with the heterotrimeric G protein inhibitor mastoparan or calphostin C, a specific inhibitor of diacylglycerol/phorbol ester binding proteins. To arrest procollagen in pre-Golgi intermediate vesicles, cells were treated with guanosine 5'-3-O-(thio)triphosphate. Pulse-chase experiments of cells labeled with [35S]methionine followed by immunoprecipitation during the chase period with anti-procollagen, anti-Hsp47, and anti-CyPB antibodies were performed to reveal the relationship between Hsp47/CyPB/procollagen I. The distribution of procollagen, Hsp47, and CyPB to the ER and/or pre-Golgi vesicles was verified by immunofluorescence. Hsp47 and CyPB remained associated with procollagen retained within the ER. Hsp47 and CyPB were also associated with procollagen exported from the ER into pre-Golgi intermediate vesicles. Treatment of cells with cyclosporin A diminished the levels of CyPB bound to procollagen and diminished the rate of Hsp47 released from procollagen and the rate of procollagen secretion, suggesting that Hsp47 release from procollagen may be driven by helix formation. Also, these studies suggest that Hsp47 may resemble protein disulfide isomerase and possess both chaperone and anti-chaperone properties. During translation, high levels of Hsp47 are seen to limit protein aggregation and facilitate chain registration. Later, Hsp47 and/or CyPB and protein disulfide isomerase act as anti-chaperones and provide the basis for

  20. Characterization of HSP27 phosphorylation sites in human atherosclerotic plaque secretome

    DEFF Research Database (Denmark)

    Durán, Mari-Carmen; Boeri-Erba, Elisabetta; Mohammed, Shabaz

    2007-01-01

    spectrometry (MS). Among the identified proteins, two isoforms of heat shock protein 27 (HSP27), a protein recently described as a potential biomarker of atherosclerosis, were detected. However, the putative mechanisms in which HSP27 isoforms could be involved in the atherosclerotic process are unknown. Thus......, the role that phosphorylated HSP27 could play in the atherosclerotic process is actually under study. The present work shows the strategies employed to characterize the phosphorylation in the HSP27 secreted by atheroma plaque samples. The application of liquid chromatography tandem mass spectrometry (MS......-lymphocytes). These interactions can be mediated by proteins secreted from these cells, which therefore exert an important role in the atherosclerotic process. We recently described a novel strategy for the characterization of the human atherosclerotic plaque secretome, combining two-dimensional gel electrophoresis and mass...

  1. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  2. Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress.

    Science.gov (United States)

    Long, Ling-Li; Han, Ying-Li; Sheng, Zhang; Du, Chen; Wang, You-Fa; Zhu, Jun-Quan

    2015-09-01

    The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different time points post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit.

    Science.gov (United States)

    He, Li-hong; Chen, Jian-ye; Kuang, Jian-fei; Lu, Wang-jin

    2012-07-01

    Banana fruit is highly susceptible to chilling injury. In previous research it was shown that heat pretreatment of banana fruit at 38 °C for 3 days before storage at a chilling temperature of 8 °C for 12 days prevented increases in visible chilling injury index, electrolyte leakage and malondialdehyde content and also decreases in lightness and chroma, indicating that heat pretreatment could effectively alleviate chilling injury of banana fruit. However, little is known about the role of small heat shock proteins (sHSPs) in postharvest chilling tolerance of banana fruit. In the present study, three cytosolic sHSP expression profiles in peel and pulp tissues of banana fruit during heat pretreatment and subsequent chilled storage (8 °C) were investigated in relation to heat pretreatment-induced chilling tolerance. Three full-length cDNAs of cytosolic sHSP genes, including two class I sHSP (CI sHSP) and one class II sHSP (CII sHSP) cDNAs, named Ma-CI sHSP1, Ma-CI sHSP2 and Ma-CII sHSP3 respectively, were isolated and characterised from harvested banana fruit. Accumulation of Ma-CI sHSP1 mRNA transcripts in peel and pulp tissues and Ma-CII sHSP3 mRNA transcripts in peel tissue increased during heat pretreatment. Expression of all three Ma-sHSP genes in peel and pulp tissues was induced during subsequent chilled storage. Furthermore, Ma-CI sHSP1 and Ma-CII sHSP3 mRNA transcripts in pulp tissue and Ma-CI sHSP2 mRNA transcripts in peel and pulp tissues were obviously enhanced by heat pretreatment at days 6 and 9 of subsequent chilled storage. These results suggested that heat pretreatment enhanced the expression of Ma-sHSPs, which might be involved in heat pretreatment-induced chilling tolerance of banana fruit. Copyright © 2012 Society of Chemical Industry.

  4. Red Wine and Pomegranate Extracts Suppress Cured Meat Promotion of Colonic Mucin-Depleted Foci in Carcinogen-Induced Rats.

    Science.gov (United States)

    Bastide, Nadia M; Naud, Nathalie; Nassy, Gilles; Vendeuvre, Jean-Luc; Taché, Sylviane; Guéraud, Françoise; Hobbs, Ditte A; Kuhnle, Gunter G; Corpet, Denis E; Pierre, Fabrice H F

    2017-01-01

    Processed meat intake is carcinogenic to humans. We have shown that intake of a workshop-made cured meat with erythorbate promotes colon carcinogenesis in rats. We speculated that polyphenols could inhibit this effect by limitation of endogenous lipid peroxidation and nitrosation. Polyphenol-rich plant extracts were added to the workshop-made cured meat and given for 14 days to rats and 100 days to azoxymethane-induced rats to evaluate the inhibition of preneoplastic lesions. Colons of 100-d study were scored for precancerous lesions (mucin-depleted foci, MDF), and biochemical end points of peroxidation and nitrosation were measured in urinary and fecal samples. In comparison with cured meat-fed rats, dried red wine, pomegranate extract, α-tocopherol added at one dose to cured meat and withdrawal of erythorbate significantly decreased the number of MDF per colon (but white grape and rosemary extracts did not). This protection was associated with the full suppression of fecal excretion of nitrosyl iron, suggesting that this nitroso compound might be a promoter of carcinogenesis. At optimized concentrations, the incorporation of these plant extracts in cured meat might reduce the risk of colorectal cancer associated with processed meat consumption.

  5. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

    Science.gov (United States)

    Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R; Grima, Jonathan C; Machamer, James B; Steinwald, Peter; Daley, Elizabeth L; Miller, Sean J; Cunningham, Kathleen M; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L; Ostrow, Lyle W; Matunis, Michael J; Wang, Jiou; Sattler, Rita; Lloyd, Thomas E; Rothstein, Jeffrey D

    2015-09-03

    The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.

  6. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  7. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    Science.gov (United States)

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Repurposing Hsp104 to Antagonize Seminal Amyloid and Counter HIV Infection.

    Science.gov (United States)

    Castellano, Laura M; Bart, Stephen M; Holmes, Veronica M; Weissman, Drew; Shorter, James

    2015-08-20

    Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chaperone-Mediated Regulation of Choline Acetyltransferase Protein Stability and Activity by HSC/HSP70, HSP90, and p97/VCP

    Directory of Open Access Journals (Sweden)

    Trevor M. Morey

    2017-12-01

    Full Text Available Choline acetyltransferase (ChAT synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS. One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A or mutation of residue Val18 (V18M enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID, co-immunoprecipitation and in situ proximity-ligation assay (PLA, we identified the heat shock proteins (HSPs HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms

  10. Hsp60-induced tolerance in the rotifer Brachionus plicatilis exposed to multiple environmental contaminants.

    Science.gov (United States)

    Wheelock, C E; Wolfe, M F; Olsen, H; Tjeerdema, R S; Sowby, M L

    1999-04-01

    Hsp60 induction was selected as a sublethal endpoint of toxicity for Brachionus plicatilis exposed to a water accommodated fraction (WAF) of Prudhoe Bay crude oil (PBCO), a PBCO/dispersant (Corexit 9527(R)) fraction and Corexit 9527(R) alone. To examine the effect of multiple stressors, exposures modeled San Francisco Bay, where copper levels are approximately 5 microgram/L, salinity is 22 per thousand, significant oil transport and refining occurs, and petroleum releases have occurred historically. Rotifers were exposed to copper at 5 microgram/L for 24 h, followed by one of the oil/dispersant preparations for 24 h. Batch-cultured rotifers were used in this study to model wild populations instead of cysts. SDS-PAGE with Western Blotting using hsp60-specific antibodies and chemiluminescent detection were used to isolate, identify, and measure induced hsp60 as a percentage of control values. Both PBCO/dispersant and dispersant alone preparations induced significant levels of hsp60. However, hsp60 expression was reduced to that of controls at high WAF concentrations, suggesting interference with protein synthesis. Rotifers that had been preexposed to copper maintained elevated levels of hsp60 upon treatment with WAF at all concentrations. Results suggest that induction of hsp60 by chronic low-level exposure may serve as a protective mechanism against subsequent or multiple stressors and that hsp60 levels are not additive for the toxicants tested in this study, giving no dose-response relationship. The methods employed in this study could be useful for quantifying hsp60 levels in wild rotifer populations.

  11. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wu

    Full Text Available Orientia (O. tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF-α reduced cell injury from a cytokine storm. Since TNF-α production is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE inhibitors on TNF-α production in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB, but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70 expression associated with ERK activation; upregulated TNF-α production in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNF-α production was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.

  12. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.

    Science.gov (United States)

    Pennisi, Rosa; Antoccia, Antonio; Leone, Stefano; Ascenzi, Paolo; di Masi, Alessandra

    2017-08-01

    The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair. © 2017 Federation of European Biochemical Societies.

  13. Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors.

    Science.gov (United States)

    Mohammadi-Ostad-Kalayeh, Sona; Hrupins, Vjaceslavs; Helmsen, Sabine; Ahlbrecht, Christin; Stahl, Frank; Scheper, Thomas; Preller, Matthias; Surup, Frank; Stadler, Marc; Kirschning, Andreas; Zeilinger, Carsten

    2017-12-15

    A facile method for testing ATP binding in a highly miniaturized microarray environment using human HSP70 and DnaK from Mycobacterium tuberculosis as biological targets is reported. Supported by molecular modelling studies we demonstrate that the position of the fluorescence label on ATP has a strong influence on the binding to human HSP70. Importantly, the label has to be positioned on the adenine ring and not to the terminal phosphate group. Unlabelled ATP displaced bound Cy5-ATP from HSP70 in the micromolar range. The affinity of a well-known HSP70 inhibitor VER155008 for the ATP binding site in HSP70 was determined, with a EC 50 in the micromolar range, whereas reblastin, a HSP90-inhibitor, did not compete for ATP in the presence of HSP70. The applicability of the method was demonstrated by screening a small compound library of natural products. This unraveled that terphenyls rickenyl A and D, recently isolated from cultures of the fungus Hypoxylon rickii, are inhibitors of HSP70. They compete with ATP for the chaperone in the range of 29 µM (Rickenyl D) and 49 µM (Rickenyl A). Furthermore, the microarray-based test system enabled protein-protein interaction analysis using full-length HSP70 and HSP90 proteins. The labelled full-length human HSP90 binds with a half-maximal affinity of 5.5 µg/ml (∼40 µM) to HSP70. The data also demonstrate that the microarray test has potency for many applications from inhibitor screening to target-oriented interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides

    Science.gov (United States)

    Jia, Haibo; Halilou, Amadou I.; Hu, Liang; Cai, Wenqian; Liu, Jing; Huang, Bo

    2011-01-01

    Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule. PMID:21969171

  15. Induction of hsp70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile fish, Oreochromis niloticus.

    Science.gov (United States)

    Hassanein, H M; Banhawy, M A; Soliman, F M; Abdel-Rehim, S A; Müller, W E; Schröder, H C

    1999-07-01

    This paper deals with the expression of the biomarker hsp70 in the liver and kidney of the freshwater fish Oreochromis niloticus following exposure to the herbicide oxyfluorfen (Goal). Fishes were exposed to three concentrations, the 96-h LC50 (3 mg/L), the 96-h (1/2)LC50 (1.5 mg/L), and the 96-h (1/4)LC50 (0.75 mg/L) of oxyfluorfen for 6, 15, and 24 days, respectively, and samples were taken at three different time periods for each concentration. The livers responded to the herbicide by an induction of the expression of both the constitutive (hsp75; Mr 75 kDa) and the inducible (hsp73; Mr 73 kDa) hsp70 proteins. In kidney, the herbicide induced a time-dependent increase in the expression of the constitutive hsp70 (hsp75) as well, but the inducible hsp70 (hsp73) required much longer incubation periods to reach maximal levels (15 and 24 days). Our results suggest that expression of hsp70 in fish is a sensitive indicator of cellular responses to herbicide exposure in the aquatic environment.

  16. HSP60 may predict good pathological response to neoadjuvant chemoradiotherapy in bladder cancer

    International Nuclear Information System (INIS)

    Urushibara, Masayasu; Kageyama, Yukio; Akashi, Takumi; Otsuka, Yukihiro; Takizawa, Touichiro; Koike, Morio; Kihara, Kazunori

    2007-01-01

    Heat shock proteins (HSPs) play crucial roles in cellular responses to stressful conditions. Expression of HSPs in invasive or high-risk superficial bladder cancer was investigated to identify whether HSPs predict pathological response to neoadjuvant chemoradiotherapy (CRT). Immunohistochemistry was used to assess expression levels of HSP27, HSP60, HSP70, HSP90 and p53 in 54 patients with invasive or high-risk superficial bladder cancer, prior to low-dose neoadjuvant CRT, followed by radical or partial cystectomy. Patients were classified into two groups (good or poor responders) depending on pathological response to CRT, which was defined as the proportion of morphological therapeutic changes in surgical specimens. Good responders showed morphological therapeutic changes in two-thirds or more of tumor tissues. In contrast, poor responders showed changes in less than two-thirds of tumor tissues. Using a multivariate analysis, positive HSP60 expression prior to CRT was found to be marginally associated with good pathological response to CRT (P=0.0564). None of clinicopathological factors was associated with HSP60 expression level. In the good pathological responders, the 5-year cause-specific survival was 88%, which was significantly better than survival in the poor responders (51%) (P=0.0373). Positive HSP60 expression prior to CRT may predict good pathological response to low-dose neoadjuvant CRT in invasive or high-risk superficial bladder cancer. (author)

  17. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Norie [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Kamiguchi, Kenjiro; Nakanishi, Katsuya; Sokolovskya, Alice; Hirohashi, Yoshihiko; Tamura, Yasuaki; Murai, Aiko; Yamamoto, Eri; Kanaseki, Takayuki; Tsukahara, Tomohide; Kochin, Vitaly [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Chiba, Susumu [Department of Neurology, Clinical Brain Research Laboratory, Toyokura Memorial Hall, Sapporo Yamano-ue Hospital (Japan); Shimohama, Shun [Department of Neurology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Sato, Noriyuki [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan); Torigoe, Toshihiko, E-mail: torigoe@sapmed.ac.jp [Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556 (Japan)

    2016-06-10

    Polyglutamine (polyQ) diseases comprise neurodegenerative disorders caused by expression of expanded polyQ-containing proteins. The cytotoxicity of the expanded polyQ-containing proteins is closely associated with aggregate formation. In this study, we report that a novel J-protein, DNAJ (HSP40) Homolog, Subfamily C, Member 8 (DNAJC8), suppresses the aggregation of polyQ-containing protein in a cellular model of spinocerebellar ataxia type 3 (SCA3), which is also known as Machado-Joseph disease. Overexpression of DNAJC8 in SH-SY5Y neuroblastoma cells significantly reduced the polyQ aggregation and apoptosis, and DNAJC8 was co-localized with the polyQ aggregation in the cell nucleus. Deletion mutants of DNAJC8 revealed that the C-terminal domain of DNAJC8 was essential for the suppression of polyQ aggregation, whereas the J-domain was dispensable. Furthermore, 22-mer oligopeptide derived from C-termilal domain could suppress the polyQ aggregation. These results indicate that DNAJC8 can suppress the polyQ aggregation via a distinct mechanism independent of HSP70-based chaperone machinery and have a unique protective role against the aggregation of expanded polyQ-containing proteins such as pathogenic ataxin-3 proteins.

  18. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex.

    Science.gov (United States)

    Wu, Rui; Kausar, Hina; Johnson, Paul; Montoya-Durango, Diego E; Merchant, Michael; Rane, Madhavi J

    2007-07-27

    We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.

  19. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently...... reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism......-is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds...

  20. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    2010-08-01

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  1. Investigating hsp Gene Expression in Liver of Channa striatus under Heat Stress for Understanding the Upper Thermal Acclimation

    Directory of Open Access Journals (Sweden)

    Gopal Krishna Purohit

    2014-01-01

    Full Text Available Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C served as control. Channa collected from a hot spring runoff (36°C was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C.

  2. Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): Differential expression under conditions of normal growth and heat-induced stress.

    Science.gov (United States)

    Martín-Folgar, Raquel; de la Fuente, Mercedes; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2015-10-01

    Small heat shock proteins (sHSPs) comprise the most numerous, structurally diverse, and functionally uncharacterized family of heat shock proteins. Several Hsp genes (Hsp 90, 70, 40, and 27) from the insect Chironomus riparius are widely used in aquatic toxicology as biomarkers for environmental toxins. Here, we conducted a comparative study and characterized secondary structure of the six newly identified sHsp genes Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, and Hsp34. A characteristic α-crystallin domain is predicted in all the new proteins. Phylogenetic analysis suggests a strong relation to other sHSPs from insects and interesting evidence regarding evolutionary origin and duplication events. Comparative analysis of transcription profiles for Hsp27, Hsp70, and the six newly identified genes revealed that Hsp17, Hsp21, and Hsp22 are constitutively expressed under normal conditions, while under two different heat shock conditions these genes are either not activated or are even repressed (Hsp22). In contrast, Hsp23, Hsp24, and Hsp34 are significantly activated along with Hsp27 and Hsp70 during heat stress. These results strongly suggest functional differentiation within the small HSP subfamily and provide new data to help understand the coping mechanisms induced by stressful environmental stimuli. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients

    Directory of Open Access Journals (Sweden)

    Zhaobo Li

    2017-06-01

    Full Text Available Inhibition of the ATPase cycle of the HSP90 chaperone promotes ubiquitylation and proteasomal degradation of its client proteins, which include many oncogenic protein kinases. This provides the rationale for HSP90 inhibitors as cancer therapeutics. However, the mechanism by which HSP90 ATPase inhibition triggers ubiquitylation is not understood, and the E3 ubiquitin ligases involved are largely unknown. Using a siRNA screen, we have identified components of two independent degradation pathways for the HSP90 client kinase CRAF. The first requires CUL5, Elongin B, and Elongin C, while the second requires the E3 ligase HECTD3, which is also involved in the degradation of MASTL and LKB1. HECTD3 associates with HSP90 and CRAF in cells via its N-terminal DOC domain, which is mutationally disrupted in tumor cells with activated MAP kinase signaling. Our data implicate HECTD3 as a tumor suppressor modulating the activity of this important oncogenic signaling pathway.

  4. Hsp90 as a Gatekeeper of Tumor Angiogenesis: Clinical Promise and Potential Pitfalls

    Directory of Open Access Journals (Sweden)

    J. E. Bohonowych

    2010-01-01

    Full Text Available Tumor vascularization is an essential modulator of early tumor growth, progression, and therapeutic outcome. Although antiangiogenic treatments appear promising, intrinsic and acquired tumor resistance contributes to treatment failure. Clinical inhibition of the molecular chaperone heat shock protein 90 (Hsp90 provides an opportunity to target multiple aspects of this signaling resiliency, which may elicit more robust and enduring tumor repression relative to effects elicited by specifically targeted agents. This review highlights several primary effectors of angiogenesis modulated by Hsp90 and describes the clinical challenges posed by the redundant circuitry of these pathways. The four main topics addressed include (1 Hsp90-mediated regulation of HIF/VEGF signaling, (2 chaperone-dependent regulation of HIF-independent VEGF-mediated angiogenesis, (3 Hsp90-dependent targeting of key proangiogenic receptor tyrosine kinases and modulation of drug resistance, and (4 consideration of factors such as tumor microenvironment that pose several challenges for the clinical efficacy of anti-angiogenic therapy and Hsp90-targeted strategies.

  5. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.

    Science.gov (United States)

    Sattin, Sara; Tao, Jiahui; Vettoretti, Gerolamo; Moroni, Elisabetta; Pennati, Marzia; Lopergolo, Alessia; Morelli, Laura; Bugatti, Antonella; Zuehlke, Abbey; Moses, Mike; Prince, Thomas; Kijima, Toshiki; Beebe, Kristin; Rusnati, Marco; Neckers, Len; Zaffaroni, Nadia; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2015-09-21

    Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increased HSF activation in muscles with a high constitutive Hsp70 expression

    OpenAIRE

    Locke, Marius; Tanguay, Robert M.

    1996-01-01

    Stress-induced transcriptional regulation of the Hsps is mediated by trimerization and binding of a pre-existing heat shock transcription factor (HSF1) to a specific DNA sequence located in the 5′ region of hsp genes, known as the heat shock element. Hsp70 has been implicated in regulating the activation of the HSF and, according to cell culture models, high steady-state levels of Hsp70 are inversely correlated with HSF activation. To determine if this applies in an intact animal, muscles of ...

  7. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs.

    Science.gov (United States)

    Winkler, Ingrid G; Sims, Natalie A; Pettit, Allison R; Barbier, Valérie; Nowlan, Bianca; Helwani, Falak; Poulton, Ingrid J; van Rooijen, Nico; Alexander, Kylie A; Raggatt, Liza J; Lévesque, Jean-Pierre

    2010-12-02

    In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.

  8. Conserved structure and expression of hsp70 paralogs in teleost fishes

    DEFF Research Database (Denmark)

    Metzger, David C.H.; Hansen, Jakob Hemmer; Schulte, Patricia M.

    2016-01-01

    present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between...

  9. Heat Shock Protein 90 (HSP90 and Her2 in Adenocarcinomas of the Esophagus

    Directory of Open Access Journals (Sweden)

    Julia Slotta-Huspenina

    2014-06-01

    Full Text Available Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39 tumors (30.7% were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008. This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001. Her2-status was associated withpT-category (p = 0.041, lymph node metastases (p = 0.049 and tumor differentiation (p = 0.036 with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014. For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.

  10. Heat Shock Protein 90 (HSP90) and Her2 in Adenocarcinomas of the Esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Slotta-Huspenina, Julia; Becker, Karl-Friedrich [Institute of Pathology, Technische Universität München, München 81765 (Germany); Feith, Marcus [Department of Surgery, Klinikum Rechts der Isar der Technischen Universität München, München 81622 (Germany); Walch, Axel [Institute of Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg 85764 (Germany); Langer, Rupert, E-mail: rupert.langer@pathology.unibe.ch [Institute of Pathology, University of Bern, Bern 3010 (Switzerland)

    2014-06-27

    Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39) tumors (30.7%) were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008). This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001). Her2-status was associated withpT-category (p = 0.041), lymph node metastases (p = 0.049) and tumor differentiation (p = 0.036) with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014). For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.

  11. Active participation of Hsp90 in the biogenesis of the trimeric reovirus cell attachment protein sigma1.

    Science.gov (United States)

    Gilmore, R; Coffey, M C; Lee, P W

    1998-06-12

    The reovirus cell attachment protein, sigma1, is a lollipop-shaped homotrimer with an N-terminal fibrous tail and a C-terminal globular head. Biogenesis of this protein involves two trimerization events: N-terminal trimerization, which occurs cotranslationally and is Hsp70/ATP-independent, and C-terminal trimerization, which occurs posttranslationally and is Hsp70/ATP-dependent. To determine if Hsp90 also plays a role in sigma1 biogenesis, we analyzed sigma1 synthesized in rabbit reticulocyte lysate. Coprecipitation experiments using anti-Hsp90 antibodies revealed that Hsp90 was associated with immature sigma1 trimers (hydra-like intermediates with assembled N termini and unassembled C termini) but not with mature trimers. The use of truncated sigma1 further demonstrated that only the C-terminal half of sigma1 associated with Hsp90. In the presence of the Hsp90 binding drug geldanamycin, N-terminal trimerization proceeded normally, but C-terminal trimerization was blocked. Geldanamycin did not inhibit the association of Hsp90 with sigma 1 but prevented the subsequent release of Hsp90 from the immature sigma1 complex. We also examined the status of p23, an Hsp90-associated cochaperone. Like Hsp90, p23 only associated with immature sigma1 trimers, and this association was mapped to the C-terminal half of sigma1. However, unlike Hsp90, p23 was released from the sigma1 complex upon the addition of geldanamycin. These results highlight an all-or-none concept of chaperone involvement in different oligomerization domains within a single protein and suggest a possible common usage of chaperones in the regulation of general protein folding and of steroid receptor activation.

  12. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Flynn, J.C.; Kong, Y.C.

    1991-01-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT

  13. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: akys@mail.ecc.u-tokyo.ac.jp [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  14. HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells

    Directory of Open Access Journals (Sweden)

    Kube Dieter

    2009-07-01

    Full Text Available Abstract In classical Hodgkin lymphoma (cHL chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90 in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks. RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation.

  15. Preliminary X-Ray Crystallographic Studies of the N-Terminal Domains of Hsp104 from Yeast Candida albicans and Saccharomyces cerevisiae

    Science.gov (United States)

    Wang, P.; Li, J.; Sha, B.

    2017-12-01

    Yeast Hsp104 is an ATP-dependent molecular chaperone, which can solublize and rescue denatured proteins from aggregates into active form by cooperating with Hsp70 and Hsp40 chaperones. Moreover, overexpression of Hsp104 of Saccharomyces cerevisiae (ScHsp104) cures the yeast [ PSI +] prion due to the completely dissolution of the prion seeds, demonstrating ScHsp104's potential to clear amyloid-like protein aggregates, thus making ScHsp104 a promising medication approach for human amyloidogenic neurodegenerative diseases. Because the working mechanisms for ScHsp104's activities have not been clearly elucidated yet, crystallographic determination of ScHsp104 stands for great significance. Here, the expression, purification and crystallization of the N-terminal domains of Hsp104 from yeast Candida albicans (CaHsp104N) and S. cerevisiae (ScHsp104N) are described. The CaHsp104N crystals diffracted to 1.54 Å and belonged to the sp. gr. P3221 or P3121, with unit cell parameters of a = 55.213 Å, c = 109.451 Å. The data of the ScHsp104N crystals were collected to the resolution of 2.53 Å in the sp. gr. C2, with unit cell parameters a = 148.587 Å, b = 66.255 Å, c = 74.577 Å, β = 107.369°. The phase of ScHsp104N is determined by the molecular replacement method using CaHsp104N as the search model.

  16. In Vivo Detection of HSP90 Identifies Breast Cancers with Aggressive Behavior.

    Science.gov (United States)

    Osada, Takuya; Kaneko, Kensuke; Gwin, William R; Morse, Michael A; Hobeika, Amy; Pogue, Brian W; Hartman, Zachary C; Hughes, Philip F; Haystead, Timothy; Lyerly, H Kim

    2017-12-15

    Purpose: Hsp90, a chaperone to numerous molecular pathways in malignant cells, is elevated in aggressive breast cancers. We hypothesized that identifying breast cells with elevated Hsp90 activity in situ could result in early detection of aggressive breast cancers. Experimental Design: We exploited the uptake of an Hsp90 inhibitor by malignant cells to create an imaging probe (HS131) of Hsp90 activity by linking it to a near-infrared (nIR) dye. HS131 uptake into cells correlated with cell membrane expression of Hsp90 and was used to image molecular subtypes of murine and human breast cancers in vitro and in murine models. Results: HS131 imaging was both sensitive and specific in detecting the murine 4T1 breast cancer cell line, as well as subclones with differing metastatic potential. Highly metastatic subclones (4T07) had high HS131 uptake, but subclones with lower metastatic potential (67NR, 168FARN) had low HS131 uptake. We generated isogenic cell lines to demonstrate that overexpression of a variety of specific oncogenes resulted in high HS131 uptake and retention. Finally, we demonstrated that HS131 could be used to detect spontaneous tumors in MMTV-neu mice, as well as primary and metastatic human breast cancer xenografts. HS131 could image invasive lobular breast cancer, a histologic subtype of breast cancer which is often undetectable by mammography. Conclusions: An HSP90-targeting nIR probe is sensitive and specific in imaging all molecular subtypes of murine and human breast cancer, with higher uptake in aggressive and highly metastatic clones. Clinical studies with Hsp90-targeting nIR probes will be initiated shortly. Clin Cancer Res; 23(24); 7531-42. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Administration of M. leprae Hsp65 interferes with the murine lupus progression.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K(409A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F(1 mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F(1 serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K(409A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K(409A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process.

  18. Identification of the plant compound geraniin as a novel Hsp90 inhibitor.

    Directory of Open Access Journals (Sweden)

    Antonio Vassallo

    Full Text Available Besides its function in normal cellular growth, the molecular chaperone heat shock protein 90 (Hsp90 binds to a large number of client proteins required for promoting cancer cell growth and/or survival. In an effort to discover new small molecules able to inhibit the Hsp90 ATPase and chaperoning activities, we screened, by a surface plasmon resonance assay, a small library including different plant polyphenols. The ellagitannin geraniin, was identified as the most promising molecule, showing a binding affinity to Hsp90α similar to that of 17-(allylamino-17-demethoxygeldanamycin (17AGG. Geraniin was able to inhibit in vitro the Hsp90α ATPase activity in a dose-dependent manner, with an inhibitory efficiency comparable to that measured for 17-AAG. In addition, this compound compromised the chaperone activity of Hsp90α, monitored by the citrate synthase thermal induced aggregation assay. Geraniin decreased the viability of HeLa and Jurkat cell lines and caused an arrest in G2/M phase. We also proved that following exposure to different concentrations of geraniin, the level of expression of the client proteins c-Raf, pAkt, and EGFR was strongly down-regulated in both the cell lines. These results, along with the finding that geraniin did not exert any appreciable cytotoxicity on normal cells, encourage further studies on this compound as a promising chemical scaffold for the design of new Hsp90 inhibitors.

  19. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Ray, Sougata Sinha; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18. PMID:26098662

  20. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Sinha Ray, Sougata; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.

  1. Association of HSP70 and its co-chaperones with Alzheimer's disease

    NARCIS (Netherlands)

    L. Broer (Linda); M.A. Ikram (Arfan); M. Schuur (Maaike); A.L. DeStefano (Anita); J.C. Bis (Joshua); F. Liu (Fan); F. Rivadeneira Ramirez (Fernando); A.G. Uitterlinden (André); A. Beiser (Alexa); W.T. Longstreth Jr; A. Hofman (Albert); Y.S. Aulchenko (Yurii); S. Seshadri (Sudha); A.L. Fitzpatrick (Annette); B.A. Oostra (Ben); M.M.B. Breteler (Monique); P. Tikka-Kleemola (Päivi)

    2011-01-01

    textabstractThe heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer's disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected

  2. Cloning and Expression of HSP of Taenia Solium Oncosphere%猪带绦虫六钩蚴 HSP 的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    王哲; 赵权

    2013-01-01

      The HSP gene was separately amplified from total RNA of activated Taenia solium oncosphere by RT -PCR.The PCR products were cloned into pGH vector,recombinant positive clones was sequenced after restriction enzyme digestion.The HSP gene was subcloned into pET28a expression vector,the recombinant pET28a-HSP infected into E.coliBL21.IPTG was added to induce fusion expression and the expression products was identified by SDS-PAGE and Western-blot.One fusion protein band about 35 kDa was identified by SDS -PAGE after inducible expression after inducible expression,The result would lay foundations for the mechanism of invasion of between oncosphere and host,and the design of new vaccine anti-porcine cysticercosis and taeniasis.%  提取猪带绦虫激活和未激活六钩蚴总 RNA,RT-PCR 扩增 HSP 目的基因,将目的基因与 pGH 克隆载体连接,经酶切鉴定后,将阳性重组质粒进行测序,结果扩增出激活的六钩蚴的目的片段。将目的基因亚克隆到原核表达载体 pET-28a-HSP中,并将获得的 pET28a-HSP 阳性重组子转化至宿主菌 E.coliBL21,IPTG 进行诱导表达,并对重组抗原 pET-28a-HSP 进行SDS-PAGE 和 Western-blot 检测。结果表明重组经 SDS-PAGE 分析可见一条约35 kDa 大小的融合蛋白条带的抗原,Western-blot 结果显示其能被囊虫病人阳性血清识别。这将为进一步阐明六钩蚴入侵中间宿主的机理、设计新型抗猪囊虫病和绦虫病疫苗打下基础。

  3. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish.

    Science.gov (United States)

    Rohner, Nicolas; Jarosz, Dan F; Kowalko, Johanna E; Yoshizawa, Masato; Jeffery, William R; Borowsky, Richard L; Lindquist, Susan; Tabin, Clifford J

    2013-12-13

    In the process of morphological evolution, the extent to which cryptic, preexisting variation provides a substrate for natural selection has been controversial. We provide evidence that heat shock protein 90 (HSP90) phenotypically masks standing eye-size variation in surface populations of the cavefish Astyanax mexicanus. This variation is exposed by HSP90 inhibition and can be selected for, ultimately yielding a reduced-eye phenotype even in the presence of full HSP90 activity. Raising surface fish under conditions found in caves taxes the HSP90 system, unmasking the same phenotypic variation as does direct inhibition of HSP90. These results suggest that cryptic variation played a role in the evolution of eye loss in cavefish and provide the first evidence for HSP90 as a capacitor for morphological evolution in a natural setting.

  4. The Exported Chaperone PfHsp70x Is Dispensable for the Plasmodium falciparum Intraerythrocytic Life Cycle.

    Science.gov (United States)

    Cobb, David W; Florentin, Anat; Fierro, Manuel A; Krakowiak, Michelle; Moore, Julie M; Muralidharan, Vasant

    2017-01-01

    Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum . IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is

  5. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  6. Heat shock protein 90 (Hsp90) chaperone complex. A molecular target for enhancement of thermosensitivity and radiosensitivity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Kitamoto, Yoshizumi; Sakurai, Hideyuki

    2002-01-01

    Heat shock protein 90 (Hsp90) is a highly conserved heat shock protein in animal and plants, and exists abundantly in the cytoplasm in unstressed condition, accounting for 1-2% in cytoplasmic proteins. Main difference of Hsp90 from other Hsps are its substrate that Hsp90 binds to. These substrates include various signal transduction proteins, kinase, steroid receptors and transcription factors, therefore, Hsp90 plays a key role in maintaining cellular signal transduction networks. Many chaperoned proteins (client proteins) of Hsp90 are associated with cellular proliferation or malignant transformation, thus Hsp90 chaperone complex has been focused as targets for cancer therapy. Among the client proteins, there are several molecules that have been defined as targets or factors for determination or enhancement of radiosensitivity or thermosensitivity. Thus, it is easily speculated that Hsp90 chaperone complex inhibitors that disrupt association of Hsp90 and client protein in combination with radiation or/and heat has potential effect on enhancement of radiosensitivity or thermosensitivity. In this paper, possible mechanisms in enhancing radiosensitivity or thermosensitivity according to the client proteins will be summarized. (author)

  7. Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65

    International Nuclear Information System (INIS)

    Shen Jianying; Hisaeda, Hajime; Chou Bin; Yu Qingsheng; Tu Liping; Himeno, Kunisuke

    2008-01-01

    The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8 + T cells. In this study, we exploited UPS to induce CD8 + T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against challenge with the syngeneic B16F1 melanoma cells transfected with the mHSP65 gene (HSP65/B16F1), compared with those immunized with DNA encoding only mHSP65. Splenocytes from the former group of mice showed a higher grade of cytotoxic activity against HSP65/B16F1 cells and contained a larger number of granzyme B- or IFN-γ-producing CD8 + T cells compared with those from the latter group of mice

  8. Plasmodial Hsp70s are functionally adapted to the malaria parasite life cycle

    Directory of Open Access Journals (Sweden)

    Jude M Przyborski

    2015-06-01

    Full Text Available The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s, some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.

  9. Quantitative analysis of the interplay between hsc70 and its co-chaperone HspBP1

    Directory of Open Access Journals (Sweden)

    Hicham Mahboubi

    2015-12-01

    Full Text Available Background. Chaperones and their co-factors are components of a cellular network; they collaborate to maintain proteostasis under normal and harmful conditions. In particular, hsp70 family members and their co-chaperones are essential to repair damaged proteins. Co-chaperones are present in different subcellular compartments, where they modulate chaperone activities.Methods and Results. Our studies assessed the relationship between hsc70 and its co-factor HspBP1 in human cancer cells. HspBP1 promotes nucleotide exchange on hsc70, but has also chaperone-independent functions. We characterized the interplay between hsc70 and HspBP1 by quantitative confocal microscopy combined with automated image analyses and statistical evaluation. Stress and the recovery from insult changed significantly the subcellular distribution of hsc70, but had little effect on HspBP1. Single-cell measurements and regression analysis revealed that the links between the chaperone and its co-factor relied on (i the physiological state of the cell and (ii the subcellular compartment. As such, we identified a linear relationship and strong correlation between hsc70 and HspBP1 distribution in control and heat-shocked cells; this correlation changed in a compartment-specific fashion during the recovery from stress. Furthermore, we uncovered significant stress-induced changes in the colocalization between hsc70 and HspBP1 in the nucleus and cytoplasm.Discussion. Our quantitative approach defined novel properties of the co-chaperone HspBP1 as they relate to its interplay with hsc70. We propose that changes in cell physiology promote chaperone redistribution and thereby stimulate chaperone-independent functions of HspBP1.

  10. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress.

    Science.gov (United States)

    Zhao, Peng; Wang, Dongdong; Wang, Ruoqiu; Kong, Nana; Zhang, Chao; Yang, Chenghui; Wu, Wentao; Ma, Haoli; Chen, Qin

    2018-01-18

    Heat shock proteins (Hsps) are essential components in plant tolerance mechanism under various abiotic stresses. Hsp20 is the major family of heat shock proteins, but little of Hsp20 family is known in potato (Solanum tuberosum), which is an important vegetable crop that is thermosensitive. To reveal the mechanisms of potato Hsp20s coping with abiotic stresses, analyses of the potato Hsp20 gene family were conducted using bioinformatics-based methods. In total, 48 putative potato Hsp20 genes (StHsp20s) were identified and named according to their chromosomal locations. A sequence analysis revealed that most StHsp20 genes (89.6%) possessed no, or only one, intron. A phylogenetic analysis indicated that all of the StHsp20 genes, except 10, were grouped into 12 subfamilies. The 48 StHsp20 genes were randomly distributed on 12 chromosomes. Nineteen tandem duplicated StHsp20s and one pair of segmental duplicated genes (StHsp20-15 and StHsp20-48) were identified. A cis-element analysis inferred that StHsp20s, except for StHsp20-41, possessed at least one stress response cis-element. A heatmap of the StHsp20 gene family showed that the genes, except for StHsp20-2 and StHsp20-45, were expressed in various tissues and organs. Real-time quantitative PCR was used to detect the expression level of StHsp20 genes and demonstrated that the genes responded to multiple abiotic stresses, such as heat, salt or drought stress. The relative expression levels of 14 StHsp20 genes (StHsp20-4, 6, 7, 9, 20, 21, 33, 34, 35, 37, 41, 43, 44 and 46) were significantly up-regulated (more than 100-fold) under heat stress. These results provide valuable information for clarifying the evolutionary relationship of the StHsp20 family and in aiding functional characterization of StHsp20 genes in further research.

  11. Hsp90 inhibitors reduce influenza virus replication in cell culture

    International Nuclear Information System (INIS)

    Chase, Geoffrey; Deng, Tao; Fodor, Ervin; Leung, B.W.; Mayer, Daniel; Schwemmle, Martin; Brownlee, George

    2008-01-01

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses

  12. Robust immunoreactivity of teenager sera against peptide 19 from Porphyromonas gingivalis HSP60

    OpenAIRE

    Kwon, Eun-Young; Cha, Gil Sun; Joo, Ji-Young; Lee, Ju-Youn; Choi, Jeomil

    2017-01-01

    Purpose Epitope spreading is a phenomenon in which distinct subdominant epitopes become major targets of the immune response. Heat shock protein (HSP) 60 from Porphyromonas gingivalis (PgHSP60) and peptide 19 from PgHSP60 (Pep19) are immunodominant epitopes in autoimmune disease patients, including those with periodontitis. It remains unclear whether Pep19 is a dominant epitope in subjects without periodontitis or autoimmune disease. The purpose of this study was to determine the epitope spre...

  13. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    Science.gov (United States)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  14. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Directory of Open Access Journals (Sweden)

    Alexandra Silva

    Full Text Available Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90 chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  15. Heat shock protein expression in canine malignant mammary tumours

    International Nuclear Information System (INIS)

    Romanucci, Mariarita; Marinelli, Alessia; Sarli, Giuseppe; Salda, Leonardo Della

    2006-01-01

    Abnormal levels of Heat Shock Proteins (HSPs) have been observed in many human neoplasms including breast cancer and it has been demonstrated that they have both prognostic and therapeutic implications. In this study, we evaluated immunohistochemical expression of HSPs in normal and neoplastic canine mammary glands and confronted these results with overall survival (OS), in order to understand the role of HSPs in carcinogenesis and to establish their potential prognostic and/or therapeutic value. Immunohistochemical expression of Hsp27, Hsp72, Hsp73 and Hsp90 was evaluated in 3 normal canine mammary glands and 30 malignant mammary tumours (10 in situ carcinomas, 10 invasive carcinomas limited to local structures without identifiable invasion of blood or lymphatic vessels, 10 carcinomas with invasion of blood or lymphatic vessels and/or metastases to regional lymph nodes). A semi-quantitative method was used for the analysis of the results. Widespread constitutive expression of Hsp73 and Hsp90 was detected in normal tissue, Hsp72 appeared to be focally distributed and Hsp27 showed a negative to rare weak immunostaining. In mammary tumours, a significant increase in Hsp27 (P < 0.01), Hsp72 (P < 0.05) and Hsp90 (P < 0.01) expression was observed as well as a significant reduction in Hsp73 (P < 0.01) immunoreactivity compared to normal mammary gland tissue. Hsp27 demonstrated a strong positivity in infiltrating tumour cells and metaplastic squamous elements of invasive groups. High Hsp27 expression also appeared to be significantly correlated to a shorter OS (P = 0.00087). Intense immunolabelling of Hsp72 and Hsp73 was frequently detected in infiltrative or inflammatory tumour areas. Hsp90 expression was high in all tumours and, like Hsp73, it also showed an intense positivity in lymphatic emboli. These results suggest that Hsp27, Hsp72 and Hsp90 are involved in canine mammary gland carcinogenesis. In addition, Hsp27 appears to be implicated in tumour invasiveness and

  16. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death.

    Science.gov (United States)

    Sellier, Chantal; Campanari, Maria-Letizia; Julie Corbier, Camille; Gaucherot, Angeline; Kolb-Cheynel, Isabelle; Oulad-Abdelghani, Mustapha; Ruffenach, Frank; Page, Adeline; Ciura, Sorana; Kabashi, Edor; Charlet-Berguerand, Nicolas

    2016-06-15

    An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD. © 2016 The Authors.

  17. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    Science.gov (United States)

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments. 2010 Elsevier Inc. All rights reserved.

  18. B7-2 expressed on EL4 lymphoma suppresses antitumor immunity by an interleukin 4-dependent mechanism.

    Science.gov (United States)

    Stremmel, C; Greenfield, E A; Howard, E; Freeman, G J; Kuchroo, V K

    1999-03-15

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the "second signal" pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4-B7-1 cells are completely rejected in syngeneic mice. Unlike EL4-B7-1 cells, we find that EL4-B7-2 cells are not rejected but progressively grow in the mice. A B7-1- and B7-2-EL4 double transfectant was generated by introducing B7-2 cDNA into the EL4-B7-1 tumor line that regressed in vivo. The EL4-B7-1+B7-2 double transfectant was not rejected when implanted into syngeneic mice but progressively grew to produce tumors. The double transfectant EL4 cells could costimulate T cell proliferation that could be blocked by anti-B7-1 antibodies, anti-B7-2 antibodies, or hCTLA4 immunoglobulin, showing that the B7-1 and B7-2 molecules expressed on the EL4 cells were functional. In vivo, treatment of mice implanted with double-transfected EL4 cells with anti-B7-2 monoclonal antibody resulted in tumor rejection. Furthermore, the EL4-B7-2 and EL4-B7-1+B7-2 cells, but not the wild-type EL4 cells, were rejected in interleukin 4 (IL-4) knockout mice. Our data suggests that B7-2 expressed on some T cell tumors inhibits development of antitumor immunity, and IL-4 appears to play a critical role in abrogation of the antitumor immune response.

  19. Vitamin A-coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis in chronic graft-versus-host disease.

    Science.gov (United States)

    Yamakawa, Tomohiro; Ohigashi, Hiroyuki; Hashimoto, Daigo; Hayase, Eiko; Takahashi, Shuichiro; Miyazaki, Miyono; Minomi, Kenjiro; Onozawa, Masahiro; Niitsu, Yoshiro; Teshima, Takanori

    2018-03-29

    Chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (SCT) is characterized by multiorgan fibrosis and profoundly affects the quality of life of transplant survivors. Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, plays a critical role in collagen synthesis in myofibroblasts. We explored the role of HSP47 in the fibrotic process of cutaneous chronic GVHD in mice. Immunohistochemical analysis showed massive fibrosis with elevated amounts of collagen deposits and accumulation of F4/80 + macrophages, as well as myofibroblasts expressing HSP47 and retinol-binding protein 1 in the skin after allogeneic SCT. Repeated injection of anti-colony-stimulating factor (CSF-1) receptor-blocking antibodies significantly reduced HSP47 + myofibroblasts in the skin, indicating a macrophage-dependent accumulation of myofibroblasts. Vitamin A-coupled liposomes carrying HSP47 small interfering RNA (siRNA) (VA-lip HSP47) delivered HSP47 siRNA to cells expressing vitamin A receptors and knocked down their HSP47 in vitro. Intravenously injected VA-lip HSP47 were specifically distributed to skin fibrotic lesions and did not affect collagen synthesis in healthy skin. VA-lip HSP47 knocked down HSP47 expression in myofibroblasts and significantly reduced collagen deposition without inducing systemic immunosuppression. It also abrogated fibrosis in the salivary glands. These results highlight a cascade of fibrosis in chronic GVHD; macrophage production of transforming growth factor β mediates fibroblast differentiation to HSP47 + myofibroblasts that produce collagen. VA-lip HSP47 represent a novel strategy to modulate fibrosis in chronic GVHD by targeting HSP47 + myofibroblasts without inducing immunosuppression. © 2018 by The American Society of Hematology.

  20. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    Science.gov (United States)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P goats.

  1. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  2. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  3. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    International Nuclear Information System (INIS)

    McCready, Jessica; Wong, Daniel S.; Burlison, Joseph A.; Ying, Weiwen; Jay, Daniel G.

    2014-01-01

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion

  4. HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures

    DEFF Research Database (Denmark)

    Karl, I.; Sørensen, Jesper Givskov; Loeschcke, Volker

    2009-01-01

    temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low-altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high-altitude butterflies showed much less plasticity...... in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high-altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction......The ability to express heat-shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction...

  5. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.

    Science.gov (United States)

    Takahashi, Kazuo H

    2017-02-01

    Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.

  6. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants.

    Science.gov (United States)

    Iki, Taichiro; Yoshikawa, Manabu; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-01-18

    Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.

  7. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  8. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians☆

    Science.gov (United States)

    Arisue, Nobuko; Sánchez, Lidya B.; Weiss, Louis M.; Müller, Miklós; Hashimoto, Tetsuo

    2011-01-01

    Genes encoding putative mitochondrial-type heat shock protein 70 (mit-hsp70) were isolated and sequenced from amitochondriate protists, Giardia intestinalis, Entamoeba histolytica, and two microsporidians, Encephalitozoon hellem and Glugea plecoglossi. The deduced mit-hsp70 sequences were analyzed by sequence alignments and phylogenetic reconstructions. The mit-hsp70 sequence of these four amitochondriate protists were divergent from other mit-hsp70 sequences of mitochondriate eukaryotes. However, all of these sequences were clearly located within a eukaryotic mitochondrial clade in the tree including various type hsp70 sequences, supporting the emerging notion that none of these amitochondriate lineages are primitively amitochodrial, but lost their mitochondria secondarily in their evolutionary past. PMID:11880223

  9. The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing

    International Nuclear Information System (INIS)

    Song, Xiaomin; Luo, Yongzhang

    2010-01-01

    Research highlights: → Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90α secretion from endothelial cells. → Secreted Hsp90α localizes on the leading edge of activated endothelial cells. → Secreted Hsp90α promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.

  10. The regulatory mechanism of Hsp90{alpha} secretion from endothelial cells and its role in angiogenesis during wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaomin [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Luo, Yongzhang, E-mail: yluo@tsinghua.edu.cn [National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084 (China); Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084 (China)

    2010-07-16

    Research highlights: {yields} Growth factors such as bFGF, VEGF, PDGF and SDF-1 stimulate Hsp90{alpha} secretion from endothelial cells. {yields} Secreted Hsp90{alpha} localizes on the leading edge of activated endothelial cells. {yields} Secreted Hsp90{alpha} promotes angiogenesis in wound healing. -- Abstract: Heat shock protein 90{alpha} (Hsp90{alpha}) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90{alpha} can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90{alpha} from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90{alpha} in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90{alpha} but not Hsp90{beta} is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90{alpha} localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90{alpha} neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90{alpha} localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90{alpha} can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90{alpha} as a stimulator for wound repair.

  11. Hsp60 and p70S6K form a complex in human cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2011-02-01

    Full Text Available Molecular chaperon Hsp60 and protein kinase p70S6K play an important functional role in the regulation of cardiomyocytes vital function or apoptosis. Aim. To study a possibility of in vivo complex formation between Hsp60 and p70S6K in cardiomyocytes. Methods. Co-immunoprecipitation, Western-blot analysis. Results. We have identified in vivo interaction between molecular chaperone Hsp60 and two isoforms of proteinkinase p70S6K in human myocardium, normal and affected by cardiomyopathy. Conclusions. The results obtained suggest a possible participation of molecular chaperon Hsp60 in regulation of p70S6K activity in stressinduced apoptotic signaling pathway in cardiomyocytes.

  12. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  13. A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species

    Directory of Open Access Journals (Sweden)

    Hongliang Zong

    2015-12-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90. Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.

  14. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  15. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    Science.gov (United States)

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera inhabiting thermally contrasting environments

    Directory of Open Access Journals (Sweden)

    Bettencourt Brian R

    2011-03-01

    Full Text Available Abstract Background Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. Results Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. Conclusions The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form

  17. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    International Nuclear Information System (INIS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-01-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as 'biological track detectors' for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3 N 4 window showed a homogenous Hsp70 expression pattern

  18. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Anja [Institute for Experimental Physics II, University of Leipzig (Germany) and Faculty of Biology, Pharmacy and Psychology, University of Leipzig (Germany)]. E-mail: afiedler@uni-leipzig.de; Reinert, Tilo [Institute for Experimental Physics II, University of Leipzig (Germany); Tanner, Judith [Clinic and Polyclinic for Radiation Oncology, University of Halle-Wittenberg (Germany); Butz, Tilman [Institute for Experimental Physics II, University of Leipzig (Germany)

    2007-07-15

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone {gamma}H2AX. Our concern was to test the feasibility of {gamma}H2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as 'biological track detectors' for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of {gamma}H2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si{sub 3}N{sub 4} window showed a homogenous Hsp70 expression pattern.

  19. Cytosine deletion at AP2-box region of HSP70 promoter and its ...

    Indian Academy of Sciences (India)

    of thermotolerance in cells (Leung et al. 1996). ... region of HSP70 significantly affected cellular thermotol- erance ... The double PCR-RFLP using ScrFI confirmed the occur- ... suade of HSP70 on defense of proteins related to respiration.

  20. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  1. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  2. Localization of Hsp27 in the Rat Submandibular Gland Following the Application of Various Surgical Treatments

    International Nuclear Information System (INIS)

    Mizobe, Kenichi; Kawabe, Yoshihiro; Bando, Yasuhiko; Sakiyama, Koji; Araki, Hisao; Amano, Osamu

    2014-01-01

    Salivary glands repair and regenerate following various types of injuries and surgical procedures. However, the tissue responses induced in the contralateral glands have yet to be elucidated in detail. Hsp27, a member of the heat-shock protein (Hsp) family, is strongly expressed in physiological environments, particularly during development. Hsp27 was previously shown to play a role in the regulation of acinar cell proliferation and differentiation in the rat submandibular gland. The present study performed the following surgical treatments on the right submandibular glands of adult rats: 1) duct ligation followed by unligation after one week; 2) partial sialoadenectomy; and 3) total sialoadenectomy. Immunohistochemistry for Hsp27 and Ki67 was performed in the experimental and normal contralateral glands, and localization was histologically and morphometrically analyzed. The results obtained revealed the localization of Hsp27 to the intercalated duct in the submandibular glands of non-treated rats. The expression of Hsp27 was strongly induced in both the uninjured contralateral control glands as well as treated glands of experimental rats regardless of the surgical procedure performed. The number of Hsp27-immunopositive cells increased rapidly following surgery, and subsequently returned to the same level as that in non-treated rats after 4 weeks. However, no marked changes were observed in the number of Ki67-immunopositive proliferating cells. Therefore, the change in the number of Hsp27-immunopositive cells may have contributed to compensatory hypertrophy. The results of the present study indicate that the expression of Hsp27 in the intercalated duct in the submandibular gland may play a role in the differentiation of acinar cells

  3. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  4. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  5. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    International Nuclear Information System (INIS)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-01-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the [ 3 H]thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced [ 3 H]thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% [SD]) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition

  6. A Mycobacterium leprae Hsp65 mutant as a candidate for mitigating lupus aggravation in mice.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F(1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K(409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K(409A pep synthetic peptides, which cover residues 352-371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K(409A+Leader pep or K(409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352-371 region. The number of interactions observed for WT is much higher than for Hsp65 K(409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F(1 mice were inoculated with Hsp60 or K(409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K(409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases.

  7. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis.

    Science.gov (United States)

    Yaghoubi, Atieh; Aryan, Ehsan; Zare, Hosna; Alami, Shadi; Teimourpour, Roghayeh; Meshkat, Zahra

    2016-10-01

    Tuberculosis (TB) is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis) heat shock protein X (hspX) . First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+) and recombinant vector was confirmed. A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. In this study, the cloning vector pcDNA3.1(+), containing a 435-bp hspX fragment of M. tuberculosis , was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  8. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    International Nuclear Information System (INIS)

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-01-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  9. Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio

    International Nuclear Information System (INIS)

    Mao Li; Bryantsev, Anton L.; Chechenova, Maria B.; Shelden, Eric A.

    2005-01-01

    Hsp27 is a small heat shock protein (shsp) regulating stress tolerance and increasingly thought to play roles in tissue homeostasis and differentiation. The zebrafish Danio rerio is an important model for the study of developmental processes, but little is known regarding shsps in this animal. Here, we report the sequence, expression, regulation, and function of a zebrafish protein (zfHsp27) homologous to human Hsp27. zfHsp27 contains three conserved phosphorylatable serines and a cysteine important for regulation of apoptosis, but it lacks much of a C-terminal tail domain and shows low homology in two putative actin interacting domains that are features of mammalian Hsp27. zfHsp27 mRNA is most abundant in adult skeletal muscle and heart and is upregulated during early embryogenesis. zfHsp27 expressed in mammalian fibroblasts was phosphorylated in response to heat stress and anisomycin, and this phosphorylation was prevented by treatment with SB202190, an inhibitor of p38 MAPK. Expression of zfHsp27 and human Hsp27 in mammalian fibroblasts promoted a similar degree of tolerance to heat stress. zfHsp27 fusion proteins entered the nucleus and associated with the cytoskeleton of heat stressed cells in vitro and in zebrafish embryos. These results reveal conservation in regulation and function of mammalian and teleost Hsp27 proteins and define zebrafish as a new model for the study of Hsp27 function

  10. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  11. Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII.

    Science.gov (United States)

    Li, Guannan; Li, Jing; Hao, Rong; Guo, Yan

    2017-08-20

    Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  12. Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl ...

    African Journals Online (AJOL)

    Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. Z Zhichang, Z Wanrong, Y Jinping, Z Jianjun, LZL Xufeng, Y Yang. Abstract. DnaJ (Hsp40), a heat shock protein, is a molecular chaperones responsive to various environmental stress. To analyze the protective role of DnaJ, we obtained ...

  13. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle.

    Science.gov (United States)

    Bharati, Jaya; Dangi, S S; Chouhan, V S; Mishra, S R; Bharti, M K; Verma, V; Shankar, O; Yadav, V P; Das, K; Paul, A; Bag, S; Maurya, V P; Singh, G; Kumar, P; Sarkar, M

    2017-06-01

    Six male Tharparkar cattle aged 2-3 years were selected for the study. The animals were acclimatized in the psychrometric chamber at thermoneutral zone (TNZ) for 15 days and then exposed to 42 °C temperature up to 23 days followed by 12 days of recovery period. Physiological responses were estimated, and peripheral blood mononuclear cells (PBMCs) were isolated at TNZ on day 1, day 5, and day 12; after 6 h of heat stress exposure on day 16 to day 20, day 25, day 30, day 32, day 34, day 36, and day 38; and a recovery period on day 45 and day 50. The PBMCs were cultured to study the effect of thermal challenge on HSP70 messenger RNA (mRNA) expression pattern at different temperature-time combinations. The mRNA and protein expression of HSP70 in PBMCs along with serum extracellular HSP70 (eHSP70) was increased (P cattle and the biphasic expression pattern may be providing a second window of protection during chronic heat stress.

  14. Structure of a new crystal form of human Hsp70 ATPase domain.

    Science.gov (United States)

    Osipiuk, J; Walsh, M A; Freeman, B C; Morimoto, R I; Joachimiak, A

    1999-05-01

    Hsp70 proteins are highly conserved proteins induced by heat shock and other stress conditions. An ATP-binding domain of human Hsp70 protein has been crystallized in two major morphological forms at pH 7.0 in the presence of PEG 8000 and CaCl2. Both crystal forms belong to the orthorhombic space group P212121, but show no resemblance in unit-cell parameters. Analysis of the crystal structures for both forms shows a 1-2 A shift of one of the subdomains of the protein. This conformational change could reflect a 'natural' flexibility of the protein which might be relevant to ATP binding and may facilitate the interaction of other proteins with Hsp70 protein.

  15. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giuliano Siligardi

    2018-01-01

    Full Text Available While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule and an asymmetric complex (Sgt11-Hsp902-Rar11. The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.

  16. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children.

    Science.gov (United States)

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-08-01

    Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness.A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression.HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern.

  17. SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis

    International Nuclear Information System (INIS)

    Yin Hongyan; Wang Hanzhou; Zong Hongliang; Chen Xiaoning; Wang Yanlin; Yun Xiaojing; Wu Yihong; Wang Jiadong; Gu Jianxin

    2006-01-01

    In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90α but also Hsp90β. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90β and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90β and apoptosis

  18. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Atieh Yaghoubi

    2016-10-01

    Full Text Available Background: Tuberculosis (TB is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis heat shock protein X (hspX. Methods: First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+ and recombinant vector was confirmed. Results: A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. Conclusions: In this study, the cloning vector pcDNA3.1(+, containing a 435-bp hspX fragment of M. tuberculosis, was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  19. Caracterización in silico de las proteínas del choque térmico Hsp70 y Hsp90 deBemisia tabaci (Hemiptera: Aleyrodidae y su posible actividad adaptativa

    Directory of Open Access Journals (Sweden)

    Eneida Torres Cabra

    2014-06-01

    Full Text Available La mosca blanca, Bemisia tabaci (Hemiptera: Aleyrodidae es una de las plagas más destructivas e invasivas en el mundo, ataca una gran cantidad de cultivos. Se adapta fácilmente a plantas hospederas y a nuevas regiones geográficas, lo que sugiere el desarrollo de mecanismos de control a daños producidos por factores estresantes. Las proteínas Hsp se expresanen los organismos como mecanismo de defensa, actúan como chaperonas en el correcto ensamblaje de las proteínas. En este estudio se realizó una caracterizaciónin silico de las proteínas Hsp70 y Hsp90 de B. tabaci, secuencias obtenidas de NCBI. La determinaciónde los perfiles de hidrofobicidad, polaridad, accesibilidady flexibilidad se obtuvieron con “ProScale” de ExPASy, el perfil de antigenicidad con JaMBW. La secuencia aminoacídica se analizó con GOR IV y SOPMA y la composición de aminoácidos con ProtParam. Para analizar el peso molecular, índice deinestabilidad, índice alifático y gradiente hidropático,con GRAVY. La estructura terciaria se obtuvo con HHpred, y ESyPred3D. Para validar las estructuras 3D se utilizó Procheck, What_check y errat. Hsp70 y Hsp90 de B. tabaci presentan valores bajos de hidrofobicidady altos de polaridad, flexibilidad y accesibilidad, características que le permiten a las proteínas extender su capacidad como chaperonas. La Hsp70tiene una estructura secundaria compuesta por 41-45% alfa hélices, 30-43% coil y menos del 6% en hoja plegada y la Hsp90 por 52 y 53% hélices, 26-34% coily 6% hoja plegada. Las Hsp juegan un rol importante en los insectos debido a su tamaño y corto ciclo de vida, pues la temperatura influye en su distribución y abundancia.

  20. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; da Silva Fernandes, Rafael; de Souza Pessôa, Gustavo; Raimundo, Ivo Milton; Arruda, Marco Aurélio Zezzi

    2017-08-01

    The efficiency of three different depletion methods to remove the most abundant proteins, enriching those human serum proteins with low abundance is checked to make more efficient the search and discovery of biomarkers. These methods utilize magnetic nanoparticles (MNPs), chemical reagents (sequential application of dithiothreitol and acetonitrile, DTT/ACN), and commercial apparatus based on immunoaffinity (ProteoMiner, PM). The comparison between methods shows significant removal of abundant protein, remaining in the supernatant at concentrations of 4.6±0.2, 3.6±0.1, and 3.3±0.2µgµL -1 (n=3) for MNPs, DTT/ACN and PM respectively, from a total protein content of 54µgµL -1 . Using GeLC-MS/MS analysis, MNPs depletion shows good efficiency in removing high molecular weight proteins (>80kDa). Due to the synergic effect between the reagents DTT and ACN, DTT/ACN-based depletion offers good performance in the depletion of thiol-rich proteins, such as albumin and transferrin (DTT action), as well as of high molecular weight proteins (ACN action). Furthermore, PM equalization confirms its efficiency in concentrating low-abundant proteins, decreasing the dynamic range of protein levels in human serum. Direct comparison between the treatments reveals 72 proteins identified when using MNP depletion (43 of them exclusively by this method), but only 20 proteins using DTT/ACN (seven exclusively by this method). Additionally, after PM treatment 30 proteins were identified, seven exclusively by this method. Thus, MNPs and DTT/ACN depletion can be simple, quick, cheap, and robust alternatives for immunochemistry-based protein depletion, providing a potential strategy in the search for disease biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  2. Plasmodium falciparum Hop (PfHop Interacts with the Hsp70 Chaperone in a Nucleotide-Dependent Fashion and Exhibits Ligand Selectivity.

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    Full Text Available Heat shock proteins (Hsps play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70 is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90 facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop. We previously characterised the Hop protein from Plasmodium falciparum (PfHop. We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we

  3. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    Science.gov (United States)

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. B7-2 Expressed on EL4 Lymphoma Suppresses Antitumor Immunity by an Interleukin 4–dependent Mechanism

    Science.gov (United States)

    Stremmel, C.; Greenfield, E.A.; Howard, E.; Freeman, G.J.; Kuchroo, V.K.

    1999-01-01

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the “second signal” pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4–B7-1 cells are completely rejected in syngeneic mice. Unlike EL4–B7-1 cells, we find that EL4–B7-2 cells are not rejected but progressively grow in the mice. A B7-1– and B7-2–EL4 double transfectant was generated by introducing B7-2 cDNA into the EL4–B7-1 tumor line that regressed in vivo. The EL4–B7-1+B7-2 double transfectant was not rejected when implanted into syngeneic mice but progressively grew to produce tumors. The double transfectant EL4 cells could costimulate T cell proliferation that could be blocked by anti–B7-1 antibodies, anti–B7-2 antibodies, or hCTLA4 immunoglobulin, showing that the B7-1 and B7-2 molecules expressed on the EL4 cells were functional. In vivo, treatment of mice implanted with double-transfected EL4 cells with anti–B7-2 monoclonal antibody resulted in tumor rejection. Furthermore, the EL4–B7-2 and EL4–B7-1+B7-2 cells, but not the wild-type EL4 cells, were rejected in interleukin 4 (IL-4) knockout mice. Our data suggests that B7-2 expressed on some T cell tumors inhibits development of antitumor immunity, and IL-4 appears to play a critical role in abrogation of the antitumor immune response. PMID:10075975

  5. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.

    Science.gov (United States)

    Amorós, M; Estruch, F

    2001-03-01

    Saccharomyces cerevisiae possesses several transcription factors involved in the transcriptional activation of stress-induced genes. Among them, the heat shock factor (Hsf1p) and the zinc finger proteins of the general stress response (Msn2p and Msn4p) have been shown to play a major role in stress protection. Some heat shock protein (HSP) genes contain both heat shock elements (HSEs) and stress response elements (STREs), suggesting the involvement of both transcription factors in their regulation. Analysis of the stress-induced expression of two of these genes, HSP26 and HSP104, reveals that the contribution of Hsf1p and Msn2/4p is different depending on the gene and the stress condition.

  6. The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model.

    Science.gov (United States)

    Xu, Yunze; Zhu, Qi; Chen, Dongning; Shen, Zhoujun; Wang, Weiqing; Ning, Guang; Zhu, Yu

    2015-07-01

    This study aims to investigate the effect of heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in the malignant pheochromocytoma using a xenograft mouse model. Treatment with 17-AAG induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Furthermore, 17-AAG also significantly inhibited the expression of HSP90 and its client proteins. Our results validated HSP90 as an important target in pheochromocytoma and provided rationale for the testing of HSP90 inhibitors as a promising therapeutic agent in the antitumor therapy of pheochromocytoma.

  7. Parametric investigations on the saturation intensity of Coumarin 102 for stimulated emission depletion application.

    Science.gov (United States)

    Qin, H-Y; Zhao, W-X; Zhao, W; Zhang, C; Feng, X-Q; Liu, S-P; Wang, K-G

    2018-04-23

    Stimulated emission depletion (STED) microscopy performed using continuous-wave (CW) lasers has been investigated and developed by Willig et al. (Nature Methods, 2007, 4(11):915) for nearly a decade. Kuang et al. (Review of Scientific Instruments, 2010, 81:053709) developed the CW STED microscopy technique with 405 nm excitation and 532 nm depletion beams. In their research, Coumarin 102 dye was adopted and was found to be depletable. In this study, a parametric investigation of the depletion of Coumarin 102 dye is carried out experimentally. The influence of the excitation and depletion beam intensities and dye concentrations on the depletion efficiency are studied in detail. The results indicate the following: (1) The highest depletion occurs for the 100 μM Coumarin 102 solution, with a 1.4 μW excitation beam and a 115.3 mW depletion beam. (2) The minimum saturation intensity (Is) of STED, that is 13 MW cm -2 , is observed when the Coumarin 102 solution concentration is 10 μM. (3) Is values calculated directly from the depletion power derived with the cross-sectional area due to the full-width-at-half-maximum (FWHM) of the depletion beam show poor accuracy, where Is may be overestimated. Thus, a correction factor for the cross-sectional area is proposed. We also find that Is is not exactly constant for a fixed excitation beam power and dye concentration. This trend indicates that the conventional suppression function η(x)=e- ln (2)ISTED(x)/Is derived from picosecond STED may cause errors in evaluating the depletion process in CW STED microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  8. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    Science.gov (United States)

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  9. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

    Science.gov (United States)

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A

    2015-04-10

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.

    Science.gov (United States)

    Chen, Wei; Su, Hongming; Feng, Lina; Zheng, Xiaodong

    2016-07-01

    Oxidative stress is considered to play a profound role in lipid storage and whole-body energy homeostasis. Inhibition of preadipocytes proliferation by natural products is one of the strategies to prevent obesity. Andrographolide, a small molecule, has been reported to possess versatile bioactivities. However, molecular mechanism underlying the potential effect of andrographolide on preadipocytes proliferation remains obscure. In the present study, 3T3-L1 preadipocytes were employed to determine whether andrographolide could affect the proliferation of preadipocytes. Our results demonstrated andrographolide suppressed 3T3-L1 preadipocytes proliferation. The casual relationship analysis indicated that andrographolide (10 and 20μg/ml) appeared to exert the proliferation inhibitory effect through suppression of glutathione peroxidase 1 (GPX1) activity and depleting GSH by promoting its efflux in 3T3-L1 preadipocytes, which subsequently resulted in 2.06-2.41 fold increase in ROS accumulation. Excessive ROS eruption could account for oxidative damage to mitochondrial membranes as well as ultimately inhibition of cell proliferation. Taken together, our study reveals that suppression of GPX1 and GSH depletion by andrographolide seems to play a critical role in the inhibition of 3T3-L1 preadipocytes proliferation, which might have implication for obesity prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Functional Role of HSP47 in the Periodontal Ligament Subjected to Occlusal Overload in Mice.

    Science.gov (United States)

    Mimura, Hiroaki; Takaya, Tatsuo; Matsuda, Saeka; Nakano, Keisuke; Muraoka, Rina; Tomida, Mihoko; Okafuji, Norimasa; Fujii, Takeo; Kawakami, Toshiyuki

    2016-01-01

    We carried out an experiment to induce traumatic occlusion in mice periodontal tissue and analyzed the expression of HSP47. Continuous traumatic occlusion resulted to damage and remodeling of periodontal ligament as well as increase in osteoclasts and bone resorption. Four days after traumatic occlusion, osteoclasts did not increase but Howship's lacunae became enlarged. That is, the persistent occlusal overload can destroy collagen fibers in the periodontal ligament. This was evident by the increased in HSP47 expression with the occlusal overload. HSP47 is maintained in fibroblasts for repair of damaged collagen fibers. On the other hand, osteoclasts continue to increase although the load was released. The osteoclasts that appeared on the alveolar bone surface were likely due to sustained activity. The increase in osteoclasts was estimated to occur after load application at day 4. HSP47 continued to increase until day 6 in experiment 2 but then reduced at day 10. Therefore, HSP47 appears after a period of certain activities to repair damaged collagen fibers, and the activity was returned to a state of equilibrium at day 30 with significantly diminished expression. Thus, the results suggest that HSP47 is actively involved in homeostasis of periodontal tissue subjected to occlusal overload.

  12. Synthesis and Evaluation of the Tumor Cell Growth Inhibitory Potential of New Putative HSP90 Inhibitors.

    Science.gov (United States)

    Bizarro, Ana; Sousa, Diana; Lima, Raquel T; Musso, Loana; Cincinelli, Raffaella; Zuco, Vantina; De Cesare, Michelandrea; Dallavalle, Sabrina; Vasconcelos, M Helena

    2018-02-13

    Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3- d ]isoxazole-4,9-diones as inhibitors of HSP90. In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds ( 5 and 8 ) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.

  13. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  14. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition

    International Nuclear Information System (INIS)

    Hackl, Christina; Stoeltzing, Oliver; Lang, Sven A; Moser, Christian; Mori, Akira; Fichtner-Feigl, Stefan; Hellerbrand, Claus; Dietmeier, Wolfgang; Schlitt, Hans J; Geissler, Edward K

    2010-01-01

    Activating transcription factor-3 (ATF3) is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90) antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti-metastatic transcription factor

  15. Cell type-specific variations in the induction of hsp70 in human leukocytes by feverlike whole body hyperthermia.

    Science.gov (United States)

    Oehler, R; Pusch, E; Zellner, M; Dungel, P; Hergovics, N; Homoncik, M; Eliasen, M M; Brabec, M; Roth, E

    2001-10-01

    Fever has been associated with shortened duration and improved survival in infectious disease. The mechanism of this beneficial response is still poorly understood. The heat-inducible 70-kDa heat shock protein (Hsp70) has been associated with protection of leukocytes against the cytotoxicity of inflammatory mediators and with improved survival of severe infections. This study characterizes the induction of Hsp70 by feverlike temperatures in human leukocytes in vitro and in vivo. Using flow cytometry, Hsp70 expression was determined in whole blood samples. This approach eliminated cell isolation procedures that would greatly affect the results. Heat treatment of whole blood in vitro for 2 hours at different temperatures revealed that Hsp70 expression depends on temperature and cell type; up to 41 degrees C, Hsp70 increased only slightly in lymphocytes and polymorphonuclear leukocytes. However, in monocytes a strong induction was already seen at 39 degrees C, and Hsp70 levels at 41 degrees C were 10-fold higher than in the 37 degrees C control. To be as close as possible to the physiological situation during fever, we immersed healthy volunteers in a hot water bath, inducing whole body hyperthermia (39 degrees C), and measured leukocyte Hsp70 expression. Hsp70 was induced in all leukocytes with comparable but less pronounced cell type-specific variations as observed in vitro. Thus, a systemic increase of body temperature as triggered by fever stimulates Hsp70 expression in peripheral leukocytes, especially in monocytes. This fever-induced Hsp70 expression may protect monocytes when confronted with cytotoxic inflammatory mediators, thereby improving the course of the disease.

  16. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis.

    Science.gov (United States)

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J

    2008-09-19

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.

  17. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    Science.gov (United States)

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. 70 kD stress protein (Hsp70) analysis in living shallow-water benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Heinz, P.; Marten, R.A; Linshy, V.N.; Haap, T.; Geslin, E.; Kohler, H-R.

    Hsp70 is a phylogenetically highly conserved protein family present in all eukaryotic organisms tested so far. Its synthesis is induced by proteotoxic stress. The detection of Hsp70 in foraminifera is presented here. We introduce a standard...

  19. A S52P mutation in the 'α-crystallin domain' of Mycobacterium leprae HSP18 reduces its oligomeric size and chaperone function.

    Science.gov (United States)

    Nandi, Sandip K; Rehna, Elengikal A A; Panda, Alok K; Shiburaj, Sugathan; Dharmalingam, Kuppamuthu; Biswas, Ashis

    2013-12-01

    Mycobacterium leprae HSP18 is a small heat shock protein (sHSP). It is a major immunodominant antigen of M. leprae pathogen. Previously, we have reported the existence of two M. leprae HSP18 variants in various leprotic patients. One of the variants has serine at position 52, whereas the other one has proline at the same position. We have also reported that HSP18 having proline at position 52 (HSP18P(52)) is a nonameric protein and exhibits chaperone function. However, the structural and functional characterization of wild-type HSP18 having serine at position 52 (HSP18S(52)) is yet to be explored. Furthermore, the implications of the S52P mutation on the structure and chaperone function of HSP18 are not well understood. Therefore, we cloned and purified these two HSP18 variants. We found that HSP18S(52) is also a molecular chaperone and an oligomeric protein. Intrinsic tryptophan fluorescence and far-UV CD measurements revealed that the S52P mutation altered the tertiary and secondary structure of HSP18. This point mutation also reduced the oligomeric assembly and decreased the surface hydrophobicity of HSP18, as revealed by HPLC and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding studies, respectively. Mutant protein was less stable against thermal and chemical denaturation and was more susceptible towards tryptic cleavage than wild-type HSP18. HSP18P(52) had lower chaperone function and was less effective in protecting thermal killing of Escherichia coli than HSP18S(52). Taken together, our data suggest that serine 52 is important for the larger oligomerization and chaperone function of HSP18. Because both variants differ in stability and function, they may have different roles in the survival of M. leprae in infected hosts. © 2013 FEBS.

  20. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  1. Plasma Hsp90 Level as a Marker of Early Acute Lymphoblastic Leukemia Engraftment and Progression in Mice.

    Directory of Open Access Journals (Sweden)

    Mateus Milani

    Full Text Available Current monitoring of acute lymphoblastic leukemia (ALL in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs.

  2. Plasma Hsp90 Level as a Marker of Early Acute Lymphoblastic Leukemia Engraftment and Progression in Mice

    Science.gov (United States)

    de Vasconcellos, Jaíra Ferreira; Brandalise, Silvia Regina; Nowill, Alexandre Eduardo; Yunes, José Andrés

    2015-01-01

    Current monitoring of acute lymphoblastic leukemia (ALL) in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs. PMID:26068922

  3. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  4. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    Directory of Open Access Journals (Sweden)

    Mahek Anand

    2016-05-01

    Full Text Available Chicken Primordial Germ cells (PGCs are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat stress result in activation of heat shock factors which activate the transcription of HSP70. Exposure chicken eggs to acute heat stress effects HSP70 expression in PGCs and gonads. HSP70 helps in maintaining the integrity of chicken PGCs. A new emerging role of HSP70 in apoptosis has emerged. In our lab, we aim to characterize the expression of cHsp70 in chicken PGCs and gonads during embryonic development by subjecting the parents to acute levels of heat stress. Chickens whose parents subjected to heat stress showed varied expression of cHsp70 and also improved thermo tolerance. In the future we plan to study other factors and miRNAs, which is characterized as an emerging player in regulating heat shock protein response in chicken and also plays an important role in apoptosis.

  5. Henoch-schönlein purpura (HSP) in an adult

    Science.gov (United States)

    Negara, C. A.; Zubir, Z.

    2018-03-01

    Henoch-schönlein purpura (HSP) is vasculitis of the small vessels, the most common vasculitis of the childhood and is uncommon in adults. A case of HSP is reported in a 36-year-old female with ten days history of multiple palpable purpura on region antebrachii, region femoralis and cruris dextra et sinistra. Burn sensation in both legs, pain sensation on knees joint and ankles joint and bloody stools were found. History of a cough and sore throat are often to be a presentation. Laboratory examination was mild anemia, mild leukocytes, ASTO (antistreptolysin titer O): children due to an increased risk of disorders of the renal.

  6. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  7. The Human Escort Protein Hep Binds to the ATPase Domain of Mitochondrial Hsp70 and Regulates ATP Hydrolysis*

    Science.gov (United States)

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J.

    2008-01-01

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8 ± 0.2 × 10-4 s-1) at 25 °C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain. PMID:18632665

  8. Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans

    Science.gov (United States)

    Mayer, François L.; Wilson, Duncan; Jacobsen, Ilse D.; Miramón, Pedro; Slesiona, Silvia; Bohovych, Iryna M.; Brown, Alistair J. P.; Hube, Bernhard

    2012-01-01

    Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first

  9. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  10. A three-dimensional model for lubricant depletion under sliding condition on bit patterned media of hard disk drives

    Science.gov (United States)

    Wu, Lin

    2018-05-01

    In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.

  11. Aralia elata (Miquel) Seemann Suppresses Inflammatory ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... The LPS-induced increase in the production of nitric oxide was concentration- dependently suppressed ... Aralia elata ethanol extract (AEE) exhibits protective ... temperature for 72 h and filtered. The filtered .... scavenging activity in a dose-dependent manner showing a ...

  12. Effect of thermal stress on HSP90 expression of Bali cattle in Barru district, South Sulawesi

    Science.gov (United States)

    Aritonang, S. B.; Yuniati, R.; Abinawanto, Imron, M.; Bowolaksono, A.

    2017-07-01

    Heat shock protein 90-kDa is induced stress protein that expressed in response to stress and play crucial roles in environmental stress tolerance and adaptation. This study aimed to determine effect of environmental heat stress on the HSP90 expression of Bali cattle. Heat stress was measured by temperature humidity index in the morning and evening across 5-days on August 2016. The blood samples of Bali cattle were taken from venous jungularis. HSP90 was derived from RNA isolation of whole blood then was followed reverse transcription two steps. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to analyze the transcript variants of HSP90, followed by comparative ΔΔCt to determine HSP90 expression. The results of temperature and humidity index (THI) measurement indicated THI on afternoon was higher than in the morning. The difference in environmental conditions in the morning and afternoon effected changes on rectal temperature but neither did on Hsp90 expression.

  13. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2015-10-01

    Full Text Available The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L., an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf and flower from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7 and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8 and 25.9 showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance.

  14. IL-10 is significantly involved in HSP70-regulation of experimental subretinal fibrosis.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Subretinal fibrosis is directly related to severe visual loss, especially if occurs in the macula, and is frequently observed in advanced age-related macular degeneration and other refractory eye disorders such as diabetic retinopathy and uveitis. In this study, we analyzed the immunosuppressive mechanism of subretinal fibrosis using the novel animal model recently demonstrated. Both TLR2 and TLR4 deficient mice showed significant enlargement of subretinal fibrotic area as compared with wild-type mice. A single intraocular administration of heat shock protein 70 (HSP70, which is an endogenous ligand for TLR2 and TLR4, inhibited subretinal fibrosis in wild-type mice but not in TLR2 and TLR4-deficient mice. Additionally, HSP70 induced IL-10 production in eyes from wild-type mice but was impaired in both TLR2- and TLR4-deficient mice, indicating that HSP70-TLR2/TLR4 axis plays an immunomodulatory role in subretinal fibrosis. Thus, these results suggest that HSP70-TLR2/TLR4 axis is a new therapeutic target for subretinal fibrosis due to prognostic CNV.

  15. Hsp104 Overexpression Cures Saccharomyces cerevisiae [PSI+] by Causing Dissolution of the Prion Seeds

    Science.gov (United States)

    Park, Yang-Nim; Zhao, Xiaohong; Yim, Yang-In; Todor, Horia; Ellerbrock, Robyn; Reidy, Michael; Eisenberg, Evan; Masison, Daniel C.

    2014-01-01

    The [PSI+] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI+], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI+]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI+] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI+] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis. PMID:24632242

  16. Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds.

    Science.gov (United States)

    Park, Yang-Nim; Zhao, Xiaohong; Yim, Yang-In; Todor, Horia; Ellerbrock, Robyn; Reidy, Michael; Eisenberg, Evan; Masison, Daniel C; Greene, Lois E

    2014-05-01

    The [PSI(+)] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI(+)], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI(+)]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI(+)] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI(+)] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.

  17. One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone.

    Directory of Open Access Journals (Sweden)

    Yun-Long Tsai

    Full Text Available Alpha-crystallin-type small heat shock proteins (sHsps are ubiquitously distributed in most eukaryotes and prokaryotes. Four sHsp genes named hspL, hspC, hspAT1, and hspAT2 were identified in Agrobacterium tumefaciens, a plant pathogenic bacterium capable of unique interkingdom DNA transfer via type IV secretion system (T4SS. HspL is highly expressed in virulence-induced growth condition and functions as a VirB8 chaperone to promote T4SS-mediated DNA transfer. Here, we used genetic and biochemical approaches to investigate the involvement of the other three sHsps in T4SS and discovered the molecular basis underlying the dominant function of HspL in promoting T4SS function. While single deletion of hspL but no other sHsp gene reduced T4SS-mediated DNA transfer and tumorigenesis efficiency, additional deletion of other sHsp genes in the hspL deletion background caused synergistic effects in the virulence phenotypes. This is correlated with the high induction of hspL and only modest increase of hspC, hspAT1, and hspAT2 at their mRNA and protein abundance in virulence-induced growth condition. Interestingly, overexpression of any single sHsp gene alone in the quadruple mutant caused increased T4SS-mediated DNA transfer and tumorigenesis. Thermal aggregation protecting assays in vitro indicated that all four sHsps exhibit chaperone activity for the model substrate citrate synthase but only HspL functions as efficient chaperone for VirB8. The higher VirB8 chaperone activity of HspL was also demonstrated in vivo, in which lower amounts of HspL than other sHsps were sufficient in maintaining VirB8 homeostasis in A. tumefaciens. Domain swapping between HspL and HspAT2 indicated that N-terminal, central alpha-crystallin, and C-terminal domains of HspL all contribute to HspL function as an efficient VirB8 chaperone. Taken together, we suggest that the dominant role of HspL in promoting T4SS function is based on its higher expression in virulence

  18. Influence of calcium depletion on iron-binding properties of milk.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Das, S; Singh, H

    2015-04-01

    We investigated the effects of calcium depletion on the binding of iron in milk. A weakly acidic cation-exchange resin was used to remove 3 different levels (18-22, 50-55, and 68-72%) of calcium from milk. Five levels of iron (5, 10, 15, 20, and 25 mM) were added to each of these calcium-depleted milks (CDM) and the resultant milks were analyzed for particle size, microstructure, and the distribution of protein and minerals between the colloidal and soluble phases. The depletion of calcium affected the distribution of protein and minerals in normal milk. Iron added to normal milk and low-CDM (~20% calcium depletion) bound mainly to the colloidal phase (material sedimented at 100,000 × g for 1 h at 20 °C), with little effect on the integrity of the casein micelles. Depletion of ~70% of the calcium from milk resulted in almost complete disintegration of the casein micelles, as indicated by all the protein remaining in the soluble phase upon ultracentrifugation. Addition of up to ~20 mM iron to high CDM resulted in the formation of small fibrous structures that remained in the soluble phase of milk. It appeared that the iron bound to soluble (nonsedimentable) caseins in high-CDM. We observed a decrease in the aqueous phosphorus content of all milks upon iron addition, irrespective of their calcium content. We considered the interaction between aqueous phosphorus and added iron to be responsible for the high iron-binding capacity of the proteins in milk. The soluble protein-iron complexes formed in high-CDM (~70% calcium depletion) could be used as an effective iron fortificant for a range of food products because of their good solubility characteristics. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70 Function

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    2017-07-01

    Full Text Available Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70 function. Heat shock protein 70 (Hsp70 are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  20. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    DEFF Research Database (Denmark)

    Bross, Peter; Li, Zhijie; Hansen, Jakob

    2007-01-01

    for variations in the HSPD1 and HSPE1 genes encoding the mitochondrial Hsp60/Hsp10 chaperone complex: two patients with multiple mitochondrial enzyme deficiency, 61 sudden infant death syndrome cases (MIM: #272120), and 60 patients presenting with ethylmalonic aciduria carrying non-synonymous susceptibility...... variations in the ACADS gene (MIM: *606885 and #201470). Besides previously reported variations we detected six novel variations: two in the bidirectional promoter region, and one synonymous and three non-synonymous variations in the HSPD1 coding region. One of the non-synonymous variations was polymorphic...... in patient and control samples, and the rare variations were each only found in single patients and absent in 100 control chromosomes. Functional investigation of the effects of the variations in the promoter region and the non-synonymous variations in the coding region indicated that none of them had...

  1. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    International Nuclear Information System (INIS)

    Tsuji, Takayuki; Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-01

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular cells

  2. Induction of hsp60 in the rotifer, Brachionus plicatilis exposed to dispersed and undispersed crude oil

    International Nuclear Information System (INIS)

    Wheelock, C.; Tjeerdema, R.; Wolfe, M.

    1995-01-01

    The use of chemical dispersants to treat oil spills remains a controversial area. Questions arise as to whether the dispersed oil is in fact more toxic than the original spill, potentially increasing the exposure of organisms in the water column to the dispersed components. Stress proteins, including hsp60, are a group of highly conserved proteins that are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. They are constitutively expressed, but Brachionus plicatilis has been used to document increased hsp60 levels in response to different environmental stresses. Hsp60 was therefore selected as a sublethal endpoint for B. plicatilis exposed to a range of concentrations of a water accommodated fraction (WAF) of Prudhoe Bay Crude Oil (PBCO), a PCBO/dispersant (Corexit 9527) fraction and a mixture of Corexit 9527 alone. All exposures were done at concentrations below the no observable effect level (NOEL) and at two different salinities, 22 ppt and 34 ppt. Laemmli SDS-PAGE techniques followed by Western Blotting using hsp60 specific antibodies and chemiluminescent detection were used to isolate, identify and measure induced hsp60 as a percentage of control values. Hsp60 induction exhibited a biphasic response with maximal induction occurring at lower concentrations of all three different mixtures, WAF, PBCO/Corexit 9527, and Corexit 9527 alone. Preliminary data found that the dispersed oil is indeed more toxic in terms of hsp60 induction than both the undispersed oil and the dispersing agent alone

  3. Induction of hsp60 in the rotifer, Brachionus plicatilis exposed to dispersed and undispersed crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, C.; Tjeerdema, R.; Wolfe, M. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry

    1995-12-31

    The use of chemical dispersants to treat oil spills remains a controversial area. Questions arise as to whether the dispersed oil is in fact more toxic than the original spill, potentially increasing the exposure of organisms in the water column to the dispersed components. Stress proteins, including hsp60, are a group of highly conserved proteins that are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. They are constitutively expressed, but Brachionus plicatilis has been used to document increased hsp60 levels in response to different environmental stresses. Hsp60 was therefore selected as a sublethal endpoint for B. plicatilis exposed to a range of concentrations of a water accommodated fraction (WAF) of Prudhoe Bay Crude Oil (PBCO), a PCBO/dispersant (Corexit 9527) fraction and a mixture of Corexit 9527 alone. All exposures were done at concentrations below the no observable effect level (NOEL) and at two different salinities, 22 ppt and 34 ppt. Laemmli SDS-PAGE techniques followed by Western Blotting using hsp60 specific antibodies and chemiluminescent detection were used to isolate, identify and measure induced hsp60 as a percentage of control values. Hsp60 induction exhibited a biphasic response with maximal induction occurring at lower concentrations of all three different mixtures, WAF, PBCO/Corexit 9527, and Corexit 9527 alone. Preliminary data found that the dispersed oil is indeed more toxic in terms of hsp60 induction than both the undispersed oil and the dispersing agent alone.

  4. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes.

    Science.gov (United States)

    Nikolaidis, Nikolas; Nei, Masatoshi

    2004-03-01

    We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.

  5. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj

    2005-01-01

    JDP2 is a ubiquitously expressed nuclear protein that efficiently represses the activity of the transcription factor AP-1. Thus far, all studies of JDP2 function have relied on the ectopic expression of the protein. In this study, we use a different approach: depletion of JDP2 from cells. Specific...... depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  6. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    Science.gov (United States)

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  7. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    Science.gov (United States)

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  8. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites.

    Directory of Open Access Journals (Sweden)

    Sarah C Charnaud

    Full Text Available Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.

  9. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da, E-mail: felipmartins94@gmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: victorfariascastro@gmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  10. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    International Nuclear Information System (INIS)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da

    2017-01-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  11. SNX-25a, a novel Hsp90 inhibitor, inhibited human cancer growth more potently than 17-AAG.

    Science.gov (United States)

    Wang, Shaoxiang; Wang, Xiao; Du, Zhan; Liu, Yuting; Huang, Dane; Zheng, Kai; Liu, Kaisheng; Zhang, Yi; Zhong, Xueyun; Wang, Yifei

    2014-07-18

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a typical Hsp90 inhibitor derived from geldanamycin (GA), has entered Phase III clinical trials for cancer therapy. However, it has several significant limitations such as poor solubility, limited bioavailability and unacceptable hepatotoxicity. In this study, the anticancer activity and mechanism of SNX-25a, a novel Hsp90 inhibitor, was investigated comparing with that of 17-AAG. We showed that SNX-25a triggered growth inhibition more sensitively than 17-AAG against many human cancer cells, including K562, SW-620, A375, Hep-2, MCF-7, HepG2, HeLa, and A549 cell lines, especially at low concentrations (AAG, SNX-25a was more potent in arresting the cell cycle at G2 phase, and displayed more potent effects on human cancer cell apoptosis and Hsp90 client proteins. It also exhibited a stronger binding affinity to Hsp90 than 17-AAG using molecular docking. Considering the superiority effects on Hsp90 affinity, cell growth, cell cycle, apoptosis, and Hsp90 client proteins, SNX-25a is supposed as a potential anticancer agent that needs to be explored in detail. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2016-10-01

    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.

  13. Evaluation of hsp65 Nested PCR-Restriction Analysis (PRA) for Diagnosing Tuberculosis in a High Burden Country

    Science.gov (United States)

    Macente, Sara; Fujimura Leite, Clarice Queico; Santos, Adolfo Carlos Barreto; Siqueira, Vera Lúcia Dias; Machado, Luzia Neri Cosmo; Marcondes, Nadir Rodrigues; Hirata, Mario Hiroyuki; Hirata, Rosário Dominguez Crespo

    2013-01-01

    Current study evaluated the hsp65 Nested PCR Restriction Fragment Length Polymorphism Analysis (hsp65 Nested PCR-PRA) to detect and identify Mycobacterium tuberculosis complex directly in clinical samples for a rapid and specific diagnosis of tuberculosis (TB). hsp65 Nested PCR-PRA was applied directly to 218 clinical samples obtained from 127 patients suspected of TB or another mycobacterial infection from July 2009 to July 2010. The hsp65 Nested PCR-PRA showed 100% sensitivity and 95.0 and 93.1% specificity in comparison with culture and microscopy (acid fast bacillus smear), respectively. hsp65 Nested PCR-PRA was shown to be a fast and reliable assay for diagnosing TB, which may contribute towards a fast diagnosis that could help the selection of appropriate chemotherapeutic and early epidemiological management of the cases which are of paramount importance in a high TB burden country. PMID:24260739

  14. Expression of HSP70 in cerebral ischemia and neuroprotetive action of hypothermia and ketoprofen Expressão de HSP70 na isquemia cerebral e a ação neuroprotetora da hipotermia e do cetoprofeno

    Directory of Open Access Journals (Sweden)

    Daniela Pretti da Cunha Tirapelli

    2010-08-01

    Full Text Available Heat shock proteins (HSPs are molecular chaperones that bind to other proteins to shepherd them across membranes and direct them to specific locations within a cell. Several injurious stimuli can induce Hsp70 expression, including ischemia. This study aimed to investigate the pattern of expression of protein (immunohistochemistry and gene (real-time PCR Hsp70 in experimental focal cerebral ischemia in rats by occlusion of the middle cerebral artery for 1 hour and the role of neuroprotection with hypothermia (H and ketoprofen (K. The infarct volume was measured using morphometric analysis defined by triphenyl tetrazolium chloride. It was observed increases in the protein (p=0.0001 and gene (p=0.0001 Hsp70 receptor in the ischemic areas that were reduced by H (protein and gene: pProteínas de choque térmico (HSPs são chaperones moleculares que se ligam a outras proteínas para atravessar as membranas e encaminhá-las para locais específicos dentro de uma célula. Vários estímulos nocivos podem induzir a expressão de Hsp70, incluindo isquemia. Este estudo teve como objetivo investigar o padrão de expressão protéica (imunohistoquímica e gênica (PCR em tempo real de Hsp70 na isquemia cerebral focal experimental em ratos pela oclusão da artéria cerebral média durante 1 hora e o papel da neuroproteção com hipotermia (H e cetoprofeno (C. O volume de infarto foi calculado através da análise morfométrica definido por cloreto de trifenil tetrazólio. Foi observado aumento na expressão proteína (p=0,0001 e gênica (p=0,0001 de Hsp70 nas áreas isquêmicas que foram reduzidas pela H (proteína e gene: p<0,05, C (proteína: p<0,001 e H+K (proteína: p<0,01 e gene: p<0,05. O aumento de Hsp70 na área isquêmica sugere que a neuroexcitotoxicidade mediada pela Hsp70 desempenha um papel importante na morte celular e que o efeito neuroprotetor tanto da H quanto do C está diretamente envolvido com a Hsp70.

  15. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Haap, Timo, E-mail: timo.haap@gmx.de; Schwarz, Simon; Köhler, Heinz-R.

    2016-01-15

    Highlights: • Cadmium acclimation of two Daphnia magna clones which differed in Cd sensitivity and Hsp70 levels. • Two distinct metal-handling strategies regarding Hsp70 and MT expression were observed. • High Hsp70 levels did not confer an increase in Cd and heat stress tolerance. • Our results indicate a trade-off between Hsp70 and MT. - Abstract: The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by

  16. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects.

    Science.gov (United States)

    Lardies, Marco A; Arias, María Belén; Poupin, María Josefina; Bacigalupe, Leonardo D

    2014-08-01

    Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Crystal structure of an activated variant of small heat shock protein Hsp16.5.

    Science.gov (United States)

    McHaourab, Hassane S; Lin, Yi-Lun; Spiller, Benjamin W

    2012-06-26

    How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.

  18. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  19. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

    International Nuclear Information System (INIS)

    Haupt, Armin; Dahl, Andreas; Lappe, Michael; Lehrach, Hans; Gonzalez, Cayetano; Drewes, Gerard; Lange, Bodo MH; Joberty, Gerard; Bantscheff, Marcus; Fröhlich, Holger; Stehr, Henning; Schweiger, Michal R; Fischer, Axel; Kerick, Martin; Boerno, Stefan T

    2012-01-01

    The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ('kinobeads'). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications

  20. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  1. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  2. When the Going Gets Tough, Who Keeps Going? Depletion Sensitivity Moderates the Ego-Depletion Effect

    Directory of Open Access Journals (Sweden)

    Stefanie J. Salmon

    2014-06-01

    Full Text Available Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  3. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment.

    Science.gov (United States)

    Chen, Yaomin; Wang, Bin; Liu, Dan; Li, Jing Jing; Xue, Yueqiang; Sakata, Kazuko; Zhu, Ling-qiang; Heldt, Scott A; Xu, Huaxi; Liao, Francesca-Fang

    2014-02-12

    The excessive accumulation of soluble amyloid peptides (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Despite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Aβ. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Aβ significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Aβ and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.

  4. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  5. Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae.

    Science.gov (United States)

    de Groot, E; Bebelman, J P; Mager, W H; Planta, R J

    2000-02-01

    Changing the growth mode of Saccharomyces cerevisiae by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like HSP12. Remarkably, glucose repression of HSP12 appeared to occur even at very low glucose concentrations, down to 0.005%. Although these low levels of glucose do not induce fermentative growth, they do act as a growth signal, since upon addition of glucose to a concentration of 0.02%, growth rate increased and ribosomal protein gene transcription was up-regulated. In an attempt to elucidate how this type of glucose signalling may operate, several signalling mutants were examined. Consistent with the low amounts of glucose that elicit HSP12 repression, neither the main glucose-repression pathway nor cAMP-dependent activation of protein kinase A appeared to play a role in this regulation. Using mutants involved in glucose metabolism, evidence was obtained suggesting that glucose 6-phosphate serves as a signalling molecule. To identify the target for glucose repression on the promoter of the HSP12 gene, a promoter deletion series was used. The major transcription factors governing (stress-induced) transcriptional activation of HSP12 are Msn2p and Msn4p, binding to the general stress-responsive promoter elements (STREs). Surprisingly, glucose repression of HSP12 appeared to be independent of Msn2/4p: HSP12 transcription in glycerol-grown cells was unaffected in a deltamsn2deltamsn4 strain. Nevertheless, evidence was obtained that STRE-mediated transcription is the target of repression by low amounts of glucose. These data suggest that an as yet unidentified factor is involved in STRE-mediated transcriptional regulation of HSP12.

  6. [Effects of HSP90 inhibitor 17-AAG on cell cycle and apoptosis of human gastric cancer cell lines SGC-7901].

    Science.gov (United States)

    Chen, Meini; Xu, Jinghong; Zhao, Jumei

    2013-02-01

    To study the effect of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on cell proliferation and apoptosis of human cancer SGC-7901 cells and explore the mechanisms. The inhibitory effect of 17-AAG on the proliferation and morphology of SGC-7901 cells was assessed with MTT assay and DNA-PI staining, respectively. Flow cytometry was employed to analyze the changes in cell cycle and apoptosis of the cells following 17-AAG exposure. The cellular expression of Fas protein was detected by immunohistochemistry. 17-AAG significantly suppressed the proliferation of SGC-7901 cells in a time- and dose-dependent manner. After treatment with 17-AAG for 48 h, SGC-7901 cells showed cell cycle arrested at G(2)/M stage, and the cell apoptosis rate increased with the 17-AAG concentration. The expression of Fas protein in the cytoplasm of SGC-7901 cells increased gradually with the increase of 17-AAG concentration. 17-AAG can induce apoptosis, alters the cell cycle distribution and up-regulates the expression of Fas protein in SGC-7901 cells to suppress the cell proliferation.

  7. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    Science.gov (United States)

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  8. The Hsp90 inhibitor 17-AAG represses calcium-induced cytokeratin 1 and 10 expression in HaCaT keratinocytes.

    Science.gov (United States)

    Miyoshi, Sadanori; Yamazaki, Shota; Uchiumi, Asato; Katagata, Yohtaro

    2012-01-01

    Hsp90 is essential for maintaining the activity of numerous signaling factors, and plays a key role in cellular signal transduction networks. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is an ansamycin antibiotic that binds to Hsp90 and inhibits its function. HaCaT human keratinocytes were used to investigate the cellular and molecular functions of Hsp90 in keratinocyte differentiation. Inhibition of Hsp90 by 17-AAG leads to downregulation of the differentiation markers cytokeratin 1 and cytokeratin 10 at the protein and mRNA levels.

  9. In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors.

    Science.gov (United States)

    Sharp, Swee Y; Boxall, Kathy; Rowlands, Martin; Prodromou, Chrisostomos; Roe, S Mark; Maloney, Alison; Powers, Marissa; Clarke, Paul A; Box, Gary; Sanderson, Sharon; Patterson, Lisa; Matthews, Thomas P; Cheung, Kwai-Ming J; Ball, Karen; Hayes, Angela; Raynaud, Florence; Marais, Richard; Pearl, Laurence; Eccles, Sue; Aherne, Wynne; McDonald, Edward; Workman, Paul

    2007-03-01

    The molecular chaperone heat shock protein 90 (HSP90) has emerged as an exciting molecular target. Derivatives of the natural product geldanamycin, such as 17-allylamino-17-demethoxy-geldanamycin (17-AAG), were the first HSP90 ATPase inhibitors to enter clinical trial. Synthetic small-molecule HSP90 inhibitors have potential advantages. Here, we describe the biological properties of the lead compound of a new class of 3,4-diaryl pyrazole resorcinol HSP90 inhibitor (CCT018159), which we identified by high-throughput screening. CCT018159 inhibited human HSP90beta with comparable potency to 17-AAG and with similar ATP-competitive kinetics. X-ray crystallographic structures of the NH(2)-terminal domain of yeast Hsp90 complexed with CCT018159 or its analogues showed binding properties similar to radicicol. The mean cellular GI(50) value of CCT018159 across a panel of human cancer cell lines, including melanoma, was 5.3 mumol/L. Unlike 17-AAG, the in vitro antitumor activity of the pyrazole resorcinol analogues is independent of NQO1/DT-diaphorase and P-glycoprotein expression. The molecular signature of HSP90 inhibition, comprising increased expression of HSP72 protein and depletion of ERBB2, CDK4, C-RAF, and mutant B-RAF, was shown by Western blotting and quantified by time-resolved fluorescent-Cellisa in human cancer cell lines treated with CCT018159. CCT018159 caused cell cytostasis associated with a G(1) arrest and induced apoptosis. CCT018159 also inhibited key endothelial and tumor cell functions implicated in invasion and angiogenesis. Overall, we have shown that diaryl pyrazole resorcinols exhibited similar cellular properties to 17-AAG with potential advantages (e.g., aqueous solubility, independence from NQO1 and P-glycoprotein). These compounds form the basis for further structure-based optimization to identify more potent inhibitors suitable for clinical development.

  10. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.

    Science.gov (United States)

    Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis

    2011-03-09

    Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.

  11. Cadmium tolerance in seven Daphnia magna clones is associated with reduced hsp70 baseline levels and induction

    International Nuclear Information System (INIS)

    Haap, Timo; Koehler, Heinz-R.

    2009-01-01

    The stress protein hsp70 is part of the intracellular alarm and repair system which enables organisms to counteract negative effects of toxicants on protein integrity. Under long-term selection pressure exerted by environmental pollution, in particular heavy metals, this system may be expected to play a major role in the course of local, microevolutionary events leading to the acquisition of toxicant resistance. Seven clones of Daphnia magna from different geographical regions were characterized regarding their sensitivity to Cd, their hsp70 expression, and Cd accumulation. In an acute immobilisation assay, the tested clones showed remarkable differences in their sensitivity to Cd. The highest EC 50 values by far were obtained for the clone displaying lowest hsp70 expression. In general, hsp70 levels reflected the order of sensitivity to Cd among the seven clones reciprocally. Clonal variations in sensitivity and hsp70 expression could not be related to differential accumulation of Cd, though. In summary, the association of stress insensitivity with low hsp70 induction which has been exemplarily reported for populations of different invertebrates under strong selection pressure could be affirmed for a largely parthenogenetic species for the first time. Furthermore, our observation has serious consequences for the interpretation of toxicological assays using a single D. magna clone solely.

  12. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.

    Science.gov (United States)

    Hirose, H; Sakuma, N; Kaji, N; Nakayama, K; Inoue, K; Sekijima, M; Nojima, T; Miyakoshi, J

    2007-02-01

    An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family.

  13. Regulation of the Hsp104 middle domain activity is critical for yeast prion propagation.

    Directory of Open Access Journals (Sweden)

    Jennifer E Dulle

    Full Text Available Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in mammals, yeast prion proteins, and their ability to undergo conformational conversion into a prion state, are proposed to play a functional role in yeast biology. The chaperone Hsp104, a AAA+ ATPase, is essential for yeast prion propagation. Hsp104 fragments large prion aggregates to generate a population of smaller oligomers that can more readily convert soluble monomer and be transmitted to daughter cells. Here, we show that the middle (M domain of Hsp104, and its mobility, plays an integral part in prion propagation. We generated and characterized mutations in the M-domain of Hsp104 that are predicted to stabilize either a repressed or de-repressed conformation of the M-domain (by analogy to ClpB in bacteria. We show that the predicted stabilization of the repressed conformation inhibits general chaperone activity. Mutation to the de-repressed conformation, however, has differential effects on ATP hydrolysis and disaggregation, suggesting that the M-domain is involved in coupling these two activities. Interestingly, we show that changes in the M-domain differentially affect the propagation of different variants of the [PSI+] and [RNQ+] prions, which indicates that some prion variants are more sensitive to changes in the M-domain mobility than others. Thus, we provide evidence that regulation of the M-domain of Hsp104 is critical for efficient prion propagation. This shows the importance of elucidating the function of the M-domain in order to understand the role of Hsp104 in the propagation of different prions and prion variants.

  14. Introgression of heat shock protein (Hsp70 and sHsp) genes into the Malaysian elite chilli variety Kulai (Capsicum annuum L.) through the application of marker-assisted backcrossing (MAB).

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2018-03-01

    Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F 1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC 1 F 1 , BC 2 F 1 and BC 3 F 1 . The average recipient allele of the selected four BC 1 F 1 plants was 80.75% which were used to produce the BC 2 F 1 generation. BC 1 -P 7 was the best BC 1 F 1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC 3 F 1 was 95.37%. Hsp gene expression analysis was carried out on BC 1 F 1 , BC 2 F 1 and BC 3 F 1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent

  15. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    Science.gov (United States)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  16. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells.

    Science.gov (United States)

    Choi, Young Eun; Battelli, Chiara; Watson, Jacqueline; Liu, Joyce; Curtis, Jennifer; Morse, Alexander N; Matulonis, Ursula A; Chowdhury, Dipanjan; Konstantinopoulos, Panagiotis A

    2014-05-15

    The promise of PARP-inhibitors(PARPis) in the management of epithelial ovarian cancer(EOC) is tempered by the fact that approximately 50% of patients with homologous recombination (HR)-proficient tumors do not respond well to these agents. Combination of PARPis with agents that inhibit HR may represent an effective strategy to enhance their activity in HR-proficient tumors. Using a bioinformatics approach, we identified that heat shock protein 90 inhibitors(HSP90i) may suppress HR and thus revert HR-proficient to HR-deficient tumors. Analysis of publicly available gene expression data showed that exposure of HR-proficient breast cancer cell lines to HSP90i 17-AAG(17-allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR-proficient EOC cells, 17-AAG suppressed HR as assessed using the RAD51 foci formation assay and this was further confirmed using the Direct Repeat-GFP reporter assay. Furthermore, 17-AAG downregulated BRCA1 and/or RAD51 protein levels, and induced significantly more γH2AX activation in combination with olaparib compared to olaparib alone. Finally, sublethal concentrations of 17-AAG sensitized HR-proficient EOC lines to olaparib and carboplatin but did not affect sensitivity of the HR-deficient OVCAR8 line arguing that the 17-AAG mediated sensitization is dependent on suppression of HR. These results provide a preclinical rationale for using a combination of olaparib/17-AAG in HR-proficient EOC.

  17. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    International Nuclear Information System (INIS)

    Pozsgai, Eva; Gomori, Eva; Szigeti, Andras; Boronkai, Arpad; Gallyas, Ferenc Jr; Sumegi, Balazs; Bellyei, Szabolcs

    2007-01-01

    Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker

  18. Localization of Heat Shock Protein 27 (Hsp27) in the Rat Gingiva and its Changes with Tooth Eruption

    International Nuclear Information System (INIS)

    Sasaki, Au; Yamada, Tohru; Inoue, Katsuyuki; Momoi, Tomoko; Tokunaga, Hiroshi; Sakiyama, Koji; Kanegae, Haruhide; Suda, Naoto; Amano, Osamu

    2011-01-01

    Heat shock protein 27 kDa (Hsp27) functions as a molecular chaperon to prevent apoptosis as well as to contribute to the regulation of cell proliferation and differentiation during development. In the present study, the localization of Hsp27 in the oral epithelium of rats and its expression change during formation of the gingiva with the tooth eruption were examined immunohistochemically to elucidate the roles of Hsp27 in the oral mucosa. In adult rats, Hsp27-immunoreactivity was localized in the prickle and granular layers but absent in the basal and horny layers of the oral epithelium. On the other hand, in the outer and sulcular epithelia of the free gingival, Hsp27-immunoreactivity was detected in the whole layers, while it was not found in the proliferation zone of the junctional epithelium immunoreactive for Ki67. In immature rats on 10th postnatal day, Hsp27-immunoreactivity was intense in the prickle and granular layers of the oral epithelium, but was not detected in its basal layer. In rats at the eruptive phase on 15th postnatal day, Hsp27-immunoreactivity was detected in sites of the basal layer adjacent to where the dental cusps penetrated through the oral epithelium. Although the immunoreactivity for Ki67 was found in the basal layer of the oral epithelium, it was not localized in the Hsp27-immunopositive sites of tooth-penetration in the basal layer. Just after the tooth-eruption on 20th postnatal day, Hsp27-immunoreactivity was not found in the stratified squamous epithelium at the dentogingival junction, whereas it was intense in a single layer of cuboidal epithelial cells attached to the tooth neck. Ki67-positive cells were scattered in the stratified squamous epithelium at the dentogingival junction, whereas no positive cells were found in the portion of a single layer of cuboidal epithelial cells. These findings suggest that the outer and sulcular epithelia of the free gingiva have a relatively slower rate of proliferation than other gingival and

  19. B7-2 Expressed on EL4 Lymphoma Suppresses Antitumor Immunity by an Interleukin 4–dependent Mechanism

    OpenAIRE

    Stremmel, C.; Greenfield, E.A.; Howard, E.; Freeman, G.J.; Kuchroo, V.K.

    1999-01-01

    For T cells to become functionally activated they require at least two signals. The B7 costimulatory molecules B7-1 and B7-2 provide the “second signal” pivotal for T cell activation. In this report, we studied the relative roles of B7-1 and B7-2 molecules in the induction of antitumor immunity to the T cell thymoma, EL4. We generated EL4 tumor cells that expressed B7-1, B7-2, and B7-1+B7-2 by transfecting murine cDNAs. Our results demonstrate that EL4–B7-1 cells are completely rejected in sy...

  20. Resolving Hot Spots in the C-Terminal Dimerization Domain that Determine the Stability of the Molecular Chaperone Hsp90

    Science.gov (United States)

    Reimann, Sven; Smits, Sander H. J.; Schmitt, Lutz; Groth, Georg; Gohlke, Holger

    2014-01-01

    Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScorePPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization. PMID:24760083

  1. Pleurotus sajor-caju HSP100 complements a thermotolerance ...

    Indian Academy of Sciences (India)

    Madhu

    a maximum expression level at 2 h that was maintained for several hours. These results ... work at an early step in thermotolerance. ... hsp104 mutant yeast, allowing them survive even at 50°C for 4 h. .... They were cultured for one week.

  2. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    International Nuclear Information System (INIS)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C.; Guzman E, L.J.; Garcia T, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a 137 Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  3. Cytosolic Hsp70/Hsc70 protein expression in lymphocytes exposed to low gamma-ray dose

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares A, E.; Vega C, H.R.; Letechipia de Leon, C. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: emanz@cantera.reduaz.mx; Guzman E, L.J. [Unidad Academica de Biologia Experimental, Guadalupe, Zacatecas (Mexico); Garcia T, M. [LIBRA, Centro I and D, Campus Miguel Delibes, Valladolid 47011 (Spain)

    2004-07-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp70 expression in human Iymphocytes. The heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. When a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered only through over expression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the Iymphocytes were isolated by ficoll- histopaque gradient. Experimental lots were irradiated in a {sup 137} Cs gamma-ray. Hsp70 expression was found since 0.5 c Gy, indicating a threshold to very low doses of gamma rays. (Author)

  4. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    Full Text Available Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70 is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our

  5. Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades

    Directory of Open Access Journals (Sweden)

    Masako Nakamura

    2012-02-01

    Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR. Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2 conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.

  6. Oxygen glucose deprivation post-conditioning protects cortical neurons against oxygen-glucose deprivation injury: role of HSP70 and inhibition of apoptosis.

    Science.gov (United States)

    Zhao, Jian-hua; Meng, Xian-li; Zhang, Jian; Li, Yong-li; Li, Yue-juan; Fan, Zhe-ming

    2014-02-01

    In the present study, we examined the effect of oxygen glucose deprivation (OGD) post-conditioning (PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase (LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h (O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70 (HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was (0.44±0.08)% and (0.76±0.10)%, and that of Bax expression was (0.51±0.05)% and (0.39±0.04)%, and that of HSP70 was (0.42±0.031)% and (0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was (28.96±3.03)% and (37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group (Pneuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70.

  7. Progranulin Recruits HSP70 to ?-Glucocerebrosidase and Is Therapeutic Against Gaucher Disease

    OpenAIRE

    Jian, Jinlong; Tian, Qing-Yun; Hettinghouse, Aubryanna; Zhao, Shuai; Liu, Helen; Wei, Jianlu; Grunig, Gabriele; Zhang, Wujuan; Setchell, Kenneth D.R.; Sun, Ying; Overkleeft, Herman S.; Chan, Gerald L.; Liu, Chuan-ju

    2016-01-01

    Highlights ? PGRN is required for lysosomal appearance of GCase and PGRN deficiency causes GCase/LIMP2 aggregation upon stress ? PGRN directly binds to GCase through a two-site mechanism ? PGRN recruits HSP70 to GCase and prevents GCase aggregation in response to stress ? PGRN derivative Pcgin binds to GCase and HSP70 and is therapeutic against Gaucher disease In this study, we demonstrate that PGRN directly binds to GCase and is required for the lysosomal appearance of GCase. In addition, HS...

  8. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity.

    Science.gov (United States)

    Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M

    2017-08-01

    This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.

  9. The Noncompetitive Effect of Gambogic Acid Displaces Fluorescence-Labeled ATP but Requires ATP for Binding to Hsp90/HtpG.

    Science.gov (United States)

    Yue, Qing; Stahl, Frank; Plettenburg, Oliver; Kirschning, Andreas; Warnecke, Athanasia; Zeilinger, Carsten

    2018-05-08

    The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 μM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.

  10. 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix.

    Science.gov (United States)

    Sung, Nuri; Lee, Jungsoon; Kim, Ji Hyun; Chang, Changsoo; Tsai, Francis T F; Lee, Sukyeong

    2016-08-01

    TRAP1 is an organelle-specific Hsp90 paralog that is essential for neoplastic growth. As a member of the Hsp90 family, TRAP1 is presumed to be a general chaperone facilitating the late-stage folding of Hsp90 client proteins in the mitochondrial matrix. Interestingly, TRAP1 cannot replace cytosolic Hsp90 in protein folding, and none of the known Hsp90 co-chaperones are found in mitochondria. Thus, the three-dimensional structure of TRAP1 must feature regulatory elements that are essential to the ATPase activity and chaperone function of TRAP1. Here, the crystal structure of a human TRAP1NM dimer is presented, featuring an intact N-domain and M-domain structure, bound to adenosine 5'-β,γ-imidotriphosphate (ADPNP). The crystal structure together with epitope-mapping results shows that the TRAP1 M-domain loop 1 contacts the neighboring subunit and forms a previously unobserved third dimer interface that mediates the specific interaction with mitochondrial Hsp70.

  11. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase.

    Science.gov (United States)

    Deville, Célia; Carroni, Marta; Franke, Kamila B; Topf, Maya; Bukau, Bernd; Mogk, Axel; Saibil, Helen R

    2017-08-01

    Refolding aggregated proteins is essential in combating cellular proteotoxic stress. Together with Hsp70, Hsp100 chaperones, including Escherichia coli ClpB, form a powerful disaggregation machine that threads aggregated polypeptides through the central pore of tandem adenosine triphosphatase (ATPase) rings. To visualize protein disaggregation, we determined cryo-electron microscopy structures of inactive and substrate-bound ClpB in the presence of adenosine 5'- O -(3-thiotriphosphate), revealing closed AAA+ rings with a pronounced seam. In the substrate-free state, a marked gradient of resolution, likely corresponding to mobility, spans across the AAA+ rings with a dynamic hotspot at the seam. On the seam side, the coiled-coil regulatory domains are locked in a horizontal, inactive orientation. On the opposite side, the regulatory domains are accessible for Hsp70 binding, substrate targeting, and activation. In the presence of the model substrate casein, the polypeptide threads through the entire pore channel and increased nucleotide occupancy correlates with higher ATPase activity. Substrate-induced domain displacements indicate a pathway of regulated substrate transfer from Hsp70 to the ClpB pore, inside which a spiral of loops contacts the substrate. The seam pore loops undergo marked displacements, along with ordering of the regulatory domains. These asymmetric movements suggest a mechanism for ATPase activation and substrate threading during disaggregation.

  12. Spontaneous assembly of HSP90 inhibitors at water/octanol interface: A molecular dynamics simulation study

    Science.gov (United States)

    Zolghadr, Amin Reza; Boroomand, Samaneh

    2017-02-01

    Drug absorption at an acceptable dose depends on the pair of solubility and permeability. There are many potent therapeutics that are not active in vivo, presumably due to the lack of capability to cross the cell membrane. Molecular dynamics simulation of radicicol, diol-radicicol, cyclopropane-radicicol and 17-DMAG were performed at water/octanol interface to suggest interfacial activity as a physico-chemical characteristic of these heat shock protein 90 (HSP90) inhibitors. We have observed that orally active HSP90 inhibitors form aggregates at the water/octanol and DPPC-lipid/water interfaces by starting from an initial configuration with HSP90 inhibitors embedded in the water matrix.

  13. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2 and malignancy in brain tumors

    Directory of Open Access Journals (Sweden)

    Gallyas Ferenc

    2007-12-01

    Full Text Available Abstract Background Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Methods Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+, moderate (++, high (+++ or none (- scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Results Low grade (grades 1–2 brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4 tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Conclusion Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.

  14. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives.

    Science.gov (United States)

    Corrao, Simona; Campanella, Claudia; Anzalone, Rita; Farina, Felicia; Zummo, Giovanni; Conway de Macario, Everly; Macario, Alberto J L; Cappello, Francesco; La Rocca, Giampiero

    2010-01-30

    This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  16. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer.

    Science.gov (United States)

    Weber, Helga; Valbuena, José R; Barbhuiya, Mustafa A; Stein, Stefan; Kunkel, Hana; García, Patricia; Bizama, Carolina; Riquelme, Ismael; Espinoza, Jaime A; Kurtz, Stephen E; Tyner, Jeffrey W; Calderon, Juan Francisco; Corvalán, Alejandro H; Grez, Manuel; Pandey, Akhilesh; Leal-Rojas, Pamela; Roa, Juan C

    2017-04-18

    Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.

  18. thermal stress and Hsp70 as selective agents

    Indian Academy of Sciences (India)

    Madhu Sudhan

    starred in an exhaustive list of studies linking its expression to environmental ... genetic stress linked to Hsp70: polyglutamine expansion .... Twenty-five D. melanogaster genes conserved in all twelve Drosophila species (fourth column) possessing conserved ...... like growth factor-1, and vertebral bone mass in men; J. Clin.

  19. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    jiahong yu

    2016-08-01

    Full Text Available The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps in plants, but little is known about this family in tomato (Solanum lycopersicum, an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20 gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83% were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root and reproductive organs (floral bud and flower, suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript

  20. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    The Hsp20 genes are involved in the response of plants to environment stresses including heat shock and also play a vital role in plant growth and development. They represent the most abundant small heat shock proteins (sHsps) in plants, but little is known about this family in tomato (Solanum lycopersicum), an important vegetable crop in the world. Here, we characterized heat shock protein 20 (SlHsp20) gene family in tomato through integration of gene structure, chromosome location, phylogenetic relationship, and expression profile. Using bioinformatics-based methods, we identified at least 42 putative SlHsp20 genes in tomato. Sequence analysis revealed that most of SlHsp20 genes possessed no intron or a relatively short intron in length. Chromosome mapping indicated that inter-arm and intra-chromosome duplication events contributed remarkably to the expansion of SlHsp20 genes. Phylogentic tree of Hsp20 genes from tomato and other plant species revealed that SlHsp20 genes were grouped into 13 subfamilies, indicating that these genes may have a common ancestor that generated diverse subfamilies prior to the mono-dicot split. In addition, expression analysis using RNA-seq in various tissues and developmental stages of cultivated tomato and the wild relative Solanum pimpinellifolium revealed that most of these genes (83%) were expressed in at least one stage from at least one genotype. Out of 42 genes, 4 genes were expressed constitutively in almost all the tissues analyzed, implying that these genes might have specific housekeeping function in tomato cell under normal growth conditions. Two SlHsp20 genes displayed differential expression levels between cultivated tomato and S. pimpinellifolium in vegetative (leaf and root) and reproductive organs (floral bud and flower), suggesting inter-species diversification for functional specialization during the process of domestication. Based on genome-wide microarray analysis, we showed that the transcript levels of SlHsp20

  1. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    Science.gov (United States)

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-10-01

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  2. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  3. Hsp70 Expression Profile in Preeclampsia Model of Pregnant Rat (Rattus norvegicus) after Giving the EVOO

    Science.gov (United States)

    Irianti, E.; ilyas, S.; Rosidah; Hutahaean, S.

    2017-03-01

    Heat shock protein (Hsp) has long been known to protect cells from oxidative stress. In this case an increased expression is found on several cases of preeclampsia. One of the efforts to prevent preeclampsia is by giving antioxidants such as Extra Virgin Olive Oil (EVOO) or it’s better known as olive oil (Oleoa europaea), in the form of extra virgin known for its rich antioxidant content of tocopherols (vitamin E). The purpose of this study is to determine the expression levels of Hsp70 serum on pregnant white rat model of preeclampsia after being given EVOO. This type of research is true experiment; the subjects were female white rats and male virgin with Sprague Dawley, ± 8-11 weeks old, 180g BB s / d 200g, healthy and didn’t show any physical defects. Samples were 25 animals, divided into 5 groups, which consisted of different control and treatment given to T2 (rat model of preeclampsia), T3 (rat model of preeclampsia + EVOO 0.45g/bw/day), T4 (rat model of preeclampsia + EVOO 0.9g/bw/day) and T5 (rat model of preeclampsia + EVOO 1.8g/bw/day). The determination of each group was done by simple random sampling. Result on serum levels of Hsp70 that were tested by Elisa test in rats showed the average control was 14.64 mg / ml, group T2: 22:51 mg/ml, T3: 13.62 mg/ml, T4: 15.92 mg/ml, T5: 16:09 mg/ml. ANOVA test showed the P value was 0.001 <0.005, which meant there were significant differences on serum Hsp70 levels in the control and treatment pregnant rats group. It was known that there was a significant difference level of Hsp70 serum in group of control rats with T2 (P value <0.001) after LSD test was conducted, but not so with the group T3, T4, and T5, where the difference was not significant. There was a significant difference in the levels of Hsp70 serum on group T2 and T3 (P value 0.000), T4 (0004), T5 (0000). The gift of EVOO in the treatment group which was given EVOO with even low doses was able to control the induction of Hsp70 serum levels, which

  4. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.

    Science.gov (United States)

    Shaner, Lance; Trott, Amy; Goeckeler, Jennifer L; Brodsky, Jeffrey L; Morano, Kevin A

    2004-05-21

    The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.

  5. Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains.

    Science.gov (United States)

    Rivero, Damaríz; Berná, Luisa; Stefanini, Irene; Baruffini, Enrico; Bergerat, Agnes; Csikász-Nagy, Attila; De Filippo, Carlotta; Cavalieri, Duccio

    2015-08-01

    The coexistence of different yeasts in a single vineyard raises the question on how they communicate and why slow growers are not competed out. Genetically modified laboratory strains of Saccharomyces cerevisiae are extensively used to investigate ecological interactions, but little is known about the genes regulating cooperation and competition in ecologically relevant settings. Here, we present evidences of Hsp12p-dependent altruistic and contact-dependent competitive interactions between two natural yeast isolates. Hsp12p is released during cell death for public benefit by a fast-growing strain that also produces a killer toxin to inhibit growth of a slow grower that can enjoy the benefits of released Hsp12p. We also show that the protein Pau5p is essential in the defense against the killer effect. Our results demonstrate that the combined action of Hsp12p, Pau5p and a killer toxin is sufficient to steer a yeast community. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    International Nuclear Information System (INIS)

    Eskew, Jeffery D; Rajewski, Roger A; Blagg, Brian SJ; Manjarrez, Jacob R; Matts, Robert L; Holzbeierlein, Jeffrey M; Vielhauer, George A; Sadikot, Takrima; Morales, Pedro; Duren, Alicia; Dunwiddie, Irene; Swink, Megan; Zhang, Xiaoying; Hembruff, Stacey; Donnelly, Alison

    2011-01-01

    The molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer

  7. Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Eskew Jeffery D

    2011-10-01

    Full Text Available Abstract Background The molecular chaperone, heat shock protein 90 (Hsp90 has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. Methods PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. Results KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Conclusions Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.

  8. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma?

    Science.gov (United States)

    Mehta, Adi; Shervington, Amal; Howl, John; Jones, Sarah; Shervington, Leroy

    2013-01-01

    Heat shock protein 90 promotes tumor progression and survival and has emerged as a vital therapeutic target. Previously we reported that the combinatorial treatment of 17AAG/sihsp90α significantly downregulated Hsp90α mRNA and protein levels in Glioblastoma Multiforme (GBM). Here we investigated the ability of cell penetrating peptide (Tat48-60 CPP)-mediated siRNA-induced hsp90α knockdown as a single agent and in combination with 17-allylamino-17-demethoxygeldanamycin (17-AAG) to induce tumor growth inhibition in GBM and whether it possessed therapeutic implications. GBM and non-tumorigenic cells exposed to siRNA and/or 17-AAG were subsequently assessed by qRT-PCR, immunofluorescence, FACS analysis, quantitative Akt, LDH leakage and cell viability assays. PAGE was performed for serum stability assessment. A combination of siRNA/17-AAG treatment significantly induced Hsp90α gene and protein knockdown by 95% and 98%, respectively, concomitant to 84% Akt kinase activity attenuation, induced cell cycle arrest and tumor-specific cytotoxicity by 88%. Efficient complex formation between CPP and siRNA exhibited improved serum stability of the siRNA with minimal intrinsic toxicity in vitro. The preliminary in vivo results showed that combination therapy induced hsp90α knockdown and attenuated Akt kinase activity in intracranial glioblastoma mouse models. The results imply that RNAi-mediated hsp90α knockdown increases 17-AAG treatment efficacy in GBM. In addition, the cytotoxic response observed was the consequence of downregulation of hsp90α gene expression, reduced Akt kinase activity and S-G2/M cell cycle arrest. These results are novel and highlight the ability of Tat to efficiently deliver siRNA in GBM and suggest that the dual inhibition of Hsp90 has therapeutic potentials.

  9. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  10. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    Science.gov (United States)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  11. Protective effects of red grape (Vitis vinifera) juice through restoration of antioxidant defense, endocrine swing and Hsf1, Hsp72 levels in heat stress induced testicular dysregulation of Wister rat.

    Science.gov (United States)

    Halder, Soma; Sarkar, Mrinmoy; Dey, Sananda; Kumar Bhunia, Sujay; Ranjan Koley, Alok; Giri, Biplab

    2018-01-01

    Ability of red grape juice (RGJ), a known antioxidant, on testis of adult Wister rat to protect from oxidative stress induced damages by heat stress has been investigated in this study. Heat stress was induced maintaining body and testicular temperature at 43°C for 30min/day for 15 days using a hyperthermia induction chamber. Four groups of rats (n=6 per group) comprising of Group-I (control) -kept at 32°C, Group-II -exposed to heat stress alone, Group-III received RGJ (0.8ml/rat/day) alone and Group-IV -exposed to heat stress and received RGJ at same dose. Analysis of blood and testicular tissue exhibited significant reduction in serum testosterone, testicular superoxide dismutase, testicular catalase and testicular glutathione (all p rise in the level of serum corticosteroid, testicular lipid peroxidase and the apoptotic enzyme caspase-3 of testis (all p < 0.001) were observed along with substantial increase in testicular Hsp72 and Hsf-1, and decrease in 17β-HSD3 were noted in heat stressed rats compared to controls. In Group-IV rats, RGJ administration could restore these parameters to normal levels. The signs of retention were clear in Group-IV rats and found to be significantly different as compared to that of the Group-II rats. In testicular histology of rats exposed to heat stress alone revealed remarkable germ cell degeneration and tubular deformations which were prevented by RGJ treatment (Group-IV). The reduced number of sperm level in Group-II also restored in RGJ treatment (Group-IV). The above results indicate that consumption of RGJ may substantially protect testis from heat stress induce dysfunctions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adult Heat Tolerance Variation in Drosophila melanogaster is Not Related to Hsp70 Expression

    DEFF Research Database (Denmark)

    Jensen, Louise Toft; Cockerell, Fiona Elizabeth; Kristensen, Torsten Nygaard

    2010-01-01

    in Drosophila larvae Hsp70 expression may be a key determinant of heat tolerance, the evidence for this in adults is equivocal. We therefore examined heat-induced Hsp70 expression and several measurements of adult heat tolerance in three independent collections of D. melanogaster, measured in three laboratories...

  13. Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain.

    Science.gov (United States)

    Dabbaghizadeh, Afrooz; Finet, Stéphanie; Morrow, Genevieve; Moutaoufik, Mohamed Taha; Tanguay, Robert M

    2017-07-01

    The structure and chaperone function of DmHsp22WT, a small Hsp of Drosophila melanogaster localized within mitochondria were examined. Mutations of conserved arginine mutants within the alpha-crystallin domain (ACD) domain (R105G, R109G, and R110G) were introduced, and their effects on oligomerization and chaperone function were assessed. Arginine to glycine mutations do not induce significant changes in tryptophan fluorescence, and the mutated proteins form oligomers that are of equal or smaller size than the wild-type protein. They all form oligomer with one single peak as determined by size exclusion chromatography. While all mutants demonstrate the same efficiency as the DmHsp22WT in a DTT-induced insulin aggregation assay, all are more efficient chaperones to prevent aggregation of malate dehydrogenase. Arginine mutants of DmHsp22 are efficient chaperones to retard aggregation of CS and Luc. In summary, this study shows that mutations of arginine to glycine in DmHsp22 ACD induce a number of structural changes, some of which differ from those described in mammalian sHsps. Interestingly, only the R110G-DmHsp22 mutant, and not the expected R109G equivalent to human R140-HspB1, R116-HspB4, and R120-HspB5, showed different structural properties compared with the DmHsp22WT.

  14. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    Further, in silico molecular docking data revealed strong interaction of gedunin with the ATP/ADP ... Keywords: Dengue virus replication, Hsp90, Gedunin, Antiviral, Molecular docking ..... Conformational dynamics of the molecular chaperone.

  15. The 60-kDa heat shock protein (HSP60) of the sea anemone Anemonia viridis: a potential early warning system for environmental changes.

    Science.gov (United States)

    Choresh, O; Ron, E; Loya, Y

    2001-09-01

    Expression of heat shock proteins (HSPs) is often correlated with adaptation to environmental stress. We examined the role of HSP60 (60 kDa) in acclimatization to thermal stress in the sea anemone Anemonia viridis. Using monoclonal antibodies, we identified HSP60 in sea anemones for the first time, and showed that its expression varied with changes in seawater temperature (SWT). Anemonia viridis displayed high levels of HSP60 when extreme temperatures prevailed in stressful habitats such as tidal pools. Specimens sampled from different temperature layers in the same tidal pool differed in their levels of HSP60. Specimens from subtidal zones exhibited a seasonal pattern of expression of HSP60, according to the seasonal SWT. The level of HSP60 was significantly higher in the summer (SWT, 31 degrees C) than in other seasons throughout the year. This study suggests the use of HSP60 expression as a tool for stress detection in marine invertebrates.

  16. Stress Proteins (hsp70, hsp60) Induced in Isopods and Nematodes by Field Exposure to Metals in a Gradient near Avonmouth, UK

    NARCIS (Netherlands)

    Arts, M.S.J.; Schill, R.O.; Knigge, T.; Eckwert, H.; Kammenga, J.E.; Köhler, H.R.

    2004-01-01

    Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and

  17. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway.

    Science.gov (United States)

    Ciura, Sorana; Sellier, Chantal; Campanari, Maria-Letizia; Charlet-Berguerand, Nicolas; Kabashi, Edor

    2016-08-02

    The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis.

  18. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    Science.gov (United States)

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  19. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens

    Science.gov (United States)

    Brokordt, Katherina B.; González, Roxana C.; Farías, William J.; Winkler, Federico M.

    2015-01-01

    Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h 2) and the additive genetic coefficient of variation (CV A) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h 2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h 2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CV A of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h 2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals. PMID

  20. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens.

    Directory of Open Access Journals (Sweden)

    Katherina B Brokordt

    Full Text Available Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2 and the additive genetic coefficient of variation (CVA of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes and extracellular (serum protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R, the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3-16.2% in young adults and of 2.7-8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.