WorldWideScience

Sample records for hsp27 gene silencing

  1. Hsp27gene in Drosophila ananassae subgroup was split by a recently acquired intron

    Indian Academy of Sciences (India)

    LI ZHANG; HAN KANG; SHAN JIN; QING TAO ZENG; YONG YANG

    2016-06-01

    InDrosophila , heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense responseagainst fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologousHsp27nucleotide sequencesfrom differentDrosophilaspecies were amplified by PCR and reverse transcription PCR, and the phylogenetic relationshipswere analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from anal-ysis with different algorithms were similar, suggesting that theHsp27gene was split by a recently acquired intron during theevolution of theDrosophila ananassaesubgroup

  2. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowicz-Gil, Joanna, E-mail: jjgil@poczta.umcs.lublin.pl [Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland); Langner, Ewa [Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Bądziul, Dorota [Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland); Wertel, Iwona [1st Department of Gynaecology, University School of Medicine, Staszica 16, 20-081 Lublin (Poland); Rzeski, Wojciech [Department of Medical Biology, Institute of Agricultural Medicine, Jaczewskiego 2, 20-950 Lublin (Poland); Department of Immunology and Virology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin (Poland)

    2013-12-15

    The aim of the present study was to investigate whether silencing of Hsp27 or Hsp72 expression in glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cells increases their sensitivity to programmed cell death induction upon temozolomide and/or quercetin treatment. Transfection with specific siRNA was performed for the Hsp gene silencing. As revealed by microscopic observation and flow cytometry, the inhibition of Hsp expression was correlated with severe apoptosis induction upon the drug treatment studied. No signs of autophagy were detected. This was correlated with a decreased mitochondrial membrane potential, increased level of cytochrome c in the cytoplasm, and activation of caspase 3 and caspase 9. All these results suggest that the apoptotic signal was mediated by an internal pathway. Additionally, in a large percentage of cells treated with temozolomide, with or without quercetin, granules within the ER system were found, which was accompanied by an increased level of caspase 12 expression. This might be correlated with ER stress. Quercetin and temozolomide also changed the shape of nuclei from circular to “croissant like” in both transfected cell lines. Our results indicate that blocking of Hsp27 and Hsp72 expression makes T98G cells and MOGGCCM cells extremely vulnerable to apoptosis induction upon temozolomide and quercetin treatment and that programmed cell death is initiated by an internal signal. - Highlights: • Hsps gene silencing induced severe apoptosis upon temozolomide–quercetin treatment • Apoptosis in transfected glioma cells was initiated by internal signal • Programmed cell death was preceded by ER stress • Temozolomide–quercetin treatment changed nuclei shape in transfected glioma cells.

  3. 牦牛HSP27基因的克隆及其在雌性生殖器官中的表达%Cloning of Bos Grunniens HSP27 Gene and Its Expression in the Female Yak Reproductive Organs

    Institute of Scientific and Technical Information of China (English)

    何翃闳; 崔燕; 潘阳阳; 樊江峰; 胡威; 张译夫; 刘鹏刚; 李秦; 余四九

    2015-01-01

    Objective]The objective of this study was carried out to study differences of the expression of Heat Shock Protein 27(HSP27) gene in the main reproductive organs of the female yak under normal physiological conditions by cloning the HSP27 gene and analyzing its biological characteristics.[Method] Samples from the tissues of ipsilateral Ovary, oviduct and uterus during follicular anaphase, luteal anaphase and early pregnancy phase were collected and cDNA were isolated from each of the collected tissues. RT-PCR was used to clone the HSP27 gene, and purified PCR products were cloned on pMDTM18-T Vector to detect the sequence. The genetic characteristics of HSP27 gene were then analyzed utilizing bioinformation software to predict its product protein structure and potential functions. Next, RT-qPCR was employed to reveal the relative expression of HSP27 gene in the main reproductive organ during the reproductive cycle of the yak. Statistical analysis was performed using the software program SPSS (version 19.0, SPSS).[Result]HSP27 gene sequence containing a complete coding sequence, with the coding region length of 450bp (GenBank accession No: KP716832), This length could encode 149 amino acids of which Leucine (10.7%) was the most, and Tryptophan (0.7%) the least abundant. We determined that the atom number, molecular formula, calculated molecular weight and theoretical isoelectric point of the encoded protein were 2366, C747H1189N205O220S5, 16.722 kD, and 5.33 respectively. The HSP27 encoded protein of HSP27 was predicted to be a type of soluble and non-transmembrane protein. Nucleotide sequence analysis revealed that the HSP27 gene nucleotide sequence of yak was similar to those ofBos taurus(99.8%),Bubalus bubalis(98.4%),Ovis aries(97.8%),Pantholops hodgsonii(97.6%),Orcinus orca(90.3%),Camelus ferus(89.7%),Sus scrofa(89.7%),Equus caballus (86.7%),Canis lupus(86.7%),Homo sapiens(85.5%) andGorilla gorilla(85.3%). The similarity of resulting amino acid sequence of HSP27

  4. Construction and identification of a recombinant lentiviral vector harboring RNAi targeting rat HSP27 gene%大鼠HSP27基因RNA干扰慢病毒载体的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    黄捷; 谢良地; 许昌声; 王华军

    2009-01-01

    目的 构建大鼠的热休克蛋白27 (heat shock protein 27, HSP27)RNA干扰慢病毒载体.方法 设计并合成3对互补针对大鼠HSP27 mRNA的oligoDNA片段.磷酸化和退火后,分别克隆入pSUPER-basic质粒载体,获重组的pSUPER-HSP27-oligoDNA.将其中表达shRNA的结构酶切插入慢病毒转移质粒pNL-IRES2-EGFP,产生pNL-HSP27-IRES2-EGFP,在293T细胞中与VSVG、pHelper包装产生慢病毒.48 h后收集上清液,离心过滤后进行病毒滴度测定.用构建正确的慢病毒质粒载体感染血管平滑肌细胞(vascular smooth muscle cells,VSMCs),检测干扰效果.结果 酶切和测序两种方法结果证明3种质粒载体的插入序列完全正确,慢病毒载体构建成功并获得相应的慢病毒,病毒悬液的滴度为3.12×109 fu·L-1.重组慢病毒质粒pNL-HSP27-IRES2-EGFP-1的RNA干扰效率最高,为0.771.结果 成功构建靶向大鼠HSP27基因RNAi慢病毒载体.为进一步研究HSP27功能和用慢病毒进行基因治疗奠定基础.

  5. Ratio of phosphorylated HSP27 to nonphosphorylated HSP27 biphasically acts as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.

    Science.gov (United States)

    Kang, Dongxu; Choi, Hye Jin; Kang, Sujin; Kim, So Young; Hwang, Yong-Sic; Je, Suyeon; Han, Zhezhu; Kim, Joo-Hang; Song, Jae J

    2015-04-01

    Gemcitabine has been used most commonly as an anticancer drug to treat advanced pancreatic cancer patients. However, intrinsic or acquired resistance of pancreatic cancer to gemcitabine was also developed, which leads to very low five-year survival rates. Here, we investigated whether cellular levels of HSP27 phosphorylation act as a determinant of cellular fate with gemcitabine. In addition we have demonstrated whether HSP27 downregulation effectively could overcome the acquisition of gemcitabine resistance by using transcriptomic analysis. We observed that gemcitabine induced p38/HSP27 phosphorylation and caused acquired resistance. After acquisition of gemcitabine resistance, cancer cells showed higher activity of NF-κB. NF-κB activity, as well as colony formation in gemcitabine-resistant pancreatic cancer cells, was significantly decreased by HSP27 downregulation and subsequent TRAIL treatment, showing that HSP27 was a common network mediator of gemcitabine/TRAIL-induced cell death. After transcriptomic analysis, gene fluctuation after HSP27 downregulation was very similar to that of pancreatic cancer cells susceptible to gemcitabine, and then in opposite position to that of acquired gemcitabine resistance, which makes it possible to downregulate HSP27 to overcome the acquired gemcitabine resistance to function as an overall survival network inhibitor. Most importantly, we demonstrated that the ratio of phosphorylated HSP27 to nonphosphorylated HSP27 rather than the cellular level of HSP27 itself acts biphasically as a determinant of cellular fate in gemcitabine-resistant pancreatic cancer cells.

  6. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    oxygen species or anticancer drugs. Their elevated expressions facilitate cells to survive in stress circumstances. The HSP27 expression is enhanced in many tumor cells, implying that it is involved in tumor progression and the development of treatment resistance in various tumors, including lung cancer...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  7. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammal......Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  8. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells

    Science.gov (United States)

    CHEN, XI; DONG, XIU-SHUAI; GAO, HAI-YAN; JIANG, YONG-FANG; JIN, YING-LAN; CHANG, YU-YING; CHEN, LI-YAN; WANG, JING-HUA

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti-cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV-G-NR-U6-shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis-associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti-cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia. PMID:26648539

  9. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells.

    Science.gov (United States)

    Chen, Xi; Dong, Xiu-Shuai; Gao, Hai-Yan; Jiang, Yong-Fang; Jin, Ying-Lan; Chang, Yu-Ying; Chen, Li-Yan; Wang, Jing-Hua

    2016-01-01

    Quercetin, a natural flavonoid, inhibits the growth of leukemia cells and induces apoptosis. Heat shock protein 27 (HSP27) has been reported to promote the development of leukemia by protecting tumor cells from apoptosis through various mechanisms. The present study investigated the effects of small hairpin (sh)RNA-mediated HSP27 knockdown on the anti‑cancer effects of quercetin in U937 human leukemia cells. Cells were transfected with recombinant lentiviral vector pCMV‑G‑NR‑U6‑shHSP27 (shHSP27), which expressed shRNA specifically targeting the HSP27 gene, alone or in combination with quercetin. The results showed that shHSP27 and quercetin synergistically inhibited U937 cell proliferation and induced apoptosis by decreasing the Bcl2-to-Bax ratio. Furthermore, this combined treatment significantly suppressed the infiltration of tumor cells and the expression of angiogenesis‑associated proteins HIF1α and VEGF. Compared with shHSP27 or quercetin alone, shHSP27 plus quercetin markedly decreased the protein expression of cyclinD1 and thus blocked the cell cycle at G1 phase. The Notch/AKT/mTOR signaling pathway is important in tumor aggressiveness; quercetin plus shHSP27 significantly decreased Notch 1 expression and the phosphorylation levels of the downstream signaling proteins AKT and mTOR. The inhibitory effects of quercetin plus shHSP27 on this pathway may thus have been responsible for the cell cycle arrest, inhibition of proliferations and infiltration as well as enhancement of apoptosis. Therefore, these findings collectively suggested that suppression of HSP27 expression amplified the anti‑cancer effects of quercetin in U937 human leukemia cells, and that quercetin in combination with shHSP27 represents a promising therapeutic strategy for human leukemia.

  10. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...... to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how...

  11. Altered Cross-linking of HSP27 by Zerumbone as a Novel Strategy for Overcoming HSP27- mediated Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo Hyun; Lee, Yoon Jin; Lee, Hae June; Lee, Yun Sil [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Joon [Korea University, Seoul (Korea, Republic of); Seo, Woo Duck [National Institute of Crop Science, Miryang (Korea, Republic of); Nam, Joo Won; Lee, Yoo Jin; Seo, Eun Kyung [Ewha Womans University, Seoul (Korea, Republic of)

    2010-05-15

    HSPs have diverse roles in the regulation of signal transduction and in numerous aspects of cell growth and death. Indeed, HSP90, HSP70, and HSP27 have each been implicated in promoting cancer. Most HSP27 exists as large oligomeric complexes ranging from 100- 800 kDa, which are probably stabilized by complex interactions between dimeric building blocks. The functional properties of HSP27 are dependent on the quaternary structure of the protein. For example, HSP27 acts as a chaperone and binds to cytochrome c or Daxx as a dimer. Therefore, the oligomerization pattern of HPS27 is believed to have HSP27-mediated protective functions. In this study, zerumbone (ZER), the cytotoxic component isolated from Zingiber zerumbet Smith, induced cross-linking of HSP27 protein by its insertion between the disulfide bond of HSP27, and ZERmediated altered cross-linking of HSP27 modified normal HSP27 dimerization, which resulted in a sensitizing effect to tumors after treatment with radiation. Therefore, altered cross-linking by ZER may be a novel strategy for inhibition of HSP27-mediated resistance

  12. Hsp27 and Hsp70 Expression in Esophageal Squamous

    Science.gov (United States)

    Luz, Caio Cesar Floriano; Noguti, Juliana; Borges de Araújo, Leandro; Gianni, Mara Silva Dos Santos; Simão Gomes, Thiago; Ricardo, Artigiani Neto

    2017-03-01

    Twenty-eight specimens of Esophael squamous cell carcinoma (ESCC) were obtained by surgery procedures.The tissues were fixed in formalin and embedded in paraffin. In each case, all available hematoxylin and eosin stained sections were examined and a representative block was selected. The ages of these patients ranged from 40 to 93 years, with a mean age of 60 years. Results. The histological grade of tumors was 4 well-differentiated, 19 moderately differentiated and 5 poorly differentiated. Expression of Hsp27 and Hsp70 in ESCC was demonstrated in 23 (82,14%) and 26 (92,86%) cases, respectively. Adjacent normal mucosa was positive in 11 (39,29%) samples and 9 (32,15%) samples for Hsp27 and Hsp70, respectively. No relationship between the expression of Hsp27 and Hsp70 with the clinicopathological parameters, including gender, age, surgical margin, lymph node status and tumor differentiation. The median follow-up period was 60 months. Survival analysis of patients with ESCC showed no relationship with the expression of Hsp27 and Hsp70. Conclusion. Taken together, our results demonstrate that Hsp27 and Hsp70 are expressed in ESCC tissues, but they are not good prognostic factor for patients with ESCC. Creative Commons Attribution License

  13. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Science.gov (United States)

    Lu, Kuan-Ta; Wang, Bing-Yen; Chi, Wan-Yu; Chang-Chien, Ju; Yang, Jiann-Jou; Lee, Hsueh-Te; Tzeng, Yew-Min; Chang, Wen-Wei

    2016-01-01

    Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer. PMID:27136586

  14. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Directory of Open Access Journals (Sweden)

    Kuan-Ta Lu

    2016-04-01

    Full Text Available Cancer stem/progenitor cells (CSCs are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L. Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474 to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4 and Nanog, as well as heat shock protein 27 (Hsp27, but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2 in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer.

  15. Hsp27 binding to the 3'UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism.

    Science.gov (United States)

    Dávila, David; Jiménez-Mateos, Eva M; Mooney, Claire M; Velasco, Guillermo; Henshall, David C; Prehn, Jochen H M

    2014-11-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress-induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3'UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3'UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons.

  16. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, David M.; Hart, Lori [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Du, Kevin [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Seletsky, Andrew [Department of Biology, Drexel University, Philadelphia, Pennsylvania (United States); Koumenis, Constantinos, E-mail: koumenis@xrt.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  17. THE EFFECTS OF HSP27 ON THE CYTOTOXICITY OF RAT EMBRYO FIBROBLAST INDUCED BY CISPLATIN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the protective effects of heat shock protein 2700(Hsp27)on cis- platin inducing cytotoxicity in a temperature mutant SV40 large T antigen transformed rat embryo fibroblast (P1-Hsp27). Methods The cytotoxical effects of cisplatin on the proliferation status of P1-Hsp27 cells in the presence or absence of Hsp27 were measured by MTT assay. Results Cisplatin possessed dose-dependent cyto- toxicity on P1-Hsp27 cells. 48h after treatment, about 50% cells were dead in those cells exposed to 200μmol cisplatin. However, no obvious protective effects of Hsp27 on cisplatin induced cytotoxicity could be observed (P>0.05),except in those cells exposed to 500μmol cisplatin 12h after treatment. Conclusion Hsp27 has no obvious protective effects on cisplatin inducing cytotoxicity.

  18. Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27’s Phosphorylation Status, and Is Mediated by Exosome Liberation

    Directory of Open Access Journals (Sweden)

    Matthias B. Stope

    2017-01-01

    Full Text Available The heat shock protein HSP27 has been correlated in ovarian cancer (OC patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.

  19. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing

    NARCIS (Netherlands)

    Romero, I.; Tikunov, Y.M.; Bovy, A.G.

    2011-01-01

    Virus-induced gene silencing (VIGS) is a technology that has rapidly emerged for gene function studies in plants. Many advances have been made in applying this technique in an increasing number of crops. Recently, VIGS has been successfully used to silence genes in tomato fruit through agroinfiltrat

  20. Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation.

    Science.gov (United States)

    Wettstein, Guillaume; Bellaye, Pierre-Simon; Kolb, Martin; Hammann, Arlette; Crestani, Bruno; Soler, Paul; Marchal-Somme, Joëlle; Hazoume, Adonis; Gauldie, Jack; Gunther, Andreas; Micheau, Olivier; Gleave, Martin; Camus, Philippe; Garrido, Carmen; Bonniaud, Philippe

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation. Transition of epithelial/mesothelial cells into myofibroblasts [epithelial-to-mesenchymal transition (EMT)] occurs under the influence of transforming growth factor (TGF)-β1, with Snail being a major transcription factor. We study here the role of the heat-shock protein HSP27 in fibrogenesis and EMT. In vitro, we have up- and down-modulated HSP27 expression in mesothelial and epithelial cell lines and studied the expression of different EMT markers induced by TGF-β1. In vivo, we inhibited HSP27 with the antisense oligonucleotide OGX-427 (in phase II clinical trials as anticancer agent) in our rat subpleural/pulmonary fibrosis models. We demonstrate that HSP27 is strongly expressed during the fibrotic process in patients with IPF and in different in vivo models. We showed that HSP27 binds to and stabilizes Snail and consequently induces EMT. Conversely, HSP27 knockdown leads to Snail proteasomal degradation, thus inhibiting TGF-β1-induced EMT. Inhibition of HSP27 with OGX-427 efficiently blocks EMT and fibrosis development. Controls in vivo were an empty adenovirus that did not induce fibrosis and a control antisense oligonucleotide. The present work opens the possibility of a new therapeutic use for HSP27 inhibitors against IPF, for which there is no conclusively effective treatment.

  1. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    Science.gov (United States)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  2. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing.

    Science.gov (United States)

    Romero, Irene; Tikunov, Yury; Bovy, Arnaud

    2011-07-01

    Virus-induced gene silencing (VIGS) is a technology that has rapidly emerged for gene function studies in plants. Many advances have been made in applying this technique in an increasing number of crops. Recently, VIGS has been successfully used to silence genes in tomato fruit through agroinfiltration of fruit attached to the plant. The phytoene desaturase (Pds) gene has been widely used as a reporter gene in VIGS experiments, although little is known about the changes that occur due to its silencing in plants. In this paper, we describe the efficient silencing of the Pds gene through the VIGS approach in detached tomato fruits, which makes the VIGS procedure even more versatile and applicable. After 16 days of agroinfiltration, approximately 75% of the tomatoes showed Pds silencing symptoms, although the distribution of silenced areas was variable among fruits. To study the potential effects caused by Pds silencing in detached tomatoes, carotenoids and other semi-polar secondary metabolites were analyzed using Liquid Chromatography-Mass Spectrometry. In addition, potential differences in primary metabolites were analyzed using Gas Chromatography-Mass Spectrometry. The results indicated that the yellow phenotype observed in Pds-silenced fruit was mainly due to the lack of the red-colored lycopene and therefore to a more pronounced contribution of the yellow-orange carotenoids (lutein, violaxanthin, and zeaxanthin) to the final color of the fruits. Furthermore, the biochemical changes observed in Pds-silenced detached tomatoes suggested that carotenoid and other pathways, e.g. leading to alkaloids and flavonoids, might be affected by the silencing of this reporter gene, and this should be taken into consideration for future experimental designs.

  3. Quercetin suppresses drug-resistant spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Su-Feng Chen

    Full Text Available BACKGROUND: Treatment failure in oral squamous cell carcinoma (OSCC leading to local recurrence(s and metastases is mainly due to drug resistance. Cancer stem cells (CSCs are thought be responsible for the development of drug resistance. However, the correlations between CSCs, drug resistance, and new strategy against drug resistance in OSCC remain elusive. METHODS: A drug-resistant sphere (DRSP model was generated by using a nonadhesive culture system to induce drug-resistant cells from SCC25 oral cancer cells. A comparative analysis was performed between the parent control cells and DRSPs with a related treatment strategy focusing on the expression of epithelial-mesenchymal transition (EMT-associated markers, drug-resistance-related genes, and CSC properties in vitro, as well as tumorigenicity and the regimen for tumor regression in vivo. RESULTS: Our data show the presence of a phenomenon of EMT with gradual cellular transition from an epithelioid to mesenchymal-like spheroid morphology during induction of drug resistance. The characterization of DRSPs revealed the upregulation of the drug-resistance-related genes ABCG2 and MDR-1 and of CSC-representative markers, suggesting that DRSPs have greater resistance to cisplatin (Cis and stronger CSC properties compared with the control. Moreover, overexpression of phosphorylated heat-shock protein 27 (p-Hsp27 via the activation of p38 MAPK signaling was observed in DRSPs. Knockdown of Hsp27 decreased Cis resistance and induced apoptosis in DRSPs. Furthermore, an inhibitor of Hsp27, quercetin (Qu, suppressed p-Hsp27 expression, with alterations of the EMT signature, leading to the promotion of apoptosis in DRSPs. A xenographic study also confirmed the increase of tumorigenicity in DRSPs. The combination of Qu and Cis can reduce tumor growth and decrease drug resistance in OSCC. CONCLUSIONS: The p38 MAPK-Hsp27 axis plays an important role in CSCs-mediated drug resistance in OSCC. Targeting this axis

  4. Research Advances of HSP27's Role in Cardiovascular Diseases%HSP27在心血管疾病中作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    汤鑫

    2013-01-01

    热休克蛋白27(HSP27)是小分子HSP家族中的重要成员,细胞在外界自由基、热、缺血和毒性物质等刺激下可诱导其产生,在各种肿瘤和正常组织中特别是心脏组织中呈高表达.在对抗细心肌凋亡、抗缺血损伤、抗炎性反应中HSP27都有着积极的作用,对血管平滑肌细胞的增殖、迁移和动脉粥样硬化的发生和发展过程都有调控作用.HSP27可能成为治疗心血管疾病的新途径.%HSP27 is an important member of small molecular weight heat shock protein( HSP ) family, the external stimulation of free radicals, heat, ischemic and toxic substances can induce the generation of HSP27 in the cell, presenting high expression in a variety of tumors and normal tissues, with especially high expression in cardiac tissue, which have a positive effect in the anti-apoptosis, anti-ischemia injury and anti-inflammatory. It has a regulatory role in the vascular smooth muscle cell proliferation and migration and the occurrence and development of atherosclerosis. HSP27 may be a new therapeutic strategy of cardiovascular diseases.

  5. Small heat shock protein Hsp27 is required for proper heart tube formation.

    Science.gov (United States)

    Brown, Daniel D; Christine, Kathleen S; Showell, Christopher; Conlon, Frank L

    2007-11-01

    The small heat shock protein Hsp27 has been shown to be involved in a diverse array of cellular processes, including cellular stress response, protein chaperone activity, regulation of cellular glutathione levels, apoptotic signaling, and regulation of actin polymerization and stability. Furthermore, mutation within Hsp27 has been associated with the human congenital neuropathy Charcot-Marie Tooth (CMT) disease. Hsp27 is known to be expressed in developing embryonic tissues; however, little has been done to determine the endogenous requirement for Hsp27 in developing embryos. In this study, we show that depletion of XHSP27 protein results in a failure of cardiac progenitor fusion resulting in cardia bifida. Furthermore, we demonstrate a concomitant disorganization of actin filament organization and defects in myofibril assembly. Moreover, these defects are not associated with alterations in specification or differentiation. We have thus demonstrated a critical requirement for XHSP27 in developing cardiac and skeletal muscle tissues.

  6. Serum HSP27 is associated with medullary perfusion in kidney allografts

    Science.gov (United States)

    Marquez, Eva; Sadowski, Elizabeth; Reese, Shannon; Vidyasagar, Aparna; Artz, Nathan; Fain, Sean; Jacobson, Lynn; Swain, William; Djamali, Arjang

    2015-01-01

    Background Heat shock protein 27 (HSP27) is a small HSP up-regulated in response to stress in the kidney. The relationship between HSP27 and intrarenal oxygenation in patients with native and transplant kidney disease is unknown. Methods We compared HSP27 levels, intrarenal oxygenation measured by blood oxygen-level dependent (BOLD) imaging using R2* values, and perfusion determined by arterial spin labeling (ASL) magnetic resonance imaging (MRI), between patients with native and transplant kidney disease (n=28). Results There were no statistical differences in mean age (53.9 vs. 47.1 years), kidney function (63.6 vs. 50.7 ml/min per 1.73 m2), mean arterial blood pressure (91.6 vs. 91.1 mm Hg), hematocrit (40.6% vs. 39.3%), diuretic or angiotensin-converting enzyme inhibitor use, serum or urine levels of hydrogen peroxide, nitric oxide, F2 isoprostanes and HSP27 between native and transplant kidneys. BOLD-MRI studies demonstrated comparable patterns in intrarenal oxygen bioavailability (medullary R2* 18.1 vs. 18.3/s and cortical R2* 12 vs. 11.7/s, respectively). However, medullary perfusion was significantly lower in transplant kidneys (36.4 vs. 78.7 ml/100 g per minute, p=0.0002). There was a linear relationship between serum HSP27 concentrations and medullary perfusion in kidney allografts (HSP27 concentration [ng/mL] = 0.78 + 0.09 medullary perfusion, R2=0.43, p=0.01). Conclusions Our study demonstrates that medullary perfusion is significantly lower in kidney allografts compared with native kidneys with comparable renal function. We further noted a direct association between serum HSP27 levels and medullary perfusion after transplantation. Additional studies are needed to examine the role of HSP27 as a biomarker of kidney disease progression. PMID:22383348

  7. Detailed characterization of the posttranscriptional gene-silencing-related small RNA in a GUS gene-silenced tobacco

    NARCIS (Netherlands)

    Hutvágner, G.; Mlynarova, L.; Nap, J.P.H.

    2000-01-01

    Posttranscriptional gene-silencing phenomena such as cosuppression and RNA interference are associated with the occurrence of small, about 21-23 nt short RNA species homologous to the silenced gene. We here show that the small RNA present in silenced transgenic plants can easily be detected in total

  8. Repeat-induced gene silencing in mammals.

    Science.gov (United States)

    Garrick, D; Fiering, S; Martin, D I; Whitelaw, E

    1998-01-01

    In both plants and Drosophila melanogaster, expression from a transgenic locus may be silenced when repeated transgene copies are arranged as a concatameric array. This repeat-induced gene silencing is frequently manifested as a decrease in the proportion of cells that express the transgene, resulting in a variegated pattern of expression. There is also some indication that, in transgenic mammals, the number of transgene copies within an array can exert a repressive influence on expression, with several mouse studies reporting a decrease in the level of expression per copy as copy number increases. However, because these studies compare different sites of transgene integration as well as arrays with different numbers of copies, the expression levels observed may be subject to varying position effects as well as the influence of the multicopy array. Here we describe use of the lox/Cre system of site-specific recombination to generate transgenic mouse lines in which different numbers of a transgene are present at the same chromosomal location, thereby eliminating the contribution of position effects and allowing analysis of the effect of copy number alone on transgene silencing. Reduction in copy number results in a marked increase in expression of the transgene and is accompanied by decreased chromatin compaction and decreased methylation at the transgene locus. These findings establish that the presence of multiple homologous copies of a transgene within a concatameric array can have a repressive effect upon gene expression in mammalian systems.

  9. Post-transcriptional gene silencing across kingdoms.

    Science.gov (United States)

    Cogoni, C; Macino, G

    2000-12-01

    Post-transcriptional gene silencing (PTGS) as a consequence of the introduction of either transgenes or double-stranded RNA molecules has been found to occur in a number of species. In the past year, studies in different systems have greatly enhanced our understanding of the molecular mechanisms of these phenomena. The ubiquitous presence of PTGS in both the plant and animal kingdoms and the finding of common genetic mechanisms suggest that PTGS is a universal gene-regulation system fundamental in biological processes such as protection against viruses and transposons.

  10. Evaluating the ability of the barley stripe mosaic virus-induced gene silencing system to simultaneously silence two wheat genes

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is an important tool for rapid assessment of gene function in plants. The ability of the Barley Stripe Mosaic Virus (BSMV) VIGS system to simultaneously silence two genes was assessed by comparing the extent of down-regulation of the wheat PDS and SGT1 genes afte...

  11. Immunohistochemical changes in the expression of HSP27 in exercised human vastus lateralis muscle

    DEFF Research Database (Denmark)

    Folkesson, M; Mackey, Abigail; Holm, L;

    2008-01-01

    . METHODS: Two different exercise protocols were used: (1) one-leg ergometer cycling (EC, n = 6) consisting of two 30-min bouts at 40% and 75% of peak oxygen uptake, respectively, and (2) leg extension resistance exercise (RE, n = 9) including 10 sets of eight repetitions at a load corresponding to 70......AIM: The role of HSP27 in the adaptive process of skeletal muscle to exercise, especially in humans, is not well understood. The objective of this study was to investigate immunohistochemical changes in HSP27 expression in human vastus lateralis muscle following resistance and endurance exercises......% of one maximal repetition (1RM). Immunohistochemistry using specific monoclonal antibodies was used to determine the location of HSP27 protein in muscle biopsies from human vastus lateralis. RESULTS: Our results show that RE, but not EC, induced a significant appearance of scattered accumulations of HSP...

  12. Gene silencing in the marine diatom Phaeodactylum tricornutum

    National Research Council Canada - National Science Library

    De Riso, Valentina; Raniello, Raffaella; Maumus, Florian; Rogato, Alessandra; Bowler, Chris; Falciatore, Angela

    2009-01-01

    .... In this work, we have assessed the possibility of triggering gene silencing in Phaeodactylum tricornutum using constructs containing either anti-sense or inverted repeat sequences of selected target genes...

  13. Locus-specific ribosomal RNA gene silencing in nucleolar dominance.

    Directory of Open Access Journals (Sweden)

    Michelle S Lewis

    Full Text Available The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs, the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.

  14. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Rivka Bracha

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene-silenced

  15. Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available In a previous work we described the transcriptional silencing of the amoebapore A (AP-A gene (Ehap-a of Entamoeba histolytica strain HM-1:IMSS. The silencing occurred following transfection with a plasmid containing a 5' upstream region (473 bp of Ehap-a that included a truncated segment (140 bp of a short interspersed nuclear element (SINE1. Silencing remained in effect even after removal of the plasmid (clone G3. Neither short interfering RNA nor methylated DNA were detected, but the chromatin domain of Ehap-a in the gene-silenced trophozoites was modified. Two other similar genes (Ehap-b and one encoding a Saposin-like protein, SAPLIP 1 also became silenced. In the present work we demonstrate the silencing of a second gene of choice, one that encodes the light subunit of the Gal/GalNAc inhibitable lectin (Ehlgl1 and the other, the cysteine proteinase 5 (EhCP-5. This silencing occurred in G3 trophozoites transfected with a plasmid in which the 473 bp 5' upstream Ehap-a fragment was directly ligated to the second gene. Transcriptional silencing occurred in both the transgene and the chromosomal gene. SINE1 sequences were essential, as was a direct connection between the Ehap-a upstream region and the beginning of the open reading frame of the second gene. Gene silencing did not occur in strain HM-1:IMSS with any of these plasmid constructs. The trophozoites with two silenced genes were virulence-attenuated as were those of clone G3. In addition, trophozoites not expressing Lgl1 and AP-A proteins had a significantly reduced ability to cap the Gal/GalNAc-lectin to the uroid region when incubated with antibodies against the heavy (170 kDa subunit of the lectin. Lysates of trophozoites lacking cysteine proteinase 5 and AP-A proteins had 30% less cysteine proteinase activity than those of HM-1:IMSS strain or the G3 clone. Silencing of other genes in G3 amoebae could provide a model to study their various functions. In addition, double gene-silenced

  16. Homology-dependent gene silencing and host defense in plants.

    Science.gov (United States)

    Matzke, Marjori A; Aufsatz, Werner; Kanno, Tatsuo; Mette, M Florian; Matzke, Antonius J M

    2002-01-01

    Analyses of transgene silencing phenomena in plants and other organisms have revealed the existence of epigenetic silencing mechanisms that are based on recognition of nucleic acid sequence homology at either the DNA or RNA level. Common triggers of homology-dependent gene silencing include inverted DNA repeats and double-stranded RNA, a versatile silencing molecule that can induce both degradation of homologous RNA in the cytoplasm and methylation of homologous DNA sequences in the nucleus. Inverted repeats might be frequently associated with silencing because they can potentially interact in cis and in trans to trigger DNA methylation via homologous DNA pairing, or they can be transcribed to produce double-stranded RNA. Homology-dependent gene silencing mechanisms are ideally suited for countering natural parasitic sequences such as transposable elements and viruses, which are usually present in multiple copies and/or produce double-stranded RNA during replication. These silencing mechanisms can thus be regarded as host defense strategies to foreign or invasive nucleic acids. The high content of transposable elements and, in some cases, endogenous viruses in many plant genomes suggests that host defenses do not always prevail over invasive sequences. During evolution, slightly faulty genome defense responses probably allowed transposable elements and viral sequences to accumulate gradually in host chromosomes and to invade host genes. Possible beneficial consequences of this "foreign" DNA buildup include the establishment of genome defense-derived epigenetic control mechanisms for regulating host gene expression and acquired hereditary immunity to some viruses.

  17. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression

    National Research Council Canada - National Science Library

    Di Wu; Jiao Xu; Erbao Song; Shu Tang; Xiaohui Zhang; N. Kemper; J. Hartung; Endong Bao

    2015-01-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function...

  18. Essential role of Drosophila Hdacl in homeotic gene silencing

    Institute of Scientific and Technical Information of China (English)

    Yuh-LongChang; Yu-HueiPeng; I-ChingPan; Der-ShanSun; BalasKing; Der-HwaHuang

    2005-01-01

    Deacetylation of the N-terminal tails of core histones plays a crucial role in gene silencing. Rpd3 and Hdal represent two major types of genes encoding trichostatin A-sensitive histone deacetylases. Although they have been widely found, their cellular and developmental roles remain to be elucidated in metazoa. We show that Drosophila Hdacl, an Rpd3-type gene, interacts cooperatively with Polycomb group repressors in silencing the homeotic genes that are essential for axial patterning of body segments. The biochem-ical copurification and cytological colocalization of HDAC1 and Polycomb group repressors strongly suggest that HDAC1 is a component of the silencing complex for chromatin modification on specific regulatory regions of homeotic genes.

  19. 雌激素对人脐静脉内皮细胞HSP27表达的影响

    Institute of Scientific and Technical Information of China (English)

    周琴; 张青海; 邓华菲; 谭玉林; 曾新艳; 颜复生; 罗桐秀; 易光辉

    2014-01-01

    目的:观察人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中热休克蛋白27(HSP27)表达在雌激素(estrogen,E)诱导下的改变。方法:分别用10–9 M、10–8 M、10–7 M雌二醇(estradiol,E2)以及10–6 M雌激素受体拮抗剂他莫昔芬(tamox ifen)处理HUVEC后,采用Western blot法和RT-PCR法检测HUVEC中HSP27蛋白和m RNA的表达水平。结果:与对照组相比,无论是蛋白水平还是m RNA水平,10–9 mol/L E2对HUVEC中HSP27表达没有明显影响;10–8、10–7 mol/L E2诱导HUVEC中HSP27表达逐渐增加(P〈0.05);而HUVEC与10–6 M他莫昔芬、10–7 M雌二醇共同孵育,其HSP27水平和单纯10–7 M雌二醇处理相比明显减少(P〈0.05)。结论:外源性E2能诱导HUVEC中HSP27的表达,呈剂量依赖性。他莫昔芬能阻断E2的这种上调HSP27的作用,提示雌激素诱导内皮细胞HSP27的表达依赖ER。

  20. A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available The Golden Gate (GG modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct.

  1. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability

    Directory of Open Access Journals (Sweden)

    Kong Sun-Young

    2008-10-01

    Full Text Available Abstract Background Elucidating the molecular mechanisms by which tumors become resistant to Herceptin is critical for the treatment of Her2-overexpressed metastatic breast cancer. Methods To further understand Herceptin resistance mechanisms at the molecular level, we used comparative proteome approaches to analyze two human breast cancer cell lines; Her2-positive SK-BR-3 cells and its Herceptin-resistant SK-BR-3 (SK-BR-3 HR cells. Results Heat-shock protein 27 (HSP27 expression was shown to be upregulated in SK-BR-3 HR cells. Suppression of HSP27 by specific siRNA transfection increased the susceptibility of SK-BR-3 HR cells to Herceptin. In the presence of Herceptin, Her2 was downregulated in both cell lines. However, Her2 expression was reduced by a greater amount in SK-BR-3 parent cells than in SK-BR-3 HR cells. Interestingly, co-immunoprecipitation analysis showed that HSP27 can bind to Her2. In the absence of Herceptin, HSP27 expression is suppressed and Her2 expression is reduced, indicating that downregulation of Her2 by Herceptin can be obstructed by the formation of a Her2-HSP27 complex. Conclusion Our present study demonstrates that upregulated HSP27 in human breast cancer cells can reduce Herceptin susceptibility by increasing Her2 protein stability.

  2. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  3. [Therapeutic effect of focal adhesion kinase gene silence on leukemia].

    Science.gov (United States)

    Xu, Lü-Hong; Fang, Jian-Pei; Weng, Wen-Jun; Xu, Hong-Gui; Zhang, Ya-Ting

    2011-06-01

    This study was aimed to investigate the effects of focal adhesion kinase (FAK) gene silence on leukemia cell growth, leukemogenesis and efficacy of chemotherapy drug. Vector containing lentiviral-FAK-shRNA was constructed and transfected into BCR/ABL-BaF3 leukemic cells, the cell growth and apoptosis were detected in vitro. The effect of FAK shRNA on leukemogenesis was studied in a murine model with leukemia. The apoptosis of leukemia cells and survival of leukemic mice treated by FAK shRNA combined with drug STI571 were monitored. The results showed that FAK gene expression was knocked down by lentiviral-FAK-shRNA. FAK gene silencing inhibited leukemia cell growth in vitro. The apoptosis test results showed that the percentages of Annexin V(+) cells in vector control group and FAK shRNA group were (3.46 ± 0.56)% and (7.3 ± 0.79)%, respectively, and the difference was statistically significant (p silence combined with drug STI571 could enhance the apoptosis of leukemia cells and prolong survival time of leukemic mice. It is concluded that FAK gene silence inhibits leukemogenesis and promotes efficacy of chemotherapy drug on leukemia cells, indicating FAK gene silence may be considered as a new therapeutic strategy for leukemia.

  4. Effects of a silenced gene in Boolean network models

    Directory of Open Access Journals (Sweden)

    Emir Haliki

    2017-03-01

    Full Text Available Gene regulation and their regulatory networks are one of the most challenging research problems of computational biology and complexity sciences. Gene regulation is formed by indirect interaction between DNA segments which are protein coding genes to configure the expression level of one another. Prevention of expression of any genes in gene regulation at the levels of transcription or translation indicates the gene silencing event. The present study examined what types of results in gene silencing would bring about in the dynamics of Boolean genetic regulatory mechanisms. The analytical study was performed in gene expression variations of Boolean dynamics first, then the related numerical analysis was simulated in real networks in the literature.

  5. Homoeologous gene silencing in tissue cultured wheat callus

    Directory of Open Access Journals (Sweden)

    Chapman Natalie H

    2008-10-01

    Full Text Available Abstract Background In contrast to diploids, most polyploid plant species, which include the hexaploid bread wheat, possess an additional layer of epigenetic complexity. Several studies have demonstrated that polyploids are affected by homoeologous gene silencing, a process in which sub-genomic genomic copies are selectively transcriptionally inactivated. This form of silencing can be tissue specific and may be linked to developmental or stress responses. Results Evidence was sought as to whether the frequency of homoeologous silencing in in vitro cultured wheat callus differ from that in differentiated organs, given that disorganized cells are associated with a globally lower level of DNA methylation. Using a reverse transcription PCR (RT-PCR single strand conformation polymorphism (SSCP platform to detect the pattern of expression of 20 homoeologous sets of single-copy genes known to be affected by this form of silencing in the root and/or leaf, we observed no silencing in any of the wheat callus tissue tested. Conclusion Our results suggest that much of the homoeologous silencing observed in differentiated tissues is probably under epigenetic control, rather than being linked to genomic instability arising from allopolyploidization. This study reinforces the notion of plasticity in the wheat epi-genome.

  6. Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that doublestranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of methylation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants.

  7. The Functional Landscape of Hsp27 Reveals New Cellular Processes such as DNA Repair and Alternative Splicing and Proposes Novel Anticancer Targets*

    Science.gov (United States)

    Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J.; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma

    2014-01-01

    Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. PMID:25277244

  8. The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets.

    Science.gov (United States)

    Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma

    2014-12-01

    Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells.

  9. TAT-Hsp27 promotes adhesion and migration of murine dental papilla-derived MDPC-23 cells through beta1 integrin-mediated signaling.

    Science.gov (United States)

    Park, Jong-Hwan; Yoon, Ji-Hye; Lim, Young-Sin; Hwang, Ho-Keel; Kim, Soo-A; Ahn, Sang-Gun; Yoon, Jung-Hoon

    2010-09-01

    Odontoblasts are involved in tooth repair and regeneration as well as dentin formation. The aim of this study was to examine whether delivery of heat shock protein 27 (Hsp27) into cells using a TAT fusion protein system (TAT-Hsp27) enhances adhesion and migration of murine dental papilla-derived MDPC-23 cells. Hsp27 was delivered into cells by the TAT-fusion protein system. To examine whether TAT-Hsp27 affects the viability of MDPC-23 cells, MTT assay was performed. The effect of TAT-Hsp27 on adhesion and migration of MDPC-23 cells was determined using type I collagen-coated plates and a commercial kit, respectively. In addition, a precise molecular mechanism was examined by Western blot analysis and focal adhesion activity. TAT-fusion protein system delivered Hsp27 into cells successfully. Transduction of TAT-Hsp27 induced adhesion and migration of MDPC-23 cells in a dose-dependent manner. Moreover, transduction of TAT-Hsp27 increased the protein expression of beta1 integrin and focal adhesion formation, and induced phosphorylation of FAK and ERK. TAT-Hsp27-induced migration of MDPC-23 cells was restored by treatment of anti-beta1 integrin antibody. These findings suggest that TAT-Hsp27 promotes adhesion and migration of MDPC-23 cells via beta1 integrin-mediated signaling and is a promising candidate for therapeutic application of dental pulp regeneration.

  10. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  11. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Science.gov (United States)

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  12. Gold Nanobeacons for Tracking Gene Silencing in Zebrafish

    Science.gov (United States)

    Cordeiro, Milton; Carvalho, Lara; Silva, Joana; Saúde, Leonor; Fernandes, Alexandra R.; Baptista, Pedro V.

    2017-01-01

    The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest. PMID:28336844

  13. Gold Nanobeacons for Tracking Gene Silencing in Zebrafish

    Directory of Open Access Journals (Sweden)

    Milton Cordeiro

    2017-01-01

    Full Text Available The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

  14. Virus-induced gene silencing in soybean and common bean.

    Science.gov (United States)

    Zhang, Chunquan; Whitham, Steven A; Hill, John H

    2013-01-01

    Plant viral vectors are useful for transient gene expression as well as for downregulation of gene expression via virus-induced gene silencing (VIGS). When used in reverse genetics approaches, VIGS offers a convenient way of transforming genomic information into knowledge of gene function. Efforts to develop and improve plant viral vectors have expanded their applications and have led to substantial advances needed to facilitate gene function studies in major row crops. Here, we describe a DNA-based Bean pod mottle virus (BPMV) vector system for both gene expression and VIGS in soybean and common bean.

  15. MGMT gene silencing and benefit from temozolomide in glioblastoma

    NARCIS (Netherlands)

    Hegi, ME; Diserens, A; Gorlia, T; Hamou, M; de Tribolet, N; Weller, M; Kros, JM; Hainfellner, JA; Mason, W; Mariani, L; Bromberg, JEC; Hau, P; Mirimanoff, RO; Cairncross, JG; Janzer, RC; Stupp, R

    2005-01-01

    BACKGROUND: Epigenetic silencing of the MGMT (O(sup 6)-methylguanine-DNA methyltransferase) DNA-repair gene by promoter methylation compromises DNA repair and has been associated with longer survival in patients with glioblastoma who receive alkylating agents. METHODS: We tested the relationship bet

  16. Thrombin Receptor-Activating Protein (TRAP-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1 from Platelets in DM Patients

    Directory of Open Access Journals (Sweden)

    Haruhiko Tokuda

    2016-05-01

    Full Text Available It is generally known that heat shock protein 27 (HSP27 is phosphorylated through p38 mitogen-activated protein (MAP kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP on the release of HSP27 in platelets in type 2 diabetes mellitus (DM patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78 were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC of small aggregates (9–25 µm induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm, large aggregates (50–70 µm and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  17. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David George James [ORNL; McKnight, Timothy E [ORNL; Mcpherson, Jackson [University of Tennessee, Knoxville (UTK); Hoyt, Peter R [ORNL; Melechko, Anatoli Vasilievich [ORNL; Simpson, Michael L [ORNL; Sayler, Gary Steven [ORNL

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and introduced alongside the yfp marker gene into Chinese hamster ovary cells using spatially indexed vertically aligned carbon nanofiber arrays (VACNFs) in a gene delivery process termed impalefection. The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. 24 hours after nanofiber-mediated delivery, 53.1% 10.4% of the cells that expressed the yfp marker gene were also fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  18. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    Science.gov (United States)

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.

  19. Small heat shock protein Hsp27 protects myosin S1 from heat-induced aggregation, but not from thermal denaturation and ATPase inactivation.

    Science.gov (United States)

    Markov, Denis I; Pivovarova, Anastasia V; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2008-04-30

    We applied different methods, such as turbidity measurements, dynamic light scattering, differential scanning calorimetry and co-sedimentation assay, to analyze the interaction of small heat shock protein Hsp27 with isolated myosin head (myosin subfragment 1, S1) under heat-stress conditions. Upon heating at 43 degrees C, Hsp27 effectively suppresses S1 aggregation, and this effect is enhanced by mutations mimicking Hsp27 phosphorylation. However, Hsp27 was unable to prevent thermal unfolding of myosin heads and to maintain their ATPase activity under heat-shock conditions.

  20. Aucsia gene silencing causes parthenocarpic fruit development in tomato.

    Science.gov (United States)

    Molesini, Barbara; Pandolfini, Tiziana; Rotino, Giuseppe Leonardo; Dani, Valeria; Spena, Angelo

    2009-01-01

    In angiosperms, auxin phytohormones play a crucial regulatory role in fruit initiation. The expression of auxin biosynthesis genes in ovules and placenta results in uncoupling of tomato (Solanum lycopersicum) fruit development from fertilization with production of parthenocarpic fruits. We have identified two newly described genes, named Aucsia genes, which are differentially expressed in auxin-synthesis (DefH9-iaaM) parthenocarpic tomato flower buds. The two tomato Aucsia genes encode 53-amino-acid-long peptides. We show, by RNA interference-mediated gene suppression, that Aucsia genes are involved in both reproductive and vegetative plant development. Aucsia-silenced tomato plants exhibited auxin-related phenotypes such as parthenocarpic fruit development, leaf fusions, and reflexed leaves. Auxin-induced rhizogenesis in cotyledon explants and polar auxin transport in roots were reduced in Aucsia-silenced plants compared with wild-type plants. In addition, Aucsia-silenced plants showed an increased sensitivity to 1-naphthylphthalamic acid, an inhibitor of polar auxin transport. We further prove that total indole-3-acetic acid content was increased in preanthesis Aucsia-silenced flower buds. Thus, the data presented demonstrate that Aucsia genes encode a novel family of plant peptides that control fruit initiation and affect other auxin-related biological processes in tomato. Aucsia homologous genes are present in both chlorophytes and streptophytes, and the encoded peptides are distinguished by a 16-amino-acid-long (PYSGXSTLALVARXSA) AUCSIA motif, a lysine-rich carboxyl-terminal region, and a conserved tyrosine-based endocytic sorting motif.

  1. Expression of Hsp27 and Hsp70 in lymphocytes and plasma in healthy workers and coal miners with lung cancer.

    Science.gov (United States)

    Wang, Haijiao; Xing, Jingcai; Wang, Feng; Han, Wenhui; Ren, Houmao; Wu, Tangchun; Chen, Weihong

    2010-08-01

    In coal mines, main occupational hazard is coal-mine dust, which can cause health problem including coal workers' pneumoconiosis and lung cancer. Some heat shock proteins (Hsps) have been reported as an acute response to a wide variety of stressful stimuli. Whether Hsps protect against chronic environmental coal-mine dust over years is unknown. It is also interesting to know that whether the expression of Hsp27 and Hsp70 proteins as a marker for exposure is associated risk of lung cancer among coal miners. We investigated the association between levels of Hsp27 and Hsp70 expression in lymphocytes and plasma and levels of coal-mine dust exposure in workplace or risk of lung cancer in 42 cancer-free non-coal miners, 99 cancer-free coal miners and 51 coal miners with lung cancer in Taiyuan city in China. The results showed that plasma Hsp27 levels were increased in coal miners compared to non-coal miners (P<0.01). Except high cumulative coal-mine dust exposure (OR=13.62, 95%CI=6.05-30.69) and amount of smoking higher than 24 pack-year (OR=2.72, 95% CI=1.37-5.42), the elevated levels of plasma Hsp70 (OR=13.00, 95% CI=5.14-32.91) and plasma Hsp27 (OR=2.97, 95% CI=1.40-6.32) and decreased expression of Hsp70 in lymphocytes (OR=2.36, 95% CI=1.05-5.31) were associated with increased risk of lung cancer. These findings suggest that plasma Hsp27 may be a potential marker for coal-mine dust exposure. And the expression of Hsp27 and Hsp70 levels in plasma and lymphocytes may be used as biomarkers for lung cancer induced by occupational coal-mine dust exposure.

  2. Polycomb target genes are silenced in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Antonia Kalushkova

    Full Text Available Multiple myeloma (MM is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep and the histone deacetylase inhibitor LBH589 (Panobinostat, reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.

  3. Virus-induced Gene Silencing in Eggplant (Solanum melongena)

    Institute of Scientific and Technical Information of China (English)

    HaipingLiu; Daqi Fu; Benzhong Zhu; Huaxue Yan; Xiaoying Shen; Jinhua Zuo; Yi Zhu; Yunbo Luo

    2012-01-01

    Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions.The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays.Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses.In this paper,TRV-mediated VIGS was successfully elicited in eggplant.We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene.Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation,indicating that VIGS can be used to silence genes in eggplant.To further illustrate the reliability of VIGS in eggplant,we selected Chl H,Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method.Suppression of Chl H and Su led to yellow leaves,while the depletion of CLA1 resulted in albino.In conclusion,four genes,PDS,Chl H,Su (Sulfur),CLA1,were down-regulated significantly by VIGS,indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function.

  4. Bioreducible polymers for gene silencing and delivery.

    Science.gov (United States)

    Son, Sejin; Namgung, Ran; Kim, Jihoon; Singha, Kaushik; Kim, Won Jong

    2012-07-17

    Polymeric gene delivery vectors show great potential for the construction of the ideal gene delivery system. These systems harness their ability to incorporate versatile functional traits to overcome most impediments encountered in gene delivery: from the initial complexation to their target-specific release of the therapeutic nucleic acids at the cytosol. Among the numerous multifunctional polymers that have been designed and evaluated as gene delivery vectors, polymers with redox-sensitive (or bioreducible) functional domains have gained great attention in terms of their structural and functional traits. The redox environment plays a pivotal role in sustaining cellular homeostasis and natural redox potential gradients exist between extra- and intracellular space and between the exterior and interior of subcellular organelles. In some cases, researchers have designed the polymeric delivery vectors to exploit these gradients. For example, researchers have taken advantage of the high redox potential gradient between oxidizing extracellular space and the reducing environment of cytosolic compartments by integrating disulfide bonds into the polymer structure. Such polymers retain their cargo in the extracellular space but selectively release the therapeutic nucleic acids in the reducing space within the cytosol. Furthermore, bioreducible polymers form stable complex with nucleic acids, and researchers can fabricate these structures to impart several important features such as site-, timing-, and duration period-specific gene expression. Additionally, the introduction of disulfide bonds within these polymers promotes their biodegradability and limits their cytotoxicity. Many approaches have demonstrated the versatility of bioreducible gene delivery, but the underlying biological rationale of these systems remains poorly understood. The process of disulfide reduction depends on multiple variables in the cellular redox environment. Therefore, the quest to unravel various

  5. 沉默热休克蛋白27基因增强大肠癌细胞对5-FU化疗敏感性%Silencing gene of heat shock protein 27 increases the sensitivity to 5-FU in colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    黄崇杰; 刘长宝; 郑晨果; 蔡锚

    2015-01-01

    目的:探讨不同大肠癌细胞热休克蛋白(HSP27)蛋白表达水平及其与5-氟尿嘧啶(5-FU)化疗敏感性的关系,同时通过RNA干扰抑制HSP27基因的表达,初步探讨沉默该基因对5-FU抗肿瘤作用的影响。方法:Western blot法检测各大肠癌细胞中HSP27蛋白的表达水平,CCK-8法测定不同浓度5-FU对各细胞株的抑制率,分析各组细胞HSP27蛋白表达水平与IC50的关系。设计合成3对针对不同靶点的HSP27小干扰RNA,通过脂质体转染SW480细胞,激光共聚焦显微镜观察转染效率,Real-time PCR及Western blot法检测转染后HSP27 mRNA及蛋白表达水平。CCK-8法检测HSP27-siRNA对细胞的生长抑制作用及沉默HSP27基因细胞对5-FU化疗敏感性的变化。结果:各组细胞中HSP27的表达水平与5-FU的敏感性呈负相关性。Real-time PCR及Western blot法结果显示有两对靶向HSP27-siRNA能有效抑制HSP27 mRNA及蛋白水平的表达;CCK-8法检测结果显示HSP27-siRNA转染可增强SW480细胞对5-FU的敏感性,半数抑制浓度(IC50)明显下调。HSP27在大肠癌细胞中的表达水平与5-FU化疗药IC50值呈正相关。结论:靶向HSP27的siRNA能有效抑制大肠癌SW480细胞HSP27蛋白的表达,增强5-FU化疗药物的敏感性。%Objective:To investigate the relationship between the HSP27 expression level and the sensiti-zation to 5-FU in different kinds of colon cancer cells, and then explore the effect of HSP27 gene down-regulated by siRNA interference, and the sensitive of 5-FU. Methods:The HSP27 expression level in different kinds of colon cancer cells were detected by Western blot, and the inhibition rates of different concentration of 5-FU were determined by CCK-8 method, then the relationship between the relative level and IC50 of 5-FU was analyzed by Linear correlation. Three siRNA sequences targeted on special sequence of HSP27 gene were designed, All siRNAs were transfected by lipofectamine

  6. INDUCIBLE RNAi-MEDIATED GENE SILENCING USING NANOSTRUCTURED GENE DELIVERY ARRAYS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David George James [ORNL; McKnight, Timothy E [ORNL; Mcpherson, Jackson [University of Tennessee, Knoxville (UTK); Hoyt, Peter R [ORNL; Melechko, Anatoli Vasilievich [ORNL; Simpson, Michael L [ORNL; Sayler, Gary Steven [ORNL

    2008-01-01

    RNA interference has become a powerful biological tool over the last decade. In this study, a tetracycline-inducible shRNA vector system was designed for silencing CFP expression and delivered alongside the yfp marker gene into Chinese hamster ovary cells using impalefection on spatially indexed vertically aligned carbon nanofiber arrays (VACNFs). The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time. Following impalefection and tetracycline induction, 53.1% 10.4% of impalefected cells were fully silenced by the inducible CFP-silencing shRNA vector. Additionally, efficient CFP-silencing was observed in single cells among a population of cells that remained CFP-expressing. This effective transient expression system enables rapid analysis of gene silencing effects using RNAi in single cells and cell populations.

  7. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakashima

    2014-02-01

    Full Text Available Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption, knock-in (insertion, and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.

  8. Gene silencing: a therapeutic approach to combat influenza virus infections.

    Science.gov (United States)

    Khanna, Madhu; Saxena, Latika; Rajput, Roopali; Kumar, Binod; Prasad, Rajendra

    2015-01-01

    Selective gene silencing technologies such as RNA interference (RNAi) and nucleic acid enzymes have shown therapeutic potential for treating viral infections. Influenza virus is one of the major public health concerns around the world and its management is challenging due to a rapid increase in antiviral resistance. Influenza vaccine also has its limitations due to the emergence of new strains that may escape the immunity developed by the previous year's vaccine. Antiviral drugs are the primary mode of prevention and control against a pandemic and there is an urgency to develop novel antiviral strategies against influenza virus. In this review, we discuss the potential utility of several gene silencing mechanisms and their prophylactic and therapeutic potential against the influenza virus.

  9. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  10. Functional epigenomics identifies genes frequently silenced in prostate cancer.

    Science.gov (United States)

    Lodygin, Dimitri; Epanchintsev, Alexey; Menssen, Antje; Diebold, Joachim; Hermeking, Heiko

    2005-05-15

    In many cases, silencing of gene expression by CpG methylation is causally involved in carcinogenesis. Furthermore, cancer-specific CpG methylation may serve as a tumor marker. In order to identify candidate genes for inactivation by CpG methylation in prostate cancer, the prostate cancer cell lines LNCaP, PC3, and Du-145 were treated with 5-aza-2' deoxycytidine and trichostatin A, which leads to reversion of epigenetic silencing. By microarray analysis of 18,400 individual transcripts, several hundred genes were found to be induced when compared with cells treated with trichostatin A. Fifty re-expressed genes were selected for further analysis based on their known function, which implied a possible involvement in tumor suppression. Twelve of these genes showed a significant degree of CpG methylation in their promoters. Six genes were silenced by CpG methylation in the majority of five analyzed prostate cancer cell lines, although they displayed robust mRNA expression in normal prostate epithelial cells obtained from four different donors. In primary prostate cancer samples derived from 41 patients, the frequencies of CpG methylation detected in the promoter regions of these genes were: GPX3, 93%; SFRP1, 83%; COX2, 78%; DKK3, 68%; GSTM1, 58%; and KIP2/p57, 56%. Ectopic expression of SFRP1 or DKK3 resulted in decreased proliferation. The expression of DKK3 was accompanied by attenuation of the mitogen-activated protein kinase pathway. The high frequency of CpG methylation detected in the promoters of the identified genes suggests a potential causal involvement in prostate cancer and may prove useful for diagnostic purposes.

  11. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  12. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    Science.gov (United States)

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  13. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy.

    Directory of Open Access Journals (Sweden)

    José Díaz-Chávez

    Full Text Available The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4',5-trans-trihydroxystilbilene is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05 in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS as heat shock protein 27 (HSP27, translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5'-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27

  14. HSP27在调控人胃癌细胞系5-FU 耐药中的作用机制%The Mechanism of HSP27 Regulation of 5-FU Resistant in Human Gastric Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    宋荣峰; 张慧卿; 熊彦; 王艳华; 万以叶

    2015-01-01

    目的:探讨热休克蛋白27(HSP27)在调控人胃癌细胞系5-FU耐药中的作用机制。方法培养人胃癌细胞株HGC27、BGC823、SGC7901、MKN28,采用CCK法筛选5-FU敏感株和耐药株,采用流式细胞仪和western blot 检测4株胃癌细胞株中HSP27表达水平,转染HSP27-siRNA,观察siRNA干扰后5-FU敏感株和耐药株中HSP27蛋白表达,并将两细胞株分别与不同浓度5-Fu共培养,采用CCK法检测细胞的半数抑制浓度( IC50)。结果 CCK法显示SGC7901细胞系是4株胃癌细胞中5-Fu相对耐药株,而HCG27是5-Fu相对敏感株。流式细胞仪显示SGC7901细胞株中HSP27表达水平最高为(72.10±1.89)%,而在HGC27细胞株中的表达水平最低为(22.12±1.33)%,各株表达水平比较差异有统计学意义( P<0.05)。转染HSP27-siRNA 后,各两株细胞HSP27蛋白表达水平均下降明显。与5-Fu共培养后, SGC7901细胞株转染组细胞半数抑制浓度降低,药物敏感性增强,与未转染组比较差异有统计学意义( P<0.05)。结论HSP27参与了SGC79015-FU耐药株中的细胞耐药,是诱导细胞多药耐药的重要分子机制,可以作为临床治疗靶点来提高胃癌患者对化疗的敏感性。%Objective To investigate the mechanism of HSP 27 of 5-FU resistant in human gastric cancer cell lines . Methods Human gastric cancer cell lines(HGC27,BGC823,SGC7901,MKN28)were cultured,and the cells which were resist-ant to 5-FU were selected by CCK assay and flow cytometry .The expression of HSP27 in these cells were detected by Western Blotting.And 2 cell lines were co-cultured with different concentration of 5-Fu,then the half inhibition concentration was detected by CCK assay.Results CCK assay showed that SGC7901 cell line was relatively resistant to 5-Fu,and the HCG27 cell line was relatively sensitive to 5-Fu.The flow cytometry results suggested that the expression of HSP 27 in the SGC7901 cells was

  15. Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors.

    Science.gov (United States)

    Neufer, P D; Benjamin, I J

    1996-09-27

    AlphaB-crystallin (alphaBC) is a major structural protein (22 kDa) of the ocular lens as well as a bona fide heat shock protein in non-lens tissue. The alphaBC gene is abundantly expressed in tissues with high oxidative capacity, including the heart and type I skeletal muscle fibers, and is regulated by the MyoD family of basic helix-loop-helix transcription factors during myogenesis. To test the hypothesis that alphaBC expression may be directly regulated by the demand for oxidative metabolism, we examined the expression of alphaBC and the ancestral-related Hsp27 in rabbit tibialis anterior muscle subjected to continuous low frequency motor nerve stimulation (3 V, 10 Hz). alphaBC mRNA and protein increased within the 1st day of continuous contractile activity (5- and 2.5-fold, respectively) and achieved maximum levels (>20-and 4-fold, respectively) after 21 d of stimulation. Hsp27 mRNA and protein levels also increased with stimulation, but with a less specific and dramatic induction pattern. In agreement with the Northern analysis, in situ hybridization performed on cross sections from tibialis anterior muscle revealed progressively increasing alphaBC transcript signal, localized in a ringlet pattern, from 1 through 21 days of stimulation. Serial sections subjected to myosin immunohistochemistry revealed that alphaBC expression was confined to slow-twitch type I and a subpopulation of fast twitch type II fibers after 1 day but present in nearly all fibers after 21 days of stimulation. Transcript levels of all four myogenic regulatory factors (MyoD, myogenin, myf-5, and MRF4) also increased with stimulation in a pattern temporally similar with alphaBC, suggesting that expression of alphaBC in response to stimulation may, in part, be regulated through myogenic regulatory factor(s) interaction with the canonical E-box element located within the alphaBC promotor. These data demonstrate that expression of the small heat shock protein, alphaBC, is rapidly induced

  16. Efficient Virus-Induced Gene Silencing in Solanum rostratum.

    Directory of Open Access Journals (Sweden)

    Lan-Huan Meng

    Full Text Available Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS and Chlorophyll H subunit (ChlH of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.

  17. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    Science.gov (United States)

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  18. Efficient Virus-Induced Gene Silencing in Solanum rostratum.

    Science.gov (United States)

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.

  19. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  20. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. Copyright © 2016

  1. Dendrimeric siRNA for Efficient Gene Silencing.

    Science.gov (United States)

    Hong, Cheol Am; Eltoukhy, Ahmed A; Lee, Hyukjin; Langer, Robert; Anderson, Daniel G; Nam, Yoon Sung

    2015-06-01

    Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An intronic microRNA silences genes that are functionally antagonistic to its host gene

    OpenAIRE

    Barik, Sailen

    2008-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of ‘host’ genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products ar...

  3. Noise and correlations in genes silenced by small RNA.

    Science.gov (United States)

    Hwa, Terence; Levine, Erel

    2006-03-01

    Many small regulatory RNAs have been identified in prokaryotes and eukaryotes in recent years. In many cases, RNA regulation is found in critical pathways. These include stress response and quorum sensing pathways in bacteria, and cell differentiation and programmed cell death in eukaryotes. In many cases, regulation by small RNA is used in switching off a response program as long as it is not required, allowing for a fast switching on when necessary. Clearly, accidental execution of such a program may bare grave consequences on the cell, and should be avoided. Here we analyze a stochastic model for gene regulation by the most abundant class of small RNA in bacteria. This class of small RNAs acts by base pairing with target mRNAs, silencing its translation and actively promoting its degradation. Importantly, the small RNA molecule is not recycled. Our model suggests that genes silenced by sRNA exhibits smooth noise, as opposed to the bursty noise characteristic to genes repressed at the level of transcription, with coupling between intrinsic noise and global, extrinsic fluctuations. In addition, we investigate how noise propagates through the indirect coupling between different targets of the same sRNA. These features are discussed in the context of circuits exhibiting multi-stability, where protein bursts have strong implications on spontaneous switching.

  4. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants, which are difficult to transform. The pea early-browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. However, the avail......Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants, which are difficult to transform. The pea early-browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. However......, the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...... involved in the early and late stages of AMF symbiosis....

  5. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    Science.gov (United States)

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation.

  6. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability

    OpenAIRE

    Kong Sun-Young; Lee Ho-Young; Kim Seok-Ki; Kwon Bumi; Kim Kyung-Hee; Kang Keon; Kang Se; Lee Eun; Jang Sang-Geun; Yoo Byong

    2008-01-01

    Abstract Background Elucidating the molecular mechanisms by which tumors become resistant to Herceptin is critical for the treatment of Her2-overexpressed metastatic breast cancer. Methods To further understand Herceptin resistance mechanisms at the molecular level, we used comparative proteome approaches to analyze two human breast cancer cell lines; Her2-positive SK-BR-3 cells and its Herceptin-resistant SK-BR-3 (SK-BR-3 HR) cells. Results Heat-shock protein 27 (HSP27) expression was shown ...

  7. Upregulation of Phosphorylated HSP27, PRDX2, GRP75, GRP78 and GRP94 in Acquired Middle Ear Cholesteatoma Growth

    Directory of Open Access Journals (Sweden)

    Kuen Yao Ho

    2013-07-01

    Full Text Available Cholesteatoma is a destructive and expanding growth of keratinizing squamous epithelium in the middle ear or petrous apex. The molecular and cellular processes of the pathogenesis of acquired middle ear cholesteatoma have not been fully understood. In this study, comparative proteomic analysis was conducted to investigate the roles of specific proteins in the pathways regarding keratinocyte proliferation in cholesteatoma. The differential proteins were detected by comparing the two-dimension electrophoresis (2-DE maps of the epithelial tissues of 12 attic cholesteatomas with those of retroauricular skins. There were 14 upregulated proteins in the epithelial tissues of cholesteatoma in comparison with retroauricular skin. The modulation of five crucial proteins, HSP27, PRDX2, GRP75, GRP78 and GRP94, was further determined by RT-PCR, Western blot and immunohistochemistry. Phosphorylation of HSP27 at Ser-82 was identified by mass spectroscopy. The results of this study suggested that phosphorylated HSP27 is the end expression of two potential signal-transduction pathways, and together with PRDX2, they are very likely involved in the proliferation of keratinocytes in cholesteatoma. Upregulations of GRP75, GRP78 and GRP94 in keratinocytes may be able to counter endoplasmic reticulum stress, to inhibit cell apoptosis, to prevent protein unfolding and to promote cholesteatoma growth.

  8. AMFR gene silencing inhibits the differentiation of porcine preadipocytes.

    Science.gov (United States)

    Chen, C Z; Zhu, Y N; Chai, M L; Dai, L S; Gao, Y; Jiang, H; Zhang, L J; Ding, Y; Liu, S Y; Li, Q Y; Lu, W F; Zhang, J B

    2016-04-07

    Our study clarifies the role of the autocrine motility factor receptor (AMFR) gene in porcine preadipocyte differentiation. AMFR-siRNA was transfected into porcine preadipocytes and the preadipocytes were induced to differentiation. Subsequently, qRT-PCR was conducted to examine changes in mRNA expression of a series of genes in porcine preadipocytes, including AMFR, sterol-regulatory element-binding protein-1a (SREBP1a), SREBP2, insulin-induced gene 1 (Insig1), and Insig2. Expression changes in the mRNA of genes regulating adipocyte differentiation were also analyzed using qRT-PCR, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and Kruppel-like factor 2 (KLF2). Western blot analysis was conducted to examine the changes in AMFR protein expression in porcine preadipocytes. Additionally, morphological changes in differentiated porcine preadipocytes were examined by oil red O staining, and changes in optical density (OD) values were measured using an ultraviolet spectrophotometer. At 24 h after transfection with AMFR-siRNA, AMFR mRNA expression significantly reduced (P SREBP1a, SREBP2, Insig1, and C/EBPα was significantly reduced (P < 0.01), whereas the expression of KLF2 mRNA was significantly elevated (P < 0.01). After induction of preadipocyte differentiation, the number of lipid droplets decreased in the AMFR-silenced group, and the OD value markedly reduced (P < 0.05). In addition, the expression of C/EBPα mRNA significantly decreased (P < 0.05), whereas the expression of KLF2 mRNA considerably increased (P < 0.05). Taken together, silencing of the AMFR gene inhibits the differentiation of porcine preadipocytes.

  9. Systematic identification of cis-silenced genes by trans complementation

    Science.gov (United States)

    Lee, Jae Hyun; Bugarija, Branimir; Millan, Enrique J.; Walton, Noah M.; Gaetz, Jedidiah; Fernandes, Croydon J.; Yu, Wei-Hua; Mekel-Bobrov, Nitzan; Vallender, Tammy W.; Snyder, Gregory E.; Xiang, Andy Peng; Lahn, Bruce T.

    2009-01-01

    A gene’s transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate cell types and searching for genes differentially expressed between the two genomes of fused cells. Any differential expression can be causally attributed to cis mechanisms because the two genomes of fused cells share a single homogenized milieu in trans. This assay uncovered a state of transcriptional competency that we termed ‘occluded’ whereby affected genes are silenced by cis-acting mechanisms in a manner that blocks them from responding to the trans-acting milieu of the cell. Importantly, occluded genes in a given cell type tend to include master triggers of alternative cell fates. Furthermore, the occluded state is maintained during cell division and is extraordinarily stable under a wide range of physiological conditions. These results support the model that the occlusion of lineage-inappropriate genes is a key mechanism of cell fate restriction. The identification of occluded genes by our assay provides a hitherto unavailable functional readout of chromatin state that is distinct from and complementary to gene expression status. PMID:19050040

  10. Temporal and spatial Bean pod mottle virus-induced gene silencing in soybean.

    Science.gov (United States)

    Juvale, Parijat S; Hewezi, Tarek; Zhang, Chunquan; Kandoth, Pramod Kaitheri; Mitchum, Melissa G; Hill, John H; Whitham, Steven A; Baum, Thomas J

    2012-12-01

    Virus-induced gene silencing (VIGS) is a powerful reverse genetics tool in plant science. In this study, we investigated the temporal and spatial silencing patterns achieved by Bean pod mottle virus (BPMV)-based VIGS in soybean using virus constructs targeting green fluorescence protein (GFP). Silencing GFP enabled an in-depth analysis of silencing in soybean tissues over time in a transgenic line constitutively expressing GFP. We discovered evidence for variable GFP silencing based on insert orientation and targeted region in the coding sequence. A 3' sequence in reverse orientation produced the strongest silencing phenotypes. Furthermore, we documented that BPMV VIGS can achieve widespread silencing in a broad range of tissues, including leaves, stems, flowers and roots. Near-complete silencing was attained in leaves and flowers. Although weaker than in shoots, the observed gene silencing in soybean roots will also allow reverse genetics studies in this tissue. When GFP fluorescence was assayed in cross-sections of stems and leaf petioles, near-complete and uniform silencing was observed in all cell types. Silencing was observed from as early as 2 weeks post-virus inoculation in leaves to 7 weeks post-virus inoculation in flowers, suggesting that this system can induce and maintain silencing for significant durations.

  11. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim.

    Science.gov (United States)

    Villanueva-Alonzo, Hernan J; Us-Camas, Rosa Y; López-Ochoa, Luisa A; Robertson, Dominique; Guerra-Peraza, Orlene; Minero-García, Yereni; Moreno-Valenzuela, Oscar A

    2013-05-01

    Virus-induced gene silencing is based on the sequence-specific degradation of RNA. Here, a gene silencing vector derived from EuMV-YP, named pEuMV-YP:ΔAV1, was used to silence ChlI and NPR1 genes in Nicotiana benthamiana. The silencing of the ChlI transcripts was efficient in the stems, petioles and leaves as reflected in tissue bleaching and reduced transcript levels. The silencing was stable, reaching the flowers and fruits, and was observed throughout the life cycle of the plants. Additionally, the silencing of the NPR1 gene was efficient in both N. benthamiana and Capsicum annuum. After silencing, the plants' viral symptoms increased to levels similar to those seen in wild-type plants. These results suggest that NPR1 plays a role in the compatible interactions of EuMV-YP N. benthamiana and EuMV-C. annum var. anaheim.

  12. Flexible tools for gene expression and silencing in tomato.

    Science.gov (United States)

    Fernandez, Ana I; Viron, Nicolas; Alhagdow, Moftah; Karimi, Mansour; Jones, Matthew; Amsellem, Ziva; Sicard, Adrien; Czerednik, Anna; Angenent, Gerco; Grierson, Donald; May, Sean; Seymour, Graham; Eshed, Yuval; Lemaire-Chamley, Martine; Rothan, Christophe; Hilson, Pierre

    2009-12-01

    As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.

  13. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2007-11-01

    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  14. Effects of Sodium Salicylate on the Expression of HSP27 Protein during Oxidative Stress in Tissue-cultured Human Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of sodium salicylate on the expression of heat shock protein 27 (HSP27)during oxidative stress in tissue-cultured human lens epithelial cells were investigated. Cultured human lens epithelial cells (HLB-3) were divided into 3 groups: control group (group A), oxidation injury group (group B) and sodium salicylate group (group C). Apoptosis of human lens epithelial cells cultured in vitro was induced in the presence of 150 μmol/L H2O2. Cells viability and the expression of HSP27 were analyzed. Viability of the cells was measured by methyl thiazole tetrazolium (MTT)chromatometry. The expression of HSP27 in HLB-3 cells was detected by using immunohistochemistry and image analysis system. Sodium salicylate could induce the expression of HSP27, and the cells viability in group C was significantly higher than in group B (0.2667±0.01414 vs 0.2150±0.01080, P=0.012<0.05). The average gray value of HSP27 in group B was less than that in group C (P=0.000<0.05). The increased expression of HSP27 by sodium salicylate might play an important role in the protection of hydrogen peroxide-induced injury of human lens epithelial cells,suggesting that sodium salicylate could suppress, at least in part, the apoptosis of human lens epithelial cells.

  15. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells

    NARCIS (Netherlands)

    Chan, M.F.; van Amerongen, R.; Nijjar, T.; Cuppen, E.; Jones, P.A.; Laird, P.W.

    2001-01-01

    Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by c

  16. LNA-antisense rivals siRNA for gene silencing

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Wengel, Jesper; Stenvang, Jan

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing unprecedented binding affinity toward complementary DNA and RNA while obeying the Watson-Crick base-pairing rules. For efficient gene silencing in vitro and in vivo, fully modified or chimeric LNA oligonucleotides have been a...... or phosphorothioate-DNA segment flanked by LNA gaps, rivals siRNA as the technology of choice for target validation and therapeutic applications....... applied. LNA oligonucleotides are commercially available, can be transfected using standard techniques, are non-toxic, lead to increased target accessibility, can be designed to activate RNase H, and function in steric block approaches. LNA-Antisense, including gapmer LNA containing a central DNA...

  17. Reactivation of developmentally silenced globin genes by forced chromatin looping.

    Science.gov (United States)

    Deng, Wulan; Rupon, Jeremy W; Krivega, Ivan; Breda, Laura; Motta, Irene; Jahn, Kristen S; Reik, Andreas; Gregory, Philip D; Rivella, Stefano; Dean, Ann; Blobel, Gerd A

    2014-08-14

    Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts β-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the β-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total β-globin synthesis, with a reciprocal reduction in adult β-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.

  18. 槲皮素对人胶质母细胞瘤T98G凋亡及HSP27蛋白表达的干预作用%Effect of Quercetin on Apoptosis in Glioblastoma Cell Line T98G and the Expression of HSP27 Protein

    Institute of Scientific and Technical Information of China (English)

    陶晓薇; 毛其芬

    2015-01-01

    Objective To investigate the effect and mechanism of natural medicine quercetin on glioblastoma cells. Methods T98G cells were treated with quercetin and the proliferation was measured by using the MTT as-say. The apoptosis of T98G was measured by flow cytometry and the expression of cleaved caspase-3 and HSP27 in T98G cells treated with quercetin was detected by western blot. The specific siRNA transfected method was used for blocking the expression of HSP27 gene before T98G cells were treated with quercetin, then the prolifera-tion and apoptosis were detected. Results The 48-hour proliferation inhibition rates of T98G cells in control group, 5μM quercetin group, 25μM quercetin group, 50μM quercetin group, 100μM quercetin group, and 200μM quercetin group were 0, (0.05±0.02)%, (21.8±3.4)%, (42.2±5.7)%, (67.6±6.8)%, (76.9±7.0)%, respectively, with significant difference among them (P<0.05). The apoptosis rate of T98G cells in control group, 25μM quercetin group, 50μM quercetin group, and 100μM quercetin group were(0.8±0.3)%, (4.9±0.6)%, (8.1±0.9)%, (21.5±1.7)%, respectively, with significant difference among them (P<0.05); caspase-3 activity ratio in control group, 25μM quercetin group, 50μM quercetin group, and 100μM quercetin group were 0.01±0.01, 0.05±0.03, 0.12±0.03, and 0.22±0.05, with significant difference between control group and 50μM quercetin group and 100μM quercetin group (P<0.05); HSP27 inhibition ratio in control group, 25μM quercetin group, 50μM quercetin group, and 100μM quercetin group were 0.84±0.12, 0.75±0.11, 0.52±0.08, and 0.37±0.06, with significant difference between control group and 50 μM quercetin group and 100 μM quercetin group (P<0.05). Conclusion Quercetin has some anti-glioblastoma effect, and the underlying mechanism may be through down-regulating the expression of HSP27.%目的:探讨天然药物槲皮素对人胶质母细胞瘤的生物效应及机制。方法采用槲皮素治疗人

  19. Correlation between HSP27 and CFL-1 in acute irritation induced by sodium dodecyl sulfate in keratinocytes%HSP27和CFL-1在角质细胞急性刺激反应中相关性的研究

    Institute of Scientific and Technical Information of China (English)

    胡浩; 张齐好; 邹萍; 仝雷; 黄亚东

    2011-01-01

    研究急性刺激条件下,角质细胞中热休克蛋白27(heat shock protein 27,HSP27)和Cofilin-1(CFL-1)的表达是否具有相关性,初步探讨皮肤急性刺激反应的作用机理.通过免疫印迹法检测十二烷基硫酸钠(SDS)诱发的急性刺激反应下,角质细胞中HSP27和CFL-1蛋白的表达,并通过RNAi技术验证两者之间的相关性.结果发现,急性刺激诱导HSP27表达显著下调,CFL-1显著上调;干扰HSP27后,CFL-1的表达也随着下调,SDS刺激后,则表达上调.在急性刺激性条件下,HSP27和CFL-1的表达具有一定的浓度和时间依赖性;急性刺激能影响角质细胞骨架的改变,这些改变可能是通过HSP27和CFL-1的相互作用来调节的.%The correlation between heat shock protein 27 (HSP27) and Cofilin-1 ( CFL-1 ) was studied in acute irritation induced by sodium dodecyl sulfate (SDS) in keratinocytes, which would be helpful for the mechanistic understanding of the skin irritation.The expressions of HSP27 and CFL-1 were detected by immunoblotting in keratinocytes exposed to SDS.The correlation between HSP27 and CFL-1 was validated by RNAi technology.HSP27 was significantly downregulated and CFL-1 was significantly upregulated in response to the chemical challenge.The expression of CFL-1 was significantly reduced after interference of HSP27, but it was upregulated after exposure to SDS.The expressions of HSP27 and CFL-1 showed a time-and dose-dependent manner in acute irritation.The cute irritant may alter the cytoskeleton of keratinocyte, and these changes may be regulated by the interaction between HSP27 and CFL-1.

  20. HSP27在左侧结肠癌和右侧结肠癌差异表达的实验研究%HSP27: a candidate differentially expressed protein between left- and right-sided colon carcinomas

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Hong Zhu; Haiping Pei; Li Liu; Linsheng Huang

    2011-01-01

    Objective: The aim of the study was to screen differentially expressed proteins between left- and right-sided colon cancers by proteomics techniques and provide molecular genetic basis for oncobiological difference between left- and right-sided colon cancers. Methods: Tissue samples including left- and right-sided colon cancers were collected and preserved in the –80 ℃refrigeratory. In the first part of our experiment, protein separating was performed by using two-dimensional gel electrophoresis (2-DE) and the images of the gels were acquired by the scanner and then analyzed to find the differentially expression protein-spots in different groups. The peptide mass fingerprintings (PMF) was acquired by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and the proteins were identified by data searching in the Mascot-database. Differentially expression proteins were assayed by RT-PCR, Western blot, and immunohistochemical methods. Results: The 55 differentially expressed protein spots were screened and 23 spots of them were identified. Compared to right-sided colon cancer, 15 proteins up-regulated and 8 proteins down-regulated including HSP27 in left-sided colon cancer. HSP27 expressed higher in right-sided than in left-sided colon cancers by RT-PCR, Western blot and immunohistochemical methods. Conclusion: There were differentially expressed proteins between left- and right-sided colon cancers, especially differences in HSP27 expression in mRNA and protein level, which were molecular genetic basis for oncobiological difference between left- and right-sided colon cancers.

  1. Quercetin对晶状体上皮细胞HSP70、HSP27表达的调节作用%HSP70 and HSP27 expression in lens epithelial cells modulated by Quercetin

    Institute of Scientific and Technical Information of China (English)

    饶惠英; 姚克; 汤霞靖; 徐雯

    2005-01-01

    目的研究大鼠眼钝挫伤后晶状体上皮细胞(LECs)热休克蛋白(HSP)70、HSP27的表达,并给予喂饲Quercetin(HSP阻滞剂),观察Quercetin对LECs HSP70及HSP27表达的调节.方法SD大鼠48只,随机分成拍打组和Quercetin组,每组各24只24眼,右眼为实验眼.拍打组:20 g铁球20 cm高度拍打眼球100次.Quercetin组:给大鼠喂饲Quercetin(100 mg/kg),2~3 h后再拍打眼球.RT-PCR检测LECs HSP70、HSP27基因表达.结果钝挫性眼外伤可造成LECs HSP70基因表达的增强,拍打眼球后1 h HSP70表达开始升高,3 h后达到高峰,24 h后降至正常.Quercetin组HSP70基因表达随时间亦出现相应的提高,但与拍打组相比其峰值下降,差异有非常显著性意义.两组HSP27基因表达均无明显改变.结论钝挫性眼外伤中LECsHSP70表达的增强提示HSP70可能在钝挫性外伤性白内障形成过程中对晶状体变性蛋白起保护作用,预先喂饲Quercetin可抑制LECsHSP70基因的表达,其作用机制可能发生于HSP转录水平.

  2. Virus-induced silencing of a tobacco deoxyhypusine synthase gene

    Institute of Scientific and Technical Information of China (English)

    WANG Hongzhi; MA Rongcai; LI Ruifen; WANG Guoying; WEI Jianhua

    2005-01-01

    A cDNA fragment corresponding to deoxyhypusine synthase gene NbDHS was isolated and cloned into potato virus X (PVX) vector for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing (VIGS). Plants agroinfected with recombinant virus vector PVX-NbDHS exhibited an increase in leaf biomass, delay in natural leaf senescence and flowering time, and decrease in leaf chlorophyll content. Semi-quantitative RT-PCR and Northern analysis showed that the transcript level of DHS was significantly lower in PVX-NbDHS infected plants. At the same time, the expression for eIF-5A, the target proteins of DHS in N. benthamiana, was concomitantly suppressed by semi-quantitative RT-PCR and Western analysis. From the phenotypic feature of the infected plants and the reduced expression abundance of DHS and eIF-5A, we concluded that NbDHS plays important roles in plant growth, development and senescence. The possible application of DHS gene in genetic modification of crops and horticultural plants was discussed.

  3. Expression of Hsp27 and Hsp70 in Lymphocytes and Plasma in Healthy Workers and Coal Miners with Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    王海椒; 邢景才; 王峰; 韩文慧; 任侯卯; 邬堂春; 陈卫红

    2010-01-01

    In coal mines, main occupational hazard is coal-mine dust, which can cause health problem including coal workers' pneumoconiosis and lung cancer. Some heat shock proteins (Hsps) have been reported as an acute response to a wide variety of stressful stimuli. Whether Hsps protect against chronic environmental coal-mine dust over years is unknown. It is also interesting to know that whether the expression of Hsp27 and Hsp70 proteins as a marker for exposure is associated risk of lung cancer among coal miners. ...

  4. Artificial microRNA mediated gene silencing in plants: progress and perspectives.

    Science.gov (United States)

    Tiwari, Manish; Sharma, Deepika; Trivedi, Prabodh Kumar

    2014-09-01

    Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.

  5. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.

    Science.gov (United States)

    Gong, Xiaoyan; Ahner, Annette; Roldan, Ariel; Lukacs, Gergely L; Thibodeau, Patrick H; Frizzell, Raymond A

    2016-01-22

    A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system.

  6. Silencing structural and nonstructural genes in baculovirus by RNA interference.

    Science.gov (United States)

    Flores-Jasso, C Fabian; Valdes, Victor Julian; Sampieri, Alicia; Valadez-Graham, Viviana; Recillas-Targa, Felix; Vaca, Luis

    2004-06-01

    We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.

  7. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chongsheng eHe

    2013-11-01

    Full Text Available Polycomb group (PcG proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb repressive complexes 1 and 2 (PRC1 and PRC2, respectively. The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli.

  8. HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications.

    Science.gov (United States)

    Janik, S; Schiefer, A I; Bekos, C; Hacker, P; Haider, T; Moser, J; Klepetko, W; Müllauer, L; Ankersmit, H J; Moser, B

    2016-01-01

    Thymic Epithelial Tumors (TETs), the most common tumors in the anterior mediastinum in adults, show a unique association with autoimmune Myasthenia Gravis (MG) and represent a multidisciplinary diagnostic and therapeutic challenge. Neither risk factors nor established biomarkers for TETs exist. Predictive and diagnostic markers are urgently needed. Heat shock proteins (HSPs) are upregulated in several malignancies promoting tumor cell survival and metastases. We performed immunohistochemical staining of HSP27 and 70 in patients with TETs (n = 101) and patients with benign thymic alterations (n = 24). Further, serum HSP27 and 70 concentrations were determined in patients with TETs (n = 46), patients with benign thymic alterations (n = 33) and volunteers (n = 49) by using ELISA. HSPs were differentially expressed in histologic types and pathological tumor stages of TETs. Weak HSP tumor expression correlated with worse freedom from recurrence. Serum HSP concentrations were elevated in TETs and MG, correlated with clinical tumor stage and histologic subtype and decreased significantly after complete tumor resection. To conclude, we found HSP expression in the vast majority of TETs, in physiologic thymus and staining intensities in patients with TETs have been associated with prognosis. However, although interesting and promising the role of HSPs in TETs as diagnostic and prognostic or even therapeutic markers need to be further evaluated.

  9. HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications

    Science.gov (United States)

    Janik, S.; Schiefer, A. I.; Bekos, C.; Hacker, P.; Haider, T.; Moser, J.; Klepetko, W.; Müllauer, L.; Ankersmit, H. J.; Moser, B.

    2016-01-01

    Thymic Epithelial Tumors (TETs), the most common tumors in the anterior mediastinum in adults, show a unique association with autoimmune Myasthenia Gravis (MG) and represent a multidisciplinary diagnostic and therapeutic challenge. Neither risk factors nor established biomarkers for TETs exist. Predictive and diagnostic markers are urgently needed. Heat shock proteins (HSPs) are upregulated in several malignancies promoting tumor cell survival and metastases. We performed immunohistochemical staining of HSP27 and 70 in patients with TETs (n = 101) and patients with benign thymic alterations (n = 24). Further, serum HSP27 and 70 concentrations were determined in patients with TETs (n = 46), patients with benign thymic alterations (n = 33) and volunteers (n = 49) by using ELISA. HSPs were differentially expressed in histologic types and pathological tumor stages of TETs. Weak HSP tumor expression correlated with worse freedom from recurrence. Serum HSP concentrations were elevated in TETs and MG, correlated with clinical tumor stage and histologic subtype and decreased significantly after complete tumor resection. To conclude, we found HSP expression in the vast majority of TETs, in physiologic thymus and staining intensities in patients with TETs have been associated with prognosis. However, although interesting and promising the role of HSPs in TETs as diagnostic and prognostic or even therapeutic markers need to be further evaluated. PMID:27097982

  10. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    Directory of Open Access Journals (Sweden)

    Schultz Chad R

    2012-04-01

    Full Text Available Abstract Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ, followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1 SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2 Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3 Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4 Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5 However, inhibiting pAKT suppresses tumor cell survival. 6 Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7 There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8 This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1 SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2 Despite this enhanced signaling, SPARC protects cells against TMZ. 3 This protection can be reduced

  11. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing

    Science.gov (United States)

    Nishina, Kazutaka; Piao, Wenying; Yoshida-Tanaka, Kie; Sujino, Yumiko; Nishina, Tomoko; Yamamoto, Tsuyoshi; Nitta, Keiko; Yoshioka, Kotaro; Kuwahara, Hiroya; Yasuhara, Hidenori; Baba, Takeshi; Ono, Fumiko; Miyata, Kanjiro; Miyake, Koichi; Seth, Punit P.; Low, Audrey; Yoshida, Masayuki; Bennett, C. Frank; Kataoka, Kazunori; Mizusawa, Hidehiro; Obika, Satoshi; Yokota, Takanori

    2015-01-01

    Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field. PMID:26258894

  12. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli.

    Science.gov (United States)

    Nakashima, Nobutaka; Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination.

  13. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats

    NARCIS (Netherlands)

    Fitzgerald, A.; Kan, van J.A.L.; Plummer, K.M.

    2004-01-01

    RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing tran

  14. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    Science.gov (United States)

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.

  15. Development of RNA Interference Trigger-Mediated Gene Silencing in Entamoeba invadens.

    Science.gov (United States)

    Suresh, Susmitha; Ehrenkaufer, Gretchen; Zhang, Hanbang; Singh, Upinder

    2016-04-01

    Entamoeba histolytica, a protozoan parasite, is an important human pathogen and a leading parasitic cause of death. The organism has two life cycle stages, trophozoites, which are responsible for tissue invasion, and cysts, which are involved in pathogen transmission. Entamoeba invadens is the model system to study Entamoeba developmental biology, as high-grade regulated encystation and excystation are readily achievable. However, the lack of gene-silencing tools in E. invadens has limited the molecular studies that can be performed. Using the endogenous RNA interference (RNAi) pathway in Entamoeba, we developed an RNAi-based trigger gene-silencing approach inE. invadens We demonstrate that a gene's coding region that has abundant antisense small RNAs (sRNAs) can trigger silencing of a gene that is fused to it. The trigger fusion leads to the generation of abundant antisense sRNAs that map to the target gene, with silencing occurring independently of trigger location at the 5' or 3' end of a gene. Gene silencing is stably maintained during development, including encystation and excystation. We have used this approach to successfully silence two E. invadens genes: a putative rhomboid protease gene and a SHAQKY family Myb gene. The Myb gene is upregulated during oxidative stress and development, and its downregulation led, as predicted, to decreased viability under oxidative stress and decreased cyst formation. Thus, the RNAi trigger silencing method can be used to successfully investigate the molecular functions of genes inE. invadens Dissection of the molecular basis of Entamoeba stage conversion is now possible, representing an important technical advance for the system.

  16. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing.

    Science.gov (United States)

    Nagamatsu, Atsushi; Masuta, Chikara; Senda, Mineo; Matsuura, Hideyuki; Kasai, Atsushi; Hong, Jin-Sung; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2007-11-01

    Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.

  17. Proteomic Characterization of Annexin l (ANX1 and Heat Shock Protein 27 (HSP27 as Biomarkers for Invasive Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Ruo-Chiau Wang

    Full Text Available To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC, we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2 and poorly differentiated (SK-Hep-1 HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1, ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI, and heat shock protein-27 (HSP27, were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.

  18. FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+).

    Science.gov (United States)

    Kong, Xiang-Chen; Zhang, Dan; Qian, Cheng; Liu, Geng-Tao; Bao, Xiu-Qi

    2011-04-06

    Heat shock proteins (HSPs) play an essential role in various neurodegenerative diseases. Manipulation of upregulation of HSPs in cells has been demonstrated to provide a therapeutic strategy to counteract the misfolding and aggregation of proteins that resulted in neurodegenerative disease. Our previous studies have shown that FLZ, a synthetic novel derivative of squamosamide from a Chinese herb, had potent neuroprotective effect against several experimental Parkinson's disease (PD) models. However, the mechanism of its neuroprotective effect is still not clarified. The present study demonstrated that FLZ induced HSP27 and HSP70 proteins and mRNA expression in a time- and dose-dependent manner in SH-SY5Y cells. Further studies showed that FLZ treatment stimulated the activation of heat shock factor 1 (HSF1) and its regulatory kinase Akt. Inactivation of Akt pathway by the PI3K inhibitor LY294002 blocked the expression of HSP27 and HSP70 induced by FLZ. Moreover, the inducing effects of FLZ on HSP27, HSP70, and HSF1 were all blocked by quercetin, an inhibitor of HSP biosynthesis. The cytoprotective effect of HSP27/HSP70 induced by FLZ against MPP(+) was assessed in SH-SY5Y cells. The pretreatment of FLZ significantly induced the accumulations of HSP27/HSP70 and suppressed the apoptosis caused by MPP(+) in SH-SY5Y cells. However, the protective effects of FLZ against MPP(+) were significantly blocked by quercetin, which indicated that the cytoprotective action of FLZ against MPP(+)-induced apoptosis is at least partially mediated by its induction of HSP27/HSP70. These results provide new evidence for elucidating the mechanism of the neuroprotective effect of FLZ against PD.

  19. Efficiency for Gene Silencing Induction in Nicotiana Species by a Viral Satellite DNA Vector

    Institute of Scientific and Technical Information of China (English)

    You-Ping Xu; Lu-Ping Zheng; Qiu-Fang Xu; Chang-Chun Wang; Xue-Ping Zhou; Zu-Jian Wu; Xin-Zhong Cai

    2007-01-01

    Virus-induced gene silencing (VIGS) is a useful technique for rapid plant gene function analysis.We recently reported a new VIGS vector modified from Tomato yellow leaf curl China virus (TYLCCNV) DNAβ (DNAm β).In this study we compared In detail DNAmβ-induced gene silencing in four Nicotiana species including N.benthamiana, N.glutinosa, N.tabacum and N.paniculata.We found that DNAmβ-induced gene silencing in the four species was distinct in developing dynamics, tissue specificity, efficiency, and constancy in the plant life span.It was most efficient in N.benthamiana, where development of VIGS was most rapid, without tissue specificity and nearly 100% efficient.DNAmβ-induced gene silencing in N.Glutinosa was also efficient despite being slightly less than in N.benthamiana.It initially occurred in veins, later was scattered to mesophyll, finally led to complete silencing in whole leaves.In both species, VIGS constantly expressed until the plants died.However, DNAmβ-mediated VIGS in the other two Nicotiana species, N.tabacum and N.paniculata, was significantly less efficient.It was strictly limited within the veins of the silenced leaves, and constantly occurred only over 3-4 weeks.The upper leaves that emerged later stopped showing the silencing phenotype, DNAm β-induced gene silencing in N.benthamiana and N.glutinosa was not significantly influenced by the growth stage when the plants were agro-inoculated,and was not sensitive to high growth temperature up to 32℃, Our results indicate that this system has great potential as a versatile VIGS system for routine functional analysis of genes in some Nicotiana species.

  20. Stability of Barley stripe mosaic virus induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... inoculation, although large parts of the insert had been lost from the virus vector. The instability of the insert, observed consistently throughout our experiments, offers an explanation for the transient nature of silencing when using BSMV as a VIGS vector....

  1. Combination of Correctors Rescue ΔF508-CFTR by Reducing Its Association with Hsp40 and Hsp27.

    Science.gov (United States)

    Lopes-Pacheco, Miquéias; Boinot, Clément; Sabirzhanova, Inna; Morales, Marcelo M; Guggino, William B; Cebotaru, Liudmila

    2015-10-16

    Correcting the processing of ΔF508-CFTR, the most common mutation in cystic fibrosis, is the major goal in the development of new therapies for this disease. Here, we determined whether ΔF508 could be rescued by a combination of small-molecule correctors, and identified the mechanism by which correctors rescue the trafficking mutant of cystic fibrosis transmembrane conductance regulator (CFTR). We transfected COS-7 cells with ΔF508, created HEK-293 stably expressing ΔF508, and utilized CFBE41o(-) cell lines stably transduced with ΔF508. As shown previously, ΔF508 expressed less protein, was unstable at physiological temperature, and rapidly degraded. When the cells were treated with the combination C18 + C4 the mature C-band was expressed at the cell surface. After treatment with C18 + C4, we saw a lower rate of protein disappearance after translation was stopped with cycloheximide. To understand how this rescue occurs, we evaluated the change in the binding of proteins involved in endoplasmic reticulum-associated degradation, such as Hsp27 (HspB1) and Hsp40 (DnaJ). We saw a dramatic reduction in binding to heat shock proteins 27 and 40 following combined corrector therapy. siRNA experiments confirmed that a reduction in Hsp27 or Hsp40 rescued CFTR in the ΔF508 mutant, but the rescue was not additive or synergistic with C4 + 18 treatment, indicating these correctors shared a common pathway for rescue involving a network of endoplasmic reticulum-associated degradation proteins.

  2. Development of a gene silencing DNA vector derived from a broad host range geminivirus

    Directory of Open Access Journals (Sweden)

    Hancock Leandria C

    2009-07-01

    Full Text Available Abstract Background Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. Results The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV, named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS, transketolase, the sulfur allele of magnesium chelatase (ChlI, and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. Conclusion The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.

  3. Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots.

    Science.gov (United States)

    Liu, Siming; Yoder, John I

    2016-11-29

    Understanding the functions encoded by plant genes can be facilitated by reducing transcript levels by hairpin RNA (hpRNA) mediated silencing. A bottleneck to this technology occurs when a gene encodes a phenotype that is necessary for cell viability and silencing the gene inhibits transformation. Here we compared the use of two chemically inducible plant promoter systems to drive hpRNA mediated gene silencing in transgenic, hairy roots. We cloned the gene encoding the Yellow Fluorescence Protein (YFP) into the dexamethasone inducible vector pOpOff2 and into the estradiol induced vector pER8. We then cloned a hpRNA targeting YFP under the regulation of the inducible promoters, transformed Medicago truncatula roots, and quantified YFP fluorescence and mRNA levels. YFP fluorescence was normal in pOpOff2 transformed roots without dexamethasone but was reduced with dexamethasone treatment. Interestingly, dexamethasone removal did not reverse YFP inhibition. YFP expression in roots transformed with pER8 was low even in the absence of inducer. We used the dexamethasone system to silence acetyl-CoA carboxylase gene and observed prolific root growth when this construct was transformed into Medicago until dexamethasone was applied. Our study shows that dexamethasone inducibility can be useful to silence vital genes in transgenic roots.

  4. Sex-specific silencing of X-linked genes by Xist RNA.

    Science.gov (United States)

    Gayen, Srimonta; Maclary, Emily; Hinten, Michael; Kalantry, Sundeep

    2016-01-19

    X-inactive specific transcript (Xist) long noncoding RNA (lncRNA) is thought to catalyze silencing of X-linked genes in cis during X-chromosome inactivation, which equalizes X-linked gene dosage between male and female mammals. To test the impact of Xist RNA on X-linked gene silencing, we ectopically induced endogenous Xist by ablating the antisense repressor Tsix in mice. We find that ectopic Xist RNA induction and subsequent X-linked gene silencing is sex specific in embryos and in differentiating embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). A higher frequency of X(ΔTsix)Y male cells displayed ectopic Xist RNA coating compared with X(ΔTsix)X female cells. This increase reflected the inability of X(ΔTsix)Y cells to efficiently silence X-linked genes compared with X(ΔTsix)X cells, despite equivalent Xist RNA induction and coating. Silencing of genes on both Xs resulted in significantly reduced proliferation and increased cell death in X(ΔTsix)X female cells relative to X(ΔTsix)Y male cells. Thus, whereas Xist RNA can inactivate the X chromosome in females it may not do so in males. We further found comparable silencing in differentiating X(ΔTsix)Y and 39,X(ΔTsix) (X(ΔTsix)O) ESCs, excluding the Y chromosome and instead implicating the X-chromosome dose as the source of the sex-specific differences. Because X(ΔTsix)X female embryonic epiblast cells and EpiSCs harbor an inactivated X chromosome prior to ectopic inactivation of the active X(ΔTsix) X chromosome, we propose that the increased expression of one or more X-inactivation escapees activates Xist and, separately, helps trigger X-linked gene silencing.

  5. Differential expression of ANXA6, HSP27, PRDX2, NCF2, and TPM4 during uterine cervix carcinogenesis : diagnostic and prognostic value

    NARCIS (Netherlands)

    Lomnytska, M. I.; Becker, S.; Bodin, I.; Olsson, A.; Hellman, K.; Hellstrom, A-C; Mints, M.; Hellman, U.; Auer, G.; Andersson, S.

    2011-01-01

    BACKGROUND: Cytology-based diagnostics of squamous cervical cancer (SCC) precursor lesions is subjective and can be improved by objective markers. METHODS: IHC-based analysis of ANXA6, HSP27, peroxiredoxin 2 (PRDX2), NCF2, and tropomyosin 4 (TPM4) during SCC carcinogenesis. RESULTS: Expression of AN

  6. Varying the nucleic acid composition of siRNA molecules dramatically varies the duration and degree of gene silencing.

    Science.gov (United States)

    Lamberton, Janelle S; Christian, Allen T

    2003-06-01

    The utility of short interfering RNA (siRNA) as a means of gene silencing depends on several factors. These include the degree to which a gene can be silenced, the length of time for which the gene remains silenced, the degree of recovery of gene function, and the effects of the silencing process on general cell functions. We hypothesized that changing the nucleic acid composition of the siRNA constructs used for silencing would affect these parameters. With siRNA gene silencing of the glucose-6-phosphate dehydrogenase gene as a baseline, we found that siDNA molecules have an effect that is similar in duration but lesser in degree, whereas hybrid DNA:RNA molecules have an effect that is enormously greater in both duration and degree.

  7. RNAi mediated gene silencing against betasatellite associated with Croton yellow vein mosaic begomovirus.

    Science.gov (United States)

    Sahu, Anurag Kumar; Marwal, Avinash; Nehra, Chitra; Choudhary, Devendra Kumar; Sharma, Pradeep; Gaur, Rajarshi Kumar

    2014-11-01

    Plant viruses encode suppressors of posttranscriptional gene silencing, an adaptive antiviral defense responses that confines virus infection. Previously, we identified single-stranded DNA satellite (also known as DNA-β) of ~1,350 nucleotides in length associated with Croton yellow vein mosaic begomovirus (CYVMV) in croton plants. The expression of genes from DNA-β requires the begomovirus for packaged, replication, insect transmission and movement in plants. The present study demonstrates the effect of the βC1 gene on the silencing pathway as analysed by using both transgenic systems and transient Agrobacterium tumefaciens based delivery. Plants that carry an intron-hairpin construct covering the βC1 gene accumulated cognate small-interfering RNAs and remained symptom-free after exposure to CYVMV and its satellite. These results suggest that βC1 interferes with silencing mechanism.

  8. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria

    DEFF Research Database (Denmark)

    Zhang, Qingfeng; Siegel, T Nicolai; Martins, Rafael M

    2014-01-01

    malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin......-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non......-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of Pf...

  9. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2010-05-01

    Full Text Available Abstract Background Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs following an acute injury to the optic nerve. Results Histone deacetylase 3 (HDAC3 translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. Conclusions These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.

  10. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    Science.gov (United States)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  11. Mammalian hyperplastic discs homolog EDD regulates microRNA-mediated gene silencing

    Science.gov (United States)

    Su, Hong; Meng, Shuxia; Lu, Yanyan; Trombly, Melanie I.; Chen, Jian; Lin, Chengyi; Turk, Anita; Wang, Xiaozhong

    2011-01-01

    SUMMARY MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin ligase activity is dispensable for EDD function in miRNA silencing. Instead, EDD interacts with GW182 family proteins in the Argonaute-miRNA complexes. The PABC domain of EDD is essential for its silencing function. Through the PABC domain, EDD participates in miRNA silencing by recruiting downstream effectors. Among the PABC-interactors, DDX6 and Tob1/2 are both required and sufficient for silencing mRNA targets. Taken together, these data demonstrate a critical function for EDD in miRNA silencing. PMID:21726813

  12. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing.

    Science.gov (United States)

    Su, Hong; Meng, Shuxia; Lu, Yanyan; Trombly, Melanie I; Chen, Jian; Lin, Chengyi; Turk, Anita; Wang, Xiaozhong

    2011-07-08

    MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin ligase activity is dispensable for EDD function in miRNA silencing. Instead, EDD interacts with GW182 family proteins in the Argonaute-miRNA complexes. The PABC domain of EDD is essential for its silencing function. Through the PABC domain, EDD participates in miRNA silencing by recruiting downstream effectors. Among the PABC-interactors, DDX6 and Tob1/2 are both required and sufficient for silencing mRNA targets. Taken together, these data demonstrate a critical function for EDD in miRNA silencing.

  13. Silencing of six hydrophobins in Cladosporium fulvum: complexities of simultaneously targeting multiple genes.

    Science.gov (United States)

    Lacroix, Hélène; Spanu, Pietro D

    2009-01-01

    In this study, we have constructed and expressed inverted repeat chimeras from the first exons of the six known hydrophobins of the fungus Cladosporium fulvum, the causal agent of tomato leaf mold. We used quantitative PCR to measure specifically the expression levels of the hydrophobins. The targeted genes are silenced to different degrees, but we also detected clear changes in the expression levels of nontargeted genes. This work highlights the difficulties that are likely to be encountered when attempting to silence more than one gene in a multigene family.

  14. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  15. Virus-induced gene silencing and transient gene expression in soybean using Bean pod mottle virus infectious clones

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200-300 base pair size range. The recombinant viruses are used to ...

  16. Artificial micro RNA (amiRNA) induced gene silencing in alfalfa (Medicago sativa)

    Science.gov (United States)

    Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used; however, they all have in common the artificial generation of single-stranded small RNAs that are utilized by the endo...

  17. Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo.

    Science.gov (United States)

    Dong, Yizhou; Eltoukhy, Ahmed A; Alabi, Christopher A; Khan, Omar F; Veiseh, Omid; Dorkin, J Robert; Sirirungruang, Sasilada; Yin, Hao; Tang, Benjamin C; Pelet, Jeisa M; Chen, Delai; Gu, Zhen; Xue, Yuan; Langer, Robert; Anderson, Daniel G

    2014-09-01

    New lipid-like nanomaterials are developed to simultaneously regulate expression of multiple genes. Self-assembled nanoparticles are capable of efficiently encapsulating pDNA and siRNA. These nanoparticles are shown to induce simultaneous gene expression and silencing both in vitro and in vivo. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents.

    Science.gov (United States)

    Stein, C A; Hansen, J Bo; Lai, Johnathan; Wu, SiJian; Voskresenskiy, Anatoliy; Høg, Anja; Worm, Jesper; Hedtjärn, Maj; Souleimanian, Naira; Miller, Paul; Soifer, Harris S; Castanotto, Daniella; Benimetskaya, Luba; Ørum, Henrik; Koch, Troels

    2010-01-01

    For the past 15-20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called 'gymnosis') that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.

  19. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus.

    Science.gov (United States)

    Leng, Yueqiang; Wu, Chengxiang; Liu, Zhaohui; Friesen, Timothy L; Rasmussen, Jack B; Zhong, Shaobin

    2011-04-01

    A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.

  20. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing.

    Science.gov (United States)

    Ramanna, Hema; Ding, Xin Shun; Nelson, Richard S

    2013-01-01

    The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.

  1. RNA interference-mediated simultaneous silencing of four genes using cross-shaped RNA.

    Science.gov (United States)

    Lee, Tae Yeon; Chang, Chan Il; Lee, Dooyoung; Hong, Sun Woo; Shin, Chanseok; Li, Chiang J; Kim, Soyoun; Haussecker, Dirk; Lee, Dong-Ki

    2013-04-01

    The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.

  2. 三阴性乳腺癌中DJ-1和HSP27的表达及其临床意义%The correlation of DJ-1 and HSP27 expression and clinicopathological features in triple -negative breast cancer

    Institute of Scientific and Technical Information of China (English)

    李森; 刘文超

    2013-01-01

    Objective:To investigate the expression and clinical significance of DJ-1 and HSP27 in triple-negative breast cancer (TNBC).Methods:Total of 185 cases of TNBC paraffin-embedded tissue samples and 120 cases of normal mammary gland tissue samples were collected in Xijing Hospital.The expression of DJ-1 and HSP27 protein in TNBC tissue and normal breast tissue was detected by immunohistochemical staining.And analyze their relationship with the TNBC clinicopathological features.Results:The positive expression rates of DJ-1 and HSP27 in TNBC were 74.1% and 67.6% respectively.In contrast,the positive expression rates of DJ-1 and HSP27 in normal breast tissues were 5.0% and 20.8%.Compared with normal tissues,the positive expression rates of DJ-1 and HSP27 were significantly increased (P < 0.05).The expression of DJ-1 in TNBC was significantly associated with lymph node metastasis,differentiation and TNM stages (P < 0.05).The expression of HSP27 in TNBC was significantly associated with tumor differentiation (P < 0.05).In 185 cases of TNBC,DJ-1 expression was positive correlated with HSP27 expression(r =0.519,P < 0.05).Conclusion:DJ-1 and HSP27 were over-expressed in TNBC.DJ-1 might be related to the malignant proliferation,lymph node metastasis and invasion of TNBC.HSP27 might be related to the differentiation level of malignant tumor cells of TNBC.DJ-1 had cooperative effect with HSP27 in TNBC.%目的:探讨三阴性乳腺癌(TNBC)中DJ-1和HSP27的表达及其临床意义.方法:收集第四军医大学西京医院TNBC石蜡组织标本185例和正常乳腺石蜡组织标本120例,采用免疫组织化学SP法检测DJ-1和HSP27蛋白在TNBC组织和正常乳腺组织中的表达,并分析两者与TNBC临床病理学特征的关系.结果:185例TNBC组织中有137例呈DJ-1阳性表达,表达率为74.1%;有125例呈HSP27阳性表达,表达率为67.6%.120例正常乳腺组织中,6例DJ-1呈弱阳性表达,表达率为5.0%,而25例呈HSP27

  3. Transgene-induced gene silencing is not affected by a change in ploidy level.

    Directory of Open Access Journals (Sweden)

    Daniela Pignatta

    Full Text Available BACKGROUND: Whole genome duplication, which results in polyploidy, is a common feature of plant populations and a recurring event in the evolution of flowering plants. Polyploidy can result in changes to gene expression and epigenetic instability. Several epigenetic phenomena, occurring at the transcriptional or post-transcriptional level, have been documented in allopolyploids (polyploids derived from species hybrids of Arabidopsis thaliana, yet findings in autopolyploids (polyploids derived from the duplication of the genome of a single species are limited. Here, we tested the hypothesis that an increase in ploidy enhances transgene-induced post-transcriptional gene silencing using autopolyploids of A. thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Diploid and tetraploid individuals of four independent homozygous transgenic lines of A. thaliana transformed with chalcone synthase (CHS inverted repeat (hairpin constructs were generated. For each line diploids and tetraploids were compared for efficiency in post-transcriptional silencing of the endogenous CHS gene. The four lines differed substantially in their silencing efficiency. Yet, diploid and tetraploid plants derived from these plants and containing therefore identical transgene insertions showed no difference in the efficiency silencing CHS as assayed by visual scoring, anthocyanin assays and quantification of CHS mRNA. CONCLUSIONS/SIGNIFICANCE: Our results in A. thaliana indicated that there is no effect of ploidy level on transgene-induced post-transcriptional gene silencing. Our findings that post-transcriptional mechanisms were equally effective in diploids and tetraploids supports the use of transgene-driven post-transcriptional gene silencing as a useful mechanism to modify gene expression in polyploid species.

  4. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M.oryzae-derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M.oryzae was examined by targeting three predicted pathogenicity genes, MoABC1,MoMAC1 and MoPMK1. Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M.oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  5. Tomato Fruit Development and Ripening Are Altered by the Silencing of LeEIN2 Gene

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Zhu; Ben-Zhong Zhu; Yi Shao; Xiao-Guang Wang; Xi-Jin Lin; Yuan-Hong Xie; Ying-Cong Li; Hong-Yan Gao; Yun-Bo Luo

    2006-01-01

    Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis,which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expression during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition,there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.

  6. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes.

    Science.gov (United States)

    Fairbairn, David J; Cavallaro, Antonino S; Bernard, Margaret; Mahalinga-Iyer, Janani; Graham, Michael W; Botella, José R

    2007-11-01

    Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

  7. [Effects of Sam68 gene silence on proliferation of acute T lymphoblastic leukemia cell line Jurkat].

    Science.gov (United States)

    Wang, Chi-Juan; Xu, Hua; Zhang, Hai-Rui; Wang, Jian; Lin, Ya-Ni; Pang, Tian-Xiang; Li, Qing-Hua

    2014-08-01

    This study was purpose to investigate the effect of Sam68 gene silence on proliferation of human acute T lymphoblastic leukemia cell line Jurkat. The sequence of shRNA targeting the site 531-552 of Sam68 mRNA was designed and chemically synthesized, then a single-vector lentiviral, Tet-inducible shRNA-Sam68 system (pLKO-Tet-On) was constructed; next the Jurkat cells were infected with lentivirus to create stable cell clones with regulatable Sam68 gene expression. The inhibitory efficiency of Sam68 gene was assayed by Real-time PCR and Western blot; the cell activity of Jurkat cells was detected with MTT assay; the change of colony forming potential of Jurkat cells was analyzed by colony forming test; the cell cycle distribution was tested by flow cytometry. The results indicated that the expression of Sam68 in experimental cells was statistically decreased as compared with that of the control cells; the cells activity and colony forming capacity of the Jurkat cells with Sam68 gene silence were significantly inhibited; with Sam68 gene silencing, the percentage of S phase cells was significantly increased, while the percentage of G2 phase cells was significantly decreased. It is concluded that the silencing Sam68 gene using shRNA interference can effectively inhibit the proliferation of human acute T lymphoblastic leukemia cell line Jurkat.

  8. COPD and levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes among coal workers: a case-control study.

    Science.gov (United States)

    Cui, Xiuqing; Xing, Jingcai; Liu, Yuewei; Zhou, Yun; Luo, Xin; Zhang, Zhihong; Han, Wenhui; Wu, Tangchun; Chen, Weihong

    2015-05-01

    This case-control study aimed to investigate whether the levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes were associated with the risk of chronic obstructive pulmonary disease (COPD) among coal workers. A total of 76 COPD cases and 48 age-matched healthy controls from a group of coal workers were included. The case group consisted of 35 COPD patients whose condition was complicated with coal workers' pneumoconiosis (CWP) and 41 COPD patients without CWP. Heat shock proteins (Hsps) in plasma and lymphocytes were detected by ELISA and flow cytometry, respectively. Multiple logistic regression models were applied to estimate the association between Hsp levels and COPD risk. Our results showed that plasma Hsp70 and lymphocyte Hsp27 levels were significantly higher and plasma Hsp27 levels were significantly lower in COPD cases than in controls (p < 0.01). No significant differences in lymphocyte Hsp70 levels were found between COPD cases and the matched subjects. Higher plasma Hsp70 levels (odds ratio (OR) = 13.8, 95 % confidence interval (CI) = 5.7-33.5) and lower plasma Hsp27 levels (OR = 4.6, 95 % CI = 2.0-10.5) were significantly associated with an increased risk of COPD after adjusting for confounders. Higher lymphocyte Hsp27 levels were only associated with an increased risk of COPD with CWP (OR = 6.6, 95 % CI = 2.0-22.1) but not with an increased risk of COPD without CWP (OR = 3.0, 95 % CI = 0.9-8.9). Additionally, there were strong joint effects of different Hsps on COPD risk. These results showed that higher levels of plasma Hsp70 and lower levels of plasma Hsp27 might be associated with an increased risk of COPD among coal workers. They may have the potential to serve as monitoring markers for COPD in coal workers.

  9. A Novel Approach to Functional Analysis of the Ribulose Bisphosphate Carboxylase Small Subunit Gene by Agrobacterium-Mediated Gene Silencing

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fu Zhou; Peng-Da Ma; Ren-Hou Wang; Bo Liu; Xing-Zhi Wang

    2006-01-01

    A novel approach to virus-induced post-transcriptional gene silencing for studying the function of the ribulose bisphosphate carboxylase small subunlt (rbcS) gene was established and optimized using potato virus X vector and Nicotiana benthamiana as experimental material. The analysis of silencing phenomena,transcriptional level, protein expression, and pigment measurement showed that the expression of the rbcS endogenous gene was inactivated by the expression of a 500-bp homologous cDNA fragment carried in the virus vector.

  10. Gene silencing by RNA interference in the house dust mite, Dermatophagoides pteronyssinus.

    Science.gov (United States)

    Marr, Edward J; Sargison, Neil D; Nisbet, Alasdair J; Burgess, Stewart T G

    2015-12-01

    This is the first report of gene silencing by RNA interference (RNAi) in the European house dust mite, Dermatophagoides pteronyssinus, Trouessart, 1897. Using a non-invasive immersion method first developed for the honey bee mite, Varroa destructor, a significant reduction in the expression of D. pteronyssinus glutathione-S-transferase mu-class 1 enzyme (DpGST-mu1) was achieved following overnight immersion in double stranded RNA encoding DpGST-mu1. Although no detrimental phenotypic changes were observed following silencing, this technique can now be used to address fundamental physiological questions and assess the potential therapeutic benefit in silencing D. pteronyssinus target genes in selected domestic situations of high human-mite interface.

  11. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max

    OpenAIRE

    Kandoth, Pramod K; Heinz, Robert; Yeckel, Greg; Gross, Nathan W; Juvale, Parijat S; Hill, John; Whitham, Steven A.; Baum, Thomas J.; Mitchum, Melissa G.

    2013-01-01

    Background Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. Findings Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for anal...

  12. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    OpenAIRE

    Sang-Ho Park; Hoseong Choi; Semin Kim; Won Kyong Cho; Kook-Hyung Kim

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the n...

  13. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    Directory of Open Access Journals (Sweden)

    Sang-Ho Park

    2016-08-01

    Full Text Available Grapevine Algerian latent virus (GALV is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP, but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  14. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus.

    Science.gov (United States)

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-08-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  15. The amylose-free potato mutant as a model plant to study gene expression and gene silencing.

    NARCIS (Netherlands)

    Flipse, E.

    1995-01-01

    In this thesis, gene-expression and gene silencing were examined for Granule Bound Starch Synthase (GBSS) which catalyses the formation of amylose and Branching Enzyme (BE) which catalyses the formation of amylopectin. The (GBSS) deficient, with iodine, red staining amylose-free (amf) potato mutant

  16. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation.

    Directory of Open Access Journals (Sweden)

    Kevin Pruitt

    2006-03-01

    Full Text Available The class III histone deactylase (HDAC, SIRT1, has cancer relevance because it regulates lifespan in multiple organisms, down-regulates p53 function through deacetylation, and is linked to polycomb gene silencing in Drosophila. However, it has not been reported to mediate heterochromatin formation or heritable silencing for endogenous mammalian genes. Herein, we show that SIRT1 localizes to promoters of several aberrantly silenced tumor suppressor genes (TSGs in which 5' CpG islands are densely hypermethylated, but not to these same promoters in cell lines in which the promoters are not hypermethylated and the genes are expressed. Heretofore, only type I and II HDACs, through deactylation of lysines 9 and 14 of histone H3 (H3-K9 and H3-K14, respectively, had been tied to the above TSG silencing. However, inhibition of these enzymes alone fails to re-activate the genes unless DNA methylation is first inhibited. In contrast, inhibition of SIRT1 by pharmacologic, dominant negative, and siRNA (small interfering RNA-mediated inhibition in breast and colon cancer cells causes increased H4-K16 and H3-K9 acetylation at endogenous promoters and gene re-expression despite full retention of promoter DNA hypermethylation. Furthermore, SIRT1 inhibition affects key phenotypic aspects of cancer cells. We thus have identified a new component of epigenetic TSG silencing that may potentially link some epigenetic changes associated with aging with those found in cancer, and provide new directions for therapeutically targeting these important genes for re-expression.

  17. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Srinivas eBelide

    2012-07-01

    Full Text Available Various post transcriptional gene silencing (PTGS strategies have been developed and exploited to study gene function or engineer disease resistance. The recently-developed artificial microRNA (amiRNA strategy is an alternative method of effectively silencing target genes. The ∆12-desaturase (FAD2, Fatty acid elongase (FAE1 and Fatty acyl-ACP thioesterase B (FATB were targeted with amiR159b-based constructs in Arabidopsis thaliana to evaluate changes in oil composition when expressed with the seed-specific Brassica napus truncated napin (FP1 promoter. Fatty acid profiles from transgenic homozygous seeds reveal that the targeted genes were silenced. The down-regulation of the AtFAD-2 gene substantially increased oleic acid from the normal levels of ~15% to as high as 63.3% and reduced total PUFA content (18:2∆9,12+18:3∆9,12,15 from 44.8% to 4.7%. ∆12-desaturase activity was reduced to levels as low as those in the null fad-2-1 and fad-2-2 mutants. Silencing of the FAE-1 gene resulted in the reduction of eicosenoic acid (20:1∆11 to 1.9+1.0% from 15% and silencing of FATB resulted in the reduction of palmitic acid (16:0 to 4.4+0.5% from 8.0%. Reduction in FATB activity is comparable with a FATB-knock out mutant. These results demonstrate for the first time amiR159b constructs targeted against three endogenous seed-expressed genes are clearly able to down regulate and generate genotypic changes that are inherited stably over three generations.

  18. Gene silencing in tick cell lines using small interfering or long double-stranded RNA.

    Science.gov (United States)

    Barry, Gerald; Alberdi, Pilar; Schnettler, Esther; Weisheit, Sabine; Kohl, Alain; Fazakerley, John K; Bell-Sakyi, Lesley

    2013-03-01

    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system.

  19. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  20. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier;

    2014-01-01

    Polycomb group (PcG) proteins are required for normal differentiation and development and are frequently deregulated in cancer. PcG proteins are involved in gene silencing; however, their role in initiation and maintenance of transcriptional repression is not well defined. Here, we show that knoc...

  1. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs

    DEFF Research Database (Denmark)

    Mandegar, Mohammad A.; Huebsch, Nathaniel; Frolov, Ekaterina B.

    2016-01-01

    repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range...

  2. Baculovirus-mediated gene silencing in insect cells using intracellularly produced long double-stranded RNA

    NARCIS (Netherlands)

    Huang, Yi; Deng, F.; Hu, Z.H.; Vlak, J.M.; Wang, H.

    2007-01-01

    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetics tool to silence gene expression in multiple organisms, including plants, nematodes and insects. In this study, DNA vectors capable of promoting the synthesis of long hairpin dsRNAs in vivo from a DNA

  3. Prolonged in vivo gene silencing by electroporation-mediated plasmid delivery of small interfering RNA

    NARCIS (Netherlands)

    Eefting, D.; Grimbergen, J.M.; Vries, M.R. de; Weel, V. van; Kaijzel, E.L.; Que, I.; Moon, R.T.; Löwik, C.W.; Bockel, J.H. van; Quax, P.H.A.

    2007-01-01

    For the successful application of RNA interference in vivo, it is desired to achieve (local) delivery of small interfering RNAs (siRNAs) and long-term gene silencing. Nonviral electrodelivery is suitable to obtain local and prolonged expression of transgenes. By intramuscular electrodelivery of a pl

  4. Mammalian hyperplastic discs homolog EDD regulates microRNA-mediated gene silencing

    OpenAIRE

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression through translation repression and mRNA destabilization. However, the molecular mechanisms of miRNA silencing are still not well defined. Using a genetic screen in mouse embryonic stem (ES) cells, we identify mammalian hyperplastic discs protein EDD, a known E3 ubiquitin ligase, as a key component of the miRNA silencing pathway. ES cells deficient for EDD are defective in miRNA function and exhibit growth defects. We demonstrate that E3 ubiquitin li...

  5. Trophozoites of Entamoeba histolytica epigenetically silenced in several genes are virulence-attenuated

    Directory of Open Access Journals (Sweden)

    Mirelman D.

    2008-09-01

    Full Text Available The human intestinal parasite Entamoeba histolytica causes amoebic colitis and amoebic liver abscesses. Three classes of amoebic molecules have been identified as the major virulence factors, the Gal/GalNAc inhibitable lectin that mediates adherence to mammalian cells, the amoebapores which cause the formation of membrane ion channels in the target cells and the cysteine proteinases which degrade the matrix proteins, the intestinal mucus and secretory IgA. Transcriptional silencing of the amoebapore (Ehap-a gene occurred after transfection of trophozoites with a plasmid containing a segment of the 5’ upstream region of the gene. Transcriptional silencing of the Ehap-a gene continued even after the removal of the plasmid and the cloned amoebae were termed G3. Transfection of G3 trophozoites with a plasmid construct containing the cysteine proteinase (EhCP-5 gene and the light subunit of the Gal- lectin (Ehlgl1 gene, each under the 5’ upstream sequences of the amoebapore gene, caused the simultaneous epigenetic silencing of expression of these two genes. The resulting trophozoites, termed RB-9, were cured from the plasmid and they do not express the three types of virulent genes. The RB-9 amoeba are virulence attenuated and are incapable of killing mammalian cells, they can not induce the formation of liver abscesses and they do not cause ulcerations in the cecum of experimental animals. The gene-silenced amoebae express the same surface antigens which are present in virulent strains and following intra peritoneal inoculation of live trophozoites into hamsters they evoked a protective immune response. Further studies are needed to find out if RB-9 trophozoites could be used for vaccination against amoebaisis.

  6. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum.

    Directory of Open Access Journals (Sweden)

    Verónica S Di Stilio

    Full Text Available Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS of a PHYTOENE DESATURASE ortholog (TdPDS can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%, using tobacco rattle virus (TRV vectors. The photobleached leaf phenotype of silenced plants significantly correlates with the down-regulation of endogenous TdPDS (P<0.05, as compared to controls. Floral silencing of PDS was achieved in the faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene AGAMOUS (AG resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum. The evidence presented on floral silencing of orthologs of the marker gene PDS and the floral homeotic gene AG will enable a comparative approach to the study of the evolution of flower development in this group.

  7. Gene silencing of VP9 gene impairs WSSV infectivity on Macrobrachium rosenbergii.

    Science.gov (United States)

    Alenton, Rod Russel R; Kondo, Hidehiro; Hirono, Ikuo; Maningas, Mary Beth B

    2016-03-02

    White Spot Syndrome Virus (WSSV) remains the most widespread and devastating infectious agent that hit the shrimp aquaculture industry worldwide. To date, there are no known effective strategies yet to combat WSSV infection. Hence, functional studies on genes critical for viral infection is essential in elucidating shrimp-virus interaction. Here we report the function of a gene from WSSV coding for a non-structural protein, VP9, utilizing RNA interference. Silencing of VP9 gene also effectively suppressed other gene region in the WSSV genome (wsv168 gene) as early as day 1 post infection (dpi). Three set-ups using Macrobrachium rosenbergii shrimp were prepared for treatment using VP9-dsRNA, GFP-dsRNA, and PBS. Each shrimp was challenge with WSSV, and survival rate was recorded. VP9- and GFP-dsRNA injected shrimps showed a significant survival rate of 80% and 70%, respectively, in contrast to 0% of the PBS injected shrimps at 25dpi. Re-infection of shrimp survivors using a higher viral titer concentration, concurrent with the infection of new shrimp samples for the PBS control group, resulted in a significant 67% survival rate for VP9-dsRNA compared to 0% with that of GFP-dsRNA and PBS group. Challenge test on two more species, Penaeus monodon and Marsupenaeus japonicus, also significantly increased survival after VP9-dsRNA treatment. Our results provided evidence that VP9 gene plays an essential role in WSSV replication and it can be a potent target gene in the development of RNAi therapeutics for shrimps.

  8. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Zhan-ping He; Hong Lu

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cel-lular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffu-sion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injectedvia the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefifcient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefifcient value was increased, and cellular edema was ob-viously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefifcient value was similar between treatment and model groups, but angioedema was still obvious in the treat-ment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefifcient value and the area of high signal intensity on T2WI and DWI can relfect therapeutic effects of aquaporin-4 gene silencing on cellular edema.

  9. TMV induces RNA decay pathways to modulate gene silencing and disease symptoms.

    Science.gov (United States)

    Conti, Gabriela; Zavallo, Diego; Venturuzzi, Andrea L; Rodriguez, Maria C; Crespi, Martin; Asurmendi, Sebastian

    2017-01-01

    RNA decay pathways comprise a combination of RNA degradation mechanisms that are implicated in gene expression, development and defense responses in eukaryotes. These mechanisms are known as the RNA Quality Control or RQC pathways. In plants, another important RNA degradation mechanism is the post-transcriptional gene silencing (PTGS) mediated by small RNAs (siRNAs). Notably, the RQC pathway antagonizes PTGS by preventing the entry of dysfunctional mRNAs into the silencing pathway to avoid global degradation of mRNA by siRNAs. Viral transcripts must evade RNA degrading mechanisms, thus viruses encode PTGS suppressor proteins to counteract viral RNA silencing. Here, we demonstrate that tobacco plants infected with TMV and transgenic lines expressing TMV MP and CP (coat protein) proteins (which are not linked to the suppression of silencing) display increased transcriptional levels of RNA decay genes. These plants also showed accumulation of cytoplasmic RNA granules with altered structure, increased rates of RNA decay for transgenes and defective transgene PTGS amplification. Furthermore, knockdown of RRP41 or RRP43 RNA exosome components led to lower levels of TMV accumulation with milder symptoms after infection, several developmental defects and miRNA deregulation. Thus, we propose that TMV proteins induce RNA decay pathways (in particular exosome components) to impair antiviral PTGS and this defensive mechanism would constitute an additional counter-defense strategy that lead to disease symptoms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  11. Developing Gene Silencing for the Study and Treatment of Dystonia

    Science.gov (United States)

    2016-10-01

    Gene Therapy for Hemophilia What other organizations were involved as partners? Nothing to Report. 8. SPECIAL REPORTING REQUIREMENTS. None 9. APPENDICES. None. 17 ...Dr. Davidson has the following changes to report: New Grants PICALM Gene Therapy Zlokovic (PI) 10/1/15-9/30/16 .48 cal months Cure...Davidson (PI) 07/01/12-06/30/16 .24 cal/months Advancing gene therapy for late infantile neuronal ceroid lipofuscinosis R21

  12. Insulin but Not Glucagon Gene is Silenced in Human Pancreas-Derived Mesenchymal Stem Cells

    OpenAIRE

    2009-01-01

    We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene...

  13. Methylation mediated silencing of TMS1/ASC gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gopisetty Gopal

    2006-07-01

    Full Text Available Abstract Background Transcriptional silencing associated with aberrant promoter methylation has been established as an alternate pathway for the development of cancer by inactivating tumor suppressor genes. TMS1 (Target of Methylation induced Silencing, also known as ASC (Apoptosis Speck like protein containing a CARD is a tumor suppressor gene which encodes for a CARD (caspase recruitment domain containing regulatory protein and has been shown to promote apoptosis directly and by activation of downstream caspases. This study describes the methylation induced silencing of TMS1/ASC gene in prostate cancer cell lines. We also examined the prevalence of TMS1/ASC gene methylation in prostate cancer tissue samples in an effort to correlate race and clinico-pathological features with TMS1/ASC gene methylation. Results Loss of TMS1/ASC gene expression associated with complete methylation of the promoter region was observed in LNCaP cells. Gene expression was restored by a demethylating agent, 5-aza-2'deoxycytidine, but not by a histone deacetylase inhibitor, Trichostatin A. Chromatin Immunoprecipitation (ChIP assay showed enrichment of MBD3 (methyl binding domain protein 3 to a higher degree than commonly associated MBDs and MeCP2. We evaluated the methylation pattern in 66 prostate cancer and 34 benign prostatic hyperplasia tissue samples. TMS1/ASC gene methylation was more prevalent in prostate cancer cases than controls in White patients (OR 7.6, p 0.002 while no difference between the cases and controls was seen in Black patients (OR 1.1, p 0.91. Conclusion Our study demonstrates that methylation-mediated silencing of TMS1/ASC is a frequent event in prostate cancer, thus identifying a new potential diagnostic and prognostic marker for the treatment of the disease. Racial differences in TMS1/ASC methylation patterns implicate the probable role of molecular markers in determining in susceptibility to prostate cancer in different ethnic groups.

  14. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v/F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  15. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  16. Transvection and silencing of the Scr homeotic gene of Drosophila melanogaster.

    Science.gov (United States)

    Southworth, Jeffrey W; Kennison, James A

    2002-06-01

    The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.

  17. Dynamic and reversibility of heterochromatic gene silencing in human disease

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In eukaryotic organisms cellular fate and tissue specific gene expression are regulated by the activity of proteins known as transcription factors that by interacting with specific DNA sequences direct the activation or repression of target genes. The post genomic era has shown that transcription factors are not the unique key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, post-translational modifications of histone proteins,remodeling of nucleosomes and expression of small regulatory RNAs also contribute to regulation of gene expression,determination of cell and tissue specificity and assurance of inheritance of gene expression levels. The relevant contribution of epigenetic mechanisms to a proper cellular function is highlighted by the effects of their deregulation that cooperate with genetic alterations to the development of various diseases and to the establishment and progression of tumors.

  18. P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27.

    Science.gov (United States)

    Fanelli, Mariel A; Montt-Guevara, Magdalena; Diblasi, Angela M; Gago, Francisco E; Tello, Olga; Cuello-Carrión, F Darío; Callegari, Eduardo; Bausero, Maria A; Ciocca, Daniel R

    2008-01-01

    The cadherin-catenin proteins have in common with heat shock proteins (HSP) the capacity to bind/interact proteins of other classes. Moreover, there are common molecular pathways that connect the HSP response and the cadherin-catenin protein system. In the present study, we have explored whether in breast cancer the HSP might interact functionally with the cadherin-catenin cell adhesion system. Beta-catenin was immunoprecipitated from breast cancer biopsy samples, and the protein complexes isolated in this way were probed with antibodies against HSP family members. We are thus the first to demonstrate a specific interaction between beta-catenin and Hsp27. However, beta-catenin did not bind Hsp60, Hsp70, Hsp90, gp96, or the endoplasmic reticulum stress response protein CHOP. To confirm the finding of Hsp27-beta-catenin interaction, the 27-kDa immunoprecipitated band was excised from one-dimensional polyacrylamide gel electrophoresis gels and submitted to liquid chromatography-tandem mass spectrometry with electrospray ionization, confirming a role for Hsp27. In addition, beta-catenin interacted with other proteins including heat shock transcription factor 1, P-cadherin, and caveolin-1. In human breast cancer biopsy samples, beta-catenin was coexpressed in the same tumor areas and in the same tumor cells that expressed Hsp27. However, this coexpression was strong when beta-catenin was present in the cytoplasm of the tumor cells and not when beta-catenin was expressed at the cell surface only. Furthermore, murine breast cancer cells transfected with hsp25 showed a redistribution of beta-catenin from the cell membrane to the cytoplasm. When the prognostic significance of cadherin-catenin expression was examined by immunohistochemistry in breast cancer patients (n = 215, follow-up = >10 years), we found that the disease-free survival and overall survival were significantly shorter for patients expressing P-cadherin and for patients showing expression of beta-catenin in

  19. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Antisense and RNA interference (RNAi-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  20. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Science.gov (United States)

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  1. RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Roberto A. Camargo

    2016-12-01

    Full Text Available RNA interference (RNAi, a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta, a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-A and Arginine kinase based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS, a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.

  2. Identification of repressor element 1 in cytochrome P450 genes and their negative regulation by RE1 silencing transcription factor/neuron-restrictive silencer factor.

    Science.gov (United States)

    García-Sánchez, Rubén; Ayala-Luján, Jorge; Hernández-Peréz, Ascensión; Mendoza-Figueroa, Tomás; Tapia-Ramírez, José

    2003-03-17

    RE1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) mediates transcriptional repression in many neuron-specific genes by interaction with the repressor element 1/neuron-restrictive silencing element (RE1/NRSE). This element has been identified at least in 20 neuron specific genes. REST/NRSF is highly expressed in non-neuronal tissues, where it is thought to repress gene transcription. We performed a BLAST search to look for the presence of RE1/NRSE elements in the rat cytochrome P450 genes. We identified the presence of RE1/NRSE element in the cytochrome P450 genes CYP1A1, 2A2, 2E1 and 3A2. Electrophoretic mobility shift assay and supershift assays were carried out to prove functionality of these sites and detect the interaction of REST/NRSF with this sequence. Cotransfection studies in PC12 cells with a plasmid containing the RE1 element of the CYP genes, cloned upstream of the minimal type II sodium channel promoter, in the presence of REST/NRSF, showed a marked expression inhibition of the CAT reporter gene. These data suggest that the RE1 elements that exist in these four CYP genes might be a target for the REST/NRSF transcription factor and such an interaction might play a role in the negative regulation of these genes.

  3. Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing.

    Science.gov (United States)

    Chen, Yurong; Zhou, Xue-Rong; Zhang, Zhi-Jun; Dribnenki, Paul; Singh, Surinder; Green, Allan

    2015-04-01

    Simultaneous gene silencing of both FAD2 genes in high linoleic acid flax leads to high level of oleic acid, which is stable across multiple generations. High oleic oil is one of the preferred traits in oil crop engineering due to its stability and multiple applications as an industrial feedstock. Flax possesses two isoforms of FAD2 enzymes that desaturate monounsaturated oleic acid to polyunsaturated linoleic acid. These two enzymes are encoded by two FAD2 genes. By simultaneous gene silencing both FAD2 genes in high linoleic acid flax, Linola, high level of oleic acid up to 80% was achieved in 69 silencing lines. The high oleic trait was stable across multiple generations with oleic acid reaching up to 77% in homozygote T3 progeny. The RNAi-mediated gene-silencing approach generated high oleic linseed oil, as well as a high oleic platform that can be exploited for further fatty acid engineering.

  4. Small RNAs, RNAi and the Inheritance of Gene Silencing in Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    Xuezhu Feng; Shouhong Guang

    2013-01-01

    Invasive nucleic acids such as transposons and viruses usually exhibit aberrant characteristics,e.g.,unpaired DNA or abnormal doublestranded RNA.Organisms employ a variety of strategies to defend themselves by distinguishing self and nonself substances and disabling these invasive nucleic acids.Furthermore,they have developed ways to remember this exposure to invaders and transmit the experience to their descendants.The mechanism underlying this inheritance has remained elusive.Recent research has shed light on the initiation and maintenance of RNA-mediated inherited gene silencing.Small regulatory RNAs play a variety of crucial roles in organisms,including gene regulation,developmental timing,antiviral defense,and genome integrity,via a process termed as RNA interference (RNAi).Recent research has revealed that small RNAs and the RNAi machinery are engaged in establishing and promoting transgenerational gene silencing.Small RNAs direct the RNAi and chromatin modification machinery to the cognate nucleic acids to regulate gene expression and epigenetic alterations.Notably,these acquired small RNAs and epigenetic changes persist and are transmitted from parents to offspring for multiple generations.Thus,RNAi is a vital determinant of the inheritance of gene silencing and acts as a driving force of evolution.

  5. An efficient virus-induced gene silencing vector for maize functional genomics research.

    Science.gov (United States)

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  7. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing.

    Science.gov (United States)

    Zhang, Chunquan; Bradshaw, Jeffrey D; Whitham, Steven A; Hill, John H

    2010-05-01

    Plant viral vectors are valuable tools for heterologous gene expression, and because of virus-induced gene silencing (VIGS), they also have important applications as reverse genetics tools for gene function studies. Viral vectors are especially useful for plants such as soybean (Glycine max) that are recalcitrant to transformation. Previously, two generations of bean pod mottle virus (BPMV; genus Comovirus) vectors have been developed for overexpressing and silencing genes in soybean. However, the design of the previous vectors imposes constraints that limit their utility. For example, VIGS target sequences must be expressed as fusion proteins in the same reading frame as the viral polyprotein. This requirement limits the design of VIGS target sequences to open reading frames. Furthermore, expression of multiple genes or simultaneous silencing of one gene and expression of another was not possible. To overcome these and other issues, a new BPMV-based vector system was developed to facilitate a variety of applications for gene function studies in soybean as well as in common bean (Phaseolus vulgaris). These vectors are designed for simultaneous expression of multiple foreign genes, insertion of noncoding/antisense sequences, and simultaneous expression and silencing. The simultaneous expression of green fluorescent protein and silencing of phytoene desaturase shows that marker gene-assisted silencing is feasible. These results demonstrate the utility of this BPMV vector set for a wide range of applications in soybean and common bean, and they have implications for improvement of other plant virus-based vector systems.

  8. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    Science.gov (United States)

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species.

  9. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  10. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  11. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available BACKGROUND: Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. METHODOLOGY/PRINCIPAL FINDINGS: RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. CONCLUSIONS: SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  12. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  13. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dawei Gou

    Full Text Available DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9 by members of the Su(var3-9 family of histone methyltransferases (HMTs triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1 can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2 and Su(var205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.

  14. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    Science.gov (United States)

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.

  15. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene.

    Directory of Open Access Journals (Sweden)

    Diego H Sanchez

    2014-11-01

    Full Text Available Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling. The heat-mediated transcriptional induction of SDC occurs particularly in young developing leaves and is proportional to the level of stress. However, this occurs only above a certain window of absolute temperatures and, thus, resembles a thermal-sensing mechanism. In addition, the re-silencing kinetics during recovery can be entrained by repeated heat stress cycles, suggesting that epigenetic regulation in plants may conserve memory of stress experience. We further demonstrate that SDC contributes to the recovery of plant biomass after stress. We propose that transcriptional gene silencing, known to be involved in gene imprinting, is also co-opted in the specific tuning of SDC expression upon heat stress and subsequent recovery. It is therefore possible that dynamic properties of the epigenetic landscape associated with silenced or imprinted genes may contribute to regulation of their expression in response to environmental challenges.

  16. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles.

    Science.gov (United States)

    Li, Shyh-Dar; Chono, Sumio; Huang, Leaf

    2008-02-18

    We have developed a nanoparticle (NP) formulation for systemically delivering siRNA into metastatic tumors. The NP, composed of nucleic acids, a polycationic peptide and cationic liposome, was prepared in a self-assembling process. The NP was then modified by PEG-lipid containing a targeting ligand, anisamide, and thus was decorated for targeting sigma receptor expressing B16F10 tumor. The activity of the targeted NP was compared with the naked NP (no PEGylation) and non-targeted NP (no ligand). The delivery efficiency of the targeted NP was 4-fold higher than the non-targeted NP and could be competed by excess free ligand. Luciferase siRNA was used to evaluate the gene silencing activity in the B16F10 cells, which were stably transduced with a luciferase gene. The gene silencing activity of the targeted NP was significantly higher than the other formulations and lasted for 4 days. While confocal microscopy showed that the naked NP provided no tissue selectivity and non-targeted NP was ineffective for tumor uptake, the targeted NP effectively penetrated the lung metastasis, but not the liver. It resulted in 70-80% gene silencing in the metastasis model after a single i.v. injection (150 microg siRNA/kg). This effective formulation also showed very little immunotoxicity.

  17. Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer.

    Science.gov (United States)

    Teneng, I; Tellez, C S; Picchi, M A; Klinge, D M; Yingling, C M; Snider, A M; Liu, Y; Belinsky, S A

    2015-01-29

    The maintenance cytosine DNA methyltransferase DNMT1 and de novo methyltransferase DNMT3b cooperate to establish aberrant DNA methylation and chromatin complexes to repress gene transcription during cancer development. The expression of DNMT3b was constitutively increased 5-20-fold in hTERT/CDK4-immortalized human bronchial epithelial cells (HBECs) before treatment with low doses of tobacco carcinogens. Overexpression of DNMT3b increased and accelerated carcinogen-induced transformation. Genome-wide profiling of transformed HBECs identified 143 DNMT3b-target genes, many of which were transcriptionally regulated by the polycomb repressive complex 2 (PRC2) complex and silenced through aberrant methylation in non-small-cell lung cancer cell lines. Two genes studied in detail, MAL and OLIG2, were silenced during transformation, initially through enrichment for H3K27me3 and H3K9me2, commonly methylated in lung cancer, and exert tumor suppressor effects in vivo through modulating cancer-related pathways. Re-expression of MAL and OLIG2 to physiological levels dramatically reduced the growth of lung tumor xenografts. Our results identify a key role for DNMT3b in the earliest stages of initiation and provide a comprehensive catalog of genes targeted for silencing by this methyltransferase in non-small-cell lung cancer.

  18. Silencing of Two Insulin Receptor Genes Disrupts Nymph-Adult Transition of Alate Brown Citrus Aphid

    Science.gov (United States)

    Ding, Bi-Yue; Shang, Feng; Zhang, Qiang; Xiong, Ying; Yang, Qun; Niu, Jin-Zhi; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph–adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph–adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest. PMID:28230772

  19. Inhibition of human esophageal squamous cell carcinomas by targeted silencing of tumor enhancer genes: an overview.

    Science.gov (United States)

    Islamian, Jalil Pirayesh; Mohammadi, Mohsen; Baradaran, Behzad

    2014-06-01

    Esophageal cancer has been reported as the ninth most common malignancy and ranks as the sixth most frequent cause of death worldwide. Esophageal cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy. Novel strategies are needed to boost the oncologic outcome. Recent advances in the molecular biology of esophageal cancer have documented the role of genetic alterations in tumorigenesis. Oncogenes serve a pivotal function in tumorigenesis. Targeted therapies are directed at the unique molecular signature of cancer cells for enhanced efficacy with low toxicity. RNA interference (RNAi) technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Related results have shown that targeting oncogenes with siRNAs, specifically the mRNA, effectively reduces tumor cell proliferation and induces apoptotic cell death. This article will briefly review studies on silencing tumor enhancer genes related to the induction of esophageal cancer.

  20. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    2012-12-01

    Full Text Available The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  1. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic

    Science.gov (United States)

    Watts, Jonathan K.; Corey, David R.

    2014-01-01

    Synthetic nucleic acids are commonly used laboratory tools for modulating gene expression and have the potential to be widely used in the clinic. Progress towards nucleic acid drugs, however, has been slow and many challenges remain to be overcome before their full impact on patient care can be understood. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are the two most widely used strategies for silencing gene expression. We first describe these two approaches and contrast their relative strengths and weaknesses for laboratory applications. We then review the choices faced during development of clinical candidates and the current state of clinical trials. Attitudes towards clinical development of nucleic acid silencing strategies have repeatedly swung from optimism to depression during the past twenty years. Our goal is to provide the information needed to design robust studies with oligonucleotides, making use of the strengths of each oligonucleotide technology. PMID:22069063

  2. RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing

    Science.gov (United States)

    Zhang, Hanbang; Pompey, Justine M; Singh, Upinder

    2011-01-01

    Entamoeba histolytica is a major health threat to people in developing countries, where it causes invasive diarrhea and liver abscesses. The study of this important human pathogen has been hindered by a lack of tools for genetic manipulation. Recently, a number of genetic approaches based on variations of the RNAi method have been successfully developed and cloning of endogenous small-interfering RNAs from E. histolytica revealed an abundant population of small RNAs with an unusual 5′-polyphosphate structure. However, little is known about the implications of these findings to amebic biology or the mechanisms of gene silencing in this organism. In this article we review the literature relevant to RNAi in E. histolytica, discuss its implications for advances in gene silencing in this organism and outline potential future directions towards understanding the repertoire of RNAi and its impact on the biology of this deep-branching eukaryotic parasite. PMID:21162639

  3. Neural stem cell transplantation with Nogo-66 receptor gene silencing to treat severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang; Jingjian Ma; Yuan Mu; Yinghui Zhuang

    2011-01-01

    Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA,typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression,and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.

  4. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Science.gov (United States)

    Garbian, Yael; Maori, Eyal; Kalev, Haim; Shafir, Sharoni; Sela, Ilan

    2012-12-01

    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  5. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus.

    Science.gov (United States)

    Liscombe, David K; O'Connor, Sarah E

    2011-11-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003-0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro.

  6. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  7. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans.

    Science.gov (United States)

    Jahan, Sultana N; Åsman, Anna K M; Corcoran, Pádraic; Fogelqvist, Johan; Vetukuri, Ramesh R; Dixelius, Christina

    2015-05-01

    Phytophthora infestans is an oomycete that causes severe damage to potato, and is well known for its ability to evolve rapidly in order to overcome resistant potato varieties. An RNA silencing strategy was evaluated here to clarify if small interfering RNA homologous to selected genes in P. infestans could be targeted from the plant host to reduce the magnitude of the infection. As a proof-of-concept, a hairpin RNA (hp-RNA) construct using the GFP marker gene was designed and introduced in potato. At 72 hpi, a 55-fold reduction of the signal intensity of a corresponding GFP expressing P. infestans strain on leaf samples of transgenic plants, compared with wild-type potato, was detected. This suggests that an RNA interference construct in the potato host could be processed and target a transcript of the pathogen. Three genes important in the infection process of P. infestans, PiGPB1, PiCESA2, and PiPEC, together with PiGAPDH taking part in basic cell maintenance were subsequently tested using an analogous transgenic strategy. Out of these gene candidates, the hp-PiGPB1 targeting the G protein β-subunit (PiGPB1) important for pathogenicity resulted in most restricted disease progress. Further, Illumina sequencing of inoculated transgenic potato leaves revealed sRNAs of 24/25 nt size homologous to the PiGPB1 gene in the transgenic plants indicating post-transcriptional silencing of the target gene. The work demonstrates that a host-induced gene-silencing approach is functional against P. infestans but is highly dependent on target gene for a successful outcome. This finding broadens the arsenal of control strategies to this important plant disease.

  8. An effective virus-based gene silencing method for functional genomics studies in common bean

    Directory of Open Access Journals (Sweden)

    Kachroo Aardra

    2011-06-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris L. is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement. Although concerted efforts from the "Phaseomics" consortium have resulted in the development of several genomic resources, functional studies have continued to lag due to the recalcitrance of this crop for genetic transformation. Results Here we describe the use of a bean pod mottle virus (BPMV-based vector for silencing of endogenous genes in common bean as well as for protein expression. This BPMV-based vector was originally developed for use in soybean. It has been successfully employed for both protein expression and gene silencing in this species. We tested this vector for applications in common bean by targeting common bean genes encoding nodulin 22 and stearoyl-acyl carrier protein desaturase for silencing. Our results indicate that the BPMV vector can indeed be employed for reverse genetics studies of diverse biological processes in common bean. We also used the BPMV-based vector for expressing the green fluorescent protein (GFP in common bean and demonstrate stable GFP expression in all common bean tissues where BPMV was detected. Conclusions The availability of this vector is an important advance for the common bean research community not only because it provides a rapid means for functional studies in common bean, but also because it does so without generating genetically modified plants. Here we describe the detailed methodology and provide essential guidelines for the use of this vector for both gene silencing and protein expression in common bean. The entire VIGS procedure can be completed in 4-5 weeks.

  9. Gene silencing by chemically modified siRNAs.

    Science.gov (United States)

    Engels, Joachim W

    2013-03-25

    RNA interference (RNAi) has not only already risen as a gold standard for validating gene function in basic science studies, but also holds great promise as a new therapeutic paradigm. Advantages of RNAi-based therapeutics include relatively fast initial screening and the ability to target proteins not yet addressable by traditional drug design strategies. In this review we describe the development of chemically modified small inhibiting siRNAs and their application as potential therapeutics during the past decade. Focus is on proper siRNA design, choice of chemical modification and how to circumvent immunogenicity as well as off-target effects.

  10. DNA elements reducing transcriptional gene silencing revealed by a novel screening strategy.

    Directory of Open Access Journals (Sweden)

    Naoki Kishimoto

    Full Text Available Transcriptional gene silencing (TGS--a phenomenon observed in endogenous genes/transgenes in eukaryotes--is a huge hindrance to transgenic technology and occurs mainly when the genes involved share sequence homology in their promoter regions. TGS depends on chromosomal position, suggesting the existence of genomic elements that suppress TGS. However, no systematic approach to identify such DNA elements has yet been reported. Here, we developed a successful novel screening strategy to identify such elements (anti-silencing regions-ASRs, based on their ability to protect a flanked transgene from TGS. A silenced transgenic tobacco plant in which a subsequently introduced transgene undergoes obligatory promoter-homology dependent TGS in trans allowed the ability of DNA elements to prevent TGS to be used as the screening criterion. We also identified ASRs in a genomic library from a different plant species (Lotus japonicus: a perennial legume; the ASRs include portions of Ty1/copia retrotransposon-like and pararetrovirus-like sequences; the retrotransposon-like sequences also showed interspecies anti-TGS activity in a TGS-induction system in Arabidopsis. Anti-TGS elements could provide effective tools to reduce TGS and ensure proper regulation of transgene expression. Furthermore, the screening strategy described here will also facilitate the efficient identification of new classes of anti-TGS elements.

  11. Effect of human epididymis protein 4 gene silencing on the malignant phenotype in ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    ZOU Shu-li; CUI Heng; CHANG Xiao-hong; YE Xue; CHENG Hong-yan; CHENG Ye-xia; TANG Zhi-jian; ZHANG Zu-juan; GAO Li; CHEN Xin-hua

    2011-01-01

    Background Human epididymis secretory protein 4 (HE4) has been proved to be a promising novel biomarker for the detection of epithelial ovarian carcinomas. Compared with CA125, HE4 assay demonstrated an improved ability to discriminate between pelvic mass with malignant and benign disease. Though it is well known that HE4 is overexpressed in ovarian cancer, however, the role of HE4 in the carcinogenesis and progression of ovarian cancer remains unkown.Methods In this study, we explored the role of HE4 in the carcinogenesis and progression of ovarian cancer. We screened nine ovarian cancer cell lines for HE4 expression, and using RNA interference (RNAi), we silenced HE4 gene expression in CaoV3 and SKOV3.ip1 ovarian cancer cell lines. We assessed the effect of HE4 gene silencing on the transformed phenotype by examining the cell cycle, apoptosis, proliferation and transwell migration/invasion in vitro.Results HE4 gene silencing induces G0/G1 arrest and blocks the progression from the G1 to S phase in CaoV3 and SKOV3.ip1 cells. HE4 knockdown also inhibited cell proliferation, migration and invasion in SKOV3.ip1 cells in vitro.Conclusion HE4 may be involved in the regulation of the cell cycle and promote ovarian cancer migration and invasion.

  12. Gene Silencing Associated with SWI/SNF Complex Loss During NSCLC Development

    Science.gov (United States)

    Song, Shujie; Walter, Vonn; Karaca, Mehmet; Li, Ying; Bartlett, Christopher S.; Smiraglia, Dominic J.; Serber, Daniel; Sproul, Christopher D.; Plass, Christoph; Zhang, Jiren; Hayes, D. Neil; Zheng, Yanfang; Weissman, Bernard E.

    2014-01-01

    The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non-small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with an HDAC inhibitor or a DNMT inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 re-expression led to substantial changes in the expression of CDH1, CDH3, EHF and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. PMID:24445599

  13. Effect of TAK1 gene silencing on the apoptosis of Kasumi-1 cells induced by arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    许锦霞

    2013-01-01

    Objective To study the effect of transforming growth factor-βactivated kinase-1 (TAK1) gene silencing on the proliferation and apoptosis of Kasumi-1 cells induced by arsenic trioxide (As2O3) .Methods Acute myeloid

  14. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    Science.gov (United States)

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  15. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma.

    Directory of Open Access Journals (Sweden)

    Antonia Navarro

    Full Text Available BACKGROUND: Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. PRINCIPAL FINDINGS: We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62% displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. CONCLUSIONS: These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women.

  16. 热休克蛋白27改善小鼠内毒素血症心功能不全的机制%The mechanism of cardiac protection of Hsp27 against cardiac dysfunction during endotoxema in mice

    Institute of Scientific and Technical Information of China (English)

    周红梅; 尤文军; 张晓进; 丁正年; 程蕴琳; 刘莉

    2010-01-01

    Objective To investigate the cardiac protection of Hsp27 against endotoxic cardiac depression mediated by activation of PI3K/Akt pathway and the suppression of NFκB-mediated inflammatory response in mice. Method (1) Transgenic mice with cardiac specific overexpression of Hsp27 (Hsp27 Tg) and wild littermate controls (WT) were given 10 mg/kg LPS injected intraperitoneally to induce endotoxemia, (2) The cardiac function measurement in mice was performed by using echocardiography 6 hours after LPS treatment (n = 6), (3) The activity of PBK/Akt pathway was evaluated by Western blot for [hosphor-Akt (p-Akt) and phosphor-Gsk-3β (p-Gsk-3β) one hour after LPS administration ( n = 4)], (4) Activity of inflammatory response was evaluated by protein degradation of IκBα (n = 4), (5) The apoptosis of myocardial cells was determined by TUNEL assay on the paraffin section of cardiac tissue 24 hours after LPS exposure (n = 4). Results (1) Hsp27 attenuated cardiac dysfunction significantly following LPS treatment. Compared with the primary value, LPS induced the depression of cardiac function both in WT rats and Hsp27Tg rats. However, the cardiac dysfunction was attenuated significantly in Hsp27Tg rats compared with that in WT rats ( P < 0.01 or 0.05) . (2) Hsp27 attenuated IκBα degradation after LPS administration. Compared with the primary value, LPS led to LκBα degradation by (72.92 + 9.20) % in WT rats and by (41.43 + 24.10) % in Hsp27Tg rats. The overexpression of Hsp27 lessened the IκBα degradation significantly (P < 0.05). The similar results were obtained in rat myocardial cell culture of experiments. (3) Hsp27 enhanced the activation of PI3K/Akt signaling following LPS exposure. One hour after LPS administration, the relative levels of p-Akt and p-GSK-30 were (3.11 + 0.83) and (3.19 + 1.04), respectively in WT rats, and (5.13 + 0.73) and (5.71 + 1.20) in Hsp27Tg rats, respectively. Compared with WT rats, the levels of p-Akt and p-GSK-3β were significantly

  17. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise.

    Science.gov (United States)

    Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.

  18. Stage and cell-specific expression and intracellular localization of the small heat shock protein Hsp27 during oogenesis and spermatogenesis in the Mediterranean fruit fly, Ceratitis capitata.

    Science.gov (United States)

    Economou, Katerina; Kotsiliti, Elena; Mintzas, Anastassios C

    2017-01-01

    The cell-specific expression and intracellular distribution of the small heat protein Hsp27 was investigated in the ovaries and testes of the Mediterranean fruit fly, Ceratitis capitata (medfly), under both normal and heat shock conditions. For this study, a gfp-hsp27 strain was used to detect the chimeric protein by confocal microscopy. In unstressed ovaries, the protein was expressed throughout egg development in a stage and cell-specific pattern. In germarium, the protein was detected in the cytoplasm of the somatic cells in both unstressed and heat-shocked ovaries. In the early stages of oogenesis of unstressed ovaries, the protein was mainly located in the perinuclear region of the germ cells and in the cytoplasm of the follicle cells, while in later stages (9-10) it was distributed in the cytoplasm of the germ cells. In late stages (12-14), the protein changed localization pattern and was exclusively associated with the nuclei of the somatic cells. In heat shocked ovaries, the protein was mainly located in the nuclei of the somatic cells throughout egg chamber's development. In unstressed testes, the chimeric protein was detected in the nuclei of primary spermatocytes and in the filamentous structures of spermatid bundles, called actin cones. Interestingly, after a heat shock, the protein presented the same cell-specific localization pattern as in unstressed testes. Furthermore, the protein was also detected in the nuclei of the epithelial cells of the deferent duct, the accessory glands and the ejaculatory bulb. Our data suggest that medfly Hsp27 may have cell-specific functions, especially in the nucleus. Moreover, the association of this protein to actin cones during spermatid individualization, suggests a possible role of the protein in the formation and stabilization of actin cones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; Ying FAN; En-zhi YAN; Zhuo LIU; Zhi-hong ZONG; Zhi-min QI

    2006-01-01

    Aim: To observe the effects of sodium ferulate (SF) on amyloid beta (Aβ)1-40-induced p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and the neuroprotective effects of SF. Methods: Rats were injected intracerebroventricularly with Aβ1-40. Six hours after injection, Western blotting was used to determine the expressions of phosphorylated mitogen-activated protein kinase kinase (MKK) 3/MKK6, phospho-p38 MAPK, interleukin (IL)-lβ, phospho-MAPK activating protein kinase 2 (MAPKAPK-2), the 27 kDa heat shock protein (Hsp27), procaspase-9, -3, and -7 cleavage, and poly (ADP-ribose) poly-merase (PARP) cleavage. Seven days after injection, Nissl staining was used to observe the morphological change in hippocampal CA1 regions. Results: Intracerebroventricular injection of Aβ1-40 induced an increase in phosphorylated MKK3/MKK6 and p38 MAPK expressions in hippocampal tissue. These increases, in combination with enhanced interleukin (IL)-lβ protein expression and reduced phospho-MAPKAPK2 and phospho-Hsp27 expression, mediate the Aβ-induced activation of cell death events as assessed by cleavage of procaspase-9, -3, and -7 and caspase-3 substrate PARP cleavage. Pretreatment with SF (100 mg/kg and 200 mg/kg daily, 3 weeks) significantly prevented Aβ1-40-induced increases in phosphorylated MKK3/MKK6 and p38 MAPK expression. The Aβ1-40-induced increase in IL-1β protein level was attenuated by pretreatment with SF. In addition, Aβ1-40-induced decreases in phosphorylated MAPKAPK2 and Hsp27 expression were abrogated by administration of SF. In parallel with these findings, Aβ1-40-induced changes in activation of caspase-9, caspase-7, and caspase-3 were inhibited by pretreatment with SF. Conclusion: SF prevents Aβ1-40-induced neurotoxicity through suppression of MKK3/MKK6-p38 MAPK activity and IL-lβ expression and upregulation of phospho-Hsp27 expression.

  20. H-NS mediates the silencing of laterally acquired genes in bacteria.

    Directory of Open Access Journals (Sweden)

    Sacha Lucchini

    2006-08-01

    Full Text Available Histone-like nucleoid structuring protein (H-NS is a modular protein that is associated with the bacterial nucleoid. We used chromatin immunoprecipitation to determine the binding sites of H-NS and RNA polymerase on the Salmonella enterica serovar Typhimurium chromosome. We found that H-NS does not bind to actively transcribed genes and does not co-localize with RNA polymerase. This shows that H-NS principally silences gene expression by restricting the access of RNA polymerase to the DNA. H-NS had previously been shown to preferentially bind to curved DNA in vitro. In fact, at the genomic level we discovered that the level of H-NS binding correlates better with the AT-content of DNA. This is likely to have evolutionary consequences because we show that H-NS binds to many Salmonella genes acquired by lateral gene transfer, and functions as a gene silencer. The removal of H-NS from the cell causes un-controlled expression of several Salmonella pathogenicity islands, and we demonstrate that this has deleterious consequences for bacterial fitness. Our discovery of this novel role for H-NS may have implications for the acquisition of foreign genes by enteric bacteria.

  1. Silencing of CHD5 gene by promoter methylation in leukemia.

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    Full Text Available Chromodomain helicase DNA binding protein 5 (CHD5 was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2 as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.

  2. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  3. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  4. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Science.gov (United States)

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  5. Promoter-targeted siRNAs induce gene silencing of simian immunodeficiency virus (SIV) infection in vitro.

    Science.gov (United States)

    Lim, Heidi G W; Suzuki, Kazuo; Cooper, David A; Kelleher, Anthony D

    2008-03-01

    RNA interference is a conserved process by which sequence-specific double-stranded RNA is converted into small interfering double-stranded RNAs (siRNAs) that can induce gene silencing via two pathways: post-transcriptional gene silencing and transcriptional gene silencing (TGS). We previously reported TGS of human immunodeficiency virus-1 (HIV-1) could be induced by siRNAs targeting regions within its 5'-long-terminal repeat (5'LTR) promoter region. Here we show that promoter-targeted siRNAs can also induce silencing of simian immunodeficiency virus (SIV) replication by similar mechanisms. Suppression of productive infection was achieved in two different cell lines: a CD4, CCR5, CXCR4 expressing HeLa cell line (MAGIC-5) and in a human lymphoid cell line (CEMx174). HpaII digestion demonstrated induction of methylation at a CpG site within the SIV promoter region following siRNA-induced suppression. Both 5-azacytidine (5-AzaC) and trichostatin A (TSA), inhibitors of DNA methyltransferases (DNMTs) and histone deacetylation, respectively, partially reversed the silencing effect. Furthermore, using chromatin immunoprecipitation (ChIP) assays we found enrichment in the region of the LTR of heterochromatin markers dimethylated histone 3 lysine 9 (H3K9) and trimethylated histone 3 lysine 27 (H3K27) in the siRNA silenced cultures. Together, these results strongly suggest certain siRNAs targeting the promoter region of SIV can effect viral silencing through the induction of epigenetic changes.

  6. Effect of RNAi-mediated silencing of Livin gene on biological properties of colon cancer cell line LoVo.

    Science.gov (United States)

    Zou, A M; Wang, H F; Zhu, W F; Wang, F X; Shen, J J

    2014-05-16

    This study aimed to investigate the effect of RNAi-mediated silencing of the Livin gene on biological properties of the colon cancer cell line LoVo. Interference vectors pSilencer4.1-Ll and pSilencer4.1-L2 targeting the Livin gene were constructed and transfected into LoVo cells. The expression of the Livin gene was determined by RT-PCR and Western blotting. The apoptosis, cell cycle, colony formation, proliferation of LoVo cells, as well as their sensitivity to cisplatin, were detected by flow cytometry, colony formation assay and MTT. Livin mRNA and protein expression in LoVo cells could be effectively silenced by pSilencer4.1-Ll but not pSilencer4.1-L2. In the pSilencer4.1-Ll transfection group, the apoptosis rate of LoVo cells was significantly higher than in the control group (24.2 ± 3.2 vs 8.1 ± 1.4%, P LoVo colon cancer cells, inhibit cell proliferation and colony formation, induce apoptosis, and enhance sensitivity to cisplatin.

  7. Polycomb silencing of the Drosophila 4E-BP gene regulates imaginal disc cell growth

    Science.gov (United States)

    Mason-Suares, Heather; Tie, Feng; Yan, Christopher; Harte, Peter J.

    2015-01-01

    Polycomb group (PcG) proteins are best known for their role in maintaining stable, mitotically heritable silencing of the homeotic (HOX) genes during development. In addition to loss of homeotic gene silencing, some PcG mutants also have small imaginal discs. These include mutations in E(z), Su(z)12, esc and escl, which encode Polycomb Repressive Complex 2 (PRC2) subunits. The cause of this phenotype is not known, but the human homologs of PRC2 subunits have been shown to play a role in cell proliferation, are over-expressed in many tumors, and appear to be required for tumor proliferation. Here we show that the small imaginal disc phenotype arises, at least in part, from a cell growth defect. In homozygous E(z) mutants, imaginal disc cells are smaller than cells in normally proliferating discs. We show that the Thor gene, which encodes eIF4E-Binding Protein (4E-BP), the evolutionarily conserved inhibitor of cap-dependent translation and potent inhibitor of cell growth, is involved in the development of this phenotype. The Thor promoter region contains DNA binding motifs for transcription factors found in well-characterized Polycomb Response Elements (PREs), including PHO/PHOL, GAGA Factor, and others, suggesting that Thor may be a direct target of Polycomb silencing. We present chromatin immunoprecipitation evidence that PcG proteins are bound to the Thor 5’ region in vivo. The Thor gene is normally repressed in imaginal discs, but Thor mRNA and 4E-BP protein levels are elevated in imaginal discs of PRC2 subunit mutant larvae. Deletion of the Thor gene in E(z) mutants partially restores imaginal disc size toward wild-type and results in an increase in the fraction of larvae that pupariate. These results thus suggest that PcG proteins can directly modulate cell growth in Drosophila, in part by regulating Thor expression. PMID:23523430

  8. In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein

    Directory of Open Access Journals (Sweden)

    Arase Sachiko

    2012-03-01

    Full Text Available Abstract Background Cytosine methylation is involved in epigenetic control of gene expression in a wide range of organisms. An increasing number of examples indicate that changing the frequency of cytosine methylation in the genome is a feasible tool to engineer novel traits in plants. Although demethylating effects of compounds have been analyzed in human cultured cells in terms of suppressing cancer, their effect in plant cells has not been analyzed extensively. Here, we developed in planta assay systems to detect inhibition of cytosine methylation using plants that contain a transgene transcriptionally silenced by an epigenetic mechanism. Results Seeds of two transgenic plants were used: a petunia line that has been identified as a revertant of the co-suppression of the chalcone synthase-A (CHS-A gene and contains CHS-A transgenes whose transcription is repressed; Nicotiana benthamiana plants that contain the green fluorescent protein (GFP reporter gene whose transcription is repressed through virus-induced transcriptional gene silencing. Seeds of these plants were sown on a medium that contained a demethylating agent, either 5-azacytidine or trichostatin A, and the restoration of the transcriptionally active state of the transgene was detected in seedlings. Using these systems, we found that genistein, a major isoflavonoid compound, inhibits cytosine methylation, thus restoring transgene transcription. Genistein also restored the transcription of an epigenetically silenced endogenous gene in Arabidopsis plants. Conclusions Our assay systems allowed us to assess the inhibition of cytosine methylation, in particular of maintenance of methylation, by compounds in plant cells. These results suggest a novel role of flavonoids in plant cells and that genistein is useful for modifying the epigenetic state of plant genomes.

  9. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    Science.gov (United States)

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  10. Changes of osteosarcoma cell biological behavior afterId1 gene silencing by siRNA

    Institute of Scientific and Technical Information of China (English)

    De-Li Xu

    2016-01-01

    Objective:To study the changes of osteosarcoma cell biological behaviors proliferation, migration and invasion afterId1gene silencing by siRNA.Methods:Osteosarcoma HEK293 cell lines were cultured and transfected with Id1-siRNA and NC-siRNA respectively, cell proliferation, migration and invasion were detected after 24 h and 48 h of transfection, and the expression levels of proliferation-promoting genes, proliferation-inhibiting genes as well as migration and invasion-related genes in cells were detected after 48 h of transfection. Results:After 24 h and 48 h of transfection, cell OD value and the number of invasive cells of Id1-siRNA group were significantly lower than those of NC-siRNA group, and scratch area was significantly larger than that of NC-siRNA group; after 48 h of transfection, hnRNP A2, hnRNP B1, S100A6, RUNX2, Aurora-A, Grb2, Gab2 and Rap2a expression levels of Id1-siRNA group were significantly lower than those of NC-siRNA group, and p53, TAp73 and IGFBP5 were significantly higher than those of NC-siRNA group.Conclusions:Id1 gene silencing by siRNA can inhibit osteosarcoma cell proliferation, migration and invasion.

  11. siRNA mediated gene silencing in Fusarium sp. HKF15 for overproduction of bikaverin.

    Science.gov (United States)

    Deshmukh, Radhika; Purohit, Hemant J

    2014-04-01

    Fusarium sp. HKF15 is an isolate from effluent treatment plant which produces bikaverin. Bikaverin is a polyketide having antitumor and antibiotic potential. Acetyl coenzyme A is a common precursor for bikaverin as well as carotenoids and gibberellins. A polyketide synthase gene bik1 is responsible for bikaverin production whereas, hydroxymethyl glutaryl coenzyme A reductase (hmgR) and farnesyl pyrophosphate synthase (fpps) are carotenoid and gibberellin pathway genes. Aim of this study was assessing siRNA mediated gene silencing for bikaverin overproduction with down-regulation of carotenoid and gibberellin pathway. HKF15 protoplasts derived from glucose grown culture were treated with 200pmolml(-1)hmgR and fpps siRNAs separately. Along with down-regulation of target genes, there was 2.4-fold increase in bik1 gene expression. The silencing was effective till 48h with a 41% increase in bikaverin production. The study proposes a strategy for manipulation of physiology towards desired secondary metabolite overproduction.

  12. Development and use of an efficient DNA-based viral gene silencing vector for soybean.

    Science.gov (United States)

    Zhang, Chunquan; Yang, Chunling; Whitham, Steven A; Hill, John H

    2009-02-01

    Virus-induced gene silencing (VIGS) is increasingly being used as a reverse genetics tool to study functions of specific plant genes. It is especially useful for plants, such as soybean, that are recalcitrant to transformation. Previously, Bean pod mottle virus (BPMV) was shown to be an effective VIGS vector for soybean. However, the reported BPMV vector requires in vitro RNA transcription and inoculation, which is not reliable or amenable to high-throughput applications. To increase the efficiency of the BPMV vector for soybean functional genomics, a DNA-based version was developed. Reported here is the construction of a Cauliflower mosaic virus 35S promoter-driven BPMV vector that is efficient for the study of soybean gene function. The selection of a mild rather than a severe BPMV strain greatly reduced the symptom interference caused by virus infection. The DNA-based BPMV vector was used to silence soybean homologues of genes involved in plant defense, translation, and the cytoskeleton in shoots and in roots. VIGS of the Actin gene resulted in reduced numbers of Soybean mosaic virus infection foci. The results demonstrate the utility of this new vector as an efficient tool for a wide range of applications for soybean functional genomics.

  13. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Directory of Open Access Journals (Sweden)

    Ji-Si Zhang

    Full Text Available The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'. Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS. Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution

  14. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Science.gov (United States)

    Zhang, Ji-Si; Zhao, Jing; Zhang, Shaohua; He, Chaoying

    2014-01-01

    The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development

  15. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    Science.gov (United States)

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  16. Artificial MicroRNA-Based Specific Gene Silencing of Grain Hardness Genes in Polyploid Cereals Appeared to Be Not Stable Over Transgenic Plant Generations

    Science.gov (United States)

    Gasparis, Sebastian; Kała, Maciej; Przyborowski, Mateusz; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2017-01-01

    Gene silencing by RNA interference is a particularly important tool in the study of gene function in polyploid cereal species for which the collections of natural or induced mutants are very limited. Previously we have been testing small interfering RNA-based approach of gene silencing in wheat and triticale. In this research, artificial microRNAs (amiRs) were studied in the same species and the same target genes to compare effectiveness of both gene silencing pathways. amiR cassettes were designed to silence Puroindoline a (Pina) and Puroindoline b (Pinb) hardness genes in wheat and their orthologues Secaloindoline a (Sina) and Secaloindoline b (Sinb) genes in triticale. Each of the two cassettes contained 21 nt microRNA (miR) precursor derived from conserved regions of Pina/Sina or Pinb/Sinb genes, respectively. Transgenic plants were obtained with high efficiency in two cultivars of wheat and one cultivar of triticale after using the Pinb-derived amiR vector for silencing of Pinb or Sinb, respectively. Lack of transgenic plants in wheat or very low transformation efficiency in triticale was observed using the Pina-derived amiR cassette, despite large numbers of embryos attempted. Silencing of Pinb in wheat and Sinb in triticale was highly efficient in the T1 generation. The transcript level of Pinb in wheat was reduced up to 92% and Sinb in triticale was reduced up to 98%. Moreover, intended silencing of Pinb/Sinb with Pinb-derived amiR cassette was highly correlated with simultaneous silencing of Pina/Sina in the same transgenic plants. High downregulation of Pinb/Pina genes in T1 plants of wheat and Sinb/Sina genes in T1 plants of triticale was associated with strong expression of Pinb-derived amiR. Silencing of the target genes correlated with increased grain hardness in both species. Total protein content in the grains of transgenic wheat was significantly lower. Although, the Pinb-derived amiR cassette was stably inherited in the T2 generation of wheat and

  17. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model.

    Directory of Open Access Journals (Sweden)

    Beibei Luo

    Full Text Available Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3 inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM. We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC, pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β. Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP, NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.NLRP3 inflammasome contributed to the development of DCM. NF

  18. RNAi dynamics in Juvenile Fasciola spp. Liver flukes reveals the persistence of gene silencing in vitro.

    Directory of Open Access Journals (Sweden)

    Paul McVeigh

    2014-09-01

    Full Text Available Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (dsRNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain, validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL and B (FheCatB cysteine proteases, and a σ-class glutathione transferase (FheσGST.Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200-320 nt dsRNAs or 27 nt short interfering (siRNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control

  19. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  20. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  1. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations.

    Science.gov (United States)

    Judelson, Howard S; Tani, Shuji

    2007-07-01

    Clustered within the genome of the oomycete phytopathogen Phytophthora infestans are four genes encoding spore-specific nuclear LIM interactor-interacting factors (NIF proteins, a type of transcriptional regulator) that are moderately conserved in DNA sequence. NIFC1, NIFC2, and NIFC3 are zoosporogenesis-induced and grouped within 4 kb, and 20 kb away resides a sporulation-induced form, NIFS. To test the function of the NIFC family, plasmids expressing full-length hairpin constructs of NIFC1 or NIFC2 were stably transformed into P. infestans. This triggered silencing of the cognate gene in about one-third of transformants, and all three NIFC genes were usually cosilenced. However, NIFS escaped silencing despite its high sequence similarity to the NIFC genes. Silencing of the three NIFC genes impaired zoospore cyst germination by 60% but did not affect other aspects of the life cycle. Silencing was transcriptional based on nuclear run-on assays and associated with tighter chromatin packing based on nuclease accessibility experiments. The chromatin alterations extended a few hundred nucleotides beyond the boundaries of the transcribed region of the NIFC cluster and were not associated with increased DNA methylation. A plasmid expressing a short hairpin RNA having sequence similarity only to NIFC1 silenced both that gene and an adjacent member of the gene cluster, likely due to the expansion of a heterochromatic domain from the targeted locus. These data help illuminate the mechanism of silencing in Phytophthora and suggest that caution should be used when interpreting silencing experiments involving closely spaced genes.

  2. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  3. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing.

    Science.gov (United States)

    Kola, Vijaya Sudhakara Rao; Renuka, P; Madhav, Maganti Sheshu; Mangrauthia, Satendra K

    2015-01-01

    RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.

  4. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Maciej Pietrzak

    Full Text Available BACKGROUND: Ribosomal deficits are documented in mild cognitive impairment (MCI, which often represents an early stage Alzheimer's disease (AD, as well as in advanced AD. The nucleolar rRNA genes (rDNA, transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation. METHODOLOGY/PRINCIPAL FINDINGS: To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups. CONCLUSIONS/SIGNIFICANCE: In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosomal deficits and, ultimately, dementia.

  5. Characterization of a silencer element in the first exon of the human osteocalcin gene.

    Science.gov (United States)

    Li, Y P; Chen, W; Stashenko, P

    1995-01-01

    Osteocalcin, the major non-collagenous protein in bone, is transcribed in osteoblasts at the onset of extracellular matrix mineralization. In this study it was demonstrated that sequences located in the first exon of the human osteocalcin gene possess a differentiation-related osteocalcin silencer element (OSE). Osteocalcin was rendered transcribable in UMR-106 cells and proliferating normal osteoblasts after deletion of the -3 to +51 region. Site-specific mutagenesis of this region revealed that a 7 bp sequence (TGGCCCT) (+29 to +35) is critical for silencing function. Mobility shift assays demonstrated that a nuclear factor bound to the OSE. The OSE binding protein was present in proliferating normal pre-osteoblasts and in UMR-106 and ROS 17/2.8 osteosarcoma cells, but was absent from post-proliferative normal osteoblasts. The binding protein was inhibited by fragments containing the +29/+35 sequence, but not by other promoter fragments or by the consensus oligomers of unrelated nuclear factors AP-1 and Sp1. DNase 1 footprinting demonstrated that the OSE binding-protein protected the +17 to +36 portion of the first exon, consistent with the results of mapping studies and competitive mobility shift assays. It is hypothesized that this silencer is activated by complexing of the OSE binding protein to the OSE during the osteoblast proliferation stage and that the OSE binding protein is down-regulated at the onset of extracellular matrix mineralization. Images PMID:8559666

  6. Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells.

    Science.gov (United States)

    Wilson, Leah M; Wong, Stephen H K; Yu, Ningpu; Geras-Raaka, Elizabeth; Raaka, Bruce M; Gershengorn, Marvin C

    2009-11-01

    We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.

  7. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  8. Functional genomics tool: Gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA

    Directory of Open Access Journals (Sweden)

    Troiano Emily

    2010-01-01

    Full Text Available Abstract Background Ticks are blood-sucking arthropods responsible for transmitting a wide variety of disease-causing agents, and constitute important public health threats globally. Ixodes scapularis is the primary vector of the Lyme disease agent in the eastern and central U.S. RNAi is a mechanism by which gene-specific double-stranded RNA (dsRNA triggers degradation of homologous mRNA transcripts. Here, we describe an optimized protocol for effectively suppressing gene expression in the egg and nymphal stages of I. scapularis by electroporation. Results The genes encoding the putative Phospholipase A2 (PLA2, cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin were targeted by delivering the dsRNA encoding the specific gene coding regions in the unfed nymphs. Silencing was measured using real time qRT-PCR. Electroporation as a mode of dsRNA delivery appears to be substantially efficient and less traumatic to the tick than dsRNA microinjection in the unfed nymphs. Using Cy3-labeled dsRNA to monitor the movement, electroporated dsRNA entered the nymphs and spread to salivary glands and other tissues. The significant disruption of β-actin and cytoplasmic Cystatin transcripts in tick eggs demonstrate the applicability of this technique. The PLA2, cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin genes were also significantly silenced, suggesting that this method has the potential to introduce dsRNA in eggs and unfed nymphs. Conclusions Our study demonstrates that electroporation can be used as a simple dsRNA delivery tool in assessing the functional role of tick genes in the vector-host interactions. This technique represents a novel approach for specific gene suppression in immature stages of ticks.

  9. Gene Silencing in Adult Aedes aegypti Mosquitoes Through Oral Delivery of Double-Stranded RNA

    Science.gov (United States)

    2012-01-01

    OR I GI N AL C ONTR I BUTI O N Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA M. R. Coy1, N. D...we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti . Using a non-specific dsRNA construct, we found that...adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post-feeding. Through the feeding of

  10. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime.

    Science.gov (United States)

    Fagoaga, Carmen; López, Carmelo; de Mendoza, Alfonso Hermoso; Moreno, Pedro; Navarro, Luis; Flores, Ricardo; Peña, Leandro

    2006-01-01

    Previously, we have shown that most Mexican limes (Citrus aurantifolia (Christ.) Swing.) expressing the p23 gene of Citrus tristeza virus (CTV) exhibit aberrations resembling viral leaf symptoms. Here we report that five independent transgenic lines having normal phenotype displayed characteristics typical of post-transcriptional gene silencing (PTGS): multiple copies of the transgene, low levels of the corresponding mRNA, methylation of the silenced transgene, and accumulation of p23-specific small interfering RNAs (siRNAs). When graft- or aphid-inoculated with CTV, some propagations of these silenced lines were immune: they neither expressed symptoms nor accumulated virions and viral RNA as estimated by DAS-ELISA and Northern blot hybridization, respectively. Other propagations were moderately resistant because they became infected later and showed attenuated symptoms compared to controls. The susceptible propagations, in addition to symptom expression and elevated virus titer, accumulated p23-specific siRNAs at levels significantly higher than immune or non-inoculated propagations, and showed transgene demethylation. This variable response among clonal transformants indicates that factors other than the genetic background of the transgenic plants play a key role in PTGS-mediated resistance.

  11. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments

    Directory of Open Access Journals (Sweden)

    Gyöngyi Munkácsy

    2016-01-01

    Full Text Available No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06. Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04. There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.

  12. [Study on enhancing sensitivity of SPC-A1 cells to chemotherapy by Livin isoform-specific gene silencing].

    Science.gov (United States)

    Sun, Jianguo; Liao, Rongxia; Chen, Zhengtang; Wang, Zhixin; Zhang, Qing; Hu, Yide

    2007-12-20

    As a new member of inhibitor of apoptosis protein(IAP) family,Livin,especially Livin α,is known to be involved in occurrence and development of lung cancer.Livin is an important mechanism of chemotherapy resistance of lung cancer cell.The aim of this study is to set up Livin isoform(α & β)-specific gene silencing system in SPC-A1 cells by gene transfection and RNA interference(RNAi),and to explore the different functions and value of the isoforms in enhancing chemosensitivity of SPC-A1 cells. Livinα+β,Livinα and Livinβ specific siRNA were expressed stably in SPC-A1 cells,respectively.MTT was performed to study sensitivity of the cells to chemotherapy drugs.In vivo experiment was performed to test sensitivity of mouse bearing tumor to cisplatin after gene silencing of Livin. After silencing of Livinα+β,Livinα and Livinβ genes,sensitivity of SPC-A1 cells to many chemotherapy drugs(including cisplatin,carboplatin,cyclophosphamide and adriblastine) was markedly increased(P SPC-A1 cells(P < 0.01).Animal experiment showed that tumor inhibition rate of pSilencer-Livinα+β,pSilencer-Livinα and pSilencer-Livinβ groups was 146.1%,130.7% and 110.5%,respectively. The results suggest that Livin isoform,especially Livinα+β is hopeful to be a molecular target for increasing sensitivity of lung cancer cell to chemotherapy.Gene silencing may be a new means of gene therapy for non-small cell lung cancer.

  13. Trans—acting factors from the human fetal liver binding to the human ε—globin gene silencer

    Institute of Scientific and Technical Information of China (English)

    YANZHIJIANG; CHUJIANG; 等

    1997-01-01

    The developmental stage-specific silencing of the human ε-globin gene during embryonic life is controlled,in part,by the silencer (-392bp- -177bp) upstream of this gene.In order to elucidate its role,the nuclear extract from the human fetal liver has been prepared and the interactions between trans-acting factors and this silencer element have been examined.By using DNaseI footprinting assay,a major protected region from -278bp to -235bp within this silencer element was identified.Furthermore,we found in gel mobility shift assay and Southwestern blotting assay that there were at least four trans-acting factors (MV≈32,28,26 and 22kD) in the nuclear extract isolated from the human fetal liver,which could specifically bind to this region.Our results suggested that these trans-acting factors might play an important role in silencing the human embryonic ε-globin gene expression at the fetal stage through the interactions with this silencer.

  14. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat.

    Science.gov (United States)

    Kang, Guozhang; Ma, Hongzhen; Liu, Guoqin; Han, Qiaoxia; Li, Chengwei; Guo, Tiancai

    2013-11-01

    Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (-8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.

  15. Aflatoxin-free transgenic maize using host-induced gene silencing

    Science.gov (United States)

    Thakare, Dhiraj; Zhang, Jianwei; Wing, Rod A.; Cotty, Peter J.; Schmidt, Monica A.

    2017-01-01

    Aflatoxins, toxic secondary metabolites produced by some Aspergillus species, are a universal agricultural economic problem and a critical health issue. Despite decades of control efforts, aflatoxin contamination is responsible for a global loss of millions of tons of crops each year. We show that host-induced gene silencing is an effective method for eliminating this toxin in transgenic maize. We transformed maize plants with a kernel-specific RNA interference (RNAi) gene cassette targeting the aflC gene, which encodes an enzyme in the Aspergillus aflatoxin biosynthetic pathway. After pathogen infection, aflatoxin could not be detected in kernels from these RNAi transgenic maize plants, while toxin loads reached thousands of parts per billion in nontransgenic control kernels. A comparison of transcripts in developing aflatoxin-free transgenic kernels with those from nontransgenic kernels showed no significant differences between these two groups. These results demonstrate that small interfering RNA molecules can be used to silence aflatoxin biosynthesis in maize, providing an attractive and precise engineering strategy that could also be extended to other crops to improve food security. PMID:28345051

  16. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding

    Science.gov (United States)

    Victoria-Acosta, Georgina; Vazquez-Santillan, Karla; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Maldonado, Vilma; Martinez-Ruiz, Gustavo Ulises; Melendez-Zajgla, Jorge

    2015-01-01

    XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding. PMID:26443201

  17. Highly efficient virus-induced gene silencing in apple and soybean by apple latent spherical virus vector and biolistic inoculation.

    Science.gov (United States)

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the analysis of the gene function in plants within a short time. However, in woody fruit tree like apple, some of Solanum crops, and soybean, it is generally difficult to inoculate virus vector by conventional inoculation methods. Here, we show efficient VIGS in apple and soybean by Apple latent spherical virus (ALSV) vector and biolistic inoculation. The plants inoculated with ALSV vectors by particle bombardment showed uniform silenced phenotypes of target genes within 2-3 weeks post inoculation.

  18. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Geisler, Katrin; Jørgensen, Bodil;

    2010-01-01

    -expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species) have created...... the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too weak to be of practical use. The new BSMV vectors modified for ligation-free cloning will allow rapid insertion of plant gene fragments for future experiments....

  19. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Kramer Elena M

    2007-04-01

    Full Text Available Abstract Background The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis and grass (e.g., Oryza model species. Results Here we demonstrate the effective use of a reverse genetic technique, virus-induced gene silencing (VIGS, to study gene function in this emerging model plant. Using Agrobacterium mediated transfer of tobacco rattle virus (TRV based vectors, we induce silencing of PHYTOENE DESATURASE (AqPDS in Aquilegia vulgaris seedlings, and ANTHOCYANIDIN SYNTHASE (AqANS and the B-class floral organ identity gene PISTILLATA in A. vulgaris flowers. For all of these genes, silencing phenotypes are associated with consistent reduction in endogenous transcript levels. In addition, we show that silencing of AqANS has no effect on overall floral morphology and is therefore a suitable marker for the identification of silenced flowers in dual-locus silencing experiments. Conclusion Our results show that TRV-VIGS in Aquilegia vulgaris allows data to be rapidly obtained and can be reproduced with effective survival and silencing rates. Furthermore, this method can successfully be used to evaluate the function of early-acting developmental genes. In the future, data derived from VIGS analyses will be combined with large-scale sequencing and microarray experiments already underway in order to address both recent and ancient evolutionary

  20. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Geisler, Katrin; Jørgensen, Bodil;

    2010-01-01

    -expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species) have created...

  1. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes.

    Science.gov (United States)

    Trinks, Daniela; Rajeswaran, R; Shivaprasad, P V; Akbergenov, Rashid; Oakeley, Edward J; Veluthambi, K; Hohn, Thomas; Pooggin, Mikhail M

    2005-02-01

    Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing.

  2. Angiotensinogen gene silencing reduces markers of inflammation and lipid accumulation in adipocytes

    Directory of Open Access Journals (Sweden)

    Wenting eXin

    2013-03-01

    Full Text Available Inflammatory adipokines secreted from adipose tissue are major contributors to obesity-associated inflammation and other metabolic dysfunctions. We and others have recently documented the contribution of adipose tissue renin-angiotensin system (RAS to the pathogenesis of obesity, inflammation and insulin resistance. We hypothesized that adipocyte-derived angiotensinogen (Agt plays a critical role in adipogenesis and/or lipogenesis as well as inflammation. This was tested using 3T3-L1 adipocytes, stably transfected with Agt-shRNA or scrambled Sc-shRNAcas a control. Transfected preadipocytes were differentiated and used to investigate the role of adipose Agt through microarray and PCR analyses and adipokine profiling. As expected, Agt gene silencing significantly reduced the expression of Agt and its hormone product angiotensin II (Ang II, as well as lipid accumulation in 3T3-L1 adipocytes. Microarray studies identified several genes involved in lipid metabolism and inflammatory pathways which were down-regulated by Agt gene inactivation, such as glycerol-3-phosphate dehydrogenase 1 (Gpd1, serum amyloid A 3 (Saa3, nucleotide-binding oligomerization domain containing 1 (Nod1 and signal transducer and activator of transcription 1 (Stat1. Mouse adipogenesis PCR arrays revealed lower expression levels of adipogenic/lipogenic genes such as peroxisome proliferator activated receptor gamma (Pparg, sterol regulatory element binding transcription factor 1 (Srebf1, adipogenin (Adig, and fatty acid binding protein 4 (Fabp4. Further, silencing of Agt gene significantly lowered expression of pro-inflammatory adipokines including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, and monocyte chemotactic protein-1 (MCP-1. In conclusion, this study directly demonstrates critical effects of Agt in adipocyte metabolism and inflammation and further support a potential role for adipose Agt in the pathogenesis of obesity-associated metabolic alterations.

  3. Expression Silence of DNA Repair Gene hMGMT Induced by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-ying; LAI Yan-dong

    2007-01-01

    Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression silence of human DNA repair gene hMGMT. Methods: The hMGMT specific siRNA expression cassette was made by two steps PCR, linked with pUC19 to get pU6-MGMTi, co-transfected with pEGFP-C1 into 16HBE and screened by G418. The MGMT mRNA and protein levels were detected by RT-PCR and Western Blot respectively. Results: hMGMT specific RNA interfere vector pU6-MGMTi was constructed successfully. In transfected 16HBE cells MGMT mRNA level could hardly be detected and the protein level was only 10% of control. Conclusion: MGMT specific RNAi expression cassette can effectively inhibit MGMT expression. MGMT silence cell line was built by co-transfection technology, which offered condition for studying the gene function of MGMT.

  4. Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhimin Zheng

    2015-05-01

    Full Text Available Paramutation is an epigenetic phenomenon that has been observed in a number of multicellular organisms. The epigenetically silenced state of paramutated alleles is not only meiotically stable but also “infectious” to active homologous alleles. The molecular mechanism of paramutation remains unclear, but components involved in RNA-directed DNA methylation (RdDM are required. Here, we report a multi-copy pRD29A-LUC transgene in Arabidopsis thaliana that behaves like a paramutation locus. The silent state of LUC is induced by mutations in the DNA glycosylase gene ROS1. The silent alleles of LUC are not only meiotically stable but also able to transform active LUC alleles into silent ones, in the absence of ros1 mutations. Maintaining silencing at the LUC gene requires action of multiple pathways besides RdDM. Our study identified specific factors that are involved in the paramutation-like phenomenon and established a model system for the study of paramutation in Arabidopsis.

  5. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    Science.gov (United States)

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  6. Heterochromatic Genes Undergo Epigenetic Changes and Escape Silencing in Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) Syndrome

    Science.gov (United States)

    Brun, Marie-Elisabeth; Lana, Erica; Rivals, Isabelle; Lefranc, Gérard; Sarda, Pierre; Claustres, Mireille; Mégarbané, André; De Sario, Albertina

    2011-01-01

    Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase. In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me3, both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found. PMID:21559330

  7. Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF syndrome.

    Directory of Open Access Journals (Sweden)

    Marie-Elisabeth Brun

    Full Text Available Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B gene, encoding a de novo DNA methyltransferase. In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me(3, both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found.

  8. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  9. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  10. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers.

    Science.gov (United States)

    Soitamo, Arto J; Jada, Balaji; Lehto, Kirsi

    2011-04-20

    RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in

  11. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2

    Science.gov (United States)

    Oravecz, Attila; Apostolov, Apostol; Polak, Katarzyna; Jost, Bernard; Le Gras, Stéphanie; Chan, Susan; Kastner, Philippe

    2015-01-01

    T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4−CD8− thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4−CD8− cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells. PMID:26549758

  12. Assessing the tobacco-rattle-virus-based vectors system as an efficient gene silencing technique in Datura stramonium (Solanaceae).

    Science.gov (United States)

    Eftekhariyan Ghamsari, Mohammad Reza; Karimi, Farah; Mousavi Gargari, Seyed Latif; Hosseini Tafreshi, Seyed Ali; Salami, Seyed Alireza

    2014-12-01

    Datura stramonium is a well-known medicinal plant, which is important for its alkaloids. There are intrinsic limitations for the natural production of alkaloids in plants; metabolic engineering methods can be effectively used to conquer these limitations. In order for this the genes involved in corresponding pathways need to be studied. Virus-Induced Gene Silencing is known as a functional genomics technique to knock-down expression of endogenous genes. In this study, we silenced phytoene desaturase as a marker gene in D. stramonium in a heterologous and homologous manner by tobacco-rattle-virus-based VIGS vectors. Recombinant TRV vector containing pds gene from D. stramonium (pTRV2-Dspds) was constructed and injected into seedlings. The plants injected with pTRV2-Dspds showed photobleaching 2 weeks after infiltration. Spectrophotometric analysis demonstrated that the amount of chlorophylls and carotenoids in leaves of the bleached plants decreased considerably compared to that of the control plants. Semi-Quantitative RT-PCR results also confirmed that the expression of pds gene in the silenced plants was significantly reduced in comparison with the control plants. The results showed that the viral vector was able to influence the levels of total alkaloid content in D. stramonium. Our results illustrated that TRV-based VIGS vectors are able to induce effective and reliable functional gene silencing in D. stramonium as an alternative tool for studying the genes of interest in this plant, such as the targeted genes in tropane alkaloid biosynthetic pathway. The present work is the first report of establishing VIGS as an efficient method for transient silencing of any gene of interest in D. stramonium.

  13. RNAi-mediated silencing of fungal acuD gene attenuates the virulence of Penicillium marneffei.

    Science.gov (United States)

    Sun, Jiufeng; Li, Xiqing; Feng, Peiying; Zhang, Junmin; Xie, Zhi; Song, Erwei; Xi, Liyan

    2014-02-01

    A number of pathogens, most of them intracellular, employ the glyoxylate cycle in order to ingest fatty acids as carbon sources as a way of coping with nutrient deprivation during the infection process. Isocitrate lyase, which is encoded by the pathogen's acuD gene, plays a pivotal role in the glyoxylate cycle, which has been implicated in fungal pathogenesis. In this study, the acuD gene of Penicillium marneffei was knocked down using siRNA expressed by a filamentous fungi expression system. The acuD siRNA reduced the acuD gene's mRNA and protein expression by 21.5 fold and 3.5 fold, respectively. When macrophages were infected with different transformants of P. marneffei, the knockdown of acuD expression with RNA interference was lethal to the pathogens. In addition, the secretion of tumor necrosis factor-alpha and interferon-gamma from the infected macrophages was reduced. Moreover, the RNAi-mediated silencing of acuD expression reduced the fungal burden in the nude mice infected with P. marneffei; inhibited the inflammatory response in the lungs, livers, and spleens during the chronic phase instead of the acute phase of infection; and thus prolonged survival of the infected animals. Collectively, our data indicate that the RNAi-mediated silencing of acuD expression could attenuate virulence of P. marneffei. The endogenous expression of the delivered siRNA vector could be used to evaluate the role of functional genes by continuous and stable expression of siRNA.

  14. Modification of a viral satellite DNA-based gene silencing vector and its application to leaf or flower color change in Petunia hybrida

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaorong; QIAN Yajuan; ZHOU Xueping

    2006-01-01

    Virus-induced gene silencing offers a powerful reverse-genetic tool for the study of gene function in plants. We have previously reported effective gene silencing of plant genes using a viral satellite DNA associated with Tomato yellow leaf curl China virus (TYLCCNV). In this study, we further modified the viral satellite DNA-based vector. The modified vector can induce sulfu (Su) gene silencing as effective as the original vector in Nicotiana benthamiana plants, but the new system simplifies procedures for construction of vector derivative. Furthermore, a fragment of petunia Su or chalcone synthase (CHS) endogenous gene was inserted into the modified vector. When petunia plants were agro- inoculated with the modified vector carrying a Su or CHS gene, the Su silenced plants started to appear yellowing in veins of systemically infected upper leaves two weeks after agroinoculation, while the CHS silenced plants started to show flower color change one month after agroinoculation and later single-color flowers became mosaic.

  15. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo.

    Science.gov (United States)

    Li, Junyang; Tang, Chao; Li, Liwen; Li, Rujun; Fan, Youwu

    2016-04-02

    Evidences indicate that inflammatory process plays pivotal role in tumor disease. Soluble epoxide hydrolase inhibitors (sEHIs) have been shown to participate in anti-inflammation and tumorigenesis by protecting epoxyeicosatrienoic acids (EETs). Although we have previously revealed some effects of t-AUCB on glioma in vitro, further investigations are needed to demonstrate its effects on glioblastoma growth in vivo and how to strengthen its antitumor effect. CCK-8 kit was used to test cell growth. Cell migration capacity was performed by wound healing assays. Transwell assay was used to test cell invasion potency. Cell-cycle analysis and cell apoptosis was performed by flow cytometry. The activity of caspase-3 in cells was measured using caspase-3 activity assay kits. Total RNA was extracted from cells lysated by TRIzol reagent. qRT-PCR was performed by ABI 7500 fast RT- PCR system. Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) was used for siRNA transfection. Western blootting was used to test protein expression. Tumor cell xenograft mouse models were used for in vivo study. The SPSS version 17.0 software was applied for statistical analysis. Our data shown that t-AUCB inhibits cell proliferation, migration and invasion and induces cell cycle G1 phase arrest in vitro but induces no cell apoptosis; increased Hsp27 activation and following COX-2 overexpression confer resistance to t-AUCB treatment in glioblastoma both in vitro and in vivo; quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. These results indicate that combination of t-AUCB and quercetin may be a potential approach to treating glioblastoma.

  16. Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90,GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules

    Institute of Scientific and Technical Information of China (English)

    Seung Oe Lim; Cheol Keun Park; Sung Gyoo Park; Jun-Hi Yoo; Young Min Park; Hie-Joon Kim; Kee-Taek Jang; Jae Won Cho; Byung Chul Yoo; Gu-Hung Jung

    2005-01-01

    AIM: Expression of heat shock proteins (HSPs) is frequently up-regulated in hepatocellular carcinoma (HCC), which evolves from dysplastic nodule (DN) and early HCC to advanced HCC. However, little is known about the differential expression of HSPs in multistep hepatocarcinogenesis. It was the purpose of this study to monitor the expression of HSPs in multistep hepatocarcinogenesis and to evaluate their prognostic significance in hepatitis B virus (HBV)related HCC.METHODS: Thirty-eight HCC and 19 DN samples were obtained from 52 hepatitis B surface antigen-positive Korean patients. Immunohistochemical and dot immunoblot analyses of HSP27, HSP60, HSP70, HSP90, glucoseregulated protein (GRP)78, and GRP94 were performed and their expression at different stages of HCC development was statistically analyzed.RESULTS: Expression of HSP27, HSP70, HSP90, GRP78, and GRP94 increased along with the stepwise progression of hepatocarcinogenesis. Strong correlation was found only in GRP78 (Spearman's r= 0.802). There was a positive correlation between the expressions of GRP78, GRP94, HSP90, or HSP70 and prognostic factors of HCC. Specifically, the expression of GRP78, GRP94, or HSP90 was associated significantly with vascular invasion and intrahepatic metastasis.CONCLUSION: The expressions of HSPs are commonly up-regulated in HBV-related HCCs and GRP78 might play an important role in the stepwise progression of HBVrelated hepatocarcinogenesis. GRP78, GRP94, and HSP90 may be important prognostic markers of HBV-related HCC, strongly suggesting vascular invasion and intrahepatic metastasis.

  17. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes.

    Science.gov (United States)

    Zheng, Qi; Rowley, M Jordan; Böhmdorfer, Gudrun; Sandhu, Davinder; Gregory, Brian D; Wierzbicki, Andrzej T

    2013-01-01

    Transcriptional gene silencing controls transposons and other repetitive elements through RNA-directed DNA methylation (RdDM) and heterochromatin formation. A key component of the Arabidopsis RdDM pathway is ARGONAUTE4 (AGO4), which associates with siRNAs to mediate DNA methylation. Here, we show that AGO4 preferentially targets transposable elements embedded within promoters of protein-coding genes. This pattern of AGO4 binding cannot be simply explained by the sequences of AGO4-bound siRNAs; instead, AGO4 binding to specific gene promoters is also mediated by long non-coding RNAs (lncRNAs) produced by RNA polymerase V. lncRNA-mediated AGO4 binding to gene promoters directs asymmetric DNA methylation to these genomic regions and is involved in regulating the expression of targeted genes. Finally, AGO4 binding overlaps sites of DNA methylation affected by the biotic stress response. Based on these findings, we propose that the targets of AGO4-directed RdDM are regulatory units responsible for controlling gene expression under specific environmental conditions.

  18. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene

    OpenAIRE

    Cui, Hongguang; Wang, Aiming

    2016-01-01

    Summary RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus?induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile pe...

  19. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment.

    Science.gov (United States)

    Le, Huy Quang; Ghatak, Sushmita; Yeung, Ching-Yan Chloé; Tellkamp, Frederik; Günschmann, Christian; Dieterich, Christoph; Yeroslaviz, Assa; Habermann, Bianca; Pombo, Ana; Niessen, Carien M; Wickström, Sara A

    2016-08-01

    Tissue mechanics drive morphogenesis, but how forces are sensed and transmitted to control stem cell fate and self-organization remains unclear. We show that a mechanosensory complex of emerin (Emd), non-muscle myosin IIA (NMIIA) and actin controls gene silencing and chromatin compaction, thereby regulating lineage commitment. Force-driven enrichment of Emd at the outer nuclear membrane of epidermal stem cells leads to defective heterochromatin anchoring to the nuclear lamina and a switch from H3K9me2,3 to H3K27me3 occupancy at constitutive heterochromatin. Emd enrichment is accompanied by the recruitment of NMIIA to promote local actin polymerization that reduces nuclear actin levels, resulting in attenuation of transcription and subsequent accumulation of H3K27me3 at facultative heterochromatin. Perturbing this mechanosensory pathway by deleting NMIIA in mouse epidermis leads to attenuated H3K27me3-mediated silencing and precocious lineage commitment, abrogating morphogenesis. Our results reveal how mechanics integrate nuclear architecture and chromatin organization to control lineage commitment and tissue morphogenesis.

  20. CIAPIN1 gene silencing enhances chemosensitivity in a drug-resistant animal model in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.M.; Gao, S.J.; Guo, X.F.; Sun, W.J. [Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin (China); Yan, Z.Q. [Department of Breast Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin (China); Wang, W.X.; Xu, Y.Q.; Lu, D. [Department of Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin (China)

    2014-03-21

    Overexpression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) contributes to multidrug resistance (MDR) in breast cancer. This study aimed to evaluate the potential of CIAPIN1 gene silencing by RNA interference (RNAi) as a treatment for drug-resistant breast cancer and to investigate the effect of CIAPIN1 on the drug resistance of breast cancer in vivo. We used lentivirus-vector-based RNAi to knock down CIAPIN1 in nude mice bearing MDR breast cancer tumors and found that lentivirus-vector-mediated silencing of CIAPIN1 could efficiently and significantly inhibit tumor growth when combined with chemotherapy in vivo. Furthermore, Western blot analysis showed that both CIAPIN1 and P-glycoprotein expression were efficiently downregulated, and P53 was upregulated, after RNAi. Therefore, we concluded that lentivirus-vector-mediated RNAi targeting of CIAPIN1 is a potential approach to reverse MDR of breast cancer. In addition, CIAPIN1 may participate in MDR of breast cancer by regulating P-glycoprotein and P53 expression.

  1. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  2. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    Science.gov (United States)

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  3. Silencing of the AV2 gene by antisense RNA protects transgenic plants against a bipartite begomovirus

    Directory of Open Access Journals (Sweden)

    Zafar Yusuf

    2007-01-01

    Full Text Available Abstract Whitefly-transmitted geminiviruses (genus Begomovirus are phytopathogens that cause heavy losses to crops worldwide. Efforts to engineer resistance against these viruses are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a virion-sense gene (AV2 to develop resistance against Tomato leaf curl New Delhi virus, a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that tobacco plants transformed with an antisense construct targeting this gene are resistant to the virus. Following challenged with the virus, transgenic plants remained symptomless, although viral DNA could be detected in some plants by PCR. This is the first report of transgenic resistance against a bipartite begomovirus obtained by targeting a virion-sense gene. The relatively conserved nature of the gene suggests that the technology may be useful to develop broad-spectrum resistance which is required because of the fact that plants are often infected with multiple begomoviruses in the field.

  4. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline

    DEFF Research Database (Denmark)

    Frøkjær-Jensen, Christian; Jain, Nimit; Hansen, Loren

    2016-01-01

    Cells benefit from silencing foreign genetic elements but must simultaneously avoid inactivating endogenous genes. Although chromatin modifications and RNAs contribute to maintenance of silenced states, the establishment of silenced regions will inevitably reflect underlying DNA sequence and....../or structure. Here, we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-base pair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant...... that PATCs form the basis of a cellular immune system, identifying certain endogenous genes in heterochromatic contexts as privileged while foreign DNA can be suppressed with no requirement for a cellular memory of prior exposure....

  5. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  6. RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs.

    Science.gov (United States)

    Olson, A; Sheth, N; Lee, J S; Hannon, G; Sachidanandam, R

    2006-01-01

    Use of RNA interference (RNAi) in forward genetic screens is proliferating. Currently, short-interfering RNAs (siRNAs) and short-hairpin RNAs (shRNAs) are being used to silence genes to tease out functional information. It is becoming easier to harness RNAi to silence specific genes, owing to the development of libraries of readymade shRNA and siRNA gene-silencing constructs by using a variety of sources. RNAi Codex, which consists of a database of shRNA related information and an associated website, has been developed as a portal for publicly available shRNA resources and is accessible at http://codex.cshl.org. RNAi Codex currently holds data from the Hannon-Elledge shRNA library and allows the use of biologist-friendly gene names to access information on shRNA constructs that can silence the gene of interest. It is designed to hold user-contributed annotations and publications for each construct, as and when such data become available. We will describe features of RNAi Codex and explain the use of the tool.

  7. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Zhong-Tao Ding

    2015-05-01

    Full Text Available The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain.

  8. Investigation of transcriptional gene silencing and mechanism induced by shRNAs targeted to RUNX3 in vitro

    Institute of Scientific and Technical Information of China (English)

    Xue-Zhi Feng; Xiu-Sheng He; Ying-Zhi Zhuang; Qiao Luo; Jun-Hao Jiang; Shuai Yang; Xue-Fang Tang; Ju-Lin Liu; Tao Chen

    2008-01-01

    AIM: To investigate transcriptional gene silencing induced by short hairpin RNAs (shRNAs) that target gene prompter regions of RUNX3 gene, and whether shRNAs homologous to DNA sequences may serve as initiators for methylation.METHODS: According to the principle of RNAi design,pSilencer3.1-H1-shRNA/RUNX3 expression vector was constructed, The recombinant plasmid shRNA was transfected into human stomach carcinoma cell line SGC7901 with Lipofectamine 2000. Then, the positive cell clones were screened by G418. The mRNA and protein expression level of RUNX3 in the stable transfected cell line SGC7901 were determined by RT-PCR, Western blotting and immunocytochemistry. Characteristics of the cell lines including SGC7901, pSilencer3.1-H1/SGC7901 and pSilencer3.1-H1-shRNA/RUNX3/SGC7901 were analyzed with growth curves, clone formation rate and cell-cycle distribution. The activated level of RUNX3 was examined after treatment with the different density of 5'-aza-2'-deoxycytidine (5-Aza-CdR) by using semiquantitative RT-PCR and Western blotting.RESULTS: In the cell line SGC7901 transfected with pSilencer3.1-Hl-shRNA/RUNX3, mRNA and protein expression of the RUNX3 gene was lost identified by RTPCR, Western blotting and immunocytochemistry assay.The growth of pSilencer3.1-H1-shRNA/RUNX3/SGC7901cells without expression of RUNX3 was the fastest (P < 0.05), its rate of clone formation was the highest (P <0.01), and the cell distribution in G0/G1 and S/M phases was lowest and highest, respectively (P < 0.05),compared with that of the transfected pSilencer3.1-H1 and non-transfected cells. Through RT-PCR and Western blot assay, inactivated RUNX3 could not be reactivated by 5-Aza-CdR.CONCLUSION: We found that, although shRNAs targeted to gene prompter regions of RUNX3 could effectively induce transcriptional repression with chromatic changes characteristic of inaction promoters, this was independent of DNA methylation, and the presence of RNA-dependent transcriptional silencing

  9. The stress kit: A new method based on competitive reverse transcriptase-polymerase chain reaction to quantify the expression of human αB-crystallin, Hsp27, and Hsp60

    NARCIS (Netherlands)

    Bajramović, J.J.; Geutskens, S.B.; Bsibsi, M.; Boot, M.; Hassankhan, R.; Verhulst, K.C.; Noort, J.M. van

    2000-01-01

    We describe a reverse transcriptase-polymerase chain reaction method for the semiquantitative detection of mRNAs encoding the human heat shock proteins αβ-crystallin, Hsp27, and Hsp60. The method involves the coamplification of cellular mRNA-derived cDNA with a dilution series of a competitor fragme

  10. The stress kit: A new method based on competitive reverse transcriptase-polymerase chain reaction to quantify the expression of human αB-crystallin, Hsp27, and Hsp60

    NARCIS (Netherlands)

    Bajramović, J.J.; Geutskens, S.B.; Bsibsi, M.; Boot, M.; Hassankhan, R.; Verhulst, K.C.; Noort, J.M. van

    2000-01-01

    We describe a reverse transcriptase-polymerase chain reaction method for the semiquantitative detection of mRNAs encoding the human heat shock proteins αβ-crystallin, Hsp27, and Hsp60. The method involves the coamplification of cellular mRNA-derived cDNA with a dilution series of a competitor

  11. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Sedeek, Khalid E M; Raad, Maya; Zaki, Marwa Samir; Kalaitzis, Panagiotis

    2014-07-01

    Proline hydroxylation is a major posttranslational modification of hydroxyproline-rich glycoproteins (HRGPs) that is catalyzed by prolyl 4-hydroxylases (P4Hs). HRGPs such as arabinogalactan proteins (AGPs) and extensios play significant roles on cell wall structure and function and their implication in cell division and expansion has been reported. We used tobacco rattle virus (TRV)-based virus induced gene silencing to investigate the role of three tomato P4Hs, out of ten present in the tomato genome, in growth and development. Eight-days old tomato seedlings were infected with the appropriate TRV vectors and plants were allowed to grow under standard conditions for 6 weeks. Lower P4H mRNA levels were associated with lower hydroxyproline content in root and shoot tissues indicating successful gene silencing. P4H-silenced plants had longer roots and shoots and larger leaves. The increased leaf area can be attributed to increased cell division as indicated by the higher leaf epidermal cell number in SlP4H1- and SlP4H9-silenced plants. In contrast, SlP4H7-silenced plants had larger leaves due to enhanced cell expansion. Western blot analysis revealed that silencing of SlP4H7 and SlP4H9 was associated with reduced levels of JIM8-bound AGP and JIM11-bound extensin epitopes, while silencing of SlP4H1 reduced only the levels of AGP proteins. Collectively these results show that P4Hs have significant and distinct roles in cell division and expansion of tomato leaves.

  12. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  13. H Ferritin Gene Silencing in a Human Metastatic Melanoma Cell Line: A Proteomic Analysis

    DEFF Research Database (Denmark)

    Di Sanzo, Maddalena; Gaspari, Marco; Misaggi, Roberta

    2011-01-01

    and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled...... by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement...... of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma....

  14. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L

    2006-02-08

    The recent discovery that short hybrid RNA:DNA molecules (siHybrids) induce long-term silencing of gene expression in mammalian cells conflicts with the currently hypothesized mechanisms explaining the action of small, interfering RNA (siRNA). As a first step to elucidating the mechanism for this effect, we set out to quantify the delivery of siHybrids and determine their cellular localization in mammalian cells. We then tracked the segregation of the siHybrids into daughter cells after cell division. Markers for siHybrid delivery were shown to enter cells with and without the use of a transfection agent. Furthermore, delivery without transfection agent only occurred after a delay of 2-4 hours, suggesting a degradation process occurring in the cell culture media. Therefore, we studied the effects of nucleases and backbone modifications on the stability of siHybrids under cell culture conditions.

  15. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    Science.gov (United States)

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  16. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.

    Science.gov (United States)

    Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao

    2014-04-01

    During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges.

  17. Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene.

    Science.gov (United States)

    Liu, Hui; Wang, Peng; Gong, Guohong; Wang, Li; Zhao, Genhai; Zheng, Zhiming

    2013-03-01

    Chitin synthases, that catalyze the formation of chitin the major component of cell walls in most filamentous fungi, play crucial roles in the growth and morphogenesis. To investigate the roles of chitin synthase in Penicillium chrysogenum, we developed an RNAi system to silence the class III chitin synthase gene chs4. After transformation, mutants had a slow growth rate and shorter but highly branched hyphae. All transformants either were unable to form conidia or could form only a few. Changes in chs4 expression could lead to a completely different morphology and eventually cause distinct penicillin yields. In particular, the yield of one transformant was 41 % higher than that of the original strain.

  18. Inducible gene silencing in podocytes: a new tool for studying glomerular function.

    Science.gov (United States)

    Bugeon, Laurence; Danou, Aliki; Carpentier, David; Langridge, Paul; Syed, Nelofer; Dallman, Margaret J

    2003-03-01

    Glomerular filtration is one of the primary functions of the kidney. Podocytes, a highly specialized cell type found in glomeruli, are believed to play a critical role in that function. Null mutations of genes expressed in podocytes like WT1, nephrin, and NEPH1 result in an embryo and perinatal lethal phenotype and therefore do not allow the functional analysis of these genes in the adult kidney. Here is describes the generation of a model that will allow such studies. We have engineered transgenic mice in which the disruption of targeted genes can be induced in a temporally controlled fashion in podocytes. For this, a transgene encoding the mutated estrogen receptor-Cre recombinase fusion protein was introduced into the mouse genome. Animals were crossed with Z/AP reporter mice to test for efficient and inducible recombination. We found that, after injection of inducer drug tamoxifen, Cre fusion protein translocates to the nuclei of podocytes, where it becomes active and mediates recombination of DNA carrying loxP target sequences. These animals provide for the first time a tool for silencing genes selectively in podocytes of adult animals.

  19. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.

    Science.gov (United States)

    Li, Jian-Feng; Chung, Hoo Sun; Niu, Yajie; Bush, Jenifer; McCormack, Matthew; Sheen, Jen

    2013-05-01

    Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes. This design allowed parallel quantification of target proteins and mRNAs to define amiRNA efficacy and mechanism of action, circumventing unpredictable amiRNA expression/processing and antibody unavailability. Systematic evaluation of 63 amiRNAs in 79 ETPamir screens for 16 target genes revealed a simple, effective solution for selecting optimal amiRNAs from hundreds of computational predictions, reaching ∼100% gene silencing in plant cells and null phenotypes in transgenic plants. Optimal amiRNAs predominantly mediated highly specific translational repression at 5' coding regions with limited mRNA decay or cleavage. Our screens were easily applied to diverse plant species, including Arabidopsis thaliana, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), sunflower (Helianthus annuus), Catharanthus roseus, maize (Zea mays) and rice (Oryza sativa), and effectively validated predicted natural miRNA targets. These screens could improve plant research and crop engineering by making amiRNA a more predictable and manageable genetic and functional genomic technology.

  20. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  1. Efficient gene delivery and silencing of mouse and human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Moerman Ericka

    2010-03-01

    Full Text Available Abstract Background In view of the importance of beta cells in glucose homeostasis and the profound repercussions of beta cell pathology on human health, the acquisition of tools to study pancreatic islet function is essential for the design of alternative novel therapies for diabetes. One promising approach toward this goal involves the modification of gene expression profile of beta cells. Results This study describes a new method of gene and siRNA delivery into human pancreatic islets by microporation technology. We demonstrated that mild islet distention with accutase greatly enhanced the transfection efficiency without compromising in vitro function (secretion, apoptosis and viability. As an example, the recently identified gene involved in type 2 diabetes, ZnT8, can be over-expressed or silenced by RNA interference using this technology. Microporation can also be used on rodent islets. Conclusions Taken together, our results demonstrate that microporation technology can be used to modify gene expression in whole rodent and human islets without altering their in vitro function and will be key to the elucidation of the factors responsible for proper islet function.

  2. Effect of age on the gene expression of neural-restrictive silencing factor NRSF/REST.

    Science.gov (United States)

    Mori, Nozomu; Mizuno, Takafumi; Murai, Kiyohito; Nakano, Itsuko; Yamashita, Hitoshi

    2002-01-01

    Aging affects a wide range of gene expression changes in the nervous system. Such effects could be attributed to random changes in the environment with age around each gene, but also could be caused by selective changes in a limited set of key regulatory transcription factors and/or chromatin remodeling components. To approach the question of whether neural-restrictive silencer factor NRSF, a key determinant of the neuron-specific gene expression, is involved in these changes, we examined the levels of NRSF in the rat brain and dosal root ganglia during aging by semi-quantitative reverse transcriptase-mediated polymerase chain reaction (PCR) (RT-PCR). Complementary expression profiles of transcripts of NRSF and SCG10 in the mature brain were shown by in situ hybridization. Neither the mRNA levels of NRSF nor a splicing variant NRnV were changed, at least in rats up to 26 months old. The gene expression level of SCG10, one of the NRSF targets, was also unaffected by age. The stable expression of SCG10 transcripts in aging was confirmed by in situ hybridization. The NRS-binding ability of NRSF was also unchanged significantly in the nuclear extracts of aged rat brain. These results suggest that the genetic machinery associated with the NRS-NRSF system is well maintained during aging.

  3. Polyethyleneimine (PEI mediated siRNA gene silencing in the Schistosoma mansoni snail host, Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Matty Knight

    2011-07-01

    Full Text Available An in vivo, non-invasive technique for gene silencing by RNA interference (RNAi in the snail, Biomphalaria glabrata, has been developed using cationic polymer polyethyleneimine (PEI mediated delivery of long double-stranded (ds and small interfering (si RNA. Cellular delivery was evaluated and optimized by using a 'mock' fluorescent siRNA. Subsequently, we used the method to suppress expression of Cathepsin B (CathB with either the corresponding siRNA or dsRNA of this transcript. In addition, the knockdown of peroxiredoxin (Prx at both RNA and protein levels was achieved with the PEI-mediated soaking method. B. glabrata is an important snail host for the transmission of the parasitic digenean platyhelminth, Schistosoma mansoni that causes schistosomiasis in the neotropics. Progress is being made to realize the genome sequence of the snail and to uncover gene expression profiles and cellular pathways that enable the snail to either prevent or sustain an infection. Using PEI complexes, a convenient soaking method has been developed, enabling functional gene knockdown studies with either dsRNA or siRNA. The protocol developed offers a first whole organism method for host-parasite gene function studies needed to identify key mechanisms required for parasite development in the snail host, which ultimately are needed as points for disrupting this parasite mediated disease.

  4. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    Directory of Open Access Journals (Sweden)

    Kim Anthony

    Full Text Available Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  5. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    Science.gov (United States)

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  6. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    Science.gov (United States)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  7. RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus sp.

    Science.gov (United States)

    Flachowsky, Henryk; Tränkner, Conny; Szankowski, Iris; Waidmann, Sascha; Hanke, Magda-Viola; Treutter, Dieter; Fischer, Thilo C

    2012-01-01

    RNA silencing describes the sequence specific degradation of RNA targets. Silencing is a non-cell autonomous event that is graft transmissible in different plant species. The present study is the first report on systemic acquired dsRNA-mediated gene silencing of transgenic and endogenous gene sequences in a woody plant like apple. Transgenic apple plants overexpressing a hairpin gene construct of the gusA reporter gene were produced. These plants were used as rootstocks and grafted with scions of the gusA overexpressing transgenic apple clone T355. After grafting, we observed a reduction of the gusA gene expression in T355 scions in vitro, but not in T355 scions grown in the greenhouse. Similar results were obtained after silencing of the endogenous Mdans gene in apple that is responsible for anthocyanin biosynthesis. Subsequently, we performed grafting experiments with Mdans silenced rootstocks and red leaf scions of TNR31-35 in order to evaluate graft transmitted silencing of the endogenous Mdans. The results obtained suggested a graft transmission of silencing signals in in vitro shoots. In contrast, no graft transmission of dsRNA-mediated gene silencing signals was detectable in greenhouse-grown plants and in plants grown in an insect protection tent.

  8. Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease.

    Science.gov (United States)

    Sanju, Suman; Siddappa, Sundaresha; Thakur, Aditi; Shukla, Pradeep K; Srivastava, Nidhi; Pattanayak, Debasis; Sharma, Sanjeev; Singh, B P

    2015-11-01

    RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.

  9. Silencing of potato virus X coat protein gene in transgenic tobaccos by codon replacement that confers resistance to PVX infection

    Institute of Scientific and Technical Information of China (English)

    FENG Dejiang; LIU Xiang; MENG Kun; LIAO Lili; WEI Xiaoli; XU Honglin; ZHU Zhen

    2003-01-01

    To understand the effect of rare codon on the silencing ratio of foreign gene, some preferred codon in potato virus X (PVX) coat protein gene (cp) were substituted with synonymous rare codons. The modified PVX coat protein gene (cpm) and wild-type cp gene (cpw) were inserted into binary vector under the control of CaMV35S promoter, and these two plant expression constructs were transferred into tobacco (Nicotiana tabacum cv. Xanthi) genomes via Agrobacterium mediated method and transgenic plants were generated. Northern blot analysis of RNA isolated from these plants showed that the silencing ratio of cpm gene in transgenic tobaccos was higher than that of cpw (35% and 6.25% respectively). Run on results indicate that the silencing of cp gene happened at post-transcriptional level. The resistance of transgenic tobaccos carrying cpm genes to PVX is increased compared with that of transformants carrying cpw genes. These results suggest that the resistance of transgenic tobacco to PVX can be enhanced by codon replacement.

  10. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing

    Science.gov (United States)

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris

    2013-01-01

    Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492

  11. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata

    DEFF Research Database (Denmark)

    Grønlund, Mette; Constantin, Gabriela; Piednoir, Elodie

    2008-01-01

    Virus-induced gene silencing (VIGS) has become an important reverse genetics tool for functional genomics. VIGS vectors based on Pea early browning virus (PEBV, genus Tobravirus) and Bean pod mottle virus (genus Comovirus) are available for the legume species Pisum sativum and Glycine max, respec...

  12. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Ong, Seow Theng; Chalasani, Madhavi Latha Somaraju; Low, Jian Hui; Kizhakeyil, Atish; Mamidi, Akshay; Lim, Carey Fang Hui; Wright, Graham D.; Lakshminarayanan, Rajamani; Kelleher, Dermot; Verma, Navin Kumar

    2016-01-01

    Post-transcriptional gene silencing holds great promise in discovery research for addressing intricate biological questions and as therapeutics. While various gene silencing approaches, such as siRNA and CRISPR-Cas9 techniques, are available, these cannot be effectively applied to “hard-to-transfect” primary T-lymphocytes. The locked nucleic acid-conjugated chimeric antisense oligonucleotide, called “GapmeR”, is an emerging new class of gene silencing molecule. Here, we show that GapmeR internalizes into human primary T-cells through macropinocytosis. Internalized GapmeR molecules can associate with SNX5-positive macropinosomes in T-cells, as detected by super-resolution microscopy. Utilizing the intrinsic self-internalizing capability of GapmeR, we demonstrate significant and specific depletion (>70%) of the expression of 5 different endogenous proteins with varying molecular weights (18 kDa Stathmin, 80 kDa PKCε, 180 kDa CD11a, 220 kDa Talin1 and 450 kDa CG-NAP/AKAP450) in human primary and cultured T-cells. Further functional analysis confirms CG-NAP and Stathmin as regulators of T-cell motility. Thus, in addition to screening, identifying or verifying critical roles of various proteins in T-cell functioning, this study provides novel opportunities to silence individual or multiple genes in a subset of purified human primary T-cells that would be exploited as future therapeutics. PMID:27883055

  13. Reversion of multidrug resistance of human gastric cancer SGC7901/DDP cells by E2F-1 gene silencing

    Institute of Scientific and Technical Information of China (English)

    廉超

    2014-01-01

    Objective To investigate the effects of E2F-1 gene silencing on multidrug resistance of human gastric cancer SGC7901/DDP cells and its possible mechanisms.Methods Gastric cancer SGC7901/DDP cells were seeded in 6 well plates and divided into three groups:the experimental group,blank control and the negative con-

  14. Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines

    Science.gov (United States)

    Novel wheat lines with altered flour compositions can be used to decipher the roles of specific gluten proteins in flour quality. Grain proteins from transgenic wheat lines in which genes encoding the omega-5 gliadins were silenced by RNA interference (RNAi) were analyzed in detail by quantitative 2...

  15. An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Directory of Open Access Journals (Sweden)

    Amanda Ackley

    2013-01-01

    Full Text Available Small noncoding antisense RNAs (sasRNAs guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.

  16. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Science.gov (United States)

    López-Álvarez, Guadalupe S.; Wojdacz, Tomasz K.; García-Cuellar, Claudia M.; Monroy-Ramírez, Hugo C.; Rodríguez-Segura, Miguel A.; Pacheco-Rivera, Ruth A.; Valencia-Antúnez, Carlos A.; Cervantes-Anaya, Nancy; Soto-Reyes, Ernesto; Vásquez-Garzón, Verónica R.; Sánchez-Pérez, Yesennia; Villa-Treviño, Saúl

    2017-01-01

    ABSTRACT The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. PMID:27895046

  17. Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing

    Directory of Open Access Journals (Sweden)

    Elisa Giorgetti

    2016-09-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA, a progressive degenerative disorder, is caused by a CAG/glutamine expansion in the androgen receptor (polyQ AR. Recent studies demonstrate that skeletal muscle is an important site of toxicity that contributes to the SBMA phenotype. Here, we sought to identify critical pathways altered in muscle that underlie disease manifestations in AR113Q mice. This led to the unanticipated identification of gene expression changes affecting regulators of carbohydrate metabolism, similar to those triggered by denervation. AR113Q muscle exhibits diminished glycolysis, altered mitochondria, and an impaired response to exercise. Strikingly, the expression of genes regulating muscle energy metabolism is rescued following peripheral polyQ AR gene silencing by antisense oligonucleotides (ASO, a therapeutic strategy that alleviates disease. Our data establish the occurrence of a metabolic imbalance in SBMA muscle triggered by peripheral expression of the polyQ AR and indicate that alterations in energy utilization contribute to non-neuronal disease manifestations.

  18. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Guadalupe S. López-Álvarez

    2017-01-01

    Full Text Available The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4 using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats.

  19. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  20. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  1. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Science.gov (United States)

    Becherel, Olivier J; Yeo, Abrey J; Stellati, Alissa; Heng, Evelyn Y H; Luff, John; Suraweera, Amila M; Woods, Rick; Fleming, Jean; Carrie, Dianne; McKinney, Kristine; Xu, Xiaoling; Deng, Chuxia; Lavin, Martin F

    2013-04-01

    Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  2. Applications of RNA interference-based gene silencing in animal agriculture.

    Science.gov (United States)

    Long, Charles R; Tessanne, Kimberly J; Golding, Michael C

    2010-01-01

    Classical genetic selection, recently aided by genomic selection tools, has been successful in achieving remarkable progress in livestock improvement. However, genetic selection has led to decreased genetic diversity and, in some cases, acquisition of undesirable traits. In order to meet the increased demands of our expanding population, new technologies and practices must be developed that contend with zoonotic and animal disease, environmental impacts of large farming operations and the increased food and fibre production needed to feed and clothe our society. Future increases in productivity may be dependent upon the acquisition of genetic traits not currently encoded by the genomes of animals used in standard agricultural practice, thus making classical genetic selection impossible. Genetic engineering of livestock is commonly used to produce pharmaceuticals or to impart enhanced production characteristics to animals, but has also demonstrated its usefulness in producing animals with disease resistance. However, significant challenges remain because it has been more difficult to produce animals in which specific genes have been removed. It is now possible to modify livestock genomes to block expression of endogenous and exogenous genes (such as those expressed following virus infection). In the present review, we discuss mechanisms of silencing gene expression via the biology of RNA interference (RNAi), the technology of activating the RNAi pathway and the application of this technology to enhance livestock production through increased production efficiency and prevention of disease. An increased demand for sustainable food production is at the forefront of scientific challenges and RNAi technology will undoubtedly play a key role.

  3. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis.

    Science.gov (United States)

    Balaji, Vasudevan; Sessa, Guido; Smart, Christine D

    2011-03-01

    Clavibacter michiganensis subsp. michiganensis is an actinomycete, causing bacterial wilt and canker disease of tomato (Solanum lycopersicum). We used virus-induced gene silencing (VIGS) to identify genes playing a role in host basal defense response to C. michiganensis subsp. michiganensis infection using Nicotiana benthamiana as a model plant. A preliminary VIGS screen comprising 160 genes from tomato known to be involved in defense-related signaling identified a set of 14 genes whose suppression led to altered host-pathogen interactions. Expression of each of these genes and three additional targets was then suppressed in larger-scale VIGS experiments and the effect of silencing on development of wilt disease symptoms and bacterial growth during an N. benthamiana-C. michiganensis subsp. michiganensis compatible interaction was determined. Disease susceptibility and in planta bacterial population size were enhanced by silencing genes encoding N. benthamiana homologs of ubiquitin activating enzyme, snakin-2, extensin-like protein, divinyl ether synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase 2, and Pto-like kinase. The identification of genes having a role in the host basal defense-response to C. michiganensis subsp. michiganensis advances our understanding of the plant responses activated by C. michiganensis subsp. michiganensis and raises possibilities for devising novel and effective molecular strategies to control bacterial canker and wilt in tomato.

  4. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas

    OpenAIRE

    Vijaya Sudhakara Rao eKola; P eRenuka; Ayyagari Phani Padmakumari; Satendra Kumar Mangrauthia; Balachandran eS M; MAGANTI SHESHU MADHAV

    2016-01-01

    RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of ch...

  5. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  6. An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Zheng, Zhimin

    2010-01-06

    RNA-directed DNA methylation (RdDM) is an important epigenetic mechanism for silencing transgenes and endogenous repetitive sequences such as transposons. The RD29A promoter-driven LUCIFERASE transgene and its corresponding endogenous RD29A gene are hypermethylated and silenced in the Arabidopsis DNA demethylase mutant ros1. By screening for second-site suppressors of ros1, we identified the RDM12 locus. The rdm12 mutation releases the silencing of the RD29A-LUC transgene and the endogenous RD29A gene by reducing the promoter DNA methylation. The rdm12 mutation also reduces DNA methylation at endogenous RdDM target loci, including transposons and other repetitive sequences. In addition, the rdm12 mutation affects the levels of small interfering RNAs (siRNAs) from some of the RdDM target loci. RDM12 encodes a protein with XS and coiled-coil domains, and is similar to SGS3, which is a partner protein of RDR6 and can bind to double-stranded RNAs with a 5′ overhang, and is required for several post-transcriptional gene silencing pathways. Our results show that RDM12 is a component of the RdDM pathway, and suggest that RdDM may involve double-stranded RNAs with a 5′ overhang and the partnering between RDM12 and RDR2. © 2010 Blackwell Publishing Ltd.

  7. Chitosan hydrogel as siRNA vector for prolonged gene silencing

    National Research Council Canada - National Science Library

    Ma, Zhiwei; Yang, Chuanxu; Song, Wen; Wang, Qintao; Kjems, Jørgen; Gao, Shan

    2014-01-01

    .... To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive...

  8. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC

    2012-07-17

    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  9. Optimization of Streptomyces bacteriophage phi C31 integrase system to prevent post integrative gene silencing in pulmonary type II cells.

    Science.gov (United States)

    Aneja, Manish Kumar; Geiger, Johannes; Imker, Rabea; Uzgun, Senta; Kormann, Michael; Hasenpusch, Guenther; Maucksch, Christof; Rudolph, Carsten

    2009-12-31

    phi C31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study aimed at optimizing elements of phi C31 integrase system for alveolar type II cells. Luciferase and beta-galactosidase activities were measured at different time points post transfection. 5-Aza-2'deoxycytidine (AZA) and trichostatin A (TSA) were used to inhibit DNA methyltransferase and histone deacetylase complex (HDAC) respectively. In A549 cells, expression of the integrase using a CMV promoter resulted in highest integrase activity, whereas in MLE12 cells, both CAG and CMV promoter were equally effective. Effect of polyA site was observed only in A549 cells, where replacement of SV40 polyA by bovine growth hormone (BGH) polyA site resulted in an enhancement of integrase activity. Addition of a C-terminal SV40 nuclear localization signal (NLS) did not result in any significant increase in integrase activity. Long-term expression studies with AZA and TSA, provided evidence for post-integrative gene silencing. In MLE12 cells, both DNA methylases and HDACs played a significant role in silencing, whereas in A549 cells, it could be attributed majorly to HDAC activity. Donor plasmids comprising cellular promoters ubiquitin B (UBB), ubiquitin C (UCC) and elongation factor 1 alpha (EF1 alpha) in an improved backbone prevented post-integrative gene silencing. In contrast to A549 and MLE12 cells, no silencing could be observed in human bronchial epithelial cells, BEAS-2B. Donor plasmid coding for murine erythropoietin under the EF1 alpha promoter when combined with phi C31 integrase resulted in higher long-term erythropoietin expression and subsequently higher hematocrit levels in mice after intravenous delivery to the lungs. These results provide evidence for cell specific post integrative gene silencing with C31 integrase and demonstrate the pivotal role of donor plasmid in long-term expression attained with this system.

  10. A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

    Science.gov (United States)

    Orzaez, Diego; Medina, Aurora; Torre, Sara; Fernández-Moreno, Josefina Patricia; Rambla, José Luis; Fernández-Del-Carmen, Asun; Butelli, Eugenio; Martin, Cathie; Granell, Antonio

    2009-07-01

    Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.

  11. The role of WDR5 in silencing human fetal globin gene expression

    Science.gov (United States)

    Xu, Zhen; He, Yinghong; Ju, Junyi; Rank, Gerhard; Cerruti, Loretta; Ma, Chi; Simpson, Richard J.; Moritz, Robert L.; Jane, Stephen M.; Zhao, Quan

    2012-01-01

    -globin promoter by WDR5 may result in the recruitment of the ING2-associated HDAC1 component and consequent silencing of γ-globin gene expression. PMID:22689669

  12. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Youl [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of); Yoo, Young Hyun [Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan (Korea, Republic of); Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu (Korea, Republic of)

    2013-04-05

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.

  13. siRNA Versus miRNA as Therapeutics for Gene Silencing.

    Science.gov (United States)

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-09-15

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.

  14. Mechanism of SEMA3B gene silencing and clinical significance in glioma.

    Science.gov (United States)

    Pang, C H; Du, W; Long, J; Song, L J

    2016-03-18

    The aim of the current study was to explore mechanisms of SEMA3B gene expression and its clinical significance in glioma, and provide a theoretical foundation for investigating individualized treatment in glioma. Paraffin-embedded tissues from 43 patients with a confirmed clinical diagnosis of glioma following neurosurgery at the First Affiliated Hospital of Zhengzhou University from December 2013 to April 2014 were selected randomly. An additional three normal brain tissues were obtained following encephalic decompression excision due to acute craniocerebral injury in the same period, which were used as the control group. Immunohistochemical staining for vascular endothelial growth factor was performed on the glioma tissues from the 43 patients. Genomic DNA was extracted for bisulfate conversion and sequencing. SEMA3B was fully expressed in the three normal brain tissues, and incompletely expressed in the 43 glioma tissues, with a lack of expression in 48.8% (21/43) of samples. Moreover, 58% of high-grade gliomas (grade III and IV) lacked SEMA3B expression, which was significantly more than those that lacked expression (20%) in low-grade gliomas (grade I and II), indicating that, as the clinical pathological grade increased, SEMA3B expression decreased. The occurrence and development of malignant tumors is a product of multiple genes and other factors. Here, we provide theoretical basis for glioma development and prognosis involving DNA-methylation driven silencing of SEMA3B, and thus, SEMA3B is a potential target for directed treatments against glioma.

  15. Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins.

    Science.gov (United States)

    Villalobos, Xenia; Rodríguez, Laura; Prévot, Jeanne; Oleaga, Carlota; Ciudad, Carlos J; Noé, Véronique

    2014-01-06

    Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.

  16. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Soitamo Arto J

    2012-11-01

    Full Text Available Abstract Background RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum leaves and in flowers. Results Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. Conclusions AC2 RSS in

  17. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants.

    Science.gov (United States)

    Soitamo, Arto J; Jada, Balaji; Lehto, Kirsi

    2012-11-07

    RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. AC2 RSS in transgenic tobacco plants interferes with the silencing

  18. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis.

  19. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis[W][OA

    Science.gov (United States)

    Nowara, Daniela; Gay, Alexandra; Lacomme, Christophe; Shaw, Jane; Ridout, Christopher; Douchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Schweizer, Patrick

    2010-01-01

    Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens. PMID:20884801

  20. Evaluation of Morpholino Antisense Oligos’ Role on BCR-ABL Gene Silencing in the K562 Cell Line

    Directory of Open Access Journals (Sweden)

    Bahman Delalat

    2010-01-01

    Full Text Available Objective: Chronic myeloid leukemia (CML develops when a hematopoietic stem cellacquires the BCR/ABL fusion gene. This causes these transformed hematopoietic cellsto have a greater than normal proliferation rate. Scientists attempt to improve the CMLtreatment process by silencing the BCR/ABL oncogene. In this work, we used morpholinoantisense oligos to silence the BCR/ABL oncogene.Materials and Methods: In this study, the K562 was used as a BCR/ABL fusion-genepositive cell line and the Jurkat cell line as a control. We explored the inhibiting capacityof morpholino antisense oligos in the the expression of the BCR/ABL oncogene andstudied their p210 BCR/ABL suppression, inhibition of cell proliferation and stimulation ofapoptosis in the K562 cells after 24 and 48 hours. Endo-Porter was used for delivery ofmorpholino antisense oligos into cell cytosols. Meanwhile, flow cytometric analysis wasperformed in order to determine the appropriate concentration of morpholino antisenseoligos.Results: Prolonged exposure of the K562 cell line to the morpholino antisense oligostargeted against the BCR-ABL gene showed proliferation inhibition as its main feature.After western blotting, we found that complete silencing of BCR/ABL was achieved, butflow cytometric analysis showed no broad apoptosis.Conclusion: The results indicate that the Morpholino antisense oligo is able to inhibitp210 BCR/ABL; however, it cannot induce broad apoptosis due to co-silencing of BCR.

  1. Predicción computacional de estructura terciaria de las proteínas humanas Hsp27, αB-cristalina y HspB8

    Directory of Open Access Journals (Sweden)

    Homero Saenz-Suárez

    2011-03-01

    Full Text Available Objetivo. Realizar predicciones computacionales de estructura de las proteínas humanas Hsp27, αB cristalina y HspB8. Materiales y métodos. La predicción de la estructura secundaria se obtuvo mediante un consenso de los programas de predicción secundaria GOR 4,nnPred,Sspro, APSSP2, JPredict, Porter, Prof, SOPMA, HNN y Psi-Pred. Los modelos de estructura terciaria se elaboraron a partir de fragmentos homólogos de proteínas con estructura terciaria conocida que fueron obtenidos por múltiples alineamientos. Empleando la secuencia primaria se obtuvieron perfiles de antigenicidad de las proteínas nativas y fueron analizados los perfiles de hidrofobicidad, polaridad, flexibilidad, accesibilidad tanto de las proteínas nativas como de las mutadas. Resultados. Las predicciones de estructura secundaria y terciariade las proteínas estudiadas muestran que en los tres casos, más del 65% son regiones en coil, 20-25% en hoja plegada y menos del 10% en alfa hélice. Los análisis de estructura primaria muestran que al menos uno de los perfiles estudiados, en cada mutación está alterado. Conclusiones. Los análisis comparativos de estructura sugieren que las mutaciones afectan la solubilidad de las proteínas mutadas y con ello su función como chaperonas moleculares

  2. Bos indicus cattle possess greater basal concentrations of HSP27, alpha B-crystallin, and HSP70 in skeletal muscle in vivo compared with cattle.

    Science.gov (United States)

    Mullins, C R; Zerby, H N; Fitzpatrick, L A; Parker, A J

    2016-01-01

    The objectives of the present study were to evaluate the basal concentrations of heat shock proteins (HSP) between and cattle and to determine if HSP basal concentrations change as an animal matures. A total of 40 cattle were used in a 2 × 2 factorial design to evaluate the effects of genotype and age (heifers and mature cows) on basal concentrations of heat shock protein 27 (HSP27), α B-crystallin (Cryab), and heat shock protein 70 (HSP70). Each experimental group of 10 animals was sampled on a separate day over a period of 4 wk during July 2014. A muscle sample was collected from the longissimus thoracis (LT) and concentrations of HSP were quantified using ELISA. There were no significant differences in HSP concentration for the interaction between age and genotype or for age alone. cattle had greater ( cattle. The results of this study show that basal in vivo HSP concentrations differ between and cattle. However, further studies are needed to investigate the relationship between HSP concentrations and meat tenderness with respect to genotypes to see if HSP concentrations account for at least some variability in tenderness differences.

  3. ShRNA-mediated gene silencing of β-catenin inhibits growth of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To observe the gene silencing mediated by the specific shRNA targeted against β-catenin and its effect on cell proliferation and cycle distribution in the human colon cancer cell line Colo205.METHODS: Two shRNA plasmid vectors against β-catenin were constructed and transfected into Colo205 cells with LipofectamineTM2000. The down-regulations of β-catenin, c-myc and cyclinD1 expressions were detected by RT-PCR and western blot analysis. The cell proliferation inhibitions were determined by MTT assay and soft agar colony formation assay. The effect of these two β-catenin shRNAs on cell cycle distribution and apoptosis was examined by flow cytometry.RESULTS: These two shRNA vectors targeted against β-catenin efficiently suppressed the expression of β-catenin and its down stream genes, c-myc and cyclinD1. The expression inhibition rates were around 40%-50% either at the mRNA or at the protein level.The shRNA-mediated gene silencing of β-catenin resulted in significant inhibition of cell growth both on the culture plates and in the soft agar. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis at 72 h post transfection due to gene silencing.CONCLUSION: These specific shRNAs targeted against β-catenin could have a gene silencing effect and block the WNT signaling pathway. They could inhibit cell growth, increase apoptosis, and induce cell cycle arrest in Colo205 cells. ShRNA interference against β-catenin is of potential value in gene therapy of colon cancer.

  4. Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Directory of Open Access Journals (Sweden)

    Liu Xichun

    2010-08-01

    Full Text Available Abstract Background Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents in vitro and in vivo. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms. Methods Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. In vitro studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl- 2,5-Diphenyltetrazolium Bromide (MTT assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, in vivo tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment. Results We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen

  5. Gene silencing of nfa1 affects the in vitro cytotoxicity of Naegleria fowleri in murine macrophages.

    Science.gov (United States)

    Jung, Suk-Yul; Kim, Jong-Hyun; Song, Kyoung-Ju; Lee, Yang-Jin; Kwon, Myung-Hee; Kim, Kyongmin; Park, Sun; Im, Kyung-il; Shin, Ho-Joon

    2009-05-01

    The gene nfa1 was isolated from the free-living pathogenic amoeba Naegleria fowleri. The protein Nfa1 is located in pseudopodia and specifically in food-cups. It is also involved in cytotoxicity. In this study, we used synthetic small interfering RNAs (siRNA) to examine the effects of nfa1 down-regulation. We observed the expression of nfa1 mRNA and Nfa1 protein using Northern and Western blots. We also examined the effects of nfa1 down-regulation on the in vitro cytotoxicity of N. fowleri. Four synthetic siRNAs were constructed, and of those, sinfa1-1 showed the highest down-regulation of an nfa1 mRNA and Nfa1 protein by 70 and 43%, respectively. In order to achieve long-lasting silencing of the transfected genes, we constructed two vectors which were pAct/SAGAH and pAct/asnfa1AGAH cloned with the sinfa1-1 and an antisense RNA to the nfa1 gene. In N. fowleri transfected with pAct/SAGAH, FACS revealed a 60 and 57% reduction in nfa1 mRNA and Nfa1 protein levels, respectively. To determine whether the Nfa1 proteins were related with in vitro cytotoxicity, LDH assays were used and showed that the cytotoxicity of these transfectants to macrophages was reduced by 26.4 and 36.2% at 17 and 24h, respectively. Moreover, after transfection with pAct/asnfa1AGAH, amoebic cytotoxicity decreased by 8.2 and 10% at 17 and at 24h, respectively. This is the first report to show the RNA interference in N. folweri trophozoites and also demonstrate the Nfa1 function in vitro for its cytotoxicity.

  6. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes

    Directory of Open Access Journals (Sweden)

    Ma Meng

    2012-08-01

    Full Text Available Abstract Background The Barley stripe mosaic virus (BSMV-based vector has been developed and used for gene silencing in barley and wheat seedlings to assess gene functions in pathogen- or insect-resistance, but conditions for gene silencing in spikes and grains have not been evaluated. In this study, we explored the feasibility of using BSMV for gene silencing in wheat spikes or grains. Results Apparent photobleaching on the spikes infected with BSMV:PDS at heading stage was observed after13 days post inoculation (dpi, and persisted until 30dpi, while the spikes inoculated with BSMV:00 remained green during the same period. Grains of BSMV:PDS infected spikes also exhibited photobleaching. Molecular analysis indicated that photobleached spikes or grains resulted from the reduction of endogenous PDS transcript abundances, suggesting that BSMV:PDS was able to induce PDS silencing in wheat spikes and grains. Inoculation onto wheat spikes from heading to flowering stage was optimal for efficient silencing of PDS in wheat spikes. Furthermore, we used the BSMV-based system to reduce the transcript level of 1Bx14, a gene encoding for High-molecular-weight glutenin subunit 1Bx14 (HMW-GS 1Bx14, by 97 % in the grains of the BSMV:1Bx14 infected spikes at 15dpi, compared with that in BSMV:00 infected spikes, and the reduction persisted until at least 25 dpi. The amount of the HMW-GS 1Bx14 was also detectably decreased. The percentage of glutenin macropolymeric proteins in total proteins was significantly reduced in the grains of 1Bx14-silenced plants as compared with that in the grains of BSMV:00 infected control plants, indicating that HMW-GS 1Bx14 is one of major components participating in the formation of glutenin macropolymers in wheat grains. Conclusion This is one of the first reports of successful application of BSMV-based virus-induced-gene-silencing (VIGS for gene knockdown in wheat spikes and grains and its application in functional analysis of

  7. CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2007-10-01

    Gène genome annotations, respectively. To cover the remaining untagged genes, we identified 543 additional GSTs using less stringent design criteria and designed 990 sequence tags matching multiple members of gene families (Gene Family Tags or GFTs to cover any remaining untagged genes. These latter 1,533 features constitute the CATMAv4 addition. Conclusion To update the CATMA GST repertoire, we designed 7,289 additional sequence tags, bringing the total number of tagged TAIR6-annotated Arabidopsis nuclear protein-coding genes to 26,173. This resource is used both for the production of spotted microarrays and the large-scale cloning of hairpin RNA silencing vectors. All information about the resulting updated CATMA repertoire is available through the CATMA database http://www.catma.org.

  8. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.

    Science.gov (United States)

    Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S

    2006-11-01

    Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.

  9. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes.

    Science.gov (United States)

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J; Casero, Robert A

    2012-03-15

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys(4) of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N(1)-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer.

  10. The RNA Binding Protein IMP2 Preserves Glioblastoma Stem Cells by Preventing let-7 Target Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nils Degrauwe

    2016-05-01

    Full Text Available Cancer stem cells (CSCs can drive tumor growth, and their maintenance may rely on post-transcriptional regulation of gene expression, including that mediated by microRNAs (miRNAs. The let-7 miRNA family has been shown to induce differentiation by silencing stem cell programs. Let-7-mediated target gene suppression is prevented by LIN28A/B, which reduce let-7 biogenesis in normal embryonic and some cancer stem cells and ensure maintenance of stemness. Here, we find that glioblastoma stem cells (GSCs lack LIN28 and express both let-7 and their target genes, suggesting LIN28-independent protection from let-7 silencing. Using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP, we show that insulin-like growth factor 2 mRNA-binding protein 2 (IMP2 binds to let-7 miRNA recognition elements (MREs and prevents let-7 target gene silencing. Our observations define the RNA-binding repertoire of IMP2 and identify a mechanism whereby it supports GSC and neural stem cell specification.

  11. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Dandan; Sheen, Jen

    2014-04-01

    Artificial miRNA (amiRNA) technology offers highly specific gene silencing in diverse plant species. The principal challenge in amiRNA application is to select potent amiRNAs from hundreds of bioinformatically designed candidates to enable maximal target gene silencing at the protein level. To address this issue, we developed the epitope-tagged protein-based amiRNA (ETPamir) screens, in which single or multiple potential target genes encoding epitope-tagged proteins are constitutively or inducibly coexpressed with individual amiRNA candidates in plant protoplasts. Accumulation of tagged proteins, detected by immunoblotting with commercial tag antibodies, inversely and quantitatively reflects amiRNA efficacy in vivo. The core procedure, from protoplast isolation to identification of optimal amiRNA, can be completed in 2-3 d. The ETPamir screens circumvent the limited availability of plant antibodies and the complexity of plant amiRNA silencing at target mRNA and/or protein levels. The method can be extended to verify predicted target genes for endogenous plant miRNAs.

  12. Non-coding transcripts in the H19 imprinting control region mediate gene silencing in transgenic Drosophila.

    Science.gov (United States)

    Schoenfelder, Stefan; Smits, Guillaume; Fraser, Peter; Reik, Wolf; Paro, Renato

    2007-11-01

    The imprinting control region (ICR) upstream of H19 is the key regulatory element conferring monoallelic expression on H19 and Igf2 (insulin-like growth factor 2). Epigenetic marks in the ICR regulate its interaction with the chromatin protein CCCTC-binding factor and with other control factors to coordinate gene silencing in the imprinting cluster. Here, we show that the H19 ICR is biallelically transcribed, producing both sense and antisense RNAs. We analyse the function of the non-coding transcripts in a Drosophila transgenic system in which the H19 upstream region silences the expression of a reporter gene. We show that knockdown of H19 ICR non-coding RNA (ncRNA) by RNA interference leads to the loss of reporter gene silencing. Our results are, to the best of our knowledge, the first to show that ncRNAs in the H19 ICR are functionally significant, and also indicate that they have a role in regulating gene expression and perhaps epigenetic marks at the H19/Igf2 locus.

  13. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  14. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    Full Text Available Abstract Background To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC, we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. Results MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004. Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2 located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%, and only one CpG island (that is, M1 was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%. A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. Conclusion Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor

  15. Dentin sialophosphoprotein (DSPP gene-silencing inhibits key tumorigenic activities in human oral cancer cell line, OSC2.

    Directory of Open Access Journals (Sweden)

    Rajeshree Joshi

    Full Text Available BACKGROUND: We determined recently that dentin sialophosphoprotein (DSPP, a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA interference was employed to silence DSPP in OSC2 cells. METHODOLOGY/PRINCIPAL FINDINGS: Multiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability, colony-formation, modified Boyden-Chamber (migration and invasion, and flow cytometry (cell-cycle and apoptosis analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001 (y = 1.156x, p<0.001}, MMP-3 {(y = 0.994x, p<0.001 (y = 1.324x, p = 0.004}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013}. CONCLUSIONS/SIGNIFICANCE: DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer

  16. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing.

    Science.gov (United States)

    Conde, João; Ambrosone, Alfredo; Sanz, Vanesa; Hernandez, Yulan; Marchesano, Valentina; Tian, Furong; Child, Hannah; Berry, Catherine C; Ibarra, M Ricardo; Baptista, Pedro V; Tortiglione, Claudia; de la Fuente, Jesus M

    2012-09-25

    Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra ), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.

  17. Superparamagnetic Nanoparticles and RNAi-Mediated Gene Silencing: Evolving Class of Cancer Diagnostics and Therapeutics

    Directory of Open Access Journals (Sweden)

    Sanchareeka Dey

    2012-01-01

    Full Text Available The ever increasing death of patients affected by various types of fatal cancers is of concern worldwide. Curative attempts by radiation/chemotherapy and surgery are often a failure in the long run. Moreover, adverse side effects of such treatments burden the patients with painful survival at the last phase of their life. The failure of early diagnosis is one of the root causes of the problem. Intensive research activities are being pursued in reputed laboratories across the globe to find superior diagnostics and therapeutics. Over the last decade, a number of publications have highlighted RNA interference based silencing of cancer-related gene expression as a promising technology to tackle the aforesaid problems. Superparamagnetic iron oxide nanoparticles (SPIONs are reported to be excellent vehicles for short-interfering RNA (siRNA. The SPION-siRNA conjugate is biocompatible, stable, and amenable to specific targeting and can cross the blood brain barrier. The issues related to their synthesis, surface properties, delivery, tracking, imaging in relevance to cancer diagnostic and therapeutic, and so forth demand an extensive review, and we have addressed these aspects in this paper. The future prospects of the technology have also been traced.

  18. Effects of HSP27 RNAi on Proliferation and Migration of Vascular Smooth Muscle Cells in Spontaneously Hypertensive Rats%RNA干扰热休克蛋白27基因对自发性高血压大鼠血管平滑肌细胞增殖、迁移的影响

    Institute of Scientific and Technical Information of China (English)

    黄捷; 谢良地; 许昌声; 王华军

    2010-01-01

    目的 研究自发性高血压大鼠热休克蛋白27(HSP27)基因的靶向小干扰RNA对血管平滑肌细胞增殖及迁移的影响.方法 将血管平滑肌细胞(VSMC)随机分为对照组、血小板源生长因子(PDGF)组(10 μg/L)、空载体组(pNL-EGFP)、干扰载体组(pNL-HSP27-EGFP)、干预组.以携带siRNA的慢病毒感染VSMC,通过细胞计数法和四甲基偶氮唑盐(MTT)比色法检测VSMC细胞增殖,使用PDGF诱导VSMC的HSP27磷酸化,用特异性的单克隆Phospho-HSP27抗体的蛋白免疫印迹法检测HSP27的活性,采用改良的Boyden微孔膜双槽法进行细胞迁移实验.结果 PDGF呈浓度依赖性诱导VSMC的HSP27磷酸化,与对照组相比增加168.9%(P<0.01);pNL-HSP27-EGFP对PDGF诱导的HSP27磷酸化的抑制率是79.6%(P<0.01).pNL-HSP27-EGFP可显著抑制PDGF诱导的细胞增殖,抑制率为30.8%(P<0.05).pNL-HSP27-EGFP能够显著抑制PDGF诱导的VSMC细胞迁移,抑制率为45.6%(P<0.01).结论 靶向HSP27基因的小干扰RNA能显著降低PDGF诱导VSMC细胞迁移,HSP27在细胞的迁移中起重要作用.

  19. Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus

    Directory of Open Access Journals (Sweden)

    Boyd Jacqueline

    2008-06-01

    Full Text Available Abstract Background Gene silencing by RNA interference (RNAi is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA. These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics. Results We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus. Conclusion This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This

  20. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats.

    Science.gov (United States)

    Tuteja, Jigyasa H; Zabala, Gracia; Varala, Kranthi; Hudson, Matthew; Vodkin, Lila O

    2009-10-01

    Two dominant alleles of the I locus in Glycine max silence nine chalcone synthase (CHS) genes to inhibit function of the flavonoid pathway in the seed coat. We describe here the intricacies of this naturally occurring silencing mechanism based on results from small RNA gel blots and high-throughput sequencing of small RNA populations. The two dominant alleles of the I locus encompass a 27-kb region containing two perfectly repeated and inverted clusters of three chalcone synthase genes (CHS1, CHS3, and CHS4). This structure silences the expression of all CHS genes, including CHS7 and CHS8, located on other chromosomes. The CHS short interfering RNAs (siRNAs) sequenced support a mechanism by which RNAs transcribed from the CHS inverted repeat form aberrant double-stranded RNAs that become substrates for dicer-like ribonuclease. The resulting primary siRNAs become guides that target the mRNAs of the nonlinked, highly expressed CHS7 and CHS8 genes, followed by subsequent amplification of CHS7 and CHS8 secondary siRNAs by RNA-dependent RNA polymerase. Most remarkably, this silencing mechanism occurs only in one tissue, the seed coat, as shown by the lack of CHS siRNAs in cotyledons and vegetative tissues. Thus, production of the trigger double-stranded RNA that initiates the process occurs in a specific tissue and represents an example of naturally occurring inhibition of a metabolic pathway by siRNAs in one tissue while allowing expression of the pathway and synthesis of valuable secondary metabolites in all other organs/tissues of the plant.

  1. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  2. Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating β-catenin

    Institute of Scientific and Technical Information of China (English)

    Dong ZHANG; Zheng-gang CHEN; Shao-hua LIU; Zuo-qing DONG; Martin DALIN; Shi-san BAO; Ying-wei HU; Feng-cai WEI

    2013-01-01

    Aim:Galectin-3 (Gal-3) is a member of the carbohydrate-binding protein family that contributes to neoplastic transformation,tumor survival,angiogenesis,and metastasis.The aim of this study is to investigate the role of Gal-3 in human tongue cancer progression.Methods:Human tongue cancer cell lines (SCC-4 and CAL27) were transfected with a small-interfering RNA against Gal-3 (Gal-3-siRNA).The migration and invasion of the cells were examined using a scratch assay and BD BioCoat Matrigel Invasion Chamber,respectively.The mRNA and protein levels of β-catenin,Akt/pAkt,GSK-Sβ/pGSK-3β,MMP-9 in the cells were measured using RT-PCR and Western blotting,respectively.Results:Transient silencing of Gal-3 gene for 48 h significantly suppressed the migration and invasion of both SCC-4 and CAL27 cells.Silencing of Gal-3 gene significantly decreased the protein level of β-catenin,leaving the mRNA level of β-catenin unaffected.Furthermore,silencing Gal-3 gene significantly decreased the levels of phosphorylated Akt and GSK-3β,and suppressed the mRNA and protein levels of MMP-9 in the cells.Conclusion:Our data suggest that Gal-3 mediates the migration and invasion of tongue cancer cells in vitro via regulating the Wnt/β-catenin signaling pathway and Akt phosphorylation.

  3. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  4. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. [Experimental study of MAT1 gene silencing mediated by siRNA in pancreatic cancer].

    Science.gov (United States)

    Liu, Jian-ping; Yuan, Shi-zhen; Zhang, Shi-neng

    2007-10-16

    To investigate the inhibitory effect of gene silencing mediated by MAT1-siRNA constructed in vitro transcription for pancreatic cancer in vivo and in vitro. 21-nt double strand siRNA targeting MAT1 gene was constructed and labeled with Cy3 fluorescent labeling reagent. Human pancreatic cancer cells of the line BxPC3 were cultured and divided into 4 groups: MAT1-siRNA transfected group, negative siRNA control group, lipid control group, and blank control group. The rate of cell duplication was determined by counting the cells for three consecutive days. Cell cycle profiles were determined by flow cytometry. Semi-quantitative analysis of the level of MAT1-mRNA expression was performed using the RT-PCR technique. The level of MAT1 protein expression was analyzed by Western-blotting. 18 nude mice were injected subcutaneously with BxPC3 cells to establish mouse tumor models, and then divided randomly into 3 equal groups: MAT1-siRNA group undergoing injection of MAT1-siRNA directly into the tumors 2 times a week for 4 weeks, blank control group, and negative MAT1-siRNA group. 4 weeks later the mice were killed to observe the weight and size of tumor and to calculate the tumor inhibition rate. Two of the 4 designed MAT1-siRNAs significantly suppressed the growth of the BxPC3 cells. 72 h after transfection the cell duplication was inhibited by 34.9% in the MAT1-siRNA transfection group. The cell cycle profile showed 83.9% of the MAT1-siRNA transfected cells were in the G0/G1 phase, a rate significantly higher than that in the blank control group (59.86%, P < 0.01). 48 h later the content of MAT1-mRNA of the MAT1-siRNA transfected cells was significantly reduced by 80.12%, and 72 h after the transfection the content of MAT1 protein was reduced by 50.12%, a rate significantly higher than those of the 2 control groups (both P < 0.01). The weight and volume of the transplant tumors in the MAT1-siRNA injected nude mice were significantly reduced compare with the negative si

  6. Imatinib Reverses Doxorubicin Resistance by Affecting Activation of STAT3-Dependent NF-κB and HSP27/p38/AKT Pathways and by Inhibiting ABCB1

    Science.gov (United States)

    Sims, Jonathan T.; Ganguly, Sourik S.; Bennett, Holly; Friend, J. Woodrow; Tepe, Jessica; Plattner, Rina

    2013-01-01

    Despite advances in cancer detection and prevention, a diagnosis of metastatic disease remains a death sentence due to the fact that many cancers are either resistant to chemotherapy (conventional or targeted) or develop resistance during treatment, and residual chemoresistant cells are highly metastatic. Metastatic cancer cells resist the effects of chemotherapeutic agents by upregulating drug transporters, which efflux the drugs, and by activating proliferation and survival signaling pathways. Previously, we found that c-Abl and Arg non-receptor tyrosine kinases are activated in breast cancer, melanoma, and glioblastoma cells, and promote cancer progression. In this report, we demonstrate that the c-Abl/Arg inhibitor, imatinib (imatinib mesylate, STI571, Gleevec), reverses intrinsic and acquired resistance to the anthracycline, doxorubicin, by inducing G2/M arrest and promoting apoptosis in cancer cells expressing highly active c-Abl and Arg. Significantly, imatinib prevents intrinsic resistance by promoting doxorubicin-mediated NF-κB/p65 nuclear localization and repression of NF-κB targets in a STAT3-dependent manner, and by preventing activation of a novel STAT3/HSP27/p38/Akt survival pathway. In contrast, imatinib prevents acquired resistance by inhibiting upregulation of the ABC drug transporter, ABCB1, directly inhibiting ABCB1 function, and abrogating survival signaling. Thus, imatinib inhibits multiple novel chemoresistance pathways, which indicates that it may be effective in reversing intrinsic and acquired resistance in cancers containing highly active c-Abl and Arg, a critical step in effectively treating metastatic disease. Furthermore, since imatinib converts a master survival regulator, NF-κB, from a pro-survival into a pro-apoptotic factor, our data suggest that NF-κB inhibitors may be ineffective in sensitizing tumors containing activated c-Abl/Arg to anthracyclines, and instead might antagonize anthracycline-induced apoptosis. PMID:23383209

  7. ESTRATEGIA DE SILENCIAMIENTO GÉNICO EN YUCA PARA LA VALIDACIÓN DE GENES DE RESISTENCIA Strategy of Gene Silencing in Cassava for Validation of Resistance Genes.

    Directory of Open Access Journals (Sweden)

    SIMÓN CORTÉS

    Full Text Available La yuca (Manihot esculenta constituye la base de la alimentación para mas de 1.000 millones de personas en el mundo considerándose por esta razón un cultivo primordial para la seguridad alimentaria. La bacteriosis vascular ocasionada por la bacteria gram negativa Xanthomonas axonopodis pv. manihotis (Xam es uno de los factores más limitantes para la producción en este cultivo. Un gen de resistencia candidato de yuca a la bacteriosis vascular, denominado RXam1, ha sido previamente identificado. En este trabajo se empleó la estrategia de silenciamiento génico mediado por el geminivirus ACMV (del inglés African Cassava Mosaic Virus para validar la función del gen RXam1. Como control positivo se utilizó el gen su, cuyo silenciamiento produce blanqueamiento en las hojas. Plantas de la variedad SG10735 fueron bombardeadas con las construc-ciones ACMV-A-SU + ACMV-B y ACMV-A-RXam1 + ACMV-B. La eficiencia de silenciamiento empleando el gen su fue baja, observándose un fenotipo de blanqueamiento en solo una de siete plantas. En las plantas posiblemente silenciadas en el gen RXam1, no se logró identificar siRNAs correspondientes a este gen, aunque si se observó una leve disminución en la expresión de RXam1 en una de las plantas evaluadas. Las curvas de crecimiento para la cepa Xam CIO136 en plantas de yuca inoculadas mostraron una leve pero no significativa diferencia en la susceptibilidad de las plantas silenciadas con respecto a las no silenciadas.Cassava (Manihot esculenta is a major source of food for more than 1000 million people in the world and constitutes an important staple crop. Cassava bacterial blight, caused by the gram negative bacterium Xanthomonas axonopodis pv. manihotis, is one of the most important constraints for this crop. A candidate resistance gene against cassava bacterial blight, named RXam1, has been identified previously. In this work, we employed the gene silencing approach using the African Cassava Mosaic Virus

  8. Analysis of the siRNA-mediated gene silencing process targeting three homologous genes controlling soybean seed oil quality

    Science.gov (United States)

    Since the discovery of RNA silencing in the nineties, the implication and potential application of this new technology have been recognized. In the past decades, RNA silencing has gained significant attention because its success in genomic scale research and also in the genetic improvement of crop p...

  9. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells

    Directory of Open Access Journals (Sweden)

    Canto Tomas

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi in animals and post-transcriptional gene silencing (PTGS in plants are related phenomena whose functions include the developmental regulation of gene expression and protection from transposable elements and viruses. Plant viruses respond by expressing suppressor proteins that interfere with the PTGS system. Results Here we demonstrate that both transient and constitutive expression of the Tobacco etch virus HC-Pro silencing suppressor protein, which inhibits the maintenance of PTGS in plants, prevents dsRNA-induced RNAi of a lacZ gene in cultured Drosophila cells. Northern blot analysis of the RNA present in Drosophila cells showed that HC-Pro prevented degradation of lacZ RNA during RNAi but that there was accumulation of the short (23nt RNA species associated with RNAi. A mutant HC-Pro that does not suppress PTGS in plants also does not affect RNAi in Drosophila. Similarly, the Cucumber mosaic virus 2b protein, which inhibits the systemic spread of PTGS in plants, does not suppress RNAi in Drosophila cells. In addition, we have used the Drosophila system to demonstrate that the 16K cysteine-rich protein of Tobacco rattle virus, which previously had no known function, is a silencing suppressor protein. Conclusion These results indicate that at least part of the process of RNAi in Drosophila and PTGS in plants is conserved, and that plant virus silencing suppressor proteins may be useful tools to investigate the mechanism of RNAi.

  10. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

    OpenAIRE

    Kil Hyun Kim; Seungmo Lim; Yang Jae Kang; Min Young Yoon; Moon Nam; Tae Hwan Jun; Min-Jung Seo; Seong-Bum Baek; Jeom-Ho Lee; Jung-Kyung Moon; Suk-Ha Lee; Su-Heon Lee; Hyoun-Sub Lim; Jae Sun Moon; Chang-Hwan Park

    2016-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of...

  11. Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductase gene, FRO1, as an example

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Virus-induced gene silencing (VIGS) is potentially an attractive reverse-genetics tool for studies of plant gene function, but whether it is effective in silencing mineral nutritional-related genes in roots has not been demonstrated. Here we report on an efficient VIGS system that functions in tomato roots using a modified viral satellite DNA (DNAmβ) associated with Tomato yellow leaf curl China virus (TYLCCNV). A cDNA fragment of the ferric chelate reductase gene (FRO1) from tomato was inserted into the DNAmβ vector. Tomato roots agro-inoculated with DNAmβ carrying both a fragment of FRO1 and TYLCCNV used as a helper virus exhibited a significant reduction at the FRO1 mRNA level. As a consequence, ferric chelate reductase activity, as determined by visualization of the pink FeBPDS3 complex was significantly decreased. Our results clearly demonstrated that VIGS system can be employed to investigate gene function associated with plant nutrient uptake in roots.

  12. Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductase gene, FRO1, as an example

    Institute of Scientific and Technical Information of China (English)

    HE XiuXia; JIN ChongWei; LI GuiXin; YOU GuangYi; ZHOU XuePing; ZHENG ShaoJian

    2008-01-01

    Virus-induced gene silencing (VIGS) is potentially an attractive reverse-genetics tool for studies of plant gene function, but whether it is effective in silencing mineral nutritional-related genes in roots has not been demonstrated. Here we report on an efficient VIGS system that functions in tomato roots using a modified viral satellite DNA (DNAmβ) associated with Tomato yellow leaf curl China virus (TYLCCNV). A cDNA fragment of the ferric chelate reductase gene (FRO1) from tomato was inserted into the DNAmβ vector. Tomato roots agro-inoculated with DNAmβ carrying both a fragment of FRO1 and TYLCCNV used as a helper virus exhibited a significant reduction at the FRO1 mRNA level. As a consequence, ferric chelate reductase activity, as determined by visualization of the pink FeBPDS3complex was significantly decreased. Our results clearly demonstrated that VIGS system can be employed to investigate gene function associated with plant nutrient uptake in roots.

  13. TGIF1 Gene Silencing in Tendon-Derived Stem Cells Improves the Tendon-to-Bone Insertion Site Regeneration

    Directory of Open Access Journals (Sweden)

    Liyang Chen

    2015-11-01

    Full Text Available Background/Aims: The slow healing process of tendon-to-bone junctions can be accelerated via implanted tendon-derived stem cells (TDSCs with silenced transforming growth interacting factor 1 (TGIF1 gene. Tendon-to-bone insertion site is the special form of connective tissues derivatives of common connective progenitors, where TGF-β plays bidirectional effects (chondrogenic or fibrogenic through different signaling pathways at different stages. A recent study revealed that TGF-β directly induces the chondrogenic gene Sox9. However, TGIF1 represses the expression of the cartilage master Sox9 gene and changes its expression rate against the fibrogenesis gene Scleraxis (Scx. Methods: TGIF1 siRNA was transduced or TGIF1 was over-expressed in tendon-derived stem cells. Following suprapinatus tendon repair, rats were either treated with transduced TDSCs or nontransduced TDSCs. Histologic examination and Western blot were performed in both groups. Results: In this study, the silencing of TGIF1 significantly upregulated the chondrogenic genes and markers. Similarly, TGIF1 inhibited TDSC differentiation into cartilage via interactions with TGF-β-activated Smad2 and suppressed the phosphorylation of Smad2. The area of fibrocartilage at the tendon-bone interface was significantly increased in the TGIF1 (- group compared with the control and TGIF1-overexpressing groups in the early stages of the animal model. The interface between the tendon and bone showed a increase of new bone and fibrocartilage in the TGIF1 (- group at 4 weeks. Fibrovascular scar tissue was observed in the TGIF1-overexpressing group and the fibrin glue only group. Low levels of fibrocartilage and fibrovascular scar tissue were found in the TDSCs group. Conclusion: Collectively, this study shows that the tendon-derived stem cell modified with TGIF1 gene silencing has promising effects on tendon-to-bone healing which can be further explored as a therapeutic tool in regenerative medicine.

  14. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    Science.gov (United States)

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  15. The intracellular pharmacodynamics of siRNA is responsible for the low gene silencing activity of siRNA-loaded nanoparticles in dendritic cells.

    Science.gov (United States)

    Nakamura, Takashi; Fujiwara, Yuki; Warashina, Shota; Harashima, Hideyoshi

    2015-10-15

    The delivery of small interfering RNA (siRNA) to dendritic cells (DCs) is a challenging issue for siRNA-loaded lipid nanoparticles. The cause of this difficulty is unknown. The findings reported herein indicate that the rate-limiting step in gene silencing using siRNA-loaded lipid nanoparticles in DCs, as evidenced by a quantitative analysis of each process in siRNA delivery between mouse bone marrow derived DC (BMDC) and other cell lines, was not associated with the actual delivery of siRNA. A gene silencing of only 50% was observed in BMDC, even when a high dose was used. Contrary to our expectation, the interval between cellular uptake and the delivery of siRNA to the cytosol was not responsible for the low gene silencing. Meanwhile, a drastic difference was found in the relationship between the efficiency of gene silencing and the amount of intracellular intact siRNA. This fact indicates that the processes after cytosolic delivery of siRNA, namely the intracellular pharmacodynamics (PD) of siRNA, appear to be the rate-limiting step in gene silencing in BMDC. The findings reported here demonstrate the importance of the intracellular PD of siRNA delivered to cytosol in the development of siRNA delivery systems for gene silencing in DCs.

  16. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes.

    Science.gov (United States)

    Huang, Yi; Greene, Eriko; Murray Stewart, Tracy; Goodwin, Andrew C; Baylin, Stephen B; Woster, Patrick M; Casero, Robert A

    2007-05-08

    Epigenetic chromatin modification is a major regulator of eukaryotic gene expression, and aberrant epigenetic silencing of gene expression contributes to tumorigenesis. Histone modifications include acetylation, phosphorylation, and methylation, resulting in a combination of histone marks known collectively as the histone code. The chromatin marks at a given promoter determine, in part, whether specific promoters are in an open/active conformation or closed/repressed conformation. Dimethyl-lysine 4 histone H3 (H3K4me2) is a transcription-activating chromatin mark at gene promoters, and demethylation of this mark by the lysine-specific demethylase 1 (LSD1), a homologue of polyamine oxidases, may broadly repress gene expression. We now report that novel biguanide and bisguanidine polyamine analogues are potent inhibitors of LSD1. These analogues inhibit LSD1 in human colon carcinoma cells and affect a reexpression of multiple, aberrantly silenced genes important in the development of colon cancer, including members of the secreted frizzle-related proteins (SFRPs) and the GATA family of transcription factors. Furthermore, we demonstrate by chromatin immunoprecipitation analysis that the reexpression is concurrent with increased H3K4me2 and acetyl-H3K9 marks, decreased H3K9me1 and H3K9me2 repressive marks. We thus define important new agents for reversing aberrant repression of gene transcription.

  17. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  18. BOB.1-positive Classical Hodgkin's Lymphoma Carries Hypermethylation of Its Promoter as Epigenetic Marker of Gene-silencing Memory.

    Science.gov (United States)

    Watanabe, Takafumi; Kitazawa, Riko; Mizuno, Yosuke; Kuwahara, Natsumi; Ito, Chizu; Sugita, Atsuro; Haraguchi, Ryuma; Kitazawa, Sohei

    2014-06-28

    Analysis of archival formalin-fixed, paraffin-embedded (FFPE) pathological specimens of three case of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) and three cases of classical Hodgkin lymphoma (CHL) revealed that hypermethylation of the BOB.1 gene promoter was exclusively observed in CHL. A discrepancy was observed, however, between the methylation status of the BOB.1 gene promoter and its expression in the EBV-positive mixed cellular CHL (MCCHL). Since MCCHL lacks the typical B-cell phenotype even in the presence of abundant BOB.1 transcription factors, functional activity of BOB.1 may be lost or reduced by a mechanism other than epigenetic gene silencing. When some tumor-suppressor gene products have lost their biological function, impact or significance of derepression of such genes may be little. Therefore, when interpreting immunohistochemical results for diagnostic or research purposes, it must be borne in mind that apparent positive immunostaining can merely be the result of chromatin remodeling and that such transient expression often has little functional significance. Any apparent positive immunohistochemical result needs to be interpreted carefully with the help of the hypermethylation status as a molecular marker of gene silencing memory.

  19. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line.

    Science.gov (United States)

    Zhang, Ling; He, Tao; Cui, Hong; Wang, Yunjian; Huang, Changshan; Han, Feng

    2012-08-01

    Alpha fetoprotein (AFP) is an oncoembryonal protein that is highly expressed in the majority of hepatocellular carcinomas. Previous studies have shown that AFP may be involved in multiple cell growth regulating, differentiating, and immunosuppressive activities. We investigated the effects of AFP gene silencing by siRNA on apoptosis and proliferation of hepatocellular carcinoma cell line EGHC-9901, which highly expresses AFP and may serve as an ideal model for investigation of AFP functions. siRNA expressing plasmid targeting the AFP gene was first established and subsequently transfected into hepatocellular carcinoma cell line EGHC-9901; cells were then divided into three groups: siRNA-afp, transfected with AFP-siRNA; siRNA-beta-actin, transfected with siRNA-beta-actin as the positive group; and vector control, transfected with empty vector as the blank control group. After G418 positive clone selection for a couple of weeks, Western blot and RT (reverse transcription)-PCR assay demonstrated that AFP expression was almost completely inhibited by siRNA-afp, which indicates that siRNA expressing plasmid targeting the AFP gene has been successfully established. Furthermore, MTT (methyl thiazolyl tetrazelium) assay showed that cells transfected with siRNA-afp proliferated at a significantly lower speed than the other two groups and flat plate clone formation assay also witnessed less clones with diameters of more than 75 μm in siRNA-afp immunofluorescence indicating that the apoptosis rate of cells transfected with siRNA-afp was significantly higher than the other two groups. Furthermore, flow cytometry manifested approximately 20% more cells of siRNA-afp within G1 phase than those of the negative group, indicating that inhibition of AFP expression may cause G1 phase arrest. Finally, Western blot and RT-PCR assay demonstrated that siRNA-afp induced a higher expression of caspase-3 than the other two groups whereas there was no difference in expression of caspase-8

  20. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

    Directory of Open Access Journals (Sweden)

    Kil Hyun Kim

    2016-04-01

    Full Text Available Virus-induced gene silencing (VIGS is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV. Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD₆₀₀ of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

  1. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans.

    Science.gov (United States)

    Kim, Kil Hyun; Lim, Seungmo; Kang, Yang Jae; Yoon, Min Young; Nam, Moon; Jun, Tae Hwan; Seo, Min-Jung; Baek, Seong-Bum; Lee, Jeom-Ho; Moon, Jung-Kyung; Lee, Suk-Ha; Lee, Su-Heon; Lim, Hyoun-Sub; Moon, Jae Sun; Park, Chang-Hwan

    2016-04-01

    Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD)600 of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

  2. Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Anju Karki

    Full Text Available Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP, a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM, inflammation and fibrosis-events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1 were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.

  3. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  4. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    Science.gov (United States)

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  5. In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression.

    Directory of Open Access Journals (Sweden)

    Le Thi Huong

    Full Text Available The Aicda gene encodes activation-induced cytidine deaminase (AID. Aicda is strongly transcribed in activated B cells to diversify immunoglobulin genes, but expressed at low levels in various other cells in response to physiological or pathological stimuli. AID's mutagenic nature has been shown to be involved in tumor development. Here, we used a transgenic strategy with bacterial artificial chromosomes (BACs to examine the in vivo functions of Aicda regulatory elements, which cluster in two regions: in the first intron (region 2, and approximately 8-kb upstream of the transcription start site (region 4. Deleting either of these regions completely abolished the expression of Aicda-BAC reporters, demonstrating these elements' critical roles. Furthermore, we found that selectively deleting two C/EBP-binding sites in region 4 inactivated the enhancer activity of the region despite the presence of intact NF-κB-, STAT6- and Smad-binding sites. On the other hand, selectively deleting E2F- and c-Myb-binding sites in region 2 increased the frequency of germinal-center B cells in which the Aicda promoter was active, indicating that E2F and c-Myb act as silencers in vivo. Interestingly, the silencer deletion did not cause ectopic activation of the Aicda promoter, indicating that Aicda activation requires enhancer-specific stimulation. In summary, precise regulation of the Aicda promoter appears to depend on a coordinated balance of activities between enhancer and silencer elements.

  6. Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells.

    Science.gov (United States)

    Li, Min; Balamuthusamy, Saravanan; Simon, Eric E; Batuman, Vecihi

    2008-07-01

    Using target-specific short interfering (si) RNAs, we silenced the tandem endocytic receptors megalin and cubilin genes in cultured human renal proximal tubule epithelial cells. Transfection by siRNA resulted in up to 90% suppression of both megalin and cubilin protein and mRNA expression. In HK-2 cells exposed to kappa-light chain for up to 24 h, light chain endocytosis was reduced in either megalin- or cubilin-silenced cells markedly but incompletely. Simultaneous silencing of both the cubilin and megalin genes, however, resulted in near-complete inhibition of light chain endocytosis, as determined by measuring kappa-light chain protein concentration in cell cytoplasm and by flow cytometry using FITC-labeled kappa-light chain. In these cells, light chain-induced cytokine responses (interleukin-6 and monocyte chemoattractant protein-1) and epithelial-to-mesenchymal transition as well as the associated cellular and morphological alterations were also markedly suppressed. The results demonstrate that light chain endocytosis is predominantly mediated by the megalin-cubilin tandem endocytic receptor and identify endocytosis as a key step in light chain cytotoxicity. Blocking light chain endocytosis prevents its nephrotoxic effects on human kidney proximal tubule cells.

  7. The Treatment of Fibrosis of Joint Synovium and Frozen Shoulder by Smad4 Gene Silencing in Rats

    Science.gov (United States)

    Xue, MingFeng; Gong, SuiLiang; Dai, JiaPing; Chen, Gang; Hu, JunYu

    2016-01-01

    Soft tissue fibrosis at the joint induced by inflammation is the pathological basis of frozen shoulder. In the present study, we utilized a lentiviral approach to silence the Smad4 gene in an in vitro fibrosis model of fibroblasts and an in vivo frozen shoulder model. We observed the change in the fibrosis process and the biological indicators of frozen shoulder. The in vitro fibrosis models (Rat myoblasts L6, Rat synovial cell RSC-364 and Rat chondrocytes RCs) were established using TGF-β1 induction, and the effect of Smad4 gene silencing on fibrosis was analyzed. The method of Kanno A was employed to establish a rat model of frozen shoulder, and Smad4 in the relevant part was knocked down with the lentiviral approach. We then examined the abduction and rotation angles and the length of synovial intima and measured the inflammatory factors in effusion and the fibrotic markers of tissues. We found that Smad4 knockdown suppressed the proliferation and expression of fibrotic markers in L6, RSC-364 and RCs cells induced by TGF-β1. MMP activity measurements showed that Smad4 knockdown significantly reversed the decrease in MMP activity in these three cell lines that were induced by TGF-β1. Furthermore, using lentivirus in the rat frozen shoulder model, we found that Smad4 silencing attenuated the inflammatory response and fibrosis. It significantly inhibited the increase of the Vimentin, α-SMA, collagen I and III, Lama1 and Timp1 proteins in synovial tissue as well as the inflammatory factors of TNF-a, IL-1α/β, IL-6 and IL-10 in effusion. MMP acidity assays revealed that Smad4 silencing inhibited MMP activity in the synovial, cartilage and ligament tissues in the model animals. The assessment of the phosphorylated Smad2/3 in the nuclei isolated from the synovial tissues showed that Smad4 silencing significantly inhibited the phosphorylation and subsequent nuclear translocation of Smad2/3 proteins. Moreover, Smad4-shRNA lentivirus inhibited the decrease in both

  8. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-09-01

    Full Text Available RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3, was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3 is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6 silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  9. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing

    Directory of Open Access Journals (Sweden)

    Wu Yue-Zhong

    2007-05-01

    Full Text Available Abstract Background Previous studies of individual genes have shown that in a self-enforcing way, dimethylation at histone 3 lysine 9 (dimethyl-H3K9 and DNA methylation cooperate to maintain a repressive mode of inactive genes. Less clear is whether this cooperation is generalized in mammalian genomes, such as mouse genome. Here we use epigenomic tools to simultaneously interrogate chromatin modifications and DNA methylation in a mouse leukemia cell line, L1210. Results Histone modifications on H3K9 and DNA methylation in L1210 were profiled by both global CpG island array and custom mouse promoter array analysis. We used chromatin immunoprecipitation microarray (ChIP-chip to examine acetyl-H3K9 and dimethyl-H3K9. We found that the relative level of acetyl-H3K9 at different chromatin positions has a wider range of distribution than that of dimethyl-H3K9. We then used differential methylation hybridization (DMH and the restriction landmark genome scanning (RLGS to analyze the DNA methylation status of the same targets investigated by ChIP-chip. The results of epigenomic profiling, which have been independently confirmed for individual loci, show an inverse relationship between DNA methylation and histone acetylation in regulating gene silencing. In contrast to the previous notion, dimethyl-H3K9 seems to be less distinct in specifying silencing for the genes tested. Conclusion This study demonstrates in L1210 leukemia cells a diverse relationship between histone modifications and DNA methylation in the maintenance of gene silencing. Acetyl-H3K9 shows an inverse relationship between DNA methylation and histone acetylation in regulating gene silencing as expected. However, dimethyl-H3K9 seems to be less distinct in relation to promoter methylation. Meanwhile, a combination of epigenomic tools is of help in understanding the heterogeneity of epigenetic regulation, which may further our vision accumulated from single-gene studies.

  10. A selfish gene chastened: Tribolium castaneum Medea M4 is silenced by a complementary gene.

    Science.gov (United States)

    Thomson, M Scott

    2014-04-01

    Maternal-effect dominant embryonic arrest (Medea) of Tribolium castaneum are autosomal factors that act maternally to cause the death of any progeny that do not inherit them. This selfish behavior is thought to result from a maternally expressed poison and zygotically expressed antidote. Medea factors and the hybrid incompatibility factor, H, have a negative interaction consistent with complementary genes of the Dobzhansky-Muller model for post-zygotic isolation. This negative interaction may result from H suppression of Medea zygotic antidote, leaving zygotes incompletely protected from maternal poison. I report here a test of the hypothesis that H also suppresses the Medea maternal poison. Viable F1 females were generated from a cross of Medea M4 strain males to H strain females. These females, heterozygous for both M4 and H, failed to express M4 maternal lethal activity when crossed to their male sibs. Transmission of non-M4 homologues from these females was confirmed using a dominant transgenic enhanced green fluorescent protein eye color marker, tightly linked in cis to M4. M4 beetles, lacking H, were selected from the F2 population. Female descendants of these clearly expressed M4 maternal lethal activity, indicating restoration of this activity after H was segregated away. I conclude that H, or a factor tightly linked to H, suppresses Medea M4 maternal poison.

  11. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2.

    Science.gov (United States)

    de Vries, Sophie; von Dahlen, Janina K; Uhlmann, Constanze; Schnake, Anika; Kloesges, Thorsten; Rose, Laura E

    2017-01-01

    Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, 'Phytophthora suppressor of RNA silencing 2') has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.

  12. Silica nanowire conjugated with loop-shaped oligonucleotides: A new structure to silence cysteine proteinase gene in Leishmania tropica.

    Science.gov (United States)

    Bafghi, Ali Fatahi; Jebali, Ali; Daliri, Karim

    2015-12-01

    The main aim of this study was to evaluate the capability of silica nanowire conjugated with loop-shaped oligonucleotides (SNWCLSOs) to silence cysteine proteinase b (Cpb) gene in Leishmania (L) tropica. On the other hand, its toxicity on amastigotes and mouse peritoneal macrophages was evaluated by 5-diphenyl-tetrazolium bromide (MTT) assay. For control, two loop-shaped oligonucleotides (LSO) were considered. LSO1 and LSO2 were 5'-NH2-cccccaaaaaaaaaaaaaaaaaaaaaaaaaggggg-COOH-3' and LSO2: 5'-NH2-cccccttttttttttttttttttttttttttttttttttttttggggg-COOH-3', respectively. After 72 h incubation at 37 °C, AMSNW, LSO1, and LSO2 had no remarkable toxicity on L. tropica amastigote (2 × 10(5)/mL) and mouse peritoneal macrophages (2 × 10(5)/mL). In case of SNWCLSOs, they had high toxicity on L. tropica amastigote, but they had no effect on mouse peritoneal macrophages. At concentrations of 1, 10, and 25 μg/mL, AMSNW, LSO1 and LSO2 had no effect on the gene expression. But, at concentration of 50 and 100 μg/mL, decrease of gene expression was observed. In case of SNWCLSOs, they could dramatically decrease the gene expression. It could be concluded that since SNWCLSOs could silence Cpb gene with no remarkable toxicity, they are good choice for treat cutaneous leishmaniasis in future. As a new agent, it must be checked in vivo.

  13. Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element.

    Science.gov (United States)

    Vetukuri, Ramesh R; Tian, Zhendong; Avrova, Anna O; Savenkov, Eugene I; Dixelius, Christina; Whisson, Stephen C

    2011-12-01

    Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing. Accumulation of small RNAs is one of the hallmarks of RNA silencing. Here we demonstrate the presence of small RNAs corresponding to the sequence of a short interspersed retrotransposable element (SINE) suggesting that small RNAs might be involved in silencing of SINEs in P. infestans. This notion was exploited to develop novel tools for gene silencing in P. infestans by engineering transcriptional fusions of the PiAvr3a gene, encoding an RXLR avirulence effector, to the infSINEm retroelement. Transgenic P. infestans lines expressing either 5'-infSINEm::PiAvr3a-3' or 5'-PiAvr3a::SINEm-3' chimeric transcripts initially exhibited partial silencing of PiAvr3a. Over time, PiAvr3a either recovered wild type transcript levels in some lines, or became fully silenced in others. Introduction of an inverted repeat construct was also successful in yielding P. infestans transgenic lines silenced for PiAvr3a. In contrast, constructs expressing antisense or aberrant RNA transcripts failed to initiate silencing of PiAvr3a. Lines exhibiting the most effective silencing of PiAvr3a were either weakly or non-pathogenic on susceptible potato cv. Bintje. This study expands the repertoire of reverse genetics tools available for P. infestans research, and provides insights into a possible mode of variation in effector expression through spread of silencing from adjacent retroelements.

  14. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles.

    Science.gov (United States)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Yoon, Ho Sup; Chuan, Tjin Swee; Yong, Ken-Tye

    2015-09-11

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications.

  15. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity

    NARCIS (Netherlands)

    Dobnik, David; Lazar, Ana; Stare, Tjaša; Gruden, Kristina; Vleeshouwers, Vivianne G.A.A.; Žel, Jana

    2016-01-01

    Background: Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops,

  16. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases.

    Science.gov (United States)

    Hansen, Klavs R; Hazan, Idit; Shanker, Sreenath; Watt, Stephen; Verhein-Hansen, Janne; Bähler, Jürg; Martienssen, Robert A; Partridge, Janet F; Cohen, Amikam; Thon, Geneviève

    2011-01-06

    Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.

  17. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases.

    Directory of Open Access Journals (Sweden)

    Klavs R Hansen

    Full Text Available Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.

  18. Influence of Cationic Lipid Composition on Gene Silencing Properties of Lipid Nanoparticle Formulations of siRNA in Antigen-Presenting Cells

    Science.gov (United States)

    Basha, Genc; Novobrantseva, Tatiana I; Rosin, Nicole; Tam, Yuen Yi C; Hafez, Ismail M; Wong, Matthew K; Sugo, Tsukasa; Ruda, Vera M; Qin, June; Klebanov, Boris; Ciufolini, Marco; Akinc, Akin; Tam, Ying K; Hope, Michael J; Cullis, Pieter R

    2011-01-01

    Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases. PMID:21971424

  19. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts.

    Science.gov (United States)

    Zhang, Donghong; Wu, Bingruo; Wang, Ping; Wang, Yidong; Lu, Pengfei; Nechiporuk, Tamilla; Floss, Thomas; Greally, John M; Zheng, Deyou; Zhou, Bin

    2016-12-11

    The dynamic interaction of DNA methylation and transcription factor binding in regulating spatiotemporal gene expression is essential for embryogenesis, but the underlying mechanisms remain understudied. In this study, using mouse models and integration of in vitro and in vivo genetic and epigenetic analyses, we show that the binding of REST (repressor element 1 (RE1) silencing transcription factor; also known as NRSF) to its cognate RE1 sequences is temporally regulated by non-CpG methylation. This process is dependent on DNA methyltransferase 3B (DNMT3B) and leads to suppression of adult cardiac genes in developing hearts. We demonstrate that DNMT3B preferentially mediates non-CpG methylation of REST-targeted genes in the developing heart. Downregulation of DNMT3B results in decreased non-CpG methylation of RE1 sequences, reduced REST occupancy, and consequently release of the transcription suppression during later cardiac development. Together, these findings reveal a critical gene silencing mechanism in developing mammalian hearts that is regulated by the dynamic interaction of DNMT3B-mediated non-CpG methylation and REST binding.

  20. [Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15].

    Science.gov (United States)

    Mardanov, A V; Lane, D; Ravin, N V

    2010-01-01

    Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

  1. Spontaneous silencing of humanized green fluorescent protein (hGFP) gene expression from a retroviral vector by DNA methylation

    DEFF Research Database (Denmark)

    Gram, G J; Nielsen, S D; Hansen, J E

    1998-01-01

    We have constructed a functional murine leukemia virus (MLV)-derived retroviral vector transducing two genes encoding the autofluorescent humanized green fluorescent protein (hGFP) and neomycin phosphotransferase (Neo). This was done to determine whether hGFP could function as a marker gene...... in a retroviral vector and to investigate the expression of genes in a retroviral vector. Surprisingly, clonal vector packaging cell lines showed variable levels of hGFP expression, and expression was detected in as few as 49% of the cells in a clonally derived culture. This indicated that hGFP expression...... was shown to increase the hGFP-expressing MT4 cells from either 10.4% to 11.6% or 3.7% to 4.8%, corresponding to an increase in observed transduction efficiencies of 12% and 30%, respectively. These results indicate that silencing of gene expression from a retroviral vector may result from DNA methylation...

  2. Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach.

    Science.gov (United States)

    Zhou, Bangjun; Zeng, Lirong

    2017-01-01

    Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana. Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae. Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and

  3. MSLN Gene Silencing Has an Anti-Malignant Effect on Cell Lines Overexpressing Mesothelin Deriving from Malignant Pleural Mesothelioma

    Science.gov (United States)

    Melaiu, Ombretta; Stebbing, Justin; Lombardo, Ylenia; Bracci, Elisa; Uehara, Norihisa; Bonotti, Alessandra; Cristaudo, Alfonso; Foddis, Rudy; Mutti, Luciano; Barale, Roberto; Gemignani, Federica

    2014-01-01

    Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM) are still poorly characterized. So far, mesothelin (MSLN) has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373) has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e. NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A). MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA) to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer. PMID:24465798

  4. MSLN gene silencing has an anti-malignant effect on cell lines overexpressing mesothelin deriving from malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Ombretta Melaiu

    Full Text Available Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM are still poorly characterized. So far, mesothelin (MSLN has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373 has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e., NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A. MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.

  5. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  6. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum.

    Science.gov (United States)

    Wang, Xinhua; Kohalmi, Susanne E; Svircev, Antonet; Wang, Aiming; Sanfaçon, Hélène; Tian, Lining

    2013-01-01

    Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.

  7. Silencing of the host factor eIF(iso4E gene confers plum pox virus resistance in plum.

    Directory of Open Access Journals (Sweden)

    Xinhua Wang

    Full Text Available Plum pox virus (PPV causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E or its isoform eIF(iso4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso4E genes were cloned from plum (Prunus domestica L.. The sequence identity between plum eIF4E and eIF(iso4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso4E is involved in PPV infection in plum, and that silencing of eIF(iso4E expression can lead to PPV resistance in Prunus species.

  8. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2 is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine, whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.

  9. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.

    Science.gov (United States)

    Kandeel, Mahmoud; Al-Taher, Abdullah; Nakashima, Remi; Sakaguchi, Tomoya; Kandeel, Ali; Nagaya, Yuki; Kitamura, Yoshiaki; Kitade, Yukio

    2014-01-01

    Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.

  10. Silence multiple

    DEFF Research Database (Denmark)

    Søndergaard, Katia Dupret

    The article highlights the importance of silences in the processes of innovation in organizations, and the claim is that silence and the absence of talk distribute authority, responsibility and decisions. The act of silencing is conceptualised as a central “configurating actor”. Using an Actor-Network...... it an important analytical element in understanding organizing and organizations....

  11. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities.

    Science.gov (United States)

    Wroblewski, Tadeusz; Piskurewicz, Urszula; Tomczak, Anna; Ochoa, Oswaldo; Michelmore, Richard W

    2007-09-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.

  12. Global methylation silencing of clustered proto-cadherin genes in cervical cancer: serving as diagnostic markers comparable to HPV.

    Science.gov (United States)

    Wang, Kai-Hung; Lin, Cuei-Jyuan; Liu, Chou-Jen; Liu, Dai-Wei; Huang, Rui-Lan; Ding, Dah-Ching; Weng, Ching-Feng; Chu, Tang-Yuan

    2015-01-01

    Epigenetic remodeling of cell adhesion genes is a common phenomenon in cancer invasion. This study aims to investigate global methylation of cell adhesion genes in cervical carcinogenesis and to apply them in early detection of cancer from cervical scraping. Genome-wide methylation array was performed on an investigation cohort, including 16 cervical intraepithelial neoplasia 3 (CIN3) and 20 cervical cancers (CA) versus 12 each of normal, inflammation and CIN1 as controls. Twelve members of clustered proto-cadherin (PCDH) genes were collectively methylated and silenced, which were validated in cancer cells of the cervix, endometrium, liver, head and neck, breast, and lung. In an independent cohort including 107 controls, 66 CIN1, 85 CIN2/3, and 38 CA, methylated PCDHA4 and PCDHA13 were detected in 2.8%, 24.2%, 52.9%, and 84.2% (P diagnostic markers for cervical cancer noninferior to HPV.

  13. Silencing of Target Chitinase Genes via Oral Delivery of dsRNA Caused Lethal Phenotypic Effects in Mythimna separata (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Cao, Budao; Bao, Wenhua; Wuriyanghan, Hada

    2017-02-01

    Mythimna separata walker (Lepidoptera: Noctuidae) is a polyphagous, migratory corn pest. Outbreak of M. separata has led to severe damage to corn production recently in China. RNAi (RNA interference) is a gene silencing technology applied both in model and non-model organisms, and it is especially useful for the latter in which the reverse genetic research tools are not available. RNAi approach was broadly investigated in many plant pathogens and was used for the generation of anti-pest transgenic plants. We are proposing to use this technology to silence M. separata endogenous genes, thereby, providing a biocontrol method for this insect. Feeding of dsRNAs for target Chitinase genes resulted in substantial decreases of their transcript levels in M. separata. Furthermore, silencing of target Chitinase genes led to phenotypic effects such as reduced body weight and increased mortality. Our study provided both reverse genetic research tool and potential control strategy for this insect species.

  14. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11.

    Science.gov (United States)

    Paduch, Roman; Jakubowicz-Gil, Joanna; Kandefer-Szerszen, Martyna

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor beta1 (rhTGF-beta1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-beta1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-beta1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-beta1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-beta1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  15. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF-1 and/or CPT-11

    Indian Academy of Sciences (India)

    Roman Paduch; Joanna Jakubowicz-Gil; Martyna Kandefer-Szerszeń

    2009-12-01

    We studied the expression of inducible heat shock protein (HSP27, HSP72) and multidrug-resistance protein (MRP) in co-cultures of human colon carcinoma cell spheroids obtained from different grades of tumour with normal human colon epithelium, myofibroblast and endothelial cell monolayers. We also measured the influence of recombinant human transforming growth factor 1 (rhTGF-1) and camptothecin (CPT-11), added as single agents or in combination, on the levels of the HSPs, MRP, interleukin (IL)-6 and nitric oxide (NO). An immunoblotting analysis with densitometry showed that rhTGF-1 and/or CPT-11 increased HSP27, HSP72 and MRP expression in tumour cells and myofibroblasts, as well as in co-cultures compared with appropriate controls. By contrast, in colonic epithelium, inhibition of HSPs and MRP was comparable with that of the control. In endothelial cells, HSP72 was undetectable. Direct interaction of colon tumour spheroids with normal myofibroblasts caused a significant, tumour-grade dependent increase in IL-6 production. Production of IL-6 was significantly lowered by rhTGF-1 and/or CPT-11. Tumour cell spheroids cultivated alone produced larger amounts of NO than normal cells. In co-culture, the level of the radical decreased compared with the sum of NO produced by the monocultures of the two types of cells. rhTGF-1 and/or CPT-11 decreased NO production both in tumour and normal cell monocultures and their co-cultures. In conclusion, direct interactions between tumour and normal cells influence the expression of HSP27, HSP72 and MRP, and alter IL-6 and NO production. rhTGF-1 and/or CPT-11 may potentate resistance to chemotherapy by increasing HSP and MRP expression but, on the other hand, they may limit tumour cell spread by decreasing the level of some soluble mediators of inflammation (IL-6 and NO).

  16. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    Science.gov (United States)

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  17. Implication of MAPK in sodium salicylate-induced heat shock protein 27 expression in human lens eplthelial Cells in vitro%丝裂素蛋白激活激酶信号途径介导水杨酸钠诱导的人晶状体上皮细胞中HSP27表达

    Institute of Scientific and Technical Information of China (English)

    高瑞莹; 王智; 李一壮; 陈晖; 卢善华; 田博

    2011-01-01

    Background Heat shock proteins (HSPs) are highly conserved proteins that are induced in cells when confronted with a wide variety of proteotoxic stresses.HSP27 has a high degree of similarity with α-crystallin protein.The abnormality of HSP27 structure and expression are closely related to the formation of cataracts.Our previous study showed sodium salieylate has the protective effect on H2O2-induced lens damage.Objective This study was to investigate the roles of MAPK signal pathway in sodium salicylate-induced the expression of HSP27 in human lens epithelial cells (LECs) in vitro.Methods Human LECs were incubated in the fresh media containing sodium salicylate at different concentrations (0-55 mmol/L) for different times (1-5 hours) and allowed to be recovered in fresh medium without sodium salicylate for 1-24 hours with or without pretreatment with P38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor ( SP600125). The expressions of P38MAPK, EBK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 were detected by Western blot. HSP27 mRNA was detected by RT-PCR. The expression of HSP27 was also detected by immunohistochemistry. Results There was only weak expression of HSP27 in normal human LECs.After stimulation of 35-55 mmol/L sodium salicylate was removed and human LECs were cultured again for 6 hours,the expression of HSP27 in LECs were significantly increased ( F= 509. 953,P0.05),而去除刺激再分别培养6 h后可诱导HSP27表达,差异有统计学意义(F=452.534,P<0.01);55 mmol/L水杨酸钠刺激人LECs 1 h后去除刺激再培养3 h后HSP27表达明显增加,6 h达到高峰,直至24 h恢复到基础水平,差异有统计学意义(F=419.234,P<0.01).水杨酸钠刺激30 min时磷酸化p38MAPK表达增加,1 h表达显著,各组总体差异有统计学意义(F=865.680,P<0.01);磷酸化ERK 1/2在水杨酸钠刺激时间内未见升高;去除水杨酸钠刺激再培养1 h

  18. ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs.

    Science.gov (United States)

    Barresi, Vincenza; Spampinato, Giorgia; Musso, Nicolò; Trovato Salinaro, Angela; Rizzarelli, Enrico; Condorelli, Daniele Filippo

    2016-03-01

    Copper is a catalytic cofactor required for the normal function of many enzymes involved in fundamental biological processes but highly cytotoxic when in excess. Therefore its homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones. ATOX1 (antioxidant protein 1) is a copper chaperone that plays a role in copper homeostasis by binding and transporting cytosolic copper to ATPase proteins in the trans-Golgi network. In the present study the Caco-2 cell line, a colon carcinoma cell line, was used as an in vitro model to evaluate if ATOX1 deficiency could affect sensitivity to experimentally induced copper dyshomeostasis. Silencing of ATOX1 increased toxicity of a short treatment with a high concentration of Cu(2+). Copper ionophores, such as 5-chloro-8-hydroxyquinoline, induced a copper-dependent cell toxicity which was significantly potentiated after ATOX1 silencing. The copper chelator TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) produced a form of cell toxicity that was reversed by the addition of Cu(2+). ATOX1 silencing increased Caco-2 cell sensitivity to TPEN toxicity. Our results suggest the possibility of a therapy with copper-chelating or ionophore drugs in subtypes of tumors showing specific alterations in ATOX1 expression.

  19. Impact of STAT4 gene silencing on the expression profile of proteins in EL-4 cells

    Institute of Scientific and Technical Information of China (English)

    WEI XiaoLi; NI Hong; WANG QingShan; XIANG Rong; WANG Yue

    2009-01-01

    The signal transducers and activators of transcription (STATs) have diverse biological functions and are involved in cell differentiation,proliferation,development,apoptosis and inflammation. Several constitutively activated STATs have been observed in a wide variety of human cancer cell lines and primary tumor cells,including blood malignancies and solid neoplasias. Although regulatory T (Treg)cells induce immune tolerance by suppressing host immune responses against self-or nonself-antigens,thus playing critical roles in preventing autoimmune diseases,they might inhibit antitumor immunity and promote tumor growth. Our previous findings suggest that the supernatant from STAT4-silenced tumor cell culture can significantly increase the ratio of CD4+ CD25+ Foxp3+ regulatory T cells among splenic cells in vitro,when compared to that from normal tumor cell culture. In the present study,we identified that the mouse lymphoma cell line EL-4 expressed a high level of STAT4,and silencing of STAT4 by siRNA did not change the expression levels of TGF-β and IL-10 in EL-4 cells. Two-dimensional electrophoresis was conducted to examine the difference of expression profiles of proteins between normal and STAT4-silenced EL4 cells. Some of the protein which has been changed may induce CD4+ CD25+ Foxp3+ regulatory T cells in vitro.

  20. Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene.

    Science.gov (United States)

    He, Yuehui

    2015-01-01

    Many plants synchronize their flowering times with changing seasons to maximize reproductive success. A key seasonal cue is the change in day length (photoperiod), that induces the production of a systemic flowering signaling molecule called florigen. A major florigen component is FLOWERING LOCUS T (FT) or its orthologs. In the long-day plant Arabidopsis thaliana, FT expression is well known to be activated by the photoperiod pathway output specifically near dusk in long days; however, underappreciated is the importance of FT silencing at other times of the day, in enabling Arabidopsis to respond only to long days in flowering. We have recently reported that a plant-specific chromatin-silencing complex called EMF1c represses FT expression at times other than around dusk in long days to prevent its temporal ectopic expression from "spoiling" the long-day floral induction in Arabidopsis. Here I further discuss in other day-length sensitive plants the potential involvement of a chromatin mechanism similar to the Arabidopsis EMF1c-mediated silencing, in repressing the expression of FT orthologs to enable diverse photoperiodic control of flowering.

  1. Silence multiple

    DEFF Research Database (Denmark)

    Søndergaard, Katia Dupret

    The article highlights the importance of silences in the processes of innovation in organizations, and the claim is that silence and the absence of talk distribute authority, responsibility and decisions. The act of silencing is conceptualised as a central “configurating actor”. Using an Actor......-Network Theoretical approach to organization studies silence is conceptualised as both a means and an effect of innovative efforts. It is a way of ordering practices. Thus silencing is thought of as a central potential change agent both in composing a kind of specific organizational collectivity and in composing new...... working practices more generally. In line with the approach to destabilise the mundane, invisible and taken-for-granted aspects of innovative efforts in organisations (crucial for ANT and foucauldian post-structuralism more broadly), this article suggests to non-silence the silence and make...

  2. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.

    Science.gov (United States)

    Han, Han; Cortez, Connie C; Yang, Xiaojing; Nichols, Peter W; Jones, Peter A; Liang, Gangning

    2011-11-15

    Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.

  3. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions.

    Science.gov (United States)

    Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Pues, Jonathan M-T G; Delauré, Stijn L; Broekaert, Willem F; Depicker, Ann; Cammue, Bruno P A; De Bolle, Miguel F C

    2004-08-01

    Basic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants. In populations of first generation (T1) A. thaliana plants transformed with a beta-glucuronidase (GUS) gene (uidA) driven by the 35S cauliflower mosaic virus promoter (p35S), the incidence of highly expressing transformants shifted from 20% in wild type background to 100% in sgs2 and sgs3 backgrounds. Likewise, when sgs2 mutants were transformed with a cyclin-dependent kinase inhibitor 6 gene under control of p35S, all transformants showed a clear phenotype typified by serrated leaves, whereas such phenotype was only observed in about one of five wild type transformants. p35S-driven uidA expression remained high and steady in T2 sgs2 and sgs3 transformants, in marked contrast to the variable expression patterns observed in wild type T2 populations. We further show that T-DNA constructs flanked by matrix attachment regions of the chicken lysozyme gene (chiMARs) cause a boost in GUS activity by fivefold in sgs2 and 12-fold in sgs3 plants, reaching up to 10% of the total soluble proteins, whereas no such boost is observed in the wild type background. MAR-based plant transformation vectors used in a PTGS mutant background might be of high value for efficient high-throughput screening of transgene-based phenotypes as well as for obtaining extremely high transgene expression in plants.

  4. RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm.

    Science.gov (United States)

    Wang, Zhijian; Dong, Yongcheng; Desneux, Nicolas; Niu, Changying

    2013-01-01

    RNA interference (RNAi) has considerable promise for developing novel pest control techniques, especially because of the threat of the development of resistance against current strategies. For this purpose, the key is to select pest control genes with the greatest potential for developing effective pest control treatments. The present study demonstrated that the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; HMGR) gene is a potential target for insect control using RNAi. HMGR is a key enzyme in the mevalonate pathway in insects. A complete cDNA encoding full length HMGR (encoding an 837-aa protein) was cloned from Helicoverpa armigera (Lepidoptera: Noctuidae). The HaHMGR (H. armigera HMGR) knockdown using systemic RNAi in vivo inhibited the fecundity of the females, effectively inhibited ovipostion, and significantly reduced vitellogenin (Vg) mRNA levels. Moreover, the oviposition rate of the female moths was reduced by 98% by silencing HaHMGR compared to the control groups. One-pair experiments showed that both the proportions of valid mating and fecundity were zero. Furthermore, the HaHMGR-silenced females failed to lay eggs (approximate 99% decrease in oviposition) in the semi-field cage performance. The present study demonstrated the potential implications for developing novel pest management strategies using HaHMGR RNAi in the control of H. armigera and other insect pests.

  5. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants

    Science.gov (United States)

    Moreno, Ana Beatriz; Martínez de Alba, Angel Emilio; Bardou, Florian; Crespi, Martin D.; Vaucheret, Hervé; Maizel, Alexis; Mallory, Allison C.

    2013-01-01

    Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5′–3′ exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat–PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways. PMID:23482394

  6. Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas

    Directory of Open Access Journals (Sweden)

    Vijaya Sudhakara Rao eKola

    2016-02-01

    Full Text Available RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6 and Aminopeptidase N (APN of rice yellow stem borer (YSB on growth and development of insect. The bioassays involved injection of chemically synthesized 5ꞌ FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.

  7. Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas.

    Science.gov (United States)

    Kola, Vijaya Sudhakara Rao; Renuka, P; Padmakumari, Ayyagari Phani; Mangrauthia, Satendra K; Balachandran, Sena M; Ravindra Babu, V; Madhav, Maganti S

    2016-01-01

    RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment. These results were further supported by observing the reduction in transcripts expression of these genes in treated larvae. Fluorescence detection in treated larvae also proved that dsRNA was readily taken by larvae when fed on dsRNA treated stems. These results from the present study clearly show that YSB larvae fed on dsRNA designed from Cytochrome P450 and Aminopeptidase N has detrimental effect on larval growth and development. These genes can be deployed to develop YSB resistance in rice using RNAi approach.

  8. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis.

    Directory of Open Access Journals (Sweden)

    Karin Groten

    Full Text Available Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata after infection with mycorrhizal fungi (Rhizophagus irregularis by serial analysis of gene expression (SuperSAGE combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35% matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4% matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p2-fold change after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK. The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that

  9. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis.

    Science.gov (United States)

    Groten, Karin; Pahari, Nabin T; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T

    2015-01-01

    Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large

  10. Gene silencing: concepts, applications, and perspectives in woody plants Silenciamento gênico: conceitos, aplicações e perspectivas em plantas lenhosas

    Directory of Open Access Journals (Sweden)

    Amancio José de Souza

    2007-12-01

    Full Text Available RNA interference, transcriptional gene silencing, virus induced gene silencing, and micro RNAs comprise a series of mechanisms capable of suppressing gene expression in plants. These mechanisms reveal similar biochemical pathways and appear to be related in several levels. The ability to manipulate gene silencing has produced transgenic plants able to switch off endogenous genes and invading nucleic acids. This powerful biotechnological tool has provided plant breeders and researchers with great opportunity to accelerate breeding programs and developmental studies in woody plants. This research work reports on gene silencing in woody plants, and discuss applications and future perspectives.RNA de interferência, silenciamento gênico transcricional, silenciamento gênico induzido por vírus e micro RNAs compõem uma série de mecanismos capazes de suprimir a expressão gênica em plantas. Estes mecanismos revelaram rotas metabólicas parecidas e interagem em vários níveis. A capacidade de manipular técnicas de silenciamento gênico tem produzido plantas transgênicas capazes de suprimir a expressão de genes endógenos e ácidos nucléicos invasores. Esta poderosa ferramenta biotecnológica tem ofertado a possibilidade de acelerar programas de melhoramento e pesquisas em desenvolvimento de plantas lenhosas. Este trabalho visa revisar pesquisas de silenciamento gênico em plantas lenhosas e discutir aplicações e rumos futuros.

  11. EFFECT OF SURVIVIN-siRNA-MEDIATED GENE SILENCING ON SURVIVIN EXPRESSION IN OSTEOSARCOMA CELL LINE MG-63

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-wei; CAO Lei; WANG Yu; FU Jun; TIAN Hai-mei; LIU Yi; ZHANG Wei

    2006-01-01

    Objective: To study the inhibition of expression of Survivin gene by synthesized short Survivin-siRNA in osteosarcoma cell line MG-63. Methods: Chemically synthesized short Surviving-siRNA was transfected into osteosarcoma cell line MG-63. The Survivin mRNA and protein level were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM). The biological morphology and growth inhibition of MG-63 were observed with light microscopy and MTT assay, respectively. Results: Short siRNA targeting Survivin down-regulated the transcription and the protein level of Survivin oncogene. The proliferation of osteosarcoma cell line MG-63 was inhibited after transfection. Conclusion: Chemically synthesized short Survivin-siRNA can effectively inhibit Survivin expression and cell proliferation inosteosarcoma cell line MG-63 Survivin-siRNA mediated Survivin gene silencing may be a useful therapeutic strategy for osteosarcoma.

  12. Growth inhibition of breast cancer cell line MCF-7 by siRNA silencing of Wilms tumor 1 gene.

    Science.gov (United States)

    Navakanit, Ruxapon; Graidist, Potchanapond; Leeanansaksiri, Wilairat; Dechsukum, Chavaboon

    2007-11-01

    RNA interference (RNAi) is sequence-specific inhibition of gene expression induced by double-stranded RNA. Define the role of Wilms tumor 1 gene (WT1) in breast cancer oncogenesis using RNAi. MCF-7 breast cancer cells, which express a high level of WT1, were transfected with synthetic small interfering RNA (siRNA) targeting WT1 (siRNA(WT1)) resulting in inhibition of WTI expression, as well as growth, in a dose- and time-dependent manner. The minimum concentration of siRNA(WT1) for growth inhibition and WT1 silencing was 25 nM and 50 nM respectively. WT1 expression was completely abolished at 200 nM siRNA,. These data suggest that WTI1is indispensable for the survival of breast cancer MCF-7 cell line.

  13. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat.

    Science.gov (United States)

    Cheng, Wei; Song, Xiu-Shi; Li, He-Ping; Cao, Le-Hui; Sun, Ke; Qiu, Xiao-Li; Xu, Yu-Bin; Yang, Peng; Huang, Tao; Zhang, Jing-Bo; Qu, Bo; Liao, Yu-Cai

    2015-12-01

    Fusarium head blight (FHB) and Fusarium seedling blight (FSB) of wheat, caused by Fusarium pathogens, are devastating diseases worldwide. We report the expression of RNA interference (RNAi) sequences derived from an essential Fusarium graminearum (Fg) virulence gene, chitin synthase (Chs) 3b, as a method to enhance resistance of wheat plants to fungal pathogens. Deletion of Chs3b was lethal to Fg; disruption of the other Chs gene family members generated knockout mutants with diverse impacts on Fg. Comparative expression analyses revealed that among the Chs gene family members, Chs3b had the highest expression levels during Fg colonization of wheat. Three hairpin RNAi constructs corresponding to the different regions of Chs3b were found to silence Chs3b in transgenic Fg strains. Co-expression of these three RNAi constructs in two independent elite wheat cultivar transgenic lines conferred high levels of stable, consistent resistance (combined type I and II resistance) to both FHB and FSB throughout the T3 to T5 generations. Confocal microscopy revealed profoundly restricted mycelia in Fg-infected transgenic wheat plants. Presence of the three specific short interfering RNAs in transgenic wheat plants was confirmed by Northern blotting, and these RNAs efficiently down-regulated Chs3b in the colonizing Fusarium pathogens on wheat seedlings and spikes. Our results demonstrate that host-induced gene silencing of an essential fungal chitin synthase gene is an effective strategy for enhancing resistance in crop plants under field test conditions.

  14. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression.

    Science.gov (United States)

    Arockiaraj, Jesu; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu

    2014-12-01

    We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28-109), and in C-terminal region, it carries another SOD Fe domain (114-220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96%). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4%), 3 β-sheets (8.8%) and 38.8% random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.

  15. Artificial MiRNA Knockdown of Platelet Glycoprotein lbα: A Tool for Platelet Gene Silencing.

    Directory of Open Access Journals (Sweden)

    Tim Thijs

    Full Text Available In recent years, candidate genes and proteins implicated in platelet function have been identified by various genomic approaches. To elucidate their exact role, we aimed to develop a method to apply miRNA interference in platelet progenitor cells by using GPIbα as a proof-of-concept target protein. After in silico and in vitro screening of siRNAs targeting GPIbα (siGPIBAs, we developed artificial miRNAs (miGPIBAs, which were tested in CHO cells stably expressing GPIb-IX complex and megakaryoblastic DAMI cells. Introduction of siGPIBAs in CHO GPIb-IX cells resulted in 44 to 75% and up to 80% knockdown of GPIbα expression using single or combined siRNAs, respectively. Conversion of siGPIBAs to miGPIBAs resulted in reduced silencing efficiency, which could however be circumvented by tandem integration of two hairpins targeting different regions of GPIBA mRNA where 72% GPIbα knockdown was achieved. CHO GPIb-IX cells transfected with the miGPIBA construct displayed a significant decrease in their ability to aggregate characterized by lower aggregate numbers and size compared to control CHO GPIb-IX cells. More importantly, we successfully silenced GPIbα in differentiating megakaryoblastic DAMI cells that exhibited morphological changes associated with actin organization. In conclusion, we here report the successful use of miRNA technology to silence a platelet protein in megakaryoblastic cells and demonstrate its usefulness in functional assays. Hence, we believe that artificial miRNAs are suitable tools to unravel the role of a protein of interest in stem cells, megakaryocytes and platelets, thereby expanding their application to novel fields of basic and translational research.

  16. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Hou Xiaohua

    2010-02-01

    Full Text Available Abstract Background Heparanase facilitates the invasion and metastasis of cancer cells, and is over-expressed in many kinds of malignancies. Our studies indicated that heparanase was frequently expressed in advanced gastric cancers. The aim of this study is to determine whether silencing of heparanase expression can abolish the malignant characteristics of gastric cancer cells. Methods Three heparanase-specific small interfering RNA (siRNAs were designed, synthesized, and transfected into cultured gastric cancer cell line SGC-7901. Heparanase expression was measured by RT-PCR, real-time quantitative PCR and Western blot. Cell proliferation was detected by MTT colorimetry and colony formation assay. The in vitro invasion and metastasis of cancer cells were measured by cell adhesion assay, scratch assay and matrigel invasion assay. The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells. Results Transfection of siRNA against 1496-1514 bp of encoding regions resulted in reduced expression of heparanase, which started at 24 hrs and lasted for 120 hrs post-transfection. The siRNA-mediated silencing of heparanase suppressed the cellular proliferation of SGC-7901 cells. In addition, the in vitro invasion and metastasis of cancer cells were attenuated after knock-down of heparanase. Moreover, transfection of heparanase-specific siRNA attenuated the in vitro angiogenesis of cancer cells in a dose-dependent manner. Conclusions These results demonstrated that gene silencing of heparanase can efficiently abolish the proliferation, invasion, metastasis and angiogenesis of human gastric cancer cells in vitro, suggesting that heparanase-specific siRNA is of potential values as a novel therapeutic agent for human gastric cancer.

  17. Epigenetic silencing in transgenic plants

    Directory of Open Access Journals (Sweden)

    Sarma eRajeev Kumar

    2015-09-01

    Full Text Available Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS, which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

  18. Epigenetic silencing in transgenic plants

    Science.gov (United States)

    Rajeevkumar, Sarma; Anunanthini, Pushpanathan; Sathishkumar, Ramalingam

    2015-01-01

    Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review. PMID:26442010

  19. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants.

    Science.gov (United States)

    De Bolle, Miguel F C; Butaye, Katleen M J; Goderis, Inge J W M; Wouters, Piet F J; Jacobs, Anni; Delauré, Stijn L; Depicker, Ann; Cammue, Bruno P A

    2007-03-01

    Many studies in both animal and plant systems have shown that matrix attachment regions (MARs) can increase the expression of flanking transgenes. However, our previous studies revealed no effect of the chicken lysozyme MARs (chiMARs) on transgene expression in the first generation transgenic Arabidopsis thaliana plants transformed with a beta-glucuronidase gene (uidA) unless gene silencing mutants were used as genetic background for transformation. In the present study, we investigated why chiMARs do not influence transgene expression in transgenic wild-type Arabidopsis plants. We first studied the effect of chiMARs on transgene expression in the progeny of primary transformants harboring chiMAR-flanked T-DNAs. Our data indicate that chiMARs do not affect transgene expression in consecutive generations of wild-type A. thaliana plants. Next, we examined whether these observed results in A. thaliana transformants are influenced by the applied transformation method. The results from in vitro transformed A. thaliana plants are in accordance with those from in planta transformed A. thaliana plants and again reveal no influence of chiMARs on transgene expression in A. thaliana wild-type transformants. The effect of chi-MARs on transgene expression is also examined in in vitro transformed Nicotiana tabacum plants, but as for A. thaliana, the transgene expression in tobacco transformants is not altered by the presence of chi-MARs. Taken together, our results show that the applied method or the plant species used for transformation does not influence whether and how chiMARs have an effect on transgene expression. Finally, we studied the effect of MARs (tabMARs) of plant origin (tobacco) on the transgene expression in A. thaliana wild-type plants and suppressed gene silencing (sgs2) mutants. Our results clearly show that similar to chiMARs, the tobacco-derived MARs do not enhance transgene expression in a wild-type background but can be used to enhance transgene expression

  20. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.

    Science.gov (United States)

    Lee, Soo Hyeon; Chung, Bong Hyun; Park, Tae Gwan; Nam, Yoon Sung; Mok, Hyejung

    2012-07-17

    Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi