WorldWideScience

Sample records for hsf1 overexpression enhances

  1. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space

    Science.gov (United States)

    Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.

    2018-01-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106

  2. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

    Directory of Open Access Journals (Sweden)

    Amanda O Veri

    2018-03-01

    Full Text Available The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.

  3. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

    Science.gov (United States)

    Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E

    2018-03-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.

  4. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  5. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  6. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.

    Directory of Open Access Journals (Sweden)

    Eunhee Kim

    2017-07-01

    Full Text Available The unfolded protein response (UPR in the endoplasmic reticulum (ER and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1 activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221, identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280. We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78 suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78. Our work reveals how the bidirectional crosstalk between the two stress response systems

  7. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.

    Science.gov (United States)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    International Nuclear Information System (INIS)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-01-01

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1 −/− ) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling

  9. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young-Hee [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759 (Korea, Republic of); Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of)

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  10. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.

    Science.gov (United States)

    Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.

  11. Analysis list: HSF1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available HSF1 Adipocyte,Blood,Bone,Breast,Digestive tract,Epidermis,Liver + hg19 http://dbar...chive.biosciencedbc.jp/kyushu-u/hg19/target/HSF1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/HSF1.5.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/HSF1.10.tsv http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/colo/HSF1.Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyu...shu-u/hg19/colo/HSF1.Blood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/HSF1.Bone.tsv,http://dba

  12. Analysis list: Hsf1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Hsf1 Gonad,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hsf1....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Hsf1.5.tsv http://dbarchive.biosciencedbc.jp/kyu...shu-u/mm9/target/Hsf1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Hsf1.Gonad.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Hsf1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Gonad.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...

  13. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    Science.gov (United States)

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Directory of Open Access Journals (Sweden)

    Inbal Nussbaum

    Full Text Available Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  15. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    Science.gov (United States)

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  16. MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation.

    Science.gov (United States)

    Zhang, Jie; Goodson, Michael L; Hong, Yiling; Sarge, Kevin D

    2008-03-21

    In a previous study we found that sumoylation of the DNA-binding protein heat shock factor 2 (HSF2) is up-regulated during mitosis, but the mechanism that mediates this regulation was unknown. Here we show that HSF2 interacts with the polycomb protein MEL-18, that this interaction decreases during mitosis, and that overexpression and RNA interference-mediated reduction of MEL-18 result in decreased and increased HSF2 sumoylation, respectively. Other results suggest that MEL-18 may also function to inhibit the sumoylation of other cellular proteins. The results also show that MEL-18 is able to interact with the small ubiquitin-like modifier (SUMO) ubiquitin carrier protein (E2) enzyme UBC9 and that MEL-18 inhibits the ability of UBC9 to transfer the SUMO protein to target proteins. Together, the results in this work suggest a mechanism in which MEL-18 bound to HSF2 inhibits its sumoylation by binding to and inhibiting the activity of UBC9 enzymes in the vicinity of HSF2. These results provide an explanation for how mitotic HSF2 sumoylation is regulated and suggest that MEL-18, in contrast to the sumoylation-stimulating activities of the polycomb protein PC2, actually functions like an anti-SUMO ubiquitin-protein isopeptide ligase (E3), interacting both with HSF2 and the SUMO E2 UBC9 but acting to inhibit UBC9 activity to decrease sumoylation of a target protein, in this case that of HSF2.

  17. Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.

    Science.gov (United States)

    Antonietti, Patrick; Linder, Benedikt; Hehlgans, Stephanie; Mildenberger, Iris C; Burger, Michael C; Fulda, Simone; Steinbach, Joachim P; Gessler, Florian; Rödel, Franz; Mittelbronn, Michel; Kögel, Donat

    2017-01-01

    Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer's mouse model via an HSF1-mediated mechanism.

    Science.gov (United States)

    Wang, B; Liu, Y; Huang, L; Chen, J; Li, J J; Wang, R; Kim, E; Chen, Y; Justicia, C; Sakata, K; Chen, H; Planas, A; Ostrom, R S; Li, W; Yang, G; McDonald, M P; Chen, R; Heck, D H; Liao, F-F

    2017-07-01

    Induction of neuroprotective heat-shock proteins via pharmacological Hsp90 inhibitors is currently being investigated as a potential treatment for neurodegenerative diseases. Two major hurdles for therapeutic use of Hsp90 inhibitors are systemic toxicity and limited central nervous system permeability. We demonstrate here that chronic treatment with a proprietary Hsp90 inhibitor compound (OS47720) not only elicits a heat-shock-like response but also offers synaptic protection in symptomatic Tg2576 mice, a model of Alzheimer's disease, without noticeable systemic toxicity. Despite a short half-life of OS47720 in mouse brain, a single intraperitoneal injection induces rapid and long-lasting (>3 days) nuclear activation of the heat-shock factor, HSF1. Mechanistic study indicates that the remedial effects of OS47720 depend upon HSF1 activation and the subsequent HSF1-mediated transcriptional events on synaptic genes. Taken together, this work reveals a novel role of HSF1 in synaptic function and memory, which likely occurs through modulation of the synaptic transcriptome.

  19. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  20. NF1, Sp1 and HSF1 are synergistically involved in sulfide-induced sqr activation in echiuran worm Urechis unicinctus

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolong; Qin, Zhenkui; Li, Xueyu; Ma, Xiaoyu; Gao, Beibei; Zhang, Zhifeng, E-mail: zzfp107@ouc.edu.cn

    2016-06-15

    Highlights: • Sulfide activates sqr transcription against respiratory toxicity in Urechis unicinctus. • Sulfide increases expressions and activities of NF1, Sp1 and HSF1 in a time-dependent manner. • NF1 and Sp1 participate in both basal and early sulfide-induced sqr transcription. • HSF1 functions more significantly than NF1 and Sp1 in sulfide-induced sqr transcription. • Transcription factors NF1, Sp1 and HSF1 enhance sqr promoter activity synergistically. - Abstract: Background: Sulfide is a well-known environmental toxic substance. Mitochondrial sulfide oxidation is a main mechanism of sulfide detoxification in organisms, and sulfide: quinone oxidoreductase (SQR) is a key enzyme which is involved in transferring electrons from sulfide to ubiquinone and converting sulfide into thiosulfate. Previous studies have revealed the SQR-mediated mitochondrial sulfide oxidation exists in the echiuran worm Urechis unicinctus, and its sqr mRNA level increased significantly when the worm is exposed to sulfide. In this study, we attempt to reveal the synergistic regulation of transcription factors on sulfide-induced sqr transcription in U. unicinctus. Methods: ChIP and EMSA were used to identify the interactions between sqr proximal promoter (from −391 to +194 bp) and transcription factors NF1 (nuclear factor 1) and Sp1 (specificity protein 1). Site-directed mutation and transfection assays further revealed their binding sites and synergistic roles of HSF1, NF1 and Sp1 in the sqr transcription. When U. unicinctus were exposed to 150 μM sulfide, the expression levels and nuclear contents of NF1 and Sp1 were examined by Western blotting, and the binding contents between NF1 or Sp1 and the sqr promoter were also detected by ChIP. Results: Transcription factors NF1 and Sp1 were confirmed to interact with the sqr proximal promoter, and their binding sites were identified in −75 to −69 bp for NF1 and −210 to −201 bp for Sp1. Transfection assays showed mutation

  1. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  2. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis

    Science.gov (United States)

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-01

    ABSTRACT Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis. PMID:27846364

  3. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis.

    Science.gov (United States)

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Taguchi, Katsutoshi; Tanaka, Masaki

    2017-01-02

    Proteostasis is important for protecting cells from harmful proteins and is mainly controlled by the HSF1 (heat shock transcription factor 1) stress response pathway. This pathway facilitates protein refolding by molecular chaperones; however, it is unclear whether it functions in autophagy or inclusion formation. The autophagy receptor SQSTM1/p62 is involved in selective autophagic clearance and inclusion formation by harmful proteins, and its phosphorylation at S349, S403, and S407 is required for binding to substrates. Here, we demonstrate that casein kinase 1 phosphorylates the SQSTM1 S349 residue when harmful proteins accumulate. Investigation of upstream factors showed that both SQSTM1 S349 and SQSTM1 S403 residues were phosphorylated in an HSF1 dependent manner. Inhibition of SQSTM1 phosphorylation suppressed inclusion formation by ubiquitinated proteins and prevented colocalization of SQSTM1 with aggregation-prone proteins. Moreover, HSF1 inhibition impaired aggregate-induced autophagosome formation and elimination of protein aggregates. Our findings indicate that HSF1 triggers SQSTM1-mediated proteostasis.

  4. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.

    Science.gov (United States)

    Dai, Chengkai

    2018-01-19

    The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  5. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter.

    Science.gov (United States)

    Kim, Joo Ae; Lee, Somyoung; Kim, Da-Eun; Kim, Moonil; Kwon, Byoung-Mog; Han, Dong Cho

    2015-06-01

    Heat shock factor 1 (HSF1) is a transcription factor for heat shock proteins (HSPs) expression that enhances the survival of cancer cells exposed to various stresses. HSF1 knockout suppresses carcinogen-induced cancer induction in mice. Therefore, HSF1 is a promising therapeutic and chemopreventive target. We performed cell-based screening with a natural compound collection and identified fisetin, a dietary flavonoid, as a HSF1 inhibitor. Fisetin abolished heat shock-induced luciferase activity with an IC50 of 14 μM in HCT-116 cancer cells. The treatment of HCT-116 with fisetin inhibited proliferation with a GI50 of 23 μM. When the cells were exposed to heat shock in the presence of fisetin, the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 (Bcl-2-associated athanogene domain 3), were inhibited. HSP70/BAG3 complexes protect cancer cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. The downregulation of HSP70/BAG3 by fisetin significantly reduced the amounts of Bcl-2, Bcl-xL and Mcl-1 proteins, subsequently inducing apoptotic cell death. Chromatin immunoprecipitation assays showed that fisetin inhibited HSF1 activity by blocking the binding of HSF1 to the hsp70 promoter. Intraperitoneal treatment of nude mice with fisetin at 30mg/kg resulted in a 35.7% (P < 0.001) inhibition of tumor growth. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  7. Hsf-1 affects podocyte markers NPHS1, NPHS2 and WT1 in a transgenic mouse model of TTRVal30Met-related amyloidosis.

    Science.gov (United States)

    Petrakis, Ioannis; Mavroeidi, Vasiliki; Stylianou, Kostas; Andronikidi, Eva; Lioudaki, Eirini; Perakis, Kostas; Stratigis, Spyridon; Vardaki, Eleftheria; Zafeiri, Maria; Giannakakis, Kostantinos; Plaitakis, Andreas; Amoiridis, George; Saraiva, Maria Joao; Daphnis, Eugene

    2013-09-01

    Familial amyloid polyneuropathy is characterized by transthyretin (TTR) deposition in various tissues, including the kidneys. While deposition induces organ dysfunction, renal involvement in TTR-related amyloidosis could manifest from proteinuria to end-stage kidney failure. As proteinuria is considered result of glomerular filtration barrier injury we investigated whether TTR deposition affects either glomerular basement membrane (GBM) or podocytes. Immunohistochemistry, immunoblot and gene expression studies for nephrin, podocin and WT1 were run on renal tissue from human-TTRV30M transgenic mice hemizygous or homozygous for heat shock factor one (Hsf-1). Transmission electron microscopy was used for evaluation of podocyte foot process width (PFW) and GBM thickness in Hsf-1 hemizygous mice with or without TTRV30M or amyloid deposition. Glomeruli of hsf-1 hemizygous transgenic mice showed lower nephrin and podocin protein levels but an increased podocyte number when compared to Hsf-1 homozygous transgenic mice. Nephrin, podocin and WT1 gene expression levels were unaffected by the Hsf-1 carrier status. TTRV30M deposition was associated with increased PFW and GBM thickness. Under the effect of Hsf-1 hemizygosity, TTRV30M deposition has deleterious effects on GBM thickness, PFW and slit diaphragm composition, without affecting nephrin and podocin gene expression.

  8. Overexpression of Myo1e in mouse podocytes enhances cellular endocytosis, migration, and adhesion.

    Science.gov (United States)

    Jin, Xia; Wang, Wenjing; Mao, Jianhua; Shen, Huijun; Fu, Haidong; Wang, Xia; Gu, Weizhong; Liu, Aimin; Yu, Huimin; Shu, Qiang; Du, Lizhong

    2014-02-01

    Podocytes are a terminally differentiated and highly specialized cell type in the glomerulus that forms a crucial component of the glomerular filtration barrier. Recently, Myo1e was identified in the podocytes of glomeruli. Myo1e podocyte-specific knockout mice exhibit proteinuria, podocyte foot process effacement, glomerular basement membrane disorganization, signs of chronic renal injury, and kidney inflammation. After overexpression of Myo1e in a conditionally immortalized mouse podocyte cell line (MPC5), podocyte migration was evaluated via transwell assay, endocytosis was evaluated using FITC-transferrin, and adhesion was evaluated using a detachment assay after puromycin aminonucleoside treatment. Myo1e overexpression significantly increased the adherence of podocytes. ANOVA analysis indicated significant differences for cell adhesion between the overexpression and control groups (overexpression vs. control, t = 11.3199, P = 0.005; overexpression vs. negative control, t = 12.0570, P = 0.0006). Overexpression of Myo1e inhibited puromycin aminonucleoside-induced podocyte detachment, and the number of cells remaining on the bottom of the culture plate increased. Cell migration was enhanced in Myo1e-overexpressing podocytes in the transwell migration assay. Internalization of FITC-transferrin also increased in Myo1e-overexpressing podocytes relative to control cells. Overexpression of Myo1e can enhance podocyte migration ability, endocytosis, and attachment to the glomerular basement membrane. Restoration of Myo1e expression in podocytes may therefore strengthen their functional integrity against environmental and mechanical injury. © 2013 Wiley Periodicals, Inc.

  9. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  10. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  11. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang; Ko, Kinarm; Koh, Yong-Gon

    2014-01-01

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  12. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  13. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  14. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  16. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  17. Mediator Recruitment to Heat Shock Genes Requires Dual Hsf1 Activation Domains and Mediator Tail Subunits Med15 and Med16*

    Science.gov (United States)

    Kim, Sunyoung; Gross, David S.

    2013-01-01

    The evolutionarily conserved Mediator complex is central to the regulation of gene transcription in eukaryotes because it serves as a physical and functional interface between upstream regulators and the Pol II transcriptional machinery. Nonetheless, its role appears to be context-dependent, and the detailed mechanism by which it governs the expression of most genes remains unknown. Here we investigate Mediator involvement in HSP (heat shock protein) gene regulation in the yeast Saccharomyces cerevisiae. We find that in response to thermal upshift, subunits representative of each of the four Mediator modules (Head, Middle, Tail, and Kinase) are rapidly, robustly, and selectively recruited to the promoter regions of HSP genes. Their residence is transient, returning to near-background levels within 90 min. Hsf1 (heat shock factor 1) plays a central role in recruiting Mediator, as indicated by the fact that truncation of either its N- or C-terminal activation domain significantly reduces Mediator occupancy, whereas removal of both activation domains abolishes it. Likewise, ablation of either of two Mediator Tail subunits, Med15 or Med16, reduces Mediator recruitment to HSP promoters, whereas deletion of both abolishes it. Accompanying the loss of Mediator, recruitment of RNA polymerase II is substantially diminished. Interestingly, Mediator antagonizes Hsf1 occupancy of non-induced promoters yet facilitates enhanced Hsf1 association with activated ones. Collectively, our observations indicate that Hsf1, via its dual activation domains, recruits holo-Mediator to HSP promoters in response to acute heat stress through cooperative physical and/or functional interactions with the Tail module. PMID:23447536

  18. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  19. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nasution, Olviyani; Lee, Young Mi; Kim, Eunjung; Lee, Yeji; Kim, Wankee; Choi, Wonja

    2017-03-01

    OLE1 of Saccharomyces cerevisiae encodes the sole and essential Δ-9 desaturase catalyzing the conversion of saturated to unsaturated fatty acids. Upon ectopic overexpression of OLE1 in S. cerevisiae, significant increases in the membrane oleic acid content were observed. OLE1-overexpressing strains displayed enhanced tolerance to various stresses, better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide content. The OLE1-mediated enhanced stress tolerance was considerably diminished upon deletion of HOG1, which encodes the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway. Furthermore, OLE1 overexpression constitutively activated Hog1, which remained in the cytoplasm. Hog1 activation was accomplished through the MAPK kinase kinase (MAPKKK) Ssk2, but not Ste11 and Ssk22, the other MAPKKKs of the HOG pathway. Despite its cytoplasmic location, activated Hog1 was able to activate the expression of its canonical targets, including CTT1, HSP12, and STL1, and further, the cAMP and stress response elements present in the promoter. OLE1 overexpression neither caused nor relieved endoplasmic reticulum stress. Individually or in combination, the physiological and molecular changes caused by OLE1 overexpression may contribute to enhanced tolerance to various types of stress. Biotechnol. Bioeng. 2017;114: 620-631. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Enhancing Brassinosteroid Signaling via Overexpression of Tomato (Solanum lycopersicum SlBRI1 Improves Major Agronomic Traits

    Directory of Open Access Journals (Sweden)

    Shuming Nie

    2017-08-01

    Full Text Available Brassinosteroids (BRs play important roles in plant growth, development, and stress responses through the receptor, Brassinosteroid-insensitive 1 (BRI1, which perceives BRs and initiates BR signaling. There is considerable potential agricultural value in regulating BR signaling in crops. In this study, we investigated the effects of overexpressing the tomato (Solanum lycopersicum BRI1 gene, SlBRI1, on major agronomic traits, such as seed germination, vegetative growth, fruit ethylene production, carotenoid accumulation, yield, and quality attributes. SlBRI1 overexpression enhanced the endogenous BR signaling intensity thereby increasing the seed germination rate, lateral root number, hypocotyl length, CO2 assimilation, plant height, and flower size. The transgenic plants also showed an increase in fruit yield and fruit number per plant, although the mean weight of individual fruit was reduced, compared with wild type. SlBRI1 overexpression also promoted fruit ripening and ethylene production, and caused an increase in levels of carotenoids, ascorbic acid, soluble solids, and soluble sugars during fruit ripening. An increased BR signaling intensity mediated by SlBRI1 overexpression was therefore positively correlated with carotenoid accumulation and fruit nutritional quality. Our results indicate that enhancing BR signaling by overexpression of SlBRI1 in tomato has the potential to improve multiple major agronomic traits.

  1. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  2. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  3. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  4. Cellular thermotolerance is independent of HSF 1 expression in zebu and crossbred non-lactating cattle

    Science.gov (United States)

    Gill, Jaspreet Kaur; Arora, J. S.; Sunil Kumar, B. V.; Mukhopadhyay, C. S.; Kaur, Simarjeet; Kashyap, Neeraj

    2017-09-01

    Heat stress is an important domain of research in livestock due to its negative impact on production and disease resistance. The augmentation of stress in the body stimulates the antioxidative activity comprising various enzymes (viz., catalase, superoxide dismutase), metabolites (reduced glutathione, etc.), vitamins, minerals, etc. to combat the situation. The major key players involved in regulation of heat shock response in eukaryotes are the transcription factors, called as heat shock factors (HSF). They activate the heat shock protein (HSP) genes by binding to their promoters. Lymphocytes are considered to be the best model to evaluate the immunity in any living body as it contains plethora of white blood cells (WBCs).In this study, the peripheral blood mononuclear cells (PBMC) obtained from non-lactating Sahiwal vis-à-vis crossbred (Holstein Friesian × Sahiwal) cattle with 75% or more exotic inheritance were subjected to heat shock at 39, 41, and 43 °C in three different incubators, in vitro. The cell count and viability test of pre and post heat stress of concerned PBMCs indicated that the crossbreeds are more prone to heat stress as compared to Sahiwal. The reverse transcription PCR (qRT-PCR) expression data revealed an increment in HSF1 expression at 41 °C which subsequently declined (non-significantly) at 43 °C in both breeds post 1 h heat shock. However, the association between the HSF 1 expression and antioxidative activity through correlation analysis was found to be non-significant ( P < 0.05), though enzymatic activity appeared to behave in a similar fashion in both breeds at 5% level of significance ( P < 0.05). This rule out the role of HSF1 expression level on the activity of enzymes involved in oxidative stress in vitro in zebu and crossbred cattle.

  5. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  6. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.

  7. Increased HSF activation in muscles with a high constitutive Hsp70 expression

    OpenAIRE

    Locke, Marius; Tanguay, Robert M.

    1996-01-01

    Stress-induced transcriptional regulation of the Hsps is mediated by trimerization and binding of a pre-existing heat shock transcription factor (HSF1) to a specific DNA sequence located in the 5′ region of hsp genes, known as the heat shock element. Hsp70 has been implicated in regulating the activation of the HSF and, according to cell culture models, high steady-state levels of Hsp70 are inversely correlated with HSF activation. To determine if this applies in an intact animal, muscles of ...

  8. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  9. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.

    Science.gov (United States)

    Kwon, Wookbong; Kim, Hyeng-Soo; Jeong, Jain; Sung, Yonghun; Choi, Minjee; Park, Song; Lee, Jinhee; Jang, Soyoung; Kim, Sung Hyun; Lee, Sanggyu; Kim, Myoung Ok; Ryoo, Zae Young

    2018-01-01

    Ten-eleven translocation methylcytosine dioxygenase 1 ( Tet1 ) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1 , c-fos , Arc , and Bdnf , followed by the activation of intracellular calcium signals ( i.e. , CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits ( Gabra2 and Gabra4 ) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. © FASEB.

  10. Overexpression of Insulin-Like Growth Factor 1 Enhanced the Osteogenic Capability of Aging Bone Marrow Mesenchymal Stem Cells.

    Science.gov (United States)

    Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung

    2017-01-01

    Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.

  11. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses.

    Science.gov (United States)

    Zhang, Jin; Liu, Bobin; Li, Jianbo; Zhang, Li; Wang, Yan; Zheng, Huanquan; Lu, Mengzhu; Chen, Jun

    2015-03-14

    Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.

  12. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  13. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  14. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  15. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  16. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi

    2013-10-01

    GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    Science.gov (United States)

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  18. Data supporting the angiotensin II activates MEL18 to deSUMOylate HSF2 for hypertension-related heart failure

    Directory of Open Access Journals (Sweden)

    Chih-Yang Huang

    2018-02-01

    Full Text Available In association with the published article “Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy” (Huang et al., 2017 [1], this data article contains information about deSUMOylation of HSF2 on lysine 82 on angiotensin II (ANG II -induced cardiac hypertrophy, which is mediated by MEL18. Isolated adult human whole heart tissue showed MEL18-mediated HSF2-IGF-IIR pathway is upregulated in hypertension human heart, compared to health human heart.

  19. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes.

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J Shawn; Okoro, Emmanuel U; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and

  20. Enhancement of ginsenoside Rg(1) in Panax ginseng hairy root by overexpressing the α-L-rhamnosidase gene from Bifidobacterium breve.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; Li, Gu-Cai; Xie, Tao; Hu, Teng; Luo, Zhi-Yong

    2015-10-01

    To improve the production of ginsenoside Rg1 in Panax ginseng. The α-L-rhamnosidase gene from Bifidobacterium breve (BbRha) was overexpressed into hairy root culture system using Agrobacterium rhizogenes A4. Ginsenoside Rg1 in hairy roots was obtained following transformation via overexpressed gene representing 2.2-fold higher than those of control lines. Several overexpression transgenic hairy root lines were obtained exhibiting markedly increased levels of the corresponding α-L-rhamnosidase enzymatic activity relative to control. Ginsenoside Rg1 levels in the transgenic lines were higher (2.2-fold) than those of control after following 30 days culturing, while ginsenoside Re contents in tested transgenic lines were found to be lower. The transgenic hairy roots harboring α-L-rhamnosidase gene improved the accumulation of ginsenoside Rg1 up to 3.6 mg g(-1) dry weight. BbRha gene selectively enhances the production of ginsenoside Rg1 in P. ginseng hairy roots.

  1. Overexpression of the polycystin-1 (PC-1) C-tail enhances sensitivity of M-1 cells to ouabain

    Science.gov (United States)

    Jansson, Kyle; Magenheimer, Brenda S.; Maser, Robin L.; Calvet, James P.; Blanco, Gustavo

    2014-01-01

    Cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD) are abnormally sensitive to ouabain, responding to physiological ouabain concentrations with enhanced proliferation and increased forskolin-induced transepithelial fluid secretion. This requires activation of the epidermal growth factor receptor (EGFR), Src kinase, and the extracellular regulated kinases MEK and ERK. Here, we have determined if the ADPKD phenotype obtained in mouse cortical collecting duct cells by stable overexpression of the C-terminal domain of polycystin-1 (PC-1 C-tail) also elicits the ADPKD-like response to ouabain in the cells. M-1 C20 cells expressing the PC-1 C-tail, and M-1 C17 cells, lacking expression of this construct, were treated with physiological concentrations of ouabain, and cell proliferation, activation of the EGFR-Src-MEK-ERK pathway, forskolin-induced transepithelial Cl− secretion, and the sensitivity of the Na,K-ATPase to ouabain were explored. M-1 C20 cells responded to ouabain with increased cell proliferation and ERK phosphorylation. Ouabain also augmented forskolin-induced and cystic fibrosis transmembrane conductance regulator (CFTR)-mediated apical secretion of Cl− in M-1 C20 cells. These effects required activation of EGFR, Src and MEK. In contrast, ouabain had no significant effects on M-1 C17 cells. Interestingly, approximately 20 % of the Na,K-ATPase from M-1 C20 cells presented an abnormally increased sensitivity to ouabain. Overexpression of PC-1 C-tail in M-1 C20 cells is associated with a ouabain sensitive phenotype and an increased ability of the cells to proliferate and secrete anions upon ouabain stimulation. This phenotype mimics the ouabain sensitivity of ADPKD cells and may help promote their cystogenic potential. PMID:23784065

  2. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    Science.gov (United States)

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  3. Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suzhen Li

    Full Text Available Iron and zinc are important micronutrients for both the growth and nutrient availability of crop plants, and their absorption is tightly controlled by a metal uptake system. Zinc-regulated transporters, iron-regulated transporter-like proteins (ZIP, is considered an essential metal transporter for the acquisition of Fe and Zn in graminaceous plants. Several ZIPs have been identified in maize, although their physiological function remains unclear. In this report, ZmIRT1 was shown to be specifically expressed in silk and embryo, whereas ZmZIP3 was a leaf-specific gene. Both ZmIRT1 and ZmZIP3 were shown to be localized to the plasma membrane and endoplasmic reticulum. In addition, transgenic Arabidopsis plants overexpressing ZmIRT1 or ZmZIP3 were generated, and the metal contents in various tissues of transgenic and wild-type plants were examined based on ICP-OES and Zinpyr-1 staining. The Fe and Zn concentration increased in roots and seeds of ZmIRT1-overexpressing plants, while the Fe content in shoots decreased. Overexpressing ZmZIP3 enhanced Zn accumulation in the roots of transgenic plants, while that in shoots was repressed. In addition, the transgenic plants showed altered tolerance to various Fe and Zn conditions compared with wild-type plants. Furthermore, the genes associated with metal uptake were stimulated in ZmIRT1 transgenic plants, while those involved in intra- and inter- cellular translocation were suppressed. In conclusion, ZmIRT1 and ZmZIP3 are functional metal transporters with different ion selectivities. Ectopic overexpression of ZmIRT1 may stimulate endogenous Fe uptake mechanisms, which may facilitate metal uptake and homeostasis. Our results increase our understanding of the functions of ZIP family transporters in maize.

  4. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences.

    Science.gov (United States)

    Pérez-Landero, Sergio; Sandoval-Motta, Santiago; Martínez-Anaya, Claudia; Yang, Runying; Folch-Mallol, Jorge Luis; Martínez, Luz María; Ventura, Larissa; Guillén-Navarro, Karina; Aldana-González, Maximino; Nieto-Sotelo, Jorge

    2015-07-27

    The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in the absence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential

  5. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  6. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Directory of Open Access Journals (Sweden)

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  7. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    Science.gov (United States)

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  9. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    International Nuclear Information System (INIS)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten; Zeller, W. Jens

    2010-01-01

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  10. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    Science.gov (United States)

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  11. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    Science.gov (United States)

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-01-01

    Full Text Available Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.

  13. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  14. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  15. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  16. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population.

    Science.gov (United States)

    Kubo, Atsushi; Stull, Robert; Takeuchi, Mitsuaki; Bonham, Kristina; Gouon-Evans, Valerie; Sho, Masayuki; Iwano, Masayuki; Saito, Yoshihiko; Keller, Gordon; Snodgrass, Ralph

    2011-01-01

    In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+) endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells.

  17. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    Energy Technology Data Exchange (ETDEWEB)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Zeller, W. Jens [Pharmacology of Cancer Treatment, German Cancer Research Center, Heidelberg (Germany)

    2010-02-15

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  18. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  19. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population.

    Directory of Open Access Journals (Sweden)

    Atsushi Kubo

    Full Text Available In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2, and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+ endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells.

  20. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Guo, Meng; Lu, Jin-Ping; Zhai, Yu-Fei; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2015-06-19

    Heat shock factors (Hsfs) play crucial roles in plant developmental and defence processes. The production and quality of pepper (Capsicum annuum L.), an economically important vegetable crop, are severely reduced by adverse environmental stress conditions, such as heat, salt and osmotic stress. Although the pepper genome has been fully sequenced, the characterization of the Hsf gene family under abiotic stress conditions remains incomplete. A total of 25 CaHsf members were identified in the pepper genome by bioinformatics analysis and PCR assays. They were grouped into three classes, CaHsfA, B and C, based on highly conserved Hsf domains, were distributed over 11 of 12 chromosomes, with none found on chromosome 11, and all of them, except CaHsfA5, formed a protein-protein interaction network. According to the RNA-seq data of pepper cultivar CM334, most CaHsf members were expressed in at least one tissue among root, stem, leaf, pericarp and placenta. Quantitative real-time PCR assays showed that all of the CaHsfs responded to heat stress (40 °C for 2 h), except CaHsfC1 in thermotolerant line R9 leaves, and that the expression patterns were different from those in thermosensitive line B6. Many CaHsfs were also regulated by salt and osmotic stresses, as well as exogenous Ca(2+), putrescine, abscisic acid and methyl jasmonate. Additionally, CaHsfA2 was located in the nucleus and had transcriptional activity, consistent with the typical features of Hsfs. Time-course expression profiling of CaHsfA2 in response to heat stress revealed differences in its expression level and pattern between the pepper thermosensitive line B6 and thermotolerant line R9. Twenty-five Hsf genes were identified in the pepper genome and most of them responded to heat, salt, osmotic stress, and exogenous substances, which provided potential clues for further analyses of CaHsfs functions in various kinds of abiotic stresses and of corresponding signal transduction pathways in pepper.

  1. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress.

    Science.gov (United States)

    Klumpe, Inga; Savvatis, Konstantinos; Westermann, Dirk; Tschöpe, Carsten; Rauch, Ursula; Landmesser, Ulf; Schultheiss, Heinz-Peter; Dörner, Andrea

    2016-06-01

    Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.

  2. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer.

    Science.gov (United States)

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-04-12

    Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.

  3. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner.

    Science.gov (United States)

    Amorós, M; Estruch, F

    2001-03-01

    Saccharomyces cerevisiae possesses several transcription factors involved in the transcriptional activation of stress-induced genes. Among them, the heat shock factor (Hsf1p) and the zinc finger proteins of the general stress response (Msn2p and Msn4p) have been shown to play a major role in stress protection. Some heat shock protein (HSP) genes contain both heat shock elements (HSEs) and stress response elements (STREs), suggesting the involvement of both transcription factors in their regulation. Analysis of the stress-induced expression of two of these genes, HSP26 and HSP104, reveals that the contribution of Hsf1p and Msn2/4p is different depending on the gene and the stress condition.

  4. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  5. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Directory of Open Access Journals (Sweden)

    Wendy B Iser

    2011-03-01

    Full Text Available Insulin/IGF-I-like signaling (IIS has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  6. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Science.gov (United States)

    Iser, Wendy B; Wilson, Mark A; Wood, William H; Becker, Kevin; Wolkow, Catherine A

    2011-03-09

    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  7. Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance.

    Science.gov (United States)

    Peng, Yunling; Zhang, Jinpeng; Cao, Gaoyi; Xie, Yuanhong; Liu, Xihui; Lu, Minhui; Wang, Guoying

    2010-07-01

    Phospholipase D (PLD) plays an important role in various physiological processes in plants, including drought tolerance. Here, we report the cloning and characterization of the full-length cDNA of PLDalpha1 from foxtail millet, which is a cereal crop with high water use efficiency. The expression pattern of the SiPLDalpha1 gene in foxtail millet revealed that it is up-regulated under dehydration, ABA and NaCl treatments. Heterologous overexpression of SiPLDalpha1 in Arabidopsis can significantly enhance their sensitivity to ABA, NaCl and mannitol during post-germination growth. Under water deprivation, overexpression of SiPLDalpha1 in Arabidopsis resulted in significantly enhanced tolerance to drought stress, displaying higher biomass and RWC, lower ion leakage and higher survival percentages than the wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18 and RD22, and the ABA-related genes, ABI1 and NCED3 under dehydration conditions. These results demonstrate that SiPLDalpha1 is involved in plant stress signal transduction, especially in the ABA signaling pathway. Moreover, no obvious adverse effects on growth and development in the 35S::SiPLDalpha1 transgenic plants implied that SiPLDalpha1 is a good candidate gene for improving crop drought tolerance.

  8. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases.

    Science.gov (United States)

    Yeh, Yu-Hung; Chang, Yu-Hsien; Huang, Pin-Yao; Huang, Jing-Bo; Zimmerli, Laurent

    2015-01-01

    Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs) possess two copies of the C-X8-C-X2-C (DUF26) motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here, we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6, and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1) was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6, and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  9. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses.

    Science.gov (United States)

    Saema, Syed; Rahman, Laiq Ur; Singh, Ruchi; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha

    2016-01-01

    Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and

  10. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  11. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    Science.gov (United States)

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  12. Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice.

    Science.gov (United States)

    Fu, Xiao-Yan; Zhu, Bo; Han, Hong-Juan; Zhao, Wei; Tian, Yong-Sheng; Peng, Ri-He; Yao, Quan-Hong

    2016-01-01

    The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial. Phytoremediation is an efficient technology to clean up contaminants. However, no gene that can efficiently degrade exogenous recalcitrant naphthalene in plants has yet been discovered. Ferredoxin (Fd) is a key player of biological electron transfer reaction in the PAH degradation process. The biochemical pathway for bacterial degradation of naphthalene has been well investigated. In this study, a rice gene, ADI1, which codes for a putative photosynthetic-type Fd, has been transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants enhanced tolerance and degradation efficiency of naphthalene. Compared with wild-type plants, transgenic plants assimilated naphthalene from the culture media faster and removed more of this substance. When taken together, our findings suggest that breeding plants with overexpressed ADI1 gene is an effective strategy to degrade naphthalene in the environment.

  13. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    International Nuclear Information System (INIS)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  14. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  15. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  16. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance.

    Science.gov (United States)

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-03-23

    Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T 0 -P, red: T 0 -R, and strong red: T 0 -S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T 2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

  17. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    Directory of Open Access Journals (Sweden)

    Marizela Delic

    2014-10-01

    Full Text Available Oxidative folding of secretory proteins in the endoplasmic reticulum (ER is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity.

  18. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei.

    Science.gov (United States)

    Wu, Yilan; Sun, Xianhua; Xue, Xianli; Luo, Huiying; Yao, Bin; Xie, Xiangming; Su, Xiaoyun

    2017-11-01

    Vast interest exists in developing T. reesei for production of heterologous proteins. Although rich genomic and transcriptomic information has been uncovered for the T. reesei secretion pathway, little is known about whether engineering its key components could enhance expression of a heterologous gene. In this study, snc1, a v-SNARE gene, was first selected for overexpression in T. reesei. In engineered T. reesei with additional copies of snc1, the Aspergillus niger glucose oxidase (AnGOD) was produced to a significantly higher level (2.2-fold of the parental strain). hac1 and bip1, two more component genes in the secretion pathway, were further tested for overexpression and found to be also beneficial for AnGOD secretion. The overexpression of one component gene more or less affected the expression of the other two genes, suggesting a complex regulating mechanism. Our study demonstrates the potential of engineering the secretion pathway for enhancing heterologous gene production in T. reesei. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice.

    Directory of Open Access Journals (Sweden)

    Tetsuya Chujo

    Full Text Available WRKY transcription factors and mitogen-activated protein kinase (MAPK cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster. When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.

  20. Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice

    Science.gov (United States)

    Ogawa, Satoshi; Masuda, Yuka; Shimizu, Takafumi; Kishi-Kaboshi, Mitsuko; Takahashi, Akira; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2014-01-01

    WRKY transcription factors and mitogen-activated protein kinase (MAPK) cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster). When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD) showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants. PMID:24892523

  1. Lessons from the use of genetically modified Drosophila melanogaster in ecological studies: Hsf mutant lines show highly trait-specific performance in field and laboratory thermal assays

    DEFF Research Database (Denmark)

    Sørensen, Jesper Givskov; Loeschcke, Volker; Kristensen, Torsten Nygård

    2009-01-01

    . 2.  We have tested the importance of inducible heat shock proteins (Hsps) under different thermal conditions using two heat shock factor (Hsf) mutant lines (either able (Hsf+) or unable (Hsf0) to mount a heat stress response) and an outbred laboratory adapted wild-type line of Drosophila......1.  Laboratory studies on genetically modified strains may reveal important information on mechanisms involved in coping with thermal stress. However, to address the evolutionary significance of specific genes or physiological mechanisms, ecologically relevant field tests should also be performed...

  2. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region

    Directory of Open Access Journals (Sweden)

    Jordi Pujols

    2018-05-01

    Full Text Available Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1 protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.

  3. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region.

    Science.gov (United States)

    Pujols, Jordi; Santos, Jaime; Pallarès, Irantzu; Ventura, Salvador

    2018-05-06

    Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.

  4. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    Science.gov (United States)

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  5. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  6. Hand1 overexpression inhibits medulloblastoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Asuthkar, Swapna; Guda, Maheedhara R. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Martin, Sarah E. [Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Antony, Reuben; Fernandez, Karen [Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Lin, Julian [Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Tsung, Andrew J. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Illinois Neurological Institute, Peoria, IL 61656 (United States); Velpula, Kiran K., E-mail: velpula@uic.edu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States)

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  7. Hand1 overexpression inhibits medulloblastoma metastasis

    International Nuclear Information System (INIS)

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J.; Velpula, Kiran K.

    2016-01-01

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  8. RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2017-06-01

    Full Text Available The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought- and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions. GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response, but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.

  9. A novel HSF4 gene mutation (p.R405X causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan

    Directory of Open Access Journals (Sweden)

    Cheema Abdul

    2008-11-01

    Full Text Available Abstract Background Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667. Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene. Methods A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438 was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4 were sequenced. A mutation-specific restriction enzyme digest (HphI was performed for all family members and unrelated controls. Results The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X. Conclusion We identified the first nonsense mutation (p.R405X in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.

  10. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    Science.gov (United States)

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  11. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

    Science.gov (United States)

    Han, Ye; Han, Shoukun; Ban, Qiuyan; He, Yiheng; Jin, Mijing; Rao, Jingping

    2017-04-01

    DkXTH1 promoted cell elongation and more strength to maintain structural integrity by involving in cell wall assembly, thus enhanced tolerance to abiotic stress with broader phenotype in transgenic plants. Xyloglucan endotransglucosylase/hydrolase (XTH) is thought to play a key role in cell wall modifications by cleaving and re-joining xyloglucan, and participates in the diverse physiological processes. DkXTH1 was found to peak in immature expanding persimmon fruit, and its higher expression level exhibited along with firmer fruit during storage. In the present study, transgenic Arabidopsis and tomato plants were generated with DkXTH1 constitutively expressed. Overexpression of DkXTH1 enhanced tolerance to salt, ABA and drought stresses in transgenic Arabidopsis plants with respect to root and leaf growth, and survival. Transgenic tomatoes collected at the mature green stage, presented delayed fruit softening coupled with postponed color change, a later and lower ethylene peak, and higher firmness in comparison with the wild-type tomatoes during storage. Furthermore, broader leaves and tomato fruit with larger diameter were gained in transgenic Arabidopsis and tomato, respectively. Most importantly, transgenic plants exhibited more large and irregular cells with higher density of cell wall and intercellular spaces, resulting from the overactivity of XET enzymes involving in cell wall assembly. We suggest that DkXTH1 expression resulted in cells with more strength and thickness to maintain structural integrity, and thus enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants.

  12. Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects.

    Science.gov (United States)

    Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A

    2018-04-01

    Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.

  13. Overexpression of histone demethylase Fbxl10 leads to enhanced migration in mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Magdalena; Sievers, Elisabeth; Janzer, Andreas [Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Willmann, Dominica [Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg (Germany); Egert, Angela; Schorle, Hubert [Department of Developmental Pathology, Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Schüle, Roland [Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg (Germany); Kirfel, Jutta, E-mail: Jutta.Kirfel@ukb.uni-bonn.de [Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2016-11-01

    Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing, immune responses and invasive tumors all require the orchestrated movement of cells to specific locations. Histone demethylase proteins alter transcription by regulating the chromatin state at specific gene loci. FBXL10 is a conserved and ubiquitously expressed member of the JmjC domain-containing histone demethylase family and is implicated in the demethylation of H3K4me3 and H3K36me2 and thereby removing active chromatin marks. However, the physiological role of FBXL10 in vivo remains largely unknown. Therefore, we established an inducible gain of function model to analyze the role of Fbxl10 and compared wild-type with Fbxl10 overexpressing mouse embryonic fibroblasts (MEFs). Our study shows that overexpression of Fbxl10 in MEFs doesn’t influence the proliferation capability but leads to an enhanced migration capacity in comparison to wild-type MEFs. Transcriptome and ChIP-seq experiments demonstrated that Fbxl10 binds to genes involved in migration like Areg, Mdk, Lmnb1, Thbs1, Mgp and Cxcl12. Taken together, our results strongly suggest that Fbxl10 plays a critical role in migration by binding to the promoter region of migration-associated genes and thereby might influences cell behaviour to a possibly more aggressive phenotype. - Highlights: • Migration capability of MEFs is enhanced after Fbxl10 upregulation. • Overexpression of Fbxl10 induced migration-associated genes. • Fbxl10 binds directly to migration-associated genes.

  14. Overexpression of histone demethylase Fbxl10 leads to enhanced migration in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Rohde, Magdalena; Sievers, Elisabeth; Janzer, Andreas; Willmann, Dominica; Egert, Angela; Schorle, Hubert; Schüle, Roland; Kirfel, Jutta

    2016-01-01

    Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing, immune responses and invasive tumors all require the orchestrated movement of cells to specific locations. Histone demethylase proteins alter transcription by regulating the chromatin state at specific gene loci. FBXL10 is a conserved and ubiquitously expressed member of the JmjC domain-containing histone demethylase family and is implicated in the demethylation of H3K4me3 and H3K36me2 and thereby removing active chromatin marks. However, the physiological role of FBXL10 in vivo remains largely unknown. Therefore, we established an inducible gain of function model to analyze the role of Fbxl10 and compared wild-type with Fbxl10 overexpressing mouse embryonic fibroblasts (MEFs). Our study shows that overexpression of Fbxl10 in MEFs doesn’t influence the proliferation capability but leads to an enhanced migration capacity in comparison to wild-type MEFs. Transcriptome and ChIP-seq experiments demonstrated that Fbxl10 binds to genes involved in migration like Areg, Mdk, Lmnb1, Thbs1, Mgp and Cxcl12. Taken together, our results strongly suggest that Fbxl10 plays a critical role in migration by binding to the promoter region of migration-associated genes and thereby might influences cell behaviour to a possibly more aggressive phenotype. - Highlights: • Migration capability of MEFs is enhanced after Fbxl10 upregulation. • Overexpression of Fbxl10 induced migration-associated genes. • Fbxl10 binds directly to migration-associated genes.

  15. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    Science.gov (United States)

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  16. Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation.

    Science.gov (United States)

    Sandiford, Shelley D E; Kennedy, Karen A M; Xie, Xiaojun; Pickering, J Geoffrey; Li, Shawn S C

    2014-01-11

    Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1.

  17. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  18. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance

    OpenAIRE

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-01-01

    Background Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. Results In tobacco (Nicotiana tabacum ?Xanthi?), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines display...

  19. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  20. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    Science.gov (United States)

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  1. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension.

    Science.gov (United States)

    Sun, Jia-Cen; Liu, Bing; Zhang, Ru-Wen; Jiao, Pei-Lei; Tan, Xing; Wang, Yang-Kai; Wang, Wei-Zhong

    2018-01-01

    Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM. Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of WKY and SHR. Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly ( P Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol). Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α. Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  2. Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades

    Directory of Open Access Journals (Sweden)

    Masako Nakamura

    2012-02-01

    Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR. Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2 conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.

  3. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    Science.gov (United States)

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    Science.gov (United States)

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  5. In planta Transformed Cumin (Cuminum cyminum L. Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    Directory of Open Access Journals (Sweden)

    Sonika Pandey

    Full Text Available Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13, overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid, and lower electrolytic leakage, lipid peroxidation (MDA content and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.

  6. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  7. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    Science.gov (United States)

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  8. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension

    Directory of Open Access Journals (Sweden)

    Jia-Cen Sun

    2018-03-01

    Full Text Available Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R in the rostral ventrolateral medulla (RVLM. β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR, and further determine the effect of β-arrestin1 on AT1R expression in the RVLM.Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1 into the RVLM of WKY and SHR.Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly (P < 0.05 downregulated by an average of 64% in SHR than WKY. Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol. Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α.Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  9. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard

    International Nuclear Information System (INIS)

    LeDuc, Danika L.; AbdelSamie, Manal; Montes-Bayon, Maria; Wu, Carol P.; Reisinger, Sarah J.; Terry, Norman

    2006-01-01

    A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., Boeck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APS x SMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT. - Simultaneous overexpression of APS and SMT genes in Indian mustard greatly increases ability to accumulate selenate

  10. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis.

    Science.gov (United States)

    Tian, Yinshuai; Lv, Xueyan; Xie, Guilan; Zhang, Jing; Xu, Ying; Chen, Fang

    2018-06-02

    Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  12. Prognostic implication of NQO1 overexpression in hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Lijuan; Sun, Jie; Tan, Yan; Li, Zhenling; Kong, Fanyong; Shen, Yue; Liu, Chao; Chen, Litian

    2017-11-01

    To explore the role of NQO1 overexpression for prognostic implication in hepatocellular carcinoma (HCC), NQO1 mRNA levels were detected in HCC fresh tissue samples of HCC and nontumor tissues, respectively. One hundred fifty-six cases of HCC meeting strict follow-up criteria were selected for immunohistochemical staining of NQO1 protein. Correlations between NQO1 overexpression and clinicopathological features of HCC were evaluated using χ 2 tests, survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient 5-year survival was analyzed using Cox proportional hazards analysis. In results, the levels of NQO1 mRNA were significantly up-regulated in 14 fresh tissue samples of HCC. Immunohistochemical analysis showed that the NQO1 expression and overexpression rates were significantly higher in HCC samples compared with either adjacent nontumor tissues or normal liver tissues. NQO1 overexpression correlated to tumor size, venous infiltration and late pTNM stage of HCC. NQO1 overexpression was also related to low disease-free survival and 5-year survival rates. In the late-stage group, disease-free and 5-year survival rates of patients with NQO1 overexpression were significantly lower than those of patients without NQO1 expression. Further analysis using a Cox proportional hazards regression model revealed that NQO1 expression emerged as a significant independent hazard factor for the 5-year survival rate of patients with HCC. Therefore, NQO1 plays an important role in the progression of HCC. NQO1 may potentially be used as an independent biomarker for prognostic evaluation of HCC. Copyright © 2017. Published by Elsevier Inc.

  13. Prognostic implication of aquaporin 1 overexpression in resected lung adenocarcinoma.

    Science.gov (United States)

    Bellezza, Guido; Vannucci, Jacopo; Bianconi, Fortunato; Metro, Giulio; Del Sordo, Rachele; Andolfi, Marco; Ferri, Ivana; Siccu, Paola; Ludovini, Vienna; Puma, Francesco; Sidoni, Angelo; Cagini, Lucio

    2017-12-01

    Aquaporins (AQPs) are a group of transmembrane water-selective channel proteins thought to play a role in the regulation of water permeability for plasma membranes. Indeed, high AQP levels have been suggested to promote the progression, invasion and metastasis of tumours. Specifically, AQP1 and AQP5 overexpression in lung adenocarcinoma (AC) have been suggested to be involved in molecular mechanisms in lung cancer. The aim of this retrospective cohort single-centre study was to assess both the levels of expression and therein the prognostic significance, regarding outcome of AQP1 and AQP5 in resected AC patients. Patients with histological diagnoses of lung AC submitted to pulmonary resection were included in this cohort study. Tissue microarrays containing cores from 185 ACs were prepared. AQP1 and AQP5 expressions were assessed by immunohistochemistry. Results were scored as either low (Score 0-2) or high (Score 3-9). Clinical data, pathological tumour-node-metastasis staging and follow-up were recorded. Multivariate Cox survival analysis and Fisher's t-test were performed. AQP1 overexpression was detected in 85 (46%) patients, while AQP5 overexpression was observed in 45 (24%) patients. AQP1 did not result being significantly correlated with clinical and pathological parameters, while AQP5 resulted more expressed in AC with mucinous and papillary predominant patterns. Patients with AQP1 overexpression had shorter disease-free survival (P = 0.001) compared with patients without AQP1 overexpression. Multivariate analysis confirmed that AQP1 overexpression was significantly associated with shorter disease-free survival (P = 0.001). Our results evidenced that AQP1 overexpression resulted in a shorter disease-free survival in lung AC patients. Being so, AQP1 overexpression might be an important prognostic marker in lung AC. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights

  14. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

    Science.gov (United States)

    Huang, Zih-Ning; Chung, Her Min; Fang, Su-Chiung; Her, Lu-Shiun

    2017-01-01

    Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction. PMID:29209146

  15. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  16. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  17. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration

    Science.gov (United States)

    Liang, Zhi-Jie; Huang, Min-Hong; Peng, Qi-Liu; Zou, Dong-Hua; Gu, Rong-He; Xu, Fang-Tian; Gao, Hui; Chen, Zhen-Dong; Chi, Guang-Yi; Wei, Zhong-Heng; Chen, Li; Li, Hong-Mian

    2017-01-01

    Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation. PMID:28423354

  18. Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Grotkjær, Thomas; Hofmann, Gerald

    2009-01-01

    .7.1.86) has been identified. The enzyme has a predicted molecular weight of 49 kDa. We characterised the role of this NADH kinase by genomic integration of the putative gene AN8837.2 under a strong constitutive promoter. The physiological effects of overexpressed NADH kinase in combination with different...... yield on glucose and the maximum specific growth rate increased from 0.47 g/g and 0.22 h(-1) (wild type) to 0.54 g/g and 0.26 h(-1) (NADH kinase overexpressed), respectively. The results suggest that overexpression of NADH kinase improves the growth efficiency of the cell by increasing the access...

  19. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  20. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    International Nuclear Information System (INIS)

    Kasper, Grit; Lehmann, Kerstin E; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N

    2007-01-01

    Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated 'early stage' breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in

  1. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kenneth E. Bernstein

    2016-03-01

    Full Text Available Angiotensin-converting enzyme (ACE converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA. Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.

  2. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  3. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis.

    Science.gov (United States)

    Vaidyanathan, S; Cato, K; Tang, L; Pavey, S; Haass, N K; Gabrielli, B G; Duijf, P H G

    2016-10-13

    Cell cycle genes are often aberrantly expressed in cancer, but how their misexpression drives tumorigenesis mostly remains unclear. From S phase to early mitosis, EMI1 (also known as FBXO5) inhibits the anaphase-promoting complex/cyclosome, which controls cell cycle progression through the sequential degradation of various substrates. By analyzing 7403 human tumor samples, we find that EMI1 overexpression is widespread in solid tumors but not in blood cancers. In solid cancers, EMI1 overexpression is a strong prognostic marker for poor patient outcome. To investigate causality, we generated a transgenic mouse model in which we overexpressed Emi1. Emi1-overexpressing animals develop a wide variety of solid tumors, in particular adenomas and carcinomas with inflammation and lymphocyte infiltration, but not blood cancers. These tumors are significantly larger and more penetrant, abundant, proliferative and metastatic than control tumors. In addition, they are highly aneuploid with tumor cells frequently being in early mitosis and showing mitotic abnormalities, including lagging and incorrectly segregating chromosomes. We further demonstrate in vitro that even though EMI1 overexpression may cause mitotic arrest and cell death, it also promotes chromosome instability (CIN) following delayed chromosome alignment and anaphase onset. In human solid tumors, EMI1 is co-expressed with many markers for CIN and EMI1 overexpression is a stronger marker for CIN than most well-established ones. The fact that Emi1 overexpression promotes CIN and the formation of solid cancers in vivo indicates that Emi1 overexpression actively drives solid tumorigenesis. These novel mechanistic insights have important clinical implications.

  5. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  6. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Yuanman Tang

    2017-11-01

    Full Text Available Various classes of plant pathogenesis-related proteins have been identified in the past several decades. PR-Q, a member of the PR3 family encoding chitinases, has played an important role in regulating plant resistance and preventing pathogen infection. In this paper, we functionally characterized NtPR-Q in tobacco plants and found that the overexpression of NtPR-Q in tobacco Yunyan87 resulted in higher resistance to Ralstonia solanacearum inoculation. Surprisingly, overexpression of NtPR-Q led to the activation of many defense-related genes, such as salicylic acid (SA-responsive genes NtPR1a/c, NtPR2 and NtCHN50, JA-responsive gene NtPR1b and ET production-associated genes NtACC Oxidase and NtEFE26. Consistent with the role of NtPR-Q in multiple stress responses, NtPR-Q transcripts were induced by the exogenous hormones SA, ethylene and methyl jasmonate, which could enhance the resistance of tobacco to R. solanacearum. Collectively, our results suggested that NtPR-Q overexpression led to the up-regulation of defense-related genes and enhanced plant resistance to R. solanacearum infection.

  7. Overexpression of PSP1 enhances growth of transgenic Arabidopsis plants under ambient air conditions.

    Science.gov (United States)

    Han, Xiaofang; Peng, Keli; Wu, Haixia; Song, Shanshan; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2017-07-01

    The importance of the phosphorylated pathway (PPSB) of L-serine (Ser) biosynthesis in plant growth and development has been demonstrated, but its specific role in leaves and interaction with photorespiration, the main leaf Ser biosynthetic pathway at daytime, are still unclear. To investigate whether changes in biosynthesis of Ser by the PPSB in leaves could have an impact on photorespiration and plant growth, we overexpressed PSP1, the last enzyme of this pathway, under control of the Cauliflower Mosaic Virus 35S promoter in Arabidopsis thaliana. Overexpressor plants grown in normal air displayed larger rosette diameter and leaf area as well as higher fresh and dry weight than the wild type. By contrast, no statistically significant differences to the wild type were observed when the overexpressor seedlings were transferred to elevated CO 2 , indicating a relationship between PSP1 overexpression and photorespiration. Additionally, the transgenic plants displayed higher photorespiration, an increase in CO 2 net-uptake and stronger expression in the light of genes encoding enzymes involved in photorespiration. We further demonstrated that expression of many genes involved in nitrogen assimilation was also promoted in leaves of transgenic plants and that leaf nitrate reductase activity increased in the light, too, although not in the dark. Our results suggest a close correlation between the function of PPSB and photorespiration, and also nitrogen metabolism in leaves.

  8. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  9. Frequent Nek1 overexpression in human gliomas

    International Nuclear Information System (INIS)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-01-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  10. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Won Je; Jeong, Chan Young; Kwon, Jaeyoung; Van Kien, Vu; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-11-01

    KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.

  11. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  12. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    Science.gov (United States)

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  14. Cyclophilin B enhances HIV-1 infection

    International Nuclear Information System (INIS)

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  15. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  16. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  17. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  18. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    International Nuclear Information System (INIS)

    Chuang, Jian-Ying; Hung, Jan-Jong

    2011-01-01

    Highlights: → Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. → Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. → Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  19. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  20. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.

    Science.gov (United States)

    Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François

    2016-09-06

    The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  2. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    Science.gov (United States)

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  3. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    Science.gov (United States)

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  4. Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum

    Directory of Open Access Journals (Sweden)

    Peng Kang

    2016-10-01

    Full Text Available Salinization, desertification, and soil nutrient deprivation are threatening the production of alfalfa (Medicago sativa L. in northern China. We have previously generated T0 transgenic alfalfa co-overexpressing Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 genes with enhanced salt and drought tolerance. To further develop this excellent breeding material into the new forage cultivar, stress tolerance, productivity, and forage quality of T1 transgenic alfalfa (GM were assessed in this study. The GM inherited the traits of salt and drought tolerance from T0 generation. Most importantly, co-overexpression of ZxNHX and ZxVP1-1 enhanced the tolerance to Pi deficiency in GM, which was associated with more Pi accumulation in plants. Meanwhile, T1 transgenic alfalfa developed a larger root system with increased root size, root dry weight and root/shoot ratio, which may be one important reason for the improvement of phosphorus nutrition and high biomass accumulation in GM under various conditions. GM also accumulated more crude protein, crude fibre, crude fat, and crude ash than wild-type (WT plants, especially under stress conditions and in the field. More interestingly, the crude fat contents sharply dropped in WT (by 66%-74%, whereas showed no change or decreased less in GM, when subjected to salinity, drought or low-Pi. Our results indicate that T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 shows stronger stress tolerance, higher productivity and better forage quality. This study provides a solid foundation for creating the alfalfa cultivars with high yield, good quality and wide adaptability on saline, dry and nutrient-deprived marginal lands of northern China.

  5. Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation.

    Science.gov (United States)

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Álvaro; Garro-Martínez, Emilio; Linge, Raquel; Castro, Elena; Haberzettl, Robert; Fink, Heidrun; Bert, Bettina; Brosda, Jan; Romero, Beatriz; Crespo-Facorro, Benedicto; Pazos, Ángel

    2017-11-15

    Postsynaptic 5-HT 1A receptors (5-HT 1A R) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT 1A Rs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT 1A Rs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT 1A R overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT 1A R activation might predispose to a high anxious phenotype and an impaired stress coping behavior.

  6. Inhibition of G1-phase arrest induced by ionizing radiation in hematopoietic cells by overexpression of genes involved in the G1/S-phase transition

    International Nuclear Information System (INIS)

    Epperly, M.; Berry, L.; Halloran, A.; Greenberger, J.S.

    1995-01-01

    D-type cyclins and cyclin-dependent kinase (cdk-4) are likely involved in regulating passage of cells through the G 1 phase of the cell cycle. A decrease in the proportion of cells in G 1 , a relatively radiation-sensitive phase of the cell cycle, should result in increased resistance to ionizing radiation; however, the effect of such overexpression on X-ray-induced G 1 -phase arrest is not known. Radiation survival curves were obtained at a dose rate of either 8 cGy/min or 1 Gy/min for subclones of the IL-3-dependent hematopoietic progenitor cell line 32D cl 3 expressing transgenes for either cyclin-D1, D2 or D3 or cdk-4. We compared the results to those with overexpression of the transgene for Bcl-2, whose expression enhances radiation survival and delays apoptosis. Cells overexpressing transgenes for each D-type cyclin or Bcl-2 had an increased number of cells in S phase compared to parent line 32D cl 3; however, overexpression of cdk-4 had no effect on cell cycle distribution. Cell death resulting from withdrawal of IL-3 was not affected by overexpression of D2, cdk-4 or Bcl-2. Flow cytometry 24 h after 5 Gy irradiation demonstrated that overexpression of each G 1 -phase regulatory transgene decreased the proportion of cells at the G 1 /S-phase border. Western analysis revealed induction of cyclin-D protein levels by irradiation, but no change in the D O , but a significant increase in the rvec n for cyclin-D or cdk-4 transgene-overexpressing clones at 1 Gy/min (P 1 /S-phase arrest. 31 refs., 4 figs., 4 tabs

  7. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  8. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu, Chia-Chia; Wang, John; Shyue, Song-Kun; Sung, Li-Ying; Liou, Jun-Yang; Jan, Yee-Jee; Ko, Bor-Sheng; Wu, Yao-Ming; Liang, Shu-Man; Chen, Shyh-Chang; Lee, Yen-Ming; Liu, Tzu-An; Chang, Tzu-Ching

    2014-01-01

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  9. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  10. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Directory of Open Access Journals (Sweden)

    Márcia Faria

    2016-01-01

    Full Text Available RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs and 33 follicular thyroid adenomas (FTAs. RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01 and poorer clinical outcome (P = 0.01 suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions.

  11. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    Science.gov (United States)

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  12. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  14. IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer

    International Nuclear Information System (INIS)

    Yin, Ning; Shi, Ji; Wang, Dapeng; Tong, Tong; Wang, Mingrong; Fan, Feiyue; Zhan, Qimin

    2012-01-01

    Highlights: ► IQGAP1 interacts with Aurora-A through its RGCt domain. ► Overexpression of IQGAP1 prevents ubiquitination of Aurora-A. ► Overexpression of IQGAP1 enhances the protein stability of Aurora-A. ► Overexpression of IQGAP1 promotes the kinase activity of Aurora-A. -- Abstract: IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysis with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.

  15. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging

    Directory of Open Access Journals (Sweden)

    Barna János

    2012-11-01

    Full Text Available Abstract Background Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1 functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. Results We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1 signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Conclusion Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  16. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  17. TREM2 Overexpression has No Improvement on Neuropathology and Cognitive Impairment in Aging APPswe/PS1dE9 Mice.

    Science.gov (United States)

    Jiang, Teng; Wan, Yu; Zhang, Ying-Dong; Zhou, Jun-Shan; Gao, Qing; Zhu, Xi-Chen; Shi, Jian-Quan; Lu, Huan; Tan, Lan; Yu, Jin-Tai

    2017-03-01

    Previously, we showed that overexpression of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific immune receptor, in the brain of a middle-aged (7 months old) APPswe/PS1dE9 mice could ameliorate Alzheimer's disease (AD)-related neuropathology by enhancement of microglial amyloid-β (Aβ) phagocytosis. Since AD is an age-related neurodegenerative disorder, it is critical to assess the efficacy of TREM2 overexpression in aging animals with an advanced disease stage. In vivo, we employed a lentiviral strategy to overexpress TREM2 in the brain of aging (18 months old) APPswe/PS1dE9 mice, and observed its efficacy on AD-related neuropathology and cognitive functions. Afterwards, we directly isolated microglia from middle-aged and aging APPswe/PS1dE9 mice and determined effects of TREM2 overexpression on microglial Aβ phagocytosis and Aβ-binding receptors expression in vitro. In aging APPswe/PS1dE9 mice, TREM2 overexpression has no beneficial effect on AD-related neuropathology and spatial cognitive functions. Of note, in vitro experiments showed a significant reduction of Aβ phagocytosis in microglia from aging APPswe/PS1dE9 mice, possibly attributing to the declined expression of Aβ-binding receptors. Meanwhile, this phagocytic deficit in microglia from aging APPswe/PS1dE9 mice cannot be rescued by TREM2 overexpression. Taken together, our study shows that TREM2 overexpression fails to provide neuroprotection in aging APPswe/PS1dE9 mice, possibly attributing to deficits in microglial Aβ phagocytosis at the late-stage of disease progression. These findings indicate that TREM2-mediated protection in AD is at least partially dependent on the reservation of microglial phagocytic functions, emphasizing the importance of early therapeutic interventions for this devastating disease.

  18. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    Science.gov (United States)

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  19. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. BP1 Homeoprotein Enhances Metastatic Potential in Er-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Yebo Fu, Yi Lian, Kyung Soon Kim, Lei Zhang, A. Katharine Hindle, Fred Brody, Robert S. Siegel, Timothy A. McCaffrey, Sidney W. Fu

    2010-01-01

    Full Text Available Tumor invasion and metastasis remain a major cause of mortality in breast cancer patients. It was reported that BP1, a homeobox isoform of DLX4, is overexpressed in 80% of breast cancer patients and in 100% of estrogen receptor negative (ER- tumors. The prevalence of BP1 positive cells and the intensity of BP1 immunoreactivity increased with the extent of ductal proliferation and tumorigenesis. These findings imply that BP1 may play an important role in ER- breast cancer. I sought to determine the effects and mechanisms of BP1 on cell proliferation and metastasis using ER- Hs578T cells as a model. Cells were transfected with either pcDNA3.2 plasmid containing BP1 gene, or pcDNA3.2 vector, then selected and cloned. Overexpression of BP1 increased cell proliferation rate by 2-5 fold (p<0.005, and enhanced the in vitro invasive activity by 25-65 fold (p<0.001. Microarray experiments were performed to identify differentially expressed genes when BP1 is overexpressed. The gene expression profile of the transfected cell lines were compared, resulting in 71 differentially expressed genes with a fold-change of >=2.0. Of those genes, 49 were up-regulated and 22 were down-regulated. Significant pathways were identified involving cell proliferation and metastasis. These data demonstrated that overexpression of BP1 significantly enhanced cell proliferation and metastatic potential in ER- Hs578T cells. Further analysis with more ER- cell lines and patient samples is warranted to establish BP1 as a therapeutic target.

  1. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  2. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias.

    Science.gov (United States)

    Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk

    2017-07-01

    This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

  3. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Science.gov (United States)

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  4. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Directory of Open Access Journals (Sweden)

    Palakolanu Sudhakar Reddy

    Full Text Available The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp and 22 heat shock factor (Hsf genes in barley. While all three major classes (A, B, C of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE, implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is

  5. Overexpression of Insulin-like Growth Factor-1 Receptor Is Associated With Penile Cancer Progression.

    Science.gov (United States)

    Ball, Mark W; Bezerra, Stephania M; Chaux, Alcides; Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Bivalacqua, Trinity J; Netto, George J; Burnett, Arthur L

    2016-06-01

    To evaluate insulin-like growth factor-1 receptor (IGF1R) expression in penile cancer and its association with oncologic outcomes. Tissue microarrays were constructed from 53 patients treated at our institution. Expression of IGF1R was evaluated using a Her2-like scoring system. Overexpression was defined as 1+ or greater membranous staining. Association of IGF1R expression with pathologic features was assessed with comparative statistics, and association with local recurrence, progression to nodal or distance metastases, or death was assessed with Kaplan-Meier survival analysis and Cox proportional hazard regression models. Overall, IGF1R overexpression was seen in 33 (62%) cases. With a median follow-up of 27.8 months, IGF1R overexpression was associated with inferior progression-free survival (PFS) (P  =  .003). In a multivariable model controlling for grade, T stage, perineural invasion, and lymphovascular invasion, IGF1R expression was independently associated with disease progression (hazard ratio 2.3, 95% confidence interval 1.1-5.1, P  =  .03. Comparing patients without IGF1R overexpression to those with overexpression, 5-year PFS was 94.1% vs 45.8%. IGF1R overexpression was associated with inferior PFS in penile cancer. Drugs that target IGF1R and downstream messengers may have a therapeutic benefit in patients that exhibit IGF1R overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  7. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    Science.gov (United States)

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal

  8. Overexpression of AIB1 in nasopharyngeal carcinomas correlates closely with advanced tumor stage.

    Science.gov (United States)

    Liu, Meng-Zhong; Xie, Dan; Mai, Shi-Juan; Tong, Zhu-Ting; Shao, Jian-Yong; Fu, Yong-Shui; Xia, Wen-Jie; Kung, Hsian-Fu; Guan, Xin-Yuan; Zeng, Yi-Xin

    2008-05-01

    AIB1, a candidate oncogene in breast cancer, is commonly amplified and overexpressed in several types of human cancers. In this study, expression and amplification of AIB1 in nasopharyngeal carcinoma (NPC) were studied by immunohistochemical analysis and fluorescence in situ hybridization using tissue microarrays, including 80 specimens of NPC and 20 specimens of nonneoplastic nasopharyngeal mucosa. In this NPC cohort, overexpression and amplification of AIB1 was detected in 36 (51%) of 71 and 3 (7%) of 46 NPCs, respectively. Overexpression of AIB1 was observed more frequently in NPCs in late T stages (T3/T4, 24/35 [69%]) than in earlier stages (T1/T2, 12/36 [33%]; P < .05). In addition, 18 (72%) of 25 NPCs with lymph node metastasis (N1-3) showed overexpression of AIB1; the frequency was significantly higher than that in NPCs without node metastasis (N0, 18/49 [39%]; P < .05). These findings suggest that overexpression of AIB1 in NPCs may be important in the acquisition of an invasive and/or metastatic phenotype.

  9. genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species.

    Science.gov (United States)

    Jacobs, Stephanie A; Tsien, Joe Z

    2012-01-01

    The ability to learn and remember conspecifics is essential for the establishment and maintenance of social groups. Many animals, including humans, primates and rodents, depend on stable social relationships for survival. Social learning and social recognition have become emerging areas of interest for neuroscientists but are still not well understood. It has been established that several hormones play a role in the modulation of social recognition including estrogen, oxytocin and arginine vasopression. Relatively few studies have investigated how social recognition might be improved or enhanced. In this study, we investigate the role of the NMDA receptor in social recognition memory, specifically the consequences of altering the ratio of the NR2B:NR2A subunits in the forebrain regions in social behavior. We produced transgenic mice in which the NR2B subunit of the NMDA receptor was overexpressed postnatally in the excitatory neurons of the forebrain areas including the cortex, amygdala and hippocampus. We investigated the ability of both our transgenic animals and their wild-type littermate to learn and remember juvenile conspecifics using both 1-hr and 24-hr memory tests. Our experiments show that the wild-type animals and NR2B transgenic mice preformed similarly in the 1-hr test. However, transgenic mice showed better performances in 24-hr tests of recognizing animals of a different strain or animals of a different species. We conclude that NR2B overexpression in the forebrain enhances social recognition memory for different strains and animal species.

  10. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    International Nuclear Information System (INIS)

    Tseng, Ya-Shih; Lee, Jenq-Chang; Huang, Chi-Ying F; Liu, Hsiao-Sheng

    2009-01-01

    Overexpression of Aurora-A and mutant Ras (Ras V12 ) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either Ras V12 and wild-type Aurora-A (designated WT) or Ras V12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. Overexpression of wild-type Aurora-A and mutation of Ras V12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the Ras V12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the Ras V12 transformants. Wild-type-Aurora-A enhances focus formation and aggregation of the Ras V12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway

  11. [Effect of LPXN Overexpression on the Proliferation, Adhesion and Invasion of THP-1 Cells and Its Mechamisms].

    Science.gov (United States)

    Dai, Hai-Ping; Zhu, Guo-Hua; Wu, Li-Li; Wang, Qian; Yao, Hong; Wang, Qin-Rong; Wen, Li-Jun; Qiu, Hui-Ying; Shen, Qun; Chen, Su-Ning; Wu, De-Pei

    2017-06-01

    To explore the effect of LPXN overexpression on the proliferation, adhesion and invasion of THP-1 cells and its possible mechanism. A THP-1 cell line with stable overexpression of LPXN was constucted by using a lentivirus method, CCK-8 was used to detect the proliferation of cells, adhesion test was used to evaluate adhesion ablity of cells to Fn. Transwell assay was used to detect the change of invasion capability. Western blot was used to detect expression of LPXN, ERK, pERK and integrin α4, α5, β1, the Gelatin zymography was applied to detect activity of MMP2/MMP9 secreted by the THP-1 cells. Successful establishment of THP-1 cells with LPXN overexpression (THP-1 LPXN) was confirmed with Western blot. THP-1 LPXN cells were shown to proliferate faster than the control THP-1 vector cells. Adhesion to Fn and expression of ERK, integrin α4, α5 and β1 in the THP-1 LPXN cells were higher than that in the control cells. Invasion across matrigel and enhanced activity of MMP2 could be detected both in the THP-1 LPXN cells as compared with the control cells. Ectopically ovexpression of LPXN may promote proliferation of THP-1 cells through up-regulation of ERK; promote adhesion of THP-1 cells through up-regulating the integrin α4/β1 as well as integrin α5/β1 complex; promote invasion of THP-1 cells through activating MMP2.

  12. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium.

    Science.gov (United States)

    Potla, Ratnakar; Tulapurkar, Mohan E; Luzina, Irina G; Atamas, Sergei P; Singh, Ishwar S; Hasday, Jeffrey D

    2018-02-01

    As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).

  15. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Wang, Suna; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-01-01

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RT PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  17. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Science.gov (United States)

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  18. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Directory of Open Access Journals (Sweden)

    Anca Macovei

    2018-05-01

    Full Text Available The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2 involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively and a control (CTRL line carrying the empty vector were investigated. Transmission electron microscopy (TEM revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL, the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells.

  19. ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma.

    Science.gov (United States)

    Romero-Pérez, Laura; López-García, M Ángeles; Díaz-Martín, Juan; Biscuola, Michele; Castilla, M Ángeles; Tafe, Laura J; Garg, Karuna; Oliva, Esther; Matias-Guiu, Xavier; Soslow, Robert A; Palacios, José

    2013-11-01

    Undifferentiated endometrial carcinomas are very aggressive high-grade endometrial carcinomas that are frequently under-recognized. This study aimed to analyze the molecular alterations underlying the development of these endometrial carcinomas, focusing on those related to dedifferentiation. We assessed a series of 120 tumors: 57 grade 1 and 2 endometrioid endometrial carcinomas, 15 grade 3 endometrioid endometrial carcinomas, 27 endometrial serous carcinomas, and 21 undifferentiated endometrial carcinomas. We found a high frequency of DNA mismatch repair deficiency (38%) and moderate rate of p53 overexpression (∼33%) in undifferentiated carcinomas. In contrast to the characteristic endometrioid phenotype, there was a dramatic downregulation of E-cadherin expression in the undifferentiated subtype. Quantitative methylation studies dismissed CDH1 promoter hypermethylation as the mechanism responsible for this change in gene expression, while immunohistochemistry revealed that the E-cadherin repressor ZEB1 was frequently overexpressed (62%) in undifferentiated endometrial carcinomas. This finding was accompanied by a sharp downregulation in the expression of the miR-200 family of microRNAs, well-known targets of ZEB1. Furthermore, there was enhanced expression of epithelial-to-mesenchymal transition markers in undifferentiated endometrial carcinomas, such as N-cadherin, cytoplasmic p120, and osteonectin. In addition, HMGA2, a regulator of epithelial-to-mesenchymal transition that is expressed in aggressive endometrial tumors, such as endometrial serous carcinomas and carcinosarcomas, was expressed in >20% of undifferentiated carcinomas. These results suggest that ZEB1 overexpression, associated with E-cadherin and miR-200s downregulation, and the expression of mesenchymal markers might enhance the metastatic potential of undifferentiated endometrial carcinomas, leading to a poor prognosis. In addition, our observations suggest that the immnohistochemical analysis

  20. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    International Nuclear Information System (INIS)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-01-01

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  1. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lijie [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Dong, Pingping [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Liu, Longzi; Gao, Qiang; Duan, Meng [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Zhang, Si; Chen, She [Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Xue, Ruyi, E-mail: xue.ruyi@zs-hospital.sh.cn [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Wang, Xiaoying, E-mail: xiaoyingwang@fudan.edu.cn [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China)

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  2. Effects of overexpression of IL-1 receptor-associated kinase on NFkappaB activation, IL-2 production and stress-activated protein kinases in the murine T cell line EL4.

    Science.gov (United States)

    Knop, J; Wesche, H; Lang, D; Martin, M U

    1998-10-01

    The association and activation of the IL-1 receptor-associated protein kinase (IRAK) to the IL-1 receptor complex is one of the earliest events detectable in IL-1 signal transduction. We generated permanent clones of the murine T cell line EL4 6.1 overexpressing human (h)IRAK to evaluate the role of this kinase in IL-1 signaling. Overexpression of hIRAK enhanced IL-1-stimulated activation of the transcription factor NFkappaB, whereas a truncated form (N-IRAK) specifically inhibited IL-1-dependent NFkappaB activity. In clones stably overexpressing hIRAK a weak constitutive activation of NFkappaB correlated with a low basal IL-2 production which was enhanced in an IL-1-dependent manner. Compared to the parental cell line the dose-response curve of IL-1-induced IL-2 production was shifted in both potency and efficacy. These results demonstrate that IRAK directly triggers NFkappaB-mediated gene expression in EL4 cells. Qualitatively different effects were observed for the IL-1-induced activation of stress-activated protein (SAP) kinases: permanent overexpression of IRAK did not affect the dose dependence but prolonged the kinetics of IL-1-induced activation of SAP kinases, suggesting that this signaling branch may be regulated by distinct mechanisms.

  3. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  4. Overexpression of Dimethylarginine Dimethylaminohydrolase Enhances Tumor Hypoxia: An Insight into the Relationship of Hypoxia and Angiogenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Vassiliki Kostourou

    2004-07-01

    Full Text Available The oxygenation status of tumors derived from wild-type C6 glioma cells and clone D27 cells overexpressing dimethylarginine dimethylaminohydrolase (DDAH was assessed in vivo using a variety of direct and indirect assays of hypoxia. Clone D27 tumors exhibit a more aggressive and better-vascularized phenotype compared to wild-type C6 gliomas. Immunohistochemical analyses using the 2-nitroimidazole hypoxia marker pimonidazole, fiber optic OxyLite measurements of tumor pO2, and localized 31P magnetic resonance spectroscopy measurements of tumor bioenergetic status and pH clearly demonstrated that the D27 tumors were more hypoxic compared to C6 wild type. In the tumor extracts, only glucose concentrations were significantly lower in the D27 tumors. Elevated Glut-1 expression, a reliable functional marker for hypoxia-inducible factor-1-mediated metabolic adaptation, was observed in the D27 tumors. Together, the data show that overexpression of DDAH results in C6 gliomas that are more hypoxic compared to wild-type tumors, and point strongly to an inverse relationship of tumor oxygenation and angiogenesis in vivo-a concept now being supported by the enhanced understanding of oxygen sensing at the molecular level.

  5. Doxorubicin induces ZAKα overexpression with a subsequent enhancement of apoptosis and attenuation of survivability in human osteosarcoma cells.

    Science.gov (United States)

    Fu, Chien-Yao; Tseng, Yan-Shen; Chen, Ming-Cheng; Hsu, Hsi-Hsien; Yang, Jaw-Ji; Tu, Chuan-Chou; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Human osteosarcoma (OS) is a malignant cancer of the bone. It exhibits a characteristic malignant osteoblastic transformation and produces a diseased osteoid. A previous study demonstrated that doxorubicin (DOX) chemotherapy decreases human OS cell proliferation and might enhance the relative RNA expression of ZAK. However, the impact of ZAKα overexpression on the OS cell proliferation that is inhibited by DOX and the molecular mechanism underlying this effect are not yet known. ZAK is a protein kinase of the MAPKKK family and functions to promote apoptosis. In our study, we found that ZAKα overexpression induced an apoptotic effect in human OS cells. Treatment of human OS cells with DOX enhanced ZAKα expression and decreased cancer cell viability while increasing apoptosis of human OS cells. In the meantime, suppression of ZAKα expression using shRNA and inhibitor D1771 both suppressed the DOX therapeutic effect. These findings reveal a novel molecular mechanism underlying the DOX effect on human OS cells. Taken together, our findings demonstrate that ZAKα enhances the apoptotic effect and decreases cell viability in DOX-treated human OS cells. © 2017 Wiley Periodicals, Inc.

  6. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl; Kampmeyer, Caroline; Kriegenburg, Franziska

    2017-01-01

    of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2...

  7. Overexpression of HvIcy6 in Barley Enhances Resistance against Tetranychus urticae and Entails Partial Transcriptomic Reprogramming

    Directory of Open Access Journals (Sweden)

    M. Estrella Santamaria

    2018-03-01

    Full Text Available Cystatins have been largely used for pest control against phytophagous species. However, cystatins have not been commonly overexpressed in its cognate plant species to test their pesticide capacity. Since the inhibitory role of barley HvCPI-6 cystatin against the phytophagous mite Tetranychus urticae has been previously demonstrated, the purpose of our study was to determine if barley transgenic lines overexpressing its own HvIcy6 gene were more resistant against this phytophagous infestation. Besides, a transcriptomic analysis was done to find differential expressed genes among wild-type and transformed barley plants. Barley plants overexpressing HvIcy6 cystatin gene remained less susceptible to T. urticae attack when compared to wild-type plants, with a significant lesser foliar damaged area and a lower presence of the mite. Transcriptomic analysis revealed a certain reprogramming of cellular metabolism and a lower expression of several genes related to photosynthetic activity. Therefore, although caution should be taken to discard potential deleterious pleiotropic effects, cystatins may be used as transgenes with impact on agricultural crops by conferring enhanced levels of resistance to phytophagous pests.

  8. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  9. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  10. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role.

    Science.gov (United States)

    Yang, Yan-Ming; Fang, Fang; Li, Xin; Yu, Lei; Wang, Zhi-Cheng

    2017-01-01

    Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.

  11. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression.

    Science.gov (United States)

    Woo, S M; Min, K-J; Seo, B R; Nam, J-O; Choi, K S; Yoo, Y H; Kwon, T K

    2014-11-06

    Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.

  12. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. High frequency of HIF-1 alpha overexpression in BRCA1 related breast cancer

    NARCIS (Netherlands)

    van der Groep, Petra; Bouter, Alwin; Menko, Fred H.; van der Wall, Elsken; van Diest, Paul J.

    2008-01-01

    Hypoxia is a hallmark of cancer. Hypoxia inducible factor-1 alpha (HIF-1 alpha) is the key regulator of the hypoxia response. HIF-1 alpha is overexpressed during sporadic breast carcinogenesis and correlated with poor prognosis. Little is known on the role of HIF-1 alpha in hereditary breast

  14. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease.

    Science.gov (United States)

    Peng, Yu-Ju; Shen, Tang-Long; Chen, Yu-Shan; Mersmann, Harry John; Liu, Bing-Hsien; Ding, Shih-Torng

    2018-03-14

    Adiponectin (ADN) is an adipokine derived from adipocytes. It binds to adiponectin receptor 1 and 2 (AdipoR1 and R2) to exert its function in regulating whole-body energy homeostasis and inflammatory responses. However, the role of ADN-AdipoR1 signaling in intestinal inflammation is controversial, and its role in the regulation of neutrophils is still unclear. Our goal was to clarify the role of AdipoR1 signaling in colitis and the effects on neutrophils. We generated porcine AdipoR1 transgenic mice (pAdipoR1 mice) and induced murine colitis using dextran sulfate sodium (DSS) to study the potential role of AdipoR1 in inflammatory bowel disease. We also treated a THP-1 macrophage and a HT-29 colon epithelial cell line with ADN recombinant protein to study the effects of ADN on inflammation. After inducing murine colitis, pAdipoR1 mice developed more severe symptoms than wild-type (WT) mice. Treatment with ADN increased the expression of pro-inflammatory factors in THP-1 and HT-29 cells. Moreover, we also observed that the expression of cyclooxygenase2 (cox2), neutrophil chemokines (CXCL1, CXCL2 and CXCL5), and the infiltration of neutrophils were increased in the colon of pAdipoR1 mice. Our study showed that ADN-AdipoR1 signaling exacerbated colonic inflammation through two possible mechanisms. First, ADN-AdipoR1 signaling increased pro-inflammatory factors. Second, AdipoR1 enhanced neutrophil chemokine expression and recruited neutrophils into the colonic tissue to increase inflammation.

  15. HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study.

    Science.gov (United States)

    Jiang, Yibo; Chen, Lijuan; Tang, Yaoliang; Ma, Genshan; Shen, Chengxing; Qi, Chunmei; Zhu, Qi; Yao, Yuyu; Liu, Naifeng

    2010-05-01

    To determine the effect of intracoronary transfer of superparamagnetic iron oxide (SPIO) labeled heme oxygenase-1 (HO-1) overexpressed bone marrow stromal cells (BMSCs) in a porcine myocardial ischemia/reperfusion model. Cell apoptosis was assayed and supernatant cytokine concentrations were measured in BMSCs that underwent hypoxia/reoxygen in vitro. Female mini-swines that underwent 1 h LAD occlusion followed by 1 h reperfusion were randomly allocated to receive intracoronary saline (control), 1 x 10(7) SPIO-labeled BMSCs transfected with pcDNA3.1-Lacz plasmid (Lacz-BMSCs), pcDNA3.1-human HO-1 (HO-1-BMSCs), pcDNA3.1-hHO-1 pretreated with a HO inhibitor, tin protoporphyrin (SnPP, n = 10 each). MRI and postmortem histological analysis were made at 1 week or 3 months thereafter. Post hypoxia/reoxygen in vitro, apoptosis was significantly reduced, supernatant VEGF significantly increased while TNF-alpha and IL-6 significantly reduced in HO-1-BMSCs group compared with Lacz-BMSCs group (all p < 0.05). Myocardial expression of VEGF was significantly higher in HO-1-BMSCs than in Lacz-BMSCs group at 1 week post transplantation (all p < 0.05). Signal voids induced by the SPIO were detected in the peri-infarction region in all BMSC groups at 1 week but not at 3 months post transplantation and the extent of the hypointense signal was the highest in HO-1-BMSCs group, and histological analysis showed that signal voids represented cardiac macrophages that engulfed the SPIO-labeled BMSCs. Pretreatment with SnPP significantly attenuated the beneficial effects of HO-1-BMSCs. Transplantation of HO-1-overexpressed BMSCs significantly enhanced the beneficial effects of BMSCs on improving cardiac function in this model.

  16. KLF5 overexpression attenuates cardiomyocyte inflammation induced by oxygen-glucose deprivation/reperfusion through the PPARγ/PGC-1α/TNF-α signaling pathway.

    Science.gov (United States)

    Li, Yang; Li, Jian; Hou, Zhiwen; Yu, Yang; Yu, Bo

    2016-12-01

    The primary physiological function of Krüppel-like zinc-finger transcription factor (KLF5) is the regulation of cardiovascular remodeling. Vascular remodeling is closely related to the amelioration of various ischemic diseases. However, the underlying correlation of KLF5 and ischemia is not clear. In this study, we aim to investigate the role of KLF5 in myocardial ischemia reperfusion (IR) injury and the potential mechanisms involved. Cultured H9C2 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/Rep) to mimic myocardial IR injury in vivo. Expressions of KLF5 and PPARγ were distinctly inhibited, and PGC-1α expression was activated at 24h after myocardial OGD/Rep injury. After myocardial OGD/Rep injury, we found that KLF5 overexpression down-regulated levels of TNF-α, IL-1β, IL-6 and IL-8. Through the analysis of lactate dehydrogenase (LDH) release, we demonstrate that KLF5 overexpression reduced the release of OGD/Rep-induced LDH. KLF5 overexpression significantly enhanced cell activity and decreased cell apoptosis during OGD/Rep injury. Compared with the OGD/Rep group, cells overexpressing KLF5 showed anti-apoptotic effects, such as decreased expression of Bax and cleaved caspase-3 as well as increased Bcl-2 expression. KLF5 overexpression activated PPARγ, a protein involved in OGD/Rep injury, and increased levels of PGC-1α, while TNF-α expression was remarkably inhibited. In addition, GW9662, a PPARγ receptor antagonist, reversed the expression of PPARγ/PGC-1α/TNF-α and cell activity induced by KLF5 overexpression. The effects of KLF5 overexpression on PPARγ/PGC-1α/TNF-α and cell activity were abolished by co-treatment with GW9662. Taken together, these results suggest that KLF5 can efficiently alleviate OGD/Rep-induced myocardial injury, perhaps through regulation of the PPARγ/PGC-1α/TNF-α pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Enhanced Fine-Form Perception Does Not Contribute to Gestalt Face Perception in Autism Spectrum Disorder

    Science.gov (United States)

    Maekawa, Toshihiko; Miyanaga, Yuka; Takahashi, Kenji; Takamiya, Naomi; Ogata, Katsuya; Tobimatsu, Shozo

    2017-01-01

    Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD. PMID:28146575

  18. Enhanced Fine-Form Perception Does Not Contribute to Gestalt Face Perception in Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Takao Yamasaki

    Full Text Available Individuals with autism spectrum disorder (ASD show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1 to the fusiform gyrus (V4 plays an important role in form (including faces and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14 and typically developing (TD adults (n = 14. We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG gratings, high-contrast achromatic (black/white, BW gratings with high spatial frequency (HSF, 5.3 cycles/degree, and face (neutral, happy, and angry faces stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4 was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD.

  19. Production of transgenic pigs over-expressing the antiviral gene Mx1

    Directory of Open Access Journals (Sweden)

    Quanmei Yan

    2014-01-01

    Full Text Available The myxovirus resistance gene (Mx1 has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV. Indirect immunofluorescence assay (IFA revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  20. [Role of autophagy in TXNIP overexpression-induced apoptosis of INS-1 islet cells].

    Science.gov (United States)

    Wang, Jing; Wang, Jin; Wang, Juan-Juan; Zhang, Wei-Fang; Jiao, Xiang-Ying

    2017-08-25

    Thioredoxin (Trx) interacting protein (TXNIP) is a Trx-binding protein that inhibits the antioxidative function of Trx and is highly expressed in the serum and tissue samples from diabetes patients. This study was to explore whether TXNIP overexpression could cause INS-1 cell autophagy under normal glucose and lipid concentrations, and to analyze the role of autophagy in the apoptosis of INS-1 cells. The INS-1 cells cultured under normal conditions were divided into three groups: normal control, empty adenovirus vector (Ad-eGFP) and TXNIP overexpression (Ad-TXNIP-eGFP) groups. Forty-eight hours after transfection, the expression levels of TXNIP mRNA and protein were measured. Western blot was used to examine the protein expression levels of Beclin-1 and P62, as well as LC3-II/LC3-I ratio, which are associated with autophagy. IF/ICC was used to measure the autophagosome. In addition, the cleaved caspase-3/caspase-3 ratio, the apoptosis marker, was also measured, and the apoptotic rates were detected by flow cytometry (FCM). The results showed that the TXNIP mRNA and protein levels were significantly up-regulated in Ad-TXNIP-eGFP group, suggesting that TXNIP overexpression model was successfully established. In Ad-TXNIP-eGFP group, the protein levels of Beclin-1 and LC3-II/LC3-I ratio were increased, while the protein expression of P62 was decreased, compared with those in Ad-eGFP group. Red fluorescent intensity, representing autophagy level, was higher in Ad-TXNIP-eGFP group than that in Ad-eGFP group. These results suggested that TXNIP overexpression can significantly promote INS-1 cell autophagy. Meanwhile, cleaved caspase 3/caspase 3 ratio and the number of apoptotic cells were significantly increased in Ad-TXNIP-eGFP group. The inhibitor of autophagy, 3-MA, reduced TXNIP overexpression-induced apoptosis in INS-1 cells. Taken together, our data demonstrate that autophagy appears to be an important pathway in TXNIP overexpression-induced apoptosis in INS-1 cells.

  1. BRCA1-IRIS Overexpression Promotes Formation of Aggressive Breast Cancers

    Science.gov (United States)

    Shimizu, Yoshiko; Luk, Hugh; Horio, David; Miron, Penelope; Griswold, Michael; Iglehart, Dirk; Hernandez, Brenda; Killeen, Jeffrey; ElShamy, Wael M.

    2012-01-01

    Introduction Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors. Methodology/Principal Findings Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. Conclusion/Significance BRCA1-IRIS overexpression triggers aggressive breast tumor formation

  2. Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Zongliang Xia

    2018-03-01

    Full Text Available Sulfite oxidase (SO plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO was characterized. To date, the knowledge of ZmSO’s involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature embryos of maize plants, and were up-regulated markedly by PEG-induced water stress. Overexpression of ZmSO improved drought tolerance in tobacco. ZmSO-overexpressing transgenic plants showed higher sulfate and glutathione (GSH levels but lower hydrogen peroxide (H2O2 and malondialdehyde (MDA contents under drought stress, indicating that ZmSO confers drought tolerance by enhancing GSH-dependent antioxidant system that scavenged ROS and reduced membrane injury. In addition, the transgenic plants exhibited more increased stomatal response than the wild-type (WT to water deficit. Interestingly, application of exogenous GSH effectively alleviated growth inhibition in both WT and transgenic plants under drought conditions. qPCR analysis revealed that the expression of several sulfur metabolism-related genes was significantly elevated in the ZmSO-overexpressing lines. Taken together, these results imply that ZmSO confers enhanced drought tolerance in transgenic tobacco plants possibly through affecting stomatal regulation, GSH-dependent antioxidant system, and sulfur metabolism-related gene expression. ZmSO could be exploited for developing drought-tolerant maize varieties in molecular breeding.

  3. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Suyeun [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Jang, Yeogil; Paik, Donggi [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Lee, Eunil, E-mail: eunil@korea.ac.kr [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Park, Joong-Jean, E-mail: parkjj@korea.ac.kr [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of)

    2015-10-02

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan. - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.

  4. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Yu, Suyeun; Jang, Yeogil; Paik, Donggi; Lee, Eunil; Park, Joong-Jean

    2015-01-01

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan. - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.

  5. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    Science.gov (United States)

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  6. MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ardalan Khales, Sima; Ebrahimi, Ehsan; Jahanzad, Eisa; Ardalan Khales, Sahar; Forghanifard, Mohammad Mahdi

    2018-01-15

    Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with considerable morbidity and mortality. Invasion and metastasis of HNSCC is a complex process involving multiple molecules and signaling pathways. Twist Family BHLH Transcription Factor 1 (TWIST1) and Mastermind-like 1 (MAML1) are essential in induction of epithelial-mesenchymal transition through direct regulation of implicated molecules in cellular adhesion, migration and invasion. Our aim in this study was to assess the clinical significance of MAML1 and TWIST1 expression in HNSCC, and elucidate the probable correlation between these genes to exhibit their possible associations with progression and metastasis of the disease. The gene expression profile of MAML1 and TWIST1 was assessed in fresh tumoral compared to distant tumor-free tissues of 55 HNSCC patients using quantitative real-time Polymerase chain reaction (PCR). Significant overexpression of MAML1 and TWIST1 mRNA was observed in 49.1% and 38.2% (P ˂ 0.05) of tumor specimens, respectively. Overexpression of MAML1 was associated with vascular invasion (P = 0.048). Concomitant overexpression of MAML1 and TWIST1 was significantly correlated to each other (P = 0.004). Co-overexpression of the genes was significantly correlated to the various clinicopathological indices of poor prognosis including depth of tumor invasion (P < 0.01), lymphatic invasion and grade of tumor cell differentiation (P < 0.05). Significant correlation between MAML1 and TWIST1 in HNSCC was revealed. This study was the first report elucidating MAML1 clinical relevance in HNSCC. These new findings suggest an oncogenic role for concomitant expression of MAML1 and TWIST1 genes in HNSCC invasion and metastasis. © 2018 John Wiley & Sons Australia, Ltd.

  7. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    2011-04-01

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  8. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    Science.gov (United States)

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  9. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Yue, Erkui; Liu, Zhen; Li, Chao; Li, Yu; Liu, Qiuxiang; Xu, Jian-Hong

    2017-07-01

    Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H 2 O 2 , and overexpressing miR529a can increase plant tolerance to high level of H 2 O 2 , resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H 2 O 2 related response genes could improve oxidative stress tolerance in rice.

  10. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  11. Overexpression of PGC-1α Increases Fatty Acid Oxidative Capacity of Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Nataša Nikolić

    2012-01-01

    Full Text Available We investigated the effects of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α overexpression on the oxidative capacity of human skeletal muscle cells ex vivo. PGC-1α overexpression increased the oxidation rate of palmitic acid and mRNA expression of genes regulating lipid metabolism, mitochondrial biogenesis, and function in human myotubes. Basal and insulin-stimulated deoxyglucose uptake were decreased, possibly due to upregulation of PDK4 mRNA. Expression of fast fiber-type gene marker (MHCIIa was decreased. Compared to skeletal muscle in vivo, PGC-1α overexpression increased expression of several genes, which were downregulated during the process of cell isolation and culturing. In conclusion, PGC-1α overexpression increased oxidative capacity of cultured myotubes by improving lipid metabolism, increasing expression of genes involved in regulation of mitochondrial function and biogenesis, and decreasing expression of MHCIIa. These results suggest that therapies aimed at increasing PGC-1α expression may have utility in treatment of obesity and obesity-related diseases.

  12. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-03-01

    Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and\\/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.

  13. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  14. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum.

    Science.gov (United States)

    Li, Ping; Guo, Xuewu; Shi, Tingting; Hu, Zhihui; Chen, Yefu; Du, Liping; Xiao, Dongguang

    2017-11-01

    As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.

  15. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway

    Science.gov (United States)

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-01-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity. PMID:25399018

  16. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1.

    Directory of Open Access Journals (Sweden)

    Samuel Brocklehurst

    Full Text Available Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1 for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.

  17. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  18. Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Jingni Wu

    2016-12-01

    Full Text Available Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named “jasmonic acid inducible pathogenesis-related class 10” (JIOsPR10 to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

  19. BP1 Homeoprotein Enhances Metastatic Potential in ER-negative Breast Cancer

    Science.gov (United States)

    Fu, Yebo; Lian, Yi; Kim, Kyung Soon; Zhang, Lei; Hindle, A. Katharine; Brody, Fred; Siegel, Robert S.; McCaffrey, Timothy A.; Fu, Sidney W.

    2010-01-01

    Tumor invasion and metastasis remain a major cause of mortality in breast cancer patients. It was reported that BP1, a homeobox isoform of DLX4, is overexpressed in 80% of breast cancer patients and in 100% of estrogen receptor negative (ER-) tumors. The prevalence of BP1 positive cells and the intensity of BP1 immunoreactivity increased with the extent of ductal proliferation and tumorigenesis. These findings imply that BP1 may play an important role in ER- breast cancer. We sought to determine the effects and mechanisms of BP1 on cell proliferation and metastasis using ER- Hs578T cells as a model. Cells were transfected with either pcDNA3.2 plasmid containing BP1 gene, or pcDNA3.2 vector, then selected and cloned. Overexpression of BP1 increased cell proliferation rate by 2-5 fold (p=2.0. Of those genes, 49 were up-regulated and 22 were down-regulated. Significant pathways were identified involving cell proliferation and metastasis. These data demonstrated that overexpression of BP1 significantly enhanced cell proliferation and metastatic potential in ER- Hs578T cells. Further analysis with more ER- cell lines and patient samples is warranted to establish BP1 as a therapeutic target for ER- breast cancer. PMID:20842225

  20. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sloan, Roketa; Huang, Shar-Yin Naomi; Pommier, Yves; Jinks-Robertson, Sue

    2017-11-01

    Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  2. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-01

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  3. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  4. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sakihama, Yuri; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    The hydrolysis of lignocellulosic biomass liberates sugars, primarily glucose and xylose, which are subsequently converted to ethanol by microbial fermentation. The rapid and efficient fermentation of xylose by recombinant Saccharomyces cerevisiae strains is limited by weak acids generated during biomass pretreatment processes. In particular, acetic acid negatively affects cell growth, xylose fermentation rate, and ethanol production. The ability of S. cerevisiae to efficiently utilize xylose in the presence of acetic acid is an essential requirement for the cost-effective production of ethanol from lignocellulosic hydrolysates. Here, an acetic acid-responsive transcriptional activator, HAA1, was overexpressed in a recombinant xylose-fermenting S. cerevisiae strain to yield BY4741X/HAA1. This strain exhibited improved cell growth and ethanol production from xylose under aerobic and oxygen limited conditions, respectively, in the presence of acetic acid. The HAA1p regulon enhanced transcript levels in BY4741X/HAA1. The disruption of PHO13, a p-nitrophenylphosphatase gene, in BY4741X/HAA1 led to further improvement in both yeast growth and the ability to ferment xylose, indicating that HAA1 overexpression and PHO13 deletion act by different mechanisms to enhance ethanol production. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yuan eShen

    2014-06-01

    Full Text Available Histone H3 lysine 4 trimethylation (H3K4me3 has been shown to be involved in stress-responsive gene expression and gene priming in plants. However, the role of H3K4me3 resetting in the processes is not clear. In this work we studied the expression and function of Arabidopsis H3K4 demethylase gene JMJ15. We show that the expression of JMJ15 was relatively low and was limited to a number of tissues during vegetative growth but was higher in young floral organs. Over-expression of the gene in gain-of-function mutants reduced the plant height with accumulation of lignin in stems, while the loss-of-function mutation did not produce any visible phenotype. The gain-of-function mutants showed enhanced salt tolerance, whereas the loss-of-function mutant was more sensitive to salt compared to the wild type. Transcriptomic analysis revealed that over-expression of JMJ15 down-regulated many genes which are preferentially marked by H3K4me3 and H3K4me2. Many of the down-regulated genes encode transcription regulators involved in stress responses. The data suggest that increased JMJ15 levels may regulate the gene expression program that enhances stress tolerance.

  6. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    Science.gov (United States)

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  7. Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy.

    Science.gov (United States)

    Aguennouz, M'Hammed; Vita, Gian Luca; Messina, Sonia; Cama, Annamaria; Lanzano, Natalia; Ciranni, Annamaria; Rodolico, Carmelo; Di Giorgio, Rosa Maria; Vita, Giuseppe

    2011-12-01

    Telomere shortening is thought to contribute to premature senescence of satellite cells in Duchenne muscular dystrophy (DMD) muscle. Telomeric repeat binding factor-1 (TRF1) and poly (ADP-ribose) polymerase-1 (PARP1) are proteins known to modulate telomerase reverse transcriptase (TERT) activity, which controls telomere elongation. Here we show that an age-dependent telomere shortening occurs in DMD muscles and is associated to overexpression of mRNA and protein levels of TRF1 and PARP1. TERT expression and activity are detectable in normal control muscles and they slightly increase in DMD. This is the first demonstration of TRF1 and PARP1 overexpression in DMD muscles. They can be directly involved in replicative senescence of satellite cells and/or in the pathogenetic cascade through a cross-talk with oxidative stress and inflammatory response. Modulation of these events by TRF1 or PARP1 inhibition might represent a novel strategy for treatment of DMD and other muscular dystrophies. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    Science.gov (United States)

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    Science.gov (United States)

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  10. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    Science.gov (United States)

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    Science.gov (United States)

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  13. Rsf-1 is overexpressed in non-small cell lung cancers and regulates cyclinD1 expression and ERK activity

    International Nuclear Information System (INIS)

    Li, Qingchang; Dong, Qianze; Wang, Enhua

    2012-01-01

    Highlights: ► Rsf-1 expression is elevated in non-small cell lung cancers. ► Rsf-1 depletion inhibits proliferation and increased apoptosis in lung cancer cells. ► Rsf-1 depletion decreases the level of cyclinD1 and phosphor-ERK expression. -- Abstract: Rsf-1 (HBXAP) was recently reported to be overexpressed in various cancers and associated with the malignant behavior of cancer cells. However, the expression of Rsf-1 in primary lung cancer and its biological roles in non-small cell lung cancer (NSCLC) have not been reported. The molecular mechanism of Rsf-1 in cancer aggressiveness remains ambiguous. In the present study, we analyzed the expression pattern of Rsf-1 in NSCLC tissues and found that Rsf-1 was overexpressed at both the mRNA and protein levels. There was a significant association between Rsf-1 overexpression and TNM stage (p = 0.0220) and poor differentiation (p = 0.0013). Furthermore, knockdown of Rsf-1 expression in H1299 and H460 cells with high endogenous Rsf-1 expression resulted in a decrease of colony formation ability and inhibition of cell cycle progression. Rsf-1 knockdown also induced apoptosis in these cell lines. Further analysis showed that Rsf-1 knockdown decreased cyclin D1 expression and phospho-ERK levels. In conclusion, Rsf-1 is overexpressed in NSCLC and contributes to malignant cell growth by cyclin D1 and ERK modulation, which makes Rsf-1 a candidate therapeutic target in lung cancer.

  14. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144.

    Science.gov (United States)

    Cai, Heng; Xue, Yixue; Wang, Ping; Wang, Zhenhua; Li, Zhen; Hu, Yi; Li, Zhiqing; Shang, Xiuli; Liu, Yunhui

    2015-08-14

    Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.

  15. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  16. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants.

    Science.gov (United States)

    Song, Guo-Qing; Gao, Xuan

    2017-06-19

    Constitutive expression of the CBF/DREB1 for increasing freezing tolerance in woody plants is often associated with other phenotypic changes including dwarf plant and delayed flowering. These phenotypic changes have been observed when Arabidopsis DWARF AND DELAYED FLOWERING 1 (DDF1) was overexpressed in A. thaliana plants. To date, the DDF1 orthologues have not been studied in woody plants. The aim of this study is to investigate transcriptomic responses to the overexpression of blueberry (Vaccinium corymbosum) DDF1 (herein, VcDDF1-OX). The VcDDF1-OX resulted in enhanced freezing tolerance in tetraploid blueberry plants and did not result in significant changes in plant size, chilling requirement, and flowering time. Comparative transcriptome analysis of transgenic 'Legacy-VcDDF1-OX' plants containing an overexpressed VcDDF1 with non-transgenic highbush blueberry 'Legacy' plants revealed the VcDDF1-OX derived differentially expressed (DE) genes and transcripts in the pathways of cold-response, plant flowering, DELLA proteins, and plant phytohormones. The increase in freezing tolerance was associated to the expression of cold-regulated genes (CORs) and the ethylene pathway genes. The unchanged plant size, dormancy and flowering were due to the minimal effect of the VcDDF1-OX on the expression of DELLA proteins, flowering pathway genes, and the other phytohormone genes related to plant growth and development. The DE genes in auxin and cytokinin pathways suggest that the VcDDF1-OX has also altered plant tolerance to drought and high salinity. A DDF1 orthologue in blueberry functioned differently from the DDF1 reported in Arabidopsis. The overexpression of VcDDF1 or its orthologues is a new approach to increase freezing tolerance of deciduous woody plant species with no obvious effect on plant size and plant flowering time.

  17. Overexpression of Wilms Tumor 1 Gene as a Negative Prognostic Indicator in Acute Myeloid Leukemia

    Science.gov (United States)

    Mi, Ruihua; Ding, Jing; Wang, Xianwei; Hu, Jieying; Fan, Ruihua; Wei, Xudong; Song, Yongping; Zhao, Richard Y.

    2014-01-01

    Chromosomal aberrations are useful in assessing treatment options and clinical outcomes of acute myeloid leukemia (AML) patients. However, 40∼50% of the AML patients showed no chromosomal abnormalities, i.e., with normal cytogenetics aka the CN-AML patients. Testing of molecular aberrations such as FLT3 or NPM1 can help to define clinical outcomes in the CN-AML patients but with various successes. Goal of this study was to test the possibility of Wilms’ tumor 1 (WT1) gene overexpression as an additional molecular biomarker. A total of 103 CN-AML patients, among which 28% had overexpressed WT1, were studied over a period of 38 months. Patient’s response to induction chemotherapy as measured by the complete remission (CR) rate, disease-free survival (DFS) and overall survival (OS) were measured. Our data suggested that WT1 overexpression correlated negatively with the CR rate, DFS and OS. Consistent with previous reports, CN-AML patients can be divided into three different risk subgroups based on the status of known molecular abnormalities, i.e., the favorable (NPM1mt/no FLT3ITD), the unfavorable (FLT3ITD) and the intermediate risk subgroups. The WT1 overexpression significantly reduced the CR, DFS and OS in both the favorable and unfavorable groups. As the results, patients with normal WT1 gene expression in the favorable risk group showed the best clinical outcomes and all survived with complete remission and disease-free survival over the 37 month study period; in contrast, patients with WT1 overexpression in the unfavorable risk group displayed the worst clinical outcomes. WT1 overexpression by itself is an independent and negative indicator for predicting CR rate, DFS and OS of the CN-AML patients; moreover, it increases the statistical power of predicting the same clinical outcomes when it is combined with the NPM1 mt or the FLT3 ITD genotypes that are the good or poor prognostic markers of CN-AML. PMID:24667279

  18. SIRT1 overexpression is an independent prognosticator for patients with esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ma, Ming-Chun; Chiu, Tai-Jan; Lu, Hung-I; Huang, Wan-Ting; Lo, Chien-Ming; Tien, Wan-Yu; Lan, Ya-Chun; Chen, Yen-Yang; Chen, Chang-Han; Li, Shau-Hsuan

    2018-04-10

    Sirtuin 1 (SIRT1) regulates DNA repair and metabolism by deacetylating target proteins. SIRT1 may be oncogenic because its overexpression has been detected in many cancers. The aim of the present study was to clarify the prognostic role of SIRT1 in patients with esophageal squamous cell carcinoma (ESCC) and evaluate the effect of SIRT1 inhibitor in vitro. The expression of SIRT1 was evaluated immunohistochemically in 155 surgically resected ESCC and the staining results were evaluated semiquantitatively by the Immunoreactive Scoring System. The clinical features and treatment outcome were analyzed. The effect of SIRT1 inhibitor, SIRT 1 inhibitor IV, (S)-35, was investigated in vitro on ESCC cell lines. The expression of SIRT1 on ESCC did not correlate with age, gender, tumor location, stage, T classification, N classification, surgical margin or histology. Univariate analysis showed that SIRT1 overexpression was associated with inferior overall survival (P = 0.004) and disease-free survival (P = 0.004). In multivariate comparison, SIRT1 overexpression remained independently associated with worse overall survival (P = 0.009, hazard ratio = 1.776) and disease-free survival (P = 0.017, hazard ratio = 1.642). In cell lines, SIRT1 inhibitor inhibited ESCC growth. Our study suggests that SIRT1 overexpression is an independent prognosticator for patients with ESCC and the SIRT1 inhibitor suppressed cell proliferation of ESCC cell lines. Our findings suggest that inhibition of SIRT1 signaling may be a promising novel target for ESCC.

  19. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  1. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  3. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  4. Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice

    Directory of Open Access Journals (Sweden)

    Luce Périè

    2017-12-01

    Full Text Available Background/Aims: Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatin-deficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance. Methods: We generated transgenic mice overexpressing Gasp-1, a myostatin inhibitor. Results: Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Tg(Gasp-1 transgenic mice could lead to this combination of phenotypes. Conclusion: Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

  5. Transgenic tobacco overexpressing Brassica juncea HMG-CoA synthase 1 shows increased plant growth, pod size and seed yield.

    Directory of Open Access Journals (Sweden)

    Pan Liao

    Full Text Available Seeds are very important not only in the life cycle of the plant but they represent food sources for man and animals. We report herein a mutant of 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS, the second enzyme in the mevalonate (MVA pathway that can improve seed yield when overexpressed in a phylogenetically distant species. In Brassica juncea, the characterisation of four isogenes encoding HMGS has been previously reported. Enzyme kinetics on recombinant wild-type (wt and mutant BjHMGS1 had revealed that S359A displayed a 10-fold higher enzyme activity. The overexpression of wt and mutant (S359A BjHMGS1 in Arabidopsis had up-regulated several genes in sterol biosynthesis, increasing sterol content. To quickly assess the effects of BjHMGS1 overexpression in a phylogenetically more distant species beyond the Brassicaceae, wt and mutant (S359A BjHMGS1 were expressed in tobacco (Nicotiana tabacum L. cv. Xanthi of the family Solanaceae. New observations on tobacco OEs not previously reported for Arabidopsis OEs included: (i phenotypic changes in enhanced plant growth, pod size and seed yield (more significant in OE-S359A than OE-wtBjHMGS1 in comparison to vector-transformed tobacco, (ii higher NtSQS expression and sterol content in OE-S359A than OE-wtBjHMGS1 corresponding to greater increase in growth and seed yield, and (iii induction of NtIPPI2 and NtGGPPS2 and downregulation of NtIPPI1, NtGGPPS1, NtGGPPS3 and NtGGPPS4. Resembling Arabidopsis HMGS-OEs, tobacco HMGS-OEs displayed an enhanced expression of NtHMGR1, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Overall, increased growth, pod size and seed yield in tobacco HMGS-OEs were attributed to the up-regulation of native NtHMGR1, NtIPPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1. Hence, S359A has potential in agriculture not only in improving phytosterol content but also seed yield, which may be desirable in food crops. This work further demonstrates HMGS function in plant

  6. Overexpression AtNHX1 confers salt-tolerance of transgenic tall ...

    African Journals Online (AJOL)

    Saline soil is a serious problem worldwide, and it is necessary to improve the salt tolerance of plants so as to avoid the progressive deterioration of saline soil. Here we report that over-expression of AtNHX1 improves salt tolerance in transgenic tall fescue. The AtNHX1 gene driven with CaMV35S promoter was constructed ...

  7. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Sindhu K Madathil

    Full Text Available Traumatic brain injury (TBI survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1, a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal overexpression of IGF-1 using the controlled cortical impact (CCI injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  8. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    Science.gov (United States)

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  9. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer

    International Nuclear Information System (INIS)

    Lei, Fangyong; Zhang, Longjuan; Li, Xinghua; Lin, Xi; Wu, Shu; Li, Fengyan; Liu, Junling

    2014-01-01

    Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer. The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression. Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005). Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker

  10. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis

    Science.gov (United States)

    Tarantal, A.F.; Chen, H.; Shi, T.T.; Lu, C-H.; Fang, A.B.; Buckley, S.; Kolb, M.; Gauldie, J.; Warburton, D.; Shi, W.

    2011-01-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia. PMID:20351039

  11. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    Science.gov (United States)

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  12. Cyclophilin B enhances HIV-1 infection.

    Science.gov (United States)

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2018-06-01

    Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  15. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  16. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2018-04-01

    Full Text Available Heat-shock factor-1 (HSF-1 is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

  17. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress.

    Science.gov (United States)

    Nguyen, Nguyen Hoai; Kim, Jun Hyeok; Kwon, Jaeyoung; Jeong, Chan Young; Lee, Wonje; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-06-01

    Flavonoids are an important group of secondary metabolites that are involved in plant growth and contribute to human health. Many studies have focused on the biosynthesis pathway, biochemical characters, and biological functions of flavonoids. In this report, we showed that overexpression of FLS1 (FLS1-OX) not only altered seed coat color (resulting in a light brown color), but also affected flavonoid accumulation. Whereas fls1-3 mutants accumulated higher anthocyanin levels, FLS1-OX seedlings had lower levels than those of the wild-type. Besides, shoot tissues of FLS1-OX plants exhibited lower flavonol levels than those of the wild-type. However, growth performance and abiotic stress tolerance of FLS1-OX, fls1-3, and wild-type plants were not significantly different. Taken together, FLS1 can be manipulated (i.e., silenced or overexpressed) to redirect the flavonoid biosynthetic pathway toward anthocyanin production without negative effects on plant growth and development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities.

    Science.gov (United States)

    Xue, Xianli; Wu, Yilan; Qin, Xing; Ma, Rui; Luo, Huiying; Su, Xiaoyun; Yao, Bin

    2016-07-11

    The filamentous fungus Trichoderma reesei has the capacity to secret large amounts of cellulase and is widely used in a variety of industries. However, the T. reesei cellulase is weak in β-glucosidase activity, which results in accumulation of cellobiose inhibiting the endo- and exo-cellulases. By expressing an exogenous β-glucosidase gene, the recombinant T. reesei cellulase is expected to degrade cellulose into glucose more efficiently. The thermophilic β-glucosidase NfBgl3A from Neosartorya fischeri is chosen for overexpression in T. reesei due to its robust activity. In vitro, the Pichia pastoris-expressed NfBgl3A aided the T. reesei cellulase in releasing much more glucose with significantly lower amounts of cellobiose from crystalline cellulose. The NfBgl3A gene was hence fused to the cbh1 structural gene and assembled between the strong cbh1 promoter and cbh1 terminator to obtain pRS-NfBgl3A by using the DNA assembler method. pRS-NfBgl3A was transformed into the T. reesei uridine auxotroph strain TU-6. Six positive transformants showed β-glucosidase activities of 2.3-69.7 U/mL (up to 175-fold higher than that of wild-type). The largely different β-glucosidase activities in the transformants may be ascribed to the gene copy numbers of NfBgl3A or its integration loci. The T. reesei-expressed NfBgl3A showed highly similar biochemical properties to that expressed in P. pastoris. As expected, overexpression of NfBgl3A enhanced the overall cellulase activity of T. reesei. The CBHI activity in all transformants increased, possibly due to the extra copies of cbh1 gene introduced, while the endoglucanase activity in three transformants also largely increased, which was not observed in any other studies overexpressing a β-glucosidase. NfBgl3A had significant transglycosylation activity, generating sophorose, a potent cellulase inducer, and other oligosaccharides from glucose and cellobiose. We report herein the successful overexpression of a thermophilic N

  19. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  20. POD-1/Tcf21 overexpression reduces endogenous SF-1 and StAR expression in rat adrenal cells

    Directory of Open Access Journals (Sweden)

    M. M. França

    2015-12-01

    Full Text Available During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G and fasciculata/reticularis (F/R cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.

  1. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis

    Science.gov (United States)

    Park, Sei-Kyoung; Hong, Joo Y.; Arslan, Fatih; Tietsort, Alex; Tank, Elizabeth M. H.; Li, Xingli

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. PMID:28531192

  2. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  3. Upregulation of triglyceride synthesis in skeletal muscle overexpressing DGAT1

    OpenAIRE

    Yang, Feifei; Wei, Zhuying; Ding, Xiangbin; Liu, Xinfeng; Ge, Xiuguo; Song, Guimin; Li, Guangpeng; Guo, Hong

    2013-01-01

    The gene encoding diacylglycerol acyltransferase (DGAT1) is a functional and positional candidate gene for milk and intramuscular fat content. A bovine DGAT1 overexpression vector was constructed containing mouse MCK promoter and bovine DGAT1 cDNA. MCK-DGAT1 transgene in FVB mice was researched in present study. The transgene DGAT1 had a high level of expression in contrast to the endogenous DGAT1 in posterior tibial muscle of the transgenic mice, but a low expression level in the cardiac mus...

  4. Atrial SERCA2a Overexpression Has No Affect on Cardiac Alternans but Promotes Arrhythmogenic SR Ca2+ Triggers.

    Science.gov (United States)

    Nassal, Michelle M J; Wan, Xiaoping; Laurita, Kenneth R; Cutler, Michael J

    2015-01-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias. Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol. As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (poverexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.

  5. Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer's disease via regulating autophagy.

    Science.gov (United States)

    Gu, Huizi; Li, Lan; Cui, Chen; Zhao, Zihui; Song, Guijun

    2017-10-01

    Increased deposition of β-amyloid (Aβ) protein is one of the typical characteristics of Alzheimer's disease (AD). Recent evidence has demonstrated that the microRNA let-7 family, which is highly expressed in the central nervous system, participates in the regulation of pathologic processes of AD. In the present study, the effect of let-7a overexpression on Aβ1-40-induced neurotoxicity was evaluated in PC12 and SK-N-SH cells. The results indicated that overexpression of let-7a enhanced the neurotoxicity induced by Aβ1-40 in PC12 and SK-N-SH cells. In addition, the apoptosis induced by Aβ1-40 in PC12 and SK-N-SH cells was increased by let-7a overexpression. Furthermore, Aβ1-40 treatment increased the protein levels of microtubule-associated protein 1A/1B-light chain 3 (LC3) and beclin-1 and increased the LC3 II/I ratio. The mRNA expression levels of beclin-1, autophagy protein 5 (Atg-5) and Atg-7 were also increased by Aβ1-40 treatment in PC12 cells. Let-7a overexpression further upregulated the above autophagy-related markers. Furthermore, the protein level of p62 was increased by Aβ1-40 treatment, and this was further enhanced by let-7a overexpression. Finally, the present results demonstrated that the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was involved in the autophagy regulation by let-7a. In conclusion, the present study demonstrates that the neurotoxicity induced by Aβ1-40 is augmented by let-7a overexpression via regulation of autophagy, and the PI3K/Akt/mTOR signaling pathway also serves a function in this process.

  6. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  7. Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications

    Directory of Open Access Journals (Sweden)

    Meike eKörner

    2012-12-01

    Full Text Available Peptide hormones of the glucagon-like peptide (GLP family play an increasing clinical role, such as GLP-1 in diabetes therapy. Moreover, GLP receptors are over-expressed in various human tumor types and therefore represent molecular targets for important clinical applications. In particular, virtually all benign insulinomas highly over-express GLP-1 receptors (GLP-1R. Targeting GLP-1R with the stable GLP-1 analogs 111In-DOTA/ DPTA-exendin-4 offers a new approach to successfully localize these small tumors. This non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. Malignant insulinomas, in contrast to their benign counterparts, express GLP-1R in only one third of the cases, while they more often express the somatostatin type 2 receptors. Importantly, one of the two receptors appears to be always expressed in malignant insulinomas. The GLP-1R overexpression in selected cancers is worth to be kept in mind with regard to the increasing use of GLP-1 analogs for diabetes therapy. While the functional role of GLP-1R in neoplasia is not known yet, it may be safe to monitore patients undergoing GLP-1 therapy carefully.

  8. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  9. Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.

    Science.gov (United States)

    Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J

    2010-06-11

    Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.

  10. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin

    2016-01-01

    Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288

  11. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja [Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast (Australia); Tang, Johnny Cheuk-On [State Key Laboratory of Chirosciences, Lo Ka Chung Centre for Natural Anti-cancer Drug Development, Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University (Hong Kong); Tong, Daniel King-Hung; Law, Simon [Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Chan, Kwok-Wah [Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital (Hong Kong); Lam, Alfred King-Yin, E-mail: a.lam@griffith.edu.au [Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast (Australia)

    2016-11-01

    Purpose: This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. Methods: In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Results: Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Conclusions: Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. - Highlights: • miR-1288 was more often noted in neoplastic than non-neoplastic tissue. • miR-1288

  12. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    Science.gov (United States)

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  13. EGFR and AKT1 overexpression are mutually exclusive and associated with a poor survival in resected gastric adenocarcinomas.

    Science.gov (United States)

    Petrini, Iacopo; Lencioni, Monica; Vasile, Enrico; Fornaro, Lorenzo; Belluomini, Lorenzo; Pasquini, Giulia; Ginocchi, Laura; Caparello, Chiara; Musettini, Gianna; Vivaldi, Caterina; Caponi, Sara; Ricci, Sergio; Proietti, Agenese; Fontanini, Gabriella; Naccarato, Antonio Giuseppe; Nardini, Vincenzo; Santi, Stefano; Falcone, Alfredo

    2018-02-14

    The evaluation of molecular targets in gastric cancer has demonstrated the predictive role of HER2 amplification for trastuzumab treatment in metastatic gastric cancer. Besides HER2, other molecular targets are under evaluation in metastatic gastric tumors. However, very little is known about their role in resected tumors. We evaluated the expression of HER2, EGFR, MET, AKT1 and phospho-mTOR in resected stage II-III adenocarcinomas. Ninety-two patients with resected stomach (63%) or gastro-esophageal adenocarcinomas (27%) were evaluated. Antibodies anti-HER2, EGFR, MET, AKT1 and phospho-mTOR were used for immunostaining of formalin-fixed paraffin-embedded slides. Using FISH, HER2 amplification was evaluated in cases with an intermediate (+2) staining. EGFR overexpression (11%) was a poor prognostic factor for overall survival (3-year OS: 47% vs 77%; Log-Rank p= 0.033). MET overexpression (36%) was associated with a trend for a worse survival (3-year OS: 65% vs 77%; Log-Rank p= 0.084). HER2 amplification/overexpression and mTOR hyper-phosphorylation were observed in 13% and 48% of tumors, respectively. AKT1 overexpression (8%) was not a prognostic factor by itself (p= 0.234). AKT1 and EGFR overexpression was mutually exclusive and patients with EGFR or AKT1 overexpression experienced a poor prognosis (3-year OS: 52% vs. 79%, Log-Rank p= 0.005). EGFR is confirmed a poor prognostic factor in resected gastric cancers. We firstly describe a mutually exclusive overexpression of EGFR and AKT1 with potential prognostic implications, suggesting the relevance of this pathway for the growth of gastric cancers.

  14. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  15. Overexpression of a Plasma Membrane-Localized SbSRP-Like Protein Enhances Salinity and Osmotic Stress Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-04-01

    Full Text Available An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1 that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT and Vector Control (VC plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase, Nt-CAT (catalase, Nt-SOD (superoxide dismutase, Nt-DREB (dehydration responsive element binding factor, and Nt-AP2 (apetala2 genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic

  16. Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients.

    Science.gov (United States)

    Yun, Sumi; Koh, Jiwon; Nam, Soo Kyung; Park, Jung Ok; Lee, Sung Mi; Lee, Kyoungyul; Lee, Kyu Sang; Ahn, Sang-Hoon; Park, Do Joong; Kim, Hyung-Ho; Choe, Gheeyoung; Kim, Woo Ho; Lee, Hye Seung

    2018-03-01

    Neuregulin 1 (NRG1), a ligand for human epidermal growth factor (HER) 3 and HER4, can activates cell signaling pathways to promote carcinogenesis and metastasis. To investigate the clinicopathologic significance of NRG1 and its receptors, immunohistochemistry was performed for NRG1, HER3, and HER4 in 502 consecutive gastric cancers (GCs). Furthermore, HER2, microsatellite instability (MSI), and Epstein-Barr virus (EBV) status were investigated. NRG1 gene copy number (GCN) was determined by dual-color fluorescence in situ hybridization (FISH) in 388 available GCs. NRG1 overexpression was observed in 141 (28.1%) GCs and closely correlated with HER3 (P = 0.034) and HER4 (P overexpression was significantly associated with aggressive features, including infiltrative tumor growth, lymphovascular, and neural invasion, high pathologic stage, and poor prognosis (all P overexpression as an independent prognostic factor for survival (P = 0.040). HER3 and HER4 expressions were observed in 157 (31.3%) and 277 (55.2%), respectively. In contrast to NRG1, expression of these proteins was not associated with survival. NRG1 GCN gain (GCN ≥ 2.5) was detected in 14.7% patients, including two cases of amplification, and was moderately correlated with NRG1 overexpression (κ, 0.459; P overexpression in GC, overexpression of their ligand, NRG1, was associated with aggressive clinical features and represented an independent unfavorable prognostic factor. Therefore, NRG1 is a potential prognostic and therapeutic biomarker in GC patients.

  17. Trib1 Is Overexpressed in Systemic Lupus Erythematosus, While It Regulates Immunoglobulin Production in Murine B Cells

    Directory of Open Access Journals (Sweden)

    Léa Simoni

    2018-03-01

    Full Text Available Systemic lupus erythematosus (SLE is a severe and heterogeneous autoimmune disease with a complex genetic etiology, characterized by the production of various pathogenic autoantibodies, which participate in end-organ damages. The majority of human SLE occurs in adults as a polygenic disease, and clinical flares interspersed with silent phases of various lengths characterize the usual evolution of the disease in time. Trying to understand the mechanism of the different phenotypic traits of the disease, and considering the central role of B cells in SLE, we previously performed a detailed wide analysis of gene expression variation in B cells from quiescent SLE patients. This analysis pointed out an overexpression of TRIB1. TRIB1 is a pseudokinase that has been implicated in the development of leukemia and also metabolic disorders. It is hypothesized that Trib1 plays an adapter or scaffold function in signaling pathways, notably in MAPK pathways. Therefore, we planned to understand the functional significance of TRIB1 overexpression in B cells in SLE. We produced a new knock-in model with B-cell-specific overexpression of Trib1. We showed that overexpression of Trib1 specifically in B cells does not impact B cell development nor induce any development of SLE symptoms in the mice. By contrast, Trib1 has a negative regulatory function on the production of immunoglobulins, notably IgG1, but also on the production of autoantibodies in an induced model. We observed a decrease of Erk activation in BCR-stimulated Trib1 overexpressing B cells. Finally, we searched for Trib1 partners in B cells by proteomic analysis in order to explore the regulatory function of Trib1 in B cells. Interestingly, we find an interaction between Trib1 and CD72, a negative regulator of B cells whose deficiency in mice leads to the development of autoimmunity. In conclusion, the overexpression of Trib1 could be one of the molecular pathways implicated in the negative regulation

  18. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Science.gov (United States)

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement.

  19. [Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].

    Science.gov (United States)

    Li, Yang; Zhang, Libin; Wang, Ping

    2017-01-01

    Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.

  20. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    International Nuclear Information System (INIS)

    Udayakumar, Thirupandiyur S.; Stoyanova, Radka; Hachem, Paul; Ahmed, Mansoor M.; Pollack, Alan

    2011-01-01

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 10 8 plaque-forming units [PFU]) and PC3 (5 x 10 8 PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm 3 ) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm 3 ; p 3 to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm 3 , respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that ectopic overexpression of E2F1 in vivo, using an adenoviral vector, significantly inhibits orthotopic p53 wild-type LNCaP tumors and subcutaneous

  1. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle

    International Nuclear Information System (INIS)

    Shimura, Tsutomu

    2011-01-01

    Fractionated radiotherapy (RT) is widely used in cancer therapy for its advantages in the preservation of normal tissues. However, repopulation of surviving tumor cells during fractionated RT limits the efficacy of RT. In fact, repopulating tumors often acquire radioresistance and this is the major cause of failure of RT. We have recently demonstrated that human tumor cells acquire radioresistance when exposed to fractionated radiation (FR) of X-rays every 12 hours for 1 month. The acquired radioresistance was associated with overexpression of cyclin D1, a result of a series of molecular changes; constitutive activation of DNA-PK and AKT with concomitant down-regulation of glycogen synthase kinase-3β (GSK3β) which results in suppression of cyclin D1 proteolysis. Aberrant cyclin D1 overexpression in S-phase induced DNA double strand breaks which activated DNA-PK and established the vicious cycle of cycling D1 overexpression. This overexpression of cyclin D1 is responsible for the radioresistance phenotype of long-term FR cells, since this phenotype was completely abrogated by treatment of FR cells by the AKT/PKB signaling inhibitor (API-2), an AKT inhibitor or by a Cdk4 inhibitor. Thus, targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway can be an efficient modality to suppress acquired radioresistance of tumor cells. In this article, I overview the newly discovered molecular mechanisms underlying acquired radioresistance of tumor cells induced by FR, and propose a strategy for eradication of tumors using fractionated RT by overcoming tumor radioresistance. (author)

  2. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  3. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Science.gov (United States)

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  4. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance.

    Science.gov (United States)

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-09-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 (K372E) with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    International Nuclear Information System (INIS)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-01-01

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  6. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice.

    Science.gov (United States)

    Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong

    2016-01-15

    The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with YWHAH protein

    International Nuclear Information System (INIS)

    Namkoong, Hong; Shin, Seung Min; Kim, Hyun Kee; Ha, Seon-Ah; Cho, Goang Won; Hur, Soo Young; Kim, Tae Eung; Kim, Jin Woo

    2006-01-01

    Basic studies of oncogenesis have demonstrated that either the elevated production of particular oncogene proteins or the occurrence of qualitative abnormalities in oncogenes can contribute to neoplastic cellular transformation. The purpose of our study was to identify an unique gene that shows cancer-associated expression, and characterizes its function related to human carcinogenesis. We used the differential display (DD) RT-PCR method using normal cervical, cervical cancer, metastatic cervical tissues, and cervical cancer cell lines to identify genes overexpressed in cervical cancers and identified gremlin 1 which was overexpressed in cervical cancers. We determined expression levels of gremlin 1 using Northern blot analysis and immunohistochemical study in various types of human normal and cancer tissues. To understand the tumorigenesis pathway of identified gremlin 1 protein, we performed a yeast two-hybrid screen, GST pull down assay, and immunoprecipitation to identify gremlin 1 interacting proteins. DDRT-PCR analysis revealed that gremlin 1 was overexpressed in uterine cervical cancer. We also identified a human gremlin 1 that was overexpressed in various human tumors including carcinomas of the lung, ovary, kidney, breast, colon, pancreas, and sarcoma. PIG-2-transfected HEK 293 cells exhibited growth stimulation and increased telomerase activity. Gremlin 1 interacted with homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (14-3-3 eta; YWHAH). YWHAH protein binding site for gremlin 1 was located between residues 61–80 and gremlin 1 binding site for YWHAH was found to be located between residues 1 to 67. Gremlin 1 may play an oncogenic role especially in carcinomas of the uterine cervix, lung, ovary, kidney, breast, colon, pancreas, and sarcoma. Over-expressed gremlin 1 functions by interaction with YWHAH. Therefore, Gremlin 1 and its binding protein YWHAH could be good targets for developing diagnostic and

  8. MiR-200a enhances the migrations of A549 and SK-MES-1 cells by ...

    Indian Academy of Sciences (India)

    By a series of gain-of-function and loss-offunction studies, over-expression of miR-200a was indicated to enhance cells migration, and its knock-down inhibited migration of cells in NSCLC cell lines. Furthermore, miR-200a was identified to induce TSPAN1 expression which was related to migration. TSPAN1 was proved to ...

  9. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    Science.gov (United States)

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS: Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection...... podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation...

  11. Transgenic overexpression of expansin influences particle size distribution and improves viscosity of tomato juice and paste

    NARCIS (Netherlands)

    Kalamaki, M.S.; Powell, A.L.T.; Struijs, K.; Labavitch, J.M.; Reid, D.S.; Bennett, A.B.

    2003-01-01

    Suppression of the expression of a ripening-related expansin gene, LeExp1, in tomato enhanced fruit firmness and overexpression of LeExp1 resulted in increased fruit softening. Because of the incompletely understood relationship between fresh fruit texture and the consistency of processed products,

  12. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Tenan, Mirna

    2002-01-01

    Little is known about the effects of antiangiogenic therapy on perfusion of human tumors and the mechanisms by which tumors can adapt to these treatments and recur. Here, we examined the effects of serial passaging of LN-229 human glioma xenografts overexpressing thrombospondin (TSP)-1 on tumor...... vascularity was estimated by noninvasive near infrared spectroscopy measuring blood volume at 800 +/- 10 nm and by histological vessel scores in CD31-immunostained cryosections. The tumor perfusion was assessed by noninvasive laser Doppler flowmetry. Overexpression of TSP-1 significantly inhibited tumor....... Elucidation of the mechanisms that allow this to happen has important consequences for the understanding of tumor recurrence after antiangiogenic therapy....

  13. Overexpression of a 9-cis-Epoxycarotenoid Dioxygenase Gene in Nicotiana plumbaginifolia Increases Abscisic Acid and Phaseic Acid Levels and Enhances Drought Tolerance1

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A.D.

    2002-01-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels. PMID:11842158

  14. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2010-03-01

    The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.

  15. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... analysis revealed overexpression of the ABCG2 gene. Western blot confirmed overexpression of ABCG2; neither P-glycoprotein nor MRP overexpression was detected. These results suggest that ABCG2 plays a role in resistance to flavopiridol....

  16. Benzothiazole aniline tetra(ethylene glycol) and 3-amino-1,2,4-triazole inhibit neuroprotection against amyloid peptides by catalase overexpression in vitro.

    Science.gov (United States)

    Chilumuri, Amrutha; Odell, Mark; Milton, Nathaniel G N

    2013-11-20

    Alzheimer's disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45-50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects.

  17. Benzothiazole Aniline Tetra(ethylene glycol) and 3-Amino-1,2,4-triazole Inhibit Neuroprotection against Amyloid Peptides by Catalase Overexpression in Vitro

    Science.gov (United States)

    2013-01-01

    Alzheimer’s disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45–50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects. PMID:23968537

  18. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Zhengrong; Li, Gang; Wu, Lirong; Weng, Desheng; Li, Xiangping; Yao, Kaitai

    2009-01-01

    Human Cripto-1, a member of the EGF-CFC family, is indispensable for early embryonic development. Cripto-1 plays an important oncogenic role during tumorigenesis and is overexpressed in a wide range of epithelial carcinomas, yet little is known about Cripto-1 in nasopharyngeal carcinoma (NPC). The aim of this study was to analyze the roles of Cripto-1 in the progression and clinical characteristics in NPC clinical samples and cell lines. The expression of Cripto-1 at mRNA level was detected by the reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR, and western blot was used to examine the protein expression. Cripto-1 expression and its clinical characteristics were investigated by performing immunohistochemical analysis on a total of 37 NPC clinical tissue samples. Lentiviral vectors were constructed to get an efficient expression of anti-Cripto-1 siRNA in CNE-2 and C666-1 cells, with invalid RNAi sequence as control. After the inhibition of the endogenous Cripto-1, the growth, cell cycle and invasion of cells were detected by MTT, FACS and Boyden chamber assay respectively. Moreover, in vivo, the proliferation of the tumor cells was evaluated in xenotransplant nude mice model with whole-body visualizing instrument. The results of real-time RT-PCR and western blot showed that the expression level of Cripto-1 was markedly higher in NPC cell lines than that in the immortalized nasopharyngeal epithelial cell at both mRNA and protein levels. RT-PCR of 17 NPC tissues showed a high expression rate in 76.5% (13/17) cases. In an immunohistochemical study, Cripto-1 was found to express in 54.1% (20/37) cases of NPC. In addition, Cripto-1 overexpression was significantly associated with N classification (p = 0.034), distant metastasis (p = 0.036), and clinical stage (p = 0.007). Inhibition of endogenous Cripto-1 by lentivirus-mediated RNAi silencing technique suppressed NPC cell growth and invasion in vitro. In vivo, the average weight (p = 0

  19. Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory

    Directory of Open Access Journals (Sweden)

    Tansu Celikel

    2007-10-01

    Full Text Available Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1amediated uncoupling for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet controlled expression of Venus-tagged Homer1a (H1aV in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP, which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP. These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.

  20. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mel-18 interacts with RanGAP1 and inhibits its sumoylation.

    Science.gov (United States)

    Zhang, Jie; Sarge, Kevin D

    2008-10-17

    Our previous results showed that the polycomb protein mel-18 binds to a protein called HSF2 and inhibits HSF2 sumoylation, thereby functioning as an anti-SUMO E3 factor. This study also suggested that mel-18 regulates the sumoylation of other cellular proteins, but the identities of these other proteins were unknown. Here we show that mel-18 interacts with the RanGAP1 protein and inhibits its sumoylation, and that these activities do not require the RING domain of mel-18. The results also show that RanGAP1 sumoylation is decreased during mitosis, and that this is associated with increased interaction between RanGAP1 and mel-18 during this stage of the cell cycle. Intriguingly, this regulatory relationship is the opposite of that found for mel-18 and HSF2, in which the interaction between these two proteins decreases during mitosis, resulting in elevated HSF2 sumoylation. The results of this study strengthen the conclusion that mel-18 functions as an anti-SUMO E3 factor, and extend its targets to include regulation of the sumoylation of the important cellular protein RanGAP1.

  2. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  3. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  5. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    International Nuclear Information System (INIS)

    Thonel, Aurelie de; Mezger, Valerie; Garrido, Carmen

    2011-01-01

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

  6. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  7. Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c

    Directory of Open Access Journals (Sweden)

    Chen Ke

    2011-08-01

    Full Text Available Abstract Background High glucose induced lipid synthesis leads to β cell glucolipotoxicity. Sterol regulatory element binding protein-1c (SREBP-1c is reported to be partially involved in this process. Insulin induced gene-1 (Insig-1 is an important upstream regulator of Insig-1-SREBPs cleavage activating protein (SCAP-SREBP-1c pathway. Insig-1 effectively blocks the transcription of SREBP-1c, preventing the activation of the genes for lipid biosynthesis. In this study, we aimed to investigate whether Insig-1 protects β cells against glucolipotoxicity. Methods An Insig-1 stable cell line was generated by overexpression of Insig-1 in INS-1 cells. The expression of Insig-1 was evaluated by RT-PCR and Western blotting, then, cells were then treated with standard (11.2 mM or high (25.0 mM glucose for 0 h, 24 h and 72 h. Cell viability, apoptosis, glucose stimulated insulin secretion (GSIS, lipid metabolism and mRNA expression of insulin secretion relevant genes such as IRS-2, PDX-1, GLUT-2, Insulin and UCP-2 were evaluated. Results We found that Insig-1 suppressed the high glucose induced SREBP-1c mRNA and protein expression. Our results also showed that Insig-1 overexpression protected β cells from ER stress-induced apoptosis by regulating the proteins expressed in the IRE1α pathway, such as p-IRE1α, p-JNK, CHOP and BCL-2. In addition, Insig-1 up-regulated the expression of IRS-2, PDX-1, GLUT-2 and Insulin, down-regulated the expression of UCP-2 and improved glucose stimulated insulin secretion (GSIS. Finally, we found that Insig-1 inhibited the lipid accumulation and free fatty acid (FFA synthesis in a time-dependent manner. Conclusions There results suggest that Insig-1 may play a critical role in protecting β cells against glucolipotoxicity by regulating the expression of SREBP-1c.

  8. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Park

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and the CRISPR associated protein 9 (Cas9 system allows effective gene modification through RNA-guided DNA targeting. The Cas9 has undergone a series of functional alterations from the original active endonuclease to partially or completely deactivated Cas9. The catalytically deactivated Cas9 (dCas9 offers a platform to regulate transcriptional expression with the addition of activator or repressor domains. We redesigned a CRISPR/Cas9 activation system by adding the p65 transactivating subunit of NF-kappa B and a heat-shock factor 1 (HSF activation domain to dCas9 bound with the VP64 (tetramer of VP16 activation domain for application in plants. The redesigned CRISPR/Cas9 activation system was tested in Arabidopsis to increase endogenous transcriptional levels of production of anthocyanin pigment 1 (PAP1 and Arabidopsis thaliana vacuolar H+-pyrophosphatase (AVP1. The expression of PAP1 was increased two- to three-fold and the activated plants exhibited purple leaves similar to that of PAP1 overexpressors. The AVP1 gene expression was increased two- to five-fold in transgenic plants. In comparison to the wild type, AVP1 activated plants had increased leaf numbers, larger single-leaf areas and improved tolerance to drought stress. The AVP1 activated plants showed similar phenotypes to AVP1 overexpressors. Therefore, the redesigned CRISPR/Cas9 activation system containing modified p65-HSF provides a simple approach for producing activated plants by upregulating endogenous transcriptional levels.

  9. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Sajad Ali

    2017-10-01

    Full Text Available Brassica juncea (Indian mustard is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1 is a bonafide receptor of salicylic acid (SA which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR. Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1 from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.

  10. Inhibiting trophoblast PAR-1 overexpression suppresses sFlt-1-induced anti-angiogenesis and abnormal vascular remodeling: a possible therapeutic approach for preeclampsia.

    Science.gov (United States)

    Zhao, Yin; Zheng, YanFang; Liu, XiaoXia; Luo, QingQing; Wu, Di; Liu, XiaoPing; Zou, Li

    2018-03-01

    Is it possible to improve vascular remodeling by inhibiting the excessive expression of protease-activated receptor 1 (PAR-1) in trophoblast of abnormal placenta? Inhibition of trophoblast PAR-1 overexpression may promote placental angiogenesis and vascular remodeling, offering an alternative therapeutic approach for preeclampsia. PAR-1 is high-affinity receptor of thrombin. Thrombin increases sFlt-1 secretion in trophoblast via the activation of PAR-1. It is reported that the expression of both thrombin and PAR-1 expression are increased in placentas of preeclampsia patients compared with normal placentas. Trophoblast cells were transfected with PAR-1 short hairpin RNA (shRNA) or PAR-1 overexpression plasmids in vitro. Tube formation assays and a villus-decidua co-culture system were used to study the effect of PAR-1 inhibition on placental angiogenesis and vascular remodeling, respectively. Placentas from rats with preeclampsia were transfected with PAR-1 shRNA to confirm the effect of inhibiting PAR-1 overexpression in placenta. The trophoblast cell line HTR-8/SVneo was transfected with PAR-1 shRNA or PAR-1 overexpression plasmids. After 48 h, supernatant was collected and the level of sFlt-1 secretion was measured by ELISA. Human umbilical cord epithelial cells and a villus-decidua co-culture system were treated with conditioned media to study the effect of PAR-1 inhibition on tube formation and villi vascular remodeling. A preeclampsia rat model was established by intraperitoneal injection of L-NAME. Plasmids were injected into the placenta of the preeclampsia rats and systolic blood pressure was measured on Days 15 and 19. The effect of different treatments was evaluated by proteinuria, placental weights, fetal weights and fetal numbers in study and control groups. The level of serum sFlt-1 in rats with preeclampsia was also measured. Changes in the placenta microvessels were studied by histopathological staining. PAR-1 shRNA inhibited PAR-1 expression and

  11. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Science.gov (United States)

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  12. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  13. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  14. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  15. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize.

    Directory of Open Access Journals (Sweden)

    Jiemin Wang

    Full Text Available Phosphate (Pi limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR growth, and stimulated the development of lateral roots (LRs. A detailed characterization of the root system architecture (RSA in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW, root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.

  16. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-01-01

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  17. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  18. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells.

    Science.gov (United States)

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A; Bugalho, Maria João; Silva, Ana Luísa

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.

  19. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    Science.gov (United States)

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  20. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency

    Science.gov (United States)

    Southard, Sheryl; Kim, Ju-Ryoung; Low, SiewHui; Tsika, Richard W; Lepper, Christoph

    2016-01-01

    When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic ‘scaling’ of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a ‘normal’ quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts. In dystrophic muscle, the TEAD1 transgene also ameliorated the pathology. We further demonstrate that hyperplastic SCs accumulate non-cell-autonomously via signal(s) from the TEAD1-expressing myofiber, suggesting that myofiber-specific TEAD1 overexpression activates a physiological signaling pathway(s) that determines initial and homeostatic SC pool size. We propose that TEAD1 and its downstream effectors are medically relevant targets for enhancing muscle regeneration and ameliorating muscle pathology. DOI: http://dx.doi.org/10.7554/eLife.15461.001 PMID:27725085

  1. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.

  2. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1 in tobacco.

    Directory of Open Access Journals (Sweden)

    Alessandra Vasconcellos Nunes Laitz

    Full Text Available Mitochondrial inner membrane uncoupling proteins (UCP dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1 in tobacco seedlings. Compared to wild-type (WT, AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.

  3. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  4. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  5. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Directory of Open Access Journals (Sweden)

    Ros Joaquim

    2010-02-01

    Full Text Available Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

  6. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice

    Science.gov (United States)

    LI, XIHAI; LIANG, WENNA; YE, HONGZHI; WENG, XIAPING; LIU, FAYUAN; LIN, PINGDONG; LIU, XIANXIANG

    2015-01-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild-type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression-associated congenital dysplasia of the TMJ in mice. PMID:26096903

  7. Light Intensity-Dependent Modulation of Chlorophyll b Biosynthesis and Photosynthesis by Overexpression of Chlorophyllide a Oxygenase in Tobacco1[C][OA

    Science.gov (United States)

    Biswal, Ajaya K.; Pattanayak, Gopal K.; Pandey, Shiv S.; Leelavathi, Sadhu; Reddy, Vanga S.; Govindjee; Tripathy, Baishnab C.

    2012-01-01

    Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%–80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation. PMID:22419827

  8. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice.

    Science.gov (United States)

    Li, Xihai; Liang, Wenna; Ye, Hongzhi; Weng, Xiaping; Liu, Fayuan; Lin, Pingdong; Liu, Xianxiang

    2015-09-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild‑type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression‑associated congenital dysplasia of the TMJ in mice.

  9. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  10. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  11. Effects of ionizing radiations on reticulated polymers associated to nuclear wastes. The HSF-SIMS technique contribution; Effets des radiations ionisantes sur les polymeres reticules associes aux dechets nucleaires. Apport de la technique HSF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Debre, O [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-06-30

    Among the materials used for confinement of nuclear wastes of low and medium level activity the epoxyde resins are known as matrices which preserve well their properties in an ionizing environment. This work is dedicated to the investigation of the modifications occurring in molecular structure of these materials as well as of the ion exchange resins they incorporate, irradiated in different conditions. The first part deals with the analysis of a commercial reticulated epoxyde resin submitted to a 2 MGy integral dose gamma irradiation under two different dose rate (51 and 900 Gy/h), and under two different environments (air and water). The results obtained with the techniques providing structure information (time-of-flight mass spectrometry (HSF-SIMS) and FT-IR spectrometry) confirm those obtained by techniques sensible to macroscopic properties of material (DMA, DSC), taking into account that no noticeable irradiation effect can be made evident inside the material. On the other hand, an irradiation carried out in air results in a superficial oxidation, due probably to the action of the air radiolysis products. The preliminary results of an ion irradiation followed by an in-situ HSF-SIMS analysis pointed out to a basic difference between the energy amount transferred by gamma photons and fast ions; the last ones being able to induce scissions of the nearby liaisons in the material. The second part of this work is concerned with the ion exchange resins of the type PS-DVB saturated in water and non-active ions, simulating real wastes, irradiated in the same conditions as the epoxyde resins. In contrast to the results on the last one, it appears that the irradiation of these materials results primarily in scissions of the functional groups on which the ions are attached. In addition to this finding it appears that the role of water as carrying outward the attached ions appears to be fundamental 175 refs.

  12. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.

    Science.gov (United States)

    Ding, Lihua; Wang, Yanwen; Yu, Hao

    2013-04-01

    SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS-box protein that plays an essential role in integrating multiple flowering signals to regulate the transition from vegetative to reproductive development in the model plant Arabidopsis. Although SOC1-like genes have been isolated in various angiosperms, its orthologs in Orchidaceae, one of the largest families of flowering plants, are so far unknown. To investigate the regulatory mechanisms of flowering time control in orchids, we isolated a SOC1-like gene, DOSOC1, from Dendrobium Chao Praya Smile. DOSOC1 was highly expressed in reproductive organs, including inflorescence apices, pedicels, floral buds and open flowers. Its expression significantly increased in whole plantlets during the transition from vegetative to reproductive development, which usually occurred after 8 weeks of culture in Dendrobium Chao Praya Smile. In the shoot apex at the floral transitional stage, DOSOC1 was particularly expressed in emerging floral meristems. Overexpression of DOSOC1 in wild-type Arabidopsis plants resulted in early flowering, which was coupled with the up-regulation of two other flowering promoters, AGAMOUS-LIKE 24 and LEAFY. In addition, overexpression of DOSOC1 was able partially to complement the late-flowering phenotype of Arabidopsis soc1-2 loss-of-function mutants. Furthermore, we successfully created seven 35S:DOSOC1 transgenic Dendrobium orchid lines, which consistently exhibited earlier flowering than wild-type orchids. Our results suggest that SOC1-like genes play an evolutionarily conserved role in promoting flowering in the Orchidaceae family, and that DOSOC1 isolated from Dendrobium Chao Praya Smile could serve as an important target for genetic manipulation of flowering time in orchids.

  13. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  14. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice.

    Science.gov (United States)

    Zhang, Hui; Ma, Li; Yin, Yan-Ling; Dong, Lian-Qiang; Cheng, Gang-Ge; Ma, Ya-Qun; Li, Yun-Feng; Xu, Bai-Nan

    2016-09-01

    The translocator protein 18kDa (TSPO) is closely related to regulation of immune/inflammatory response. However, the putative role and signaling mechanisms of TSPO in regulation of neuroinflammation remain unclear. GV287 lentiviral vectors mediating TSPO over-expression were injected into bilateral hippocampal CA1 areas to test whether TSPO over-expression was neuroprotective in lipopolysaccharide (LPS)-induced mice model. Finasteride, a blocker of allopregnanolone production, was used to test whether the protective effects were related to steroideogenesis. The results demonstrated that TSPO over-expression increased progesterone and allopregnanolone synthesis. TSPO over-expression in CA1 area improved LPS-induced cognitive deficiency in mice and this cognitive improvement was reversed by finasteride administration. These data suggest that up-regulation of TSPO level during neuroinflammation may be an adaptive response mechanism, a way to provide more neurosteroids. We confer that TSPO could be an attractive drug target for controlling neuroinflammation in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Overexpression of Prdx1 in hilar cholangiocarcinoma: a predictor for recurrence and prognosis.

    Science.gov (United States)

    Zhou, Jie; Shen, Weiwen; He, Xiaojing; Qian, Jing; Liu, Shiyuan; Yu, Guanzhen

    2015-01-01

    Prdx1 is an important member of peroxiredoxins (Prdxs) regulating various cellular signaling and differentiation. Prdx1 confers an aggressive survival phenotype of cancer cells and drug-resistance, yet its role in hilar cholangiocarcinoma is not fully investigated. In present study, we detected the expression profile of Prdx1 in 88 hilar cholangiocarcinoma by tissue arrays and immunohistochemistry. Prdx1 level was down-regulated by specific Prdx1-shRNA in vitro and the possible mechanism was investigated. Overexpression of Prdx1 was observed in 53 of 88 cases (60.2%). Prdx1 expression was significantly associated with tumor invasion, nodal metastasis, advanced disease stage. Down-regulation of Prdx1 inhibited cell proliferation and colony formation of QBC939 cells and reduced the level of SNAT1 expression. Patients with Prdx1 overexpression had a shorter disease-free survival and overall survival than those without Prdx1 expression. Multivariate analysis showed that Prdx1 was an independent prognostic factor for patients with hilar cholangiocarcinoma. The data indicate that Prdx1 may contribute to the development and progression of hilar cholangiocarcinoma, partially through regulating SNAT1 expression, and may be used as a biomarker in predicting the outcome of patients with hilar cholangiocarcinoma.

  16. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells.

    Science.gov (United States)

    Saneja, Ankit; Nayak, Debasis; Srinivas, M; Kumar, Amit; Khare, Vaibhav; Katoch, Archana; Goswami, Anindya; Vishwakarma, Ram A; Sawant, Sanghapal D; Gupta, Prem N

    2017-01-15

    The overexpression of CD44 in cancer cells reroutes number of oncogenic pathways including the central Pi3K/Akt/NF-kB pathway leading to cancer progression and malignancy. Herein, we developed hyaluronic acid-modified poly(dl-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles (PLGA-PEG-HA NPs) for targeted delivery of TTQ (thio-tetrazolyl analog of a clinical candidate, IC87114) to CD44 overexpressing cancer cells. The PLGA-PEG co-polymer was synthesized and characterized by NMR and FTIR. The co-polymer based nanoparticles were prepared by solvent evaporation method and hyaluronic acid (HA) was conjugated on to the nanoparticle surface via EDC/NHS chemistry. The PLGA-PEG-HA NPs had a desirable particle size (AFM). In vitro cytotoxicity and cellular uptake studies demonstrated higher cytotoxicity and enhanced intracellular accumulation of PLGA-PEG-HA NPs compared to PLGA-PEG NPs in high CD44 expressing MiaPaca-2 cells compared to MDA-MB-231 and MCF7 cells. At the molecular level, the PLGA-PEG-HA NPs were found to be inducing premature senescence with increase in senescence associated β-galactosidase activity and senescence specific marker p21 expression through modulation of Pi3K/Akt/NF-kB signaling pathway in MiaPaca-2 cells. These findings collectively indicated that HA-modified nanoparticles might serve as a promising nanocarrier for site-specific drug delivery, and can be explored further to increase the therapeutic efficacy of anticancer drugs via targeting to CD44 over-expressing cancer cells. Copyright © 2016. Published by Elsevier B.V.

  17. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  18. Receptor-interacting Protein 140 Overexpression Promotes Neuro-2a Neuronal Differentiation by ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    2015-01-01

    Full Text Available Background: Abnormal neuronal differentiation plays an important role in central nervous system (CNS development abnormalities such as Down syndrome (DS, a disorder that results directly from overexpression of genes in trisomic cells. Receptor-interacting protein 140 (RIP140 is significantly upregulated in DS brains, suggesting its involvement in DS CNS development abnormalities. However, the role of RIP140 in neuronal differentiation is still not clear. The current study aimed to investigate the effect of RIP140 overexpression on the differentiation of neuro-2a (N2a neuroblastoma cells, in vitro. Methods: Stably RIP140-overexpressing N2a (N2a-RIP140 cells were used as a neurodevelopmental model, and were constructed by lipofection and overexpression validated by real-time polymerase chain reaction and Western blot. Retinoic acid (RA was used to stimulate N2a differentiation. Combining the expression of Tuj1 at the mRNA and protein levels, the percentage of cells baring neurites, and the number of neurites per cell body was semi-quantified to determine the effect of RIP140 on differentiation of N2a cells. Furthermore, western blot and the ERK1/2 inhibitor U0126 were used to identify the specific signaling pathway by which RIP140 induces differentiation of N2a cells. Statistical significance of the differences between groups was determined by one-way analysis of variance followed by the Dunnett test. Results: Compared to untransfected N2a cells RIPl40 expression in N2a-RIP140 cells was remarkably upregulated at both the mRNA and protein levels. N2a-RIP140 cells had a significantly increased percentage of cells baring neurites, and numbers of neurites per cell, as compared to N2a cells, in the absence and presence of RA (P < 0.05. In addition, Tuj1, a neuronal biomarker, was strongly upregulated in N2a-RIP140 cells (P < 0.05 and phosphorylated ERK1/2 (p-ERK1/2 levels in N2a-RIP140 cells were dramatically increased, while differentiation was

  19. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    Full Text Available The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP, Bombyx mori A4 promoter (A4P, hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG. After oral inoculation of BmNPV with 3 × 10(5 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity.

  20. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    Science.gov (United States)

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  1. TC-1 Overexpression Promotes Cell Proliferation in Human Non-Small Cell Lung Cancer that Can Be Inhibited by PD173074

    Science.gov (United States)

    Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping

    2014-01-01

    Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347

  2. miR-449 overexpression inhibits papillary thyroid carcinoma cell growth by targeting RET kinase-β-catenin signaling pathway.

    Science.gov (United States)

    Li, Zongyu; Huang, Xin; Xu, Jinkai; Su, Qinghua; Zhao, Jun; Ma, Jiancang

    2016-10-01

    Papillary thyroid carcinoma (PTC) is the most common thyroid cancer and represent approximately 80% of all thyroid cancers. The present study is aimed to investigate the role of microRNA (miR)-449 in the progression of PTC. Our results revealed that miR-449 was underexpressed in the collected PTC specimens compared with non-cancerous PTC tissues. Overexpression of miR-449 induced a cell cycle arrest at G0/G1 phase and inhibited PTC cell growth in vitro. Further studies revealed that RET proto-oncogene (RET) is a novel miR-449 target, due to miR-449 bound directly to its 3'-untranslated region and miR-449 mimic reduced the protein expression of RET. Similar to the effects of miR-449 overexpression, RET downregulation inhibited cell growth, whereas RET overexpression reversed the inhibitive effect of miR-449 mimic. Furthermore, miR-449 overexpression inhibited the nuclear translocation of β-catenin and reduced the expression of several downstream genes, including c-Myc, cyclin D1, T cell-specific transcription factor (TCF) and lymphoid enhancer-binding factor 1 (LEF-1), and inactivated the β-catenin pathway in TPC-1 cells. Moreover, overexpression of β-catenin prevented miR-449-reduced cell cycle arrest and cell viability. In xenograft animal experiments, miR-449 overexpression effectively suppressed the tumor growth of PTC. Taken together, our research indicated that miR-449 functions as an anti-oncogene by targeting RET, and that miR-449 overexpression inhibited the growth of PTC by inactivating the β-catenin pathway. Thus, miR-449 may serve as a potential therapeutic strategy for the treatment of PTC.

  3. Over-expression of KdSOC1 gene affected plantlet morphogenesis in Kalanchoe daigremontiana.

    Science.gov (United States)

    Zhu, Chen; Wang, Li; Chen, Jinhua; Liu, Chenglan; Zeng, Huiming; Wang, Huafang

    2017-07-17

    Kalanchoe daigremontiana reproduces asexually by producing plantlets along the leaf margin. The aim of this study was to identify the function of the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 gene in Kalanchoe daigremontiana (KdSOC1) during plantlet morphogenesis. In this study, KdSOC1 gene expression was detected at stem cell niche during in vitro somatic embryogenesis and plantlet morphogenesis. Disrupting endogenous auxin transportation suppressed the KdSOC1 gene response. Knockdown of the KdSOC1 gene caused a defect in cotyledon formation during the early heart stage of somatic embryogenesis. Over-expression (OE) of the KdSOC1 gene resulted in asymmetric plantlet distribution, a reduced number of plantlets, thicker leaves, and thicker vascular fibers. Higher KdPIN1 gene expression and auxin content were found in OE plant compared to those of wild-type plant leaves, which indicated possible KdSOC1 gene role in affecting auxin distribution and accumulation. KdSOC1 gene OE in DR5-GUS Arabidopsis reporting lines resulted in an abnormal auxin response pattern during different stages of somatic embryogenesis. In summary, the KdSOC1 gene OE might alter auxin distribution and accumulation along leaf margin to initiate plantlet formation and distribution, which is crucial for plasticity during plantlet formation under various environmental conditions.

  4. Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma

    Science.gov (United States)

    Wang, Zheng; Wen, Lijun; Zhu, Fei; Wang, Yanping; Xie, Qing; Chen, Zijun; Li, Yunsen

    2017-01-01

    Ceramide synthase 1 (CERS1) is the most highly expressed CERS in the central nervous system, and ceramide with an 18-carbon–containing fatty acid chain (C18-ceramide) in the brain plays important roles in signaling and sphingolipid development. However, the roles of CERS1 and C18-ceramide in glioma are largely unknown. In the present study, measured by electrospray ionization linear ion trap mass spectrometry, C18-ceramide was significantly lower in glioma tumor tissues compared with controls (P overexpression of CERS1, which has been shown to specifically induce the generation of C18-ceramide. Overexpression of CERS1 or adding exogenous C18-ceramide inhibited cell viability and induced cell death by activating endoplasmic reticulum stress, which induced lethal autophagy and inhibited PI3K/AKT signal pathway in U251 and A172 glioma cells. Moreover, overexpression of CERS1 or adding exogenous C18-ceramide increased the sensitivity of U251 and A172 glioma cells to teniposide (VM-26). Thus, the combined therapy of CERS1/C18-ceramide and VM-26 may be a novel therapeutic strategy for the treatment of human glioma. PMID:29262618

  5. Rose Essential Oil Delayed Alzheimer's Disease-Like Symptoms by SKN-1 Pathway in C. elegans.

    Science.gov (United States)

    Zhu, Shuqian; Li, Hongyu; Dong, Juan; Yang, Wenqi; Liu, Ting; Wang, Yu; Wang, Xin; Wang, Meizhu; Zhi, Dejuan

    2017-10-11

    There are no effective medications for delaying the progress of Alzheimer's disease (AD), the most common neurodegenerative disease in the world. In this study, our results with C. elegans showed that rose essential oil (REO) significantly inhibited AD-like symptoms of worm paralysis and hypersensivity to exogenous 5-HT in a dose-dependent manner. Its main components of β-citronellol and geraniol acted less effectively than the oil itself. REO significantly suppressed Aβ deposits and reduced the Aβ oligomers to alleviate the toxicity induced by Aβ overexpression. Additionally, the inhibitory effects of REO on worm paralysis phenotype were abrogated only after skn-1 RNAi but not daf-16 and hsf-1 RNAi. REO markedly activated the expression of gst-4 gene, which further supported SKN-1 signaling pathway was involved in the therapeutic effect of REO on AD C. elegans. Our results provided direct evidence on REO for treating AD on an organism level and relative theoretical foundation for reshaping medicinal products of REO in the future.

  6. Beclin 1 overexpression inhibits chondrocyte apoptosis and downregulates extracellular matrix metabolism in osteoarthritis.

    Science.gov (United States)

    Song, Bin; Song, Hong; Wang, Weiguo; Wang, Hongru; Peng, Hanyuan; Cui, Jing; Wang, Rong; Huang, Hua; Wang, Wei; Wang, Lili

    2017-10-01

    In the present study, the expression of Beclin 1 in osteoarthritis (OA) cartilage tissue was investigated, and also its role in proliferation, apoptosis and expression of matrix metalloproteinases (MMPs) in chondrocytes obtained from patients with OA. Beclin 1 expression in cartilage tissue from OA patients, and in the age- and sex-matched controls, was detected by immunohistochemistry, semi-quantitative polymerase chain reaction and western blotting. Chondrocytes were divided into control and Beclin 1-overexpressed groups. After transfection for 48, 72 and 96 h, cell viability, apoptosis, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and MMPs were examined. The mRNA and protein expression levels of Beclin 1 were significantly decreased in cartilage tissue from OA patients compared with the sex- and age-matched controls (Poverexpression significantly increased cell viability (Poverexpression additionally decreased the degree of apoptosis, as demonstrated by Hoechst staining and flow cytometric analysis. B-cell lymphoma-2 (Bcl-2) was upregulated, and Bcl-2 associated X was downregulated, following Beclin 1 overexpression (Poverexpression (Poverexpression (Poverexpression increased cell viability, inhibited apoptosis and MMPs, likely via the PI3K/Akt/mTOR signaling pathway.

  7. Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase (UPM1

    Directory of Open Access Journals (Sweden)

    Sampurna Garai

    2018-01-01

    Full Text Available Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR and sulfite reductase (SiR; it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N and sulfur (S assimilation. Further, uroporphyrinogen III methyltransferase (UPM1, responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR. We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than

  8. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes

    DEFF Research Database (Denmark)

    Hanssen, Nordin M J; Brouwers, Olaf; Gijbels, Marion J

    2014-01-01

    are higher in rupture-prone plaques. We here investigated whether overexpression of human GLO1 in ApoE(-/-) mice could reduce the development of atherosclerosis. METHODS AND RESULTS: We crossed C57BL/6 ApoE(-/-) mice with C57BL/6 GLO1 overexpressing mice (huGLO1(+/-)) to generate ApoE(-/-) (n = 16) and Apo......E(-/-) huGLO1(+/-) (n = 20) mice. To induce diabetes, we injected a subset with streptozotocin (STZ) to generate diabetic ApoE(-/-) (n = 8) and ApoE(-/-) huGLO1(+/-) (n = 13) mice. All mice were fed chow and sacrificed at 25 weeks of age. The GLO1 activity was three-fold increased in huGLO1(+/-) aorta......, but aortic root lesion size and phenotype did not differ between mice with and without huGLO1(+/-) overexpression. We detected no differences in gene expression in aortic arches, in AGE levels and cytokines, in circulating cells, and endothelial function between ApoE(-/-) mice with and without huGLO1...

  9. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  10. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  11. Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells.

    Science.gov (United States)

    Kim, Jong-Sik; Baek, Seung Joon; Bottone, Frank G; Sali, Tina; Eling, Thomas E

    2005-09-01

    To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.

  12. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  13. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    Science.gov (United States)

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  14. Role of membrane Hsp70 in radiation sensitivity of tumor cells

    International Nuclear Information System (INIS)

    Murakami, Naoya; Kühnel, Annett; Schmid, Thomas E.; Ilicic, Katarina; Stangl, Stefan; Braun, Isabella S.; Gehrmann, Mathias; Molls, Michael; Itami, Jun; Multhoff, Gabriele

    2015-01-01

    The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. The isogenic human colon carcinoma sublines CX + with stable high and CX − with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. CX + /CX − tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX − and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After

  15. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  16. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  17. Quantitative nature of overexpression experiments

    Science.gov (United States)

    Moriya, Hisao

    2015-01-01

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression. PMID:26543202

  18. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple.

    Science.gov (United States)

    Sun, Xun; Jia, Xin; Huo, Liuqing; Che, Runmin; Gong, Xiaoqing; Wang, Ping; Ma, Fengwang

    2018-02-01

    Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient-recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low-N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N-depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up-regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up-regulating amylase gene (MdAM1) and up-regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up-regulating nitrate reductase MdNIA2 and 3 high-affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N-depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity. © 2017 John Wiley & Sons Ltd.

  19. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2).

    Science.gov (United States)

    Angkawijaya, Artik Elisa; Nguyen, Van Cam; Nakamura, Yuki

    2017-09-01

    Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non-phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid-to-galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum-localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2-overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation. © 2017 John Wiley & Sons Ltd.

  20. Overexpression of dimethylarginine dimethylaminohydrolase 1 attenuates airway inflammation in a mouse model of asthma.

    Directory of Open Access Journals (Sweden)

    Kayla G Kinker

    Full Text Available Levels of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1 and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR. ADMA levels in bronchoalveolar lavage fluid (BALF and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM. Airway inflammation was assessed by bronchoalveolar lavage (BAL total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses.

  1. PGK1 Drives Hepatocellular Carcinoma Metastasis by Enhancing Metabolic Process.

    Science.gov (United States)

    Xie, Huijun; Tong, Guihui; Zhang, Yupei; Liang, Shu; Tang, Kairui; Yang, Qinhe

    2017-07-27

    During the proliferation and metastasis, the tumor cells prefer glycolysis (Warburg effect), but its exact mechanism remains largely unknown. In this study, we demonstrated that phosphoglycerate kinase 1 (PGK1) is an important enzyme in the pathway of metabolic glycolysis. We observed a significant overexpression of PGK1 in hepatocellular carcinoma tissues, and a correlation between PGK1 expression and poor survival of hepatocellular carcinoma patients. Also, the depletion of PGK1 dramatically reduced cancer cell proliferation and metastasis, indicating an oncogenic role of PGK1 in liver cancer progression. Further experiments showed that PGK1 played an important role in MYC -induced metabolic reprogramming, which led to an enhanced Warburg effect. Our results revealed a new effect of PGK1, which can provide a new treatment strategy for hepatocellular carcinoma, as PGK1 is used to indicate the prognosis of hepatocellular carcinoma (HCC).

  2. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis.

    Science.gov (United States)

    Kelavkar, U P; Nixon, J B; Cohen, C; Dillehay, D; Eling, T E; Badr, K F

    2001-11-01

    The effect of overexpression of 15-lipoxygenase-1 (15-LO-1) was studied in the human prostate cancer cell line, PC-3. Stable PC-3 cell lines were generated by transfection with 15-LO-1-sense (15-LOS), 15-LO-1-antisense (15-LOAS) or vector (Zeo) and selection with Zeocin. After characterization by RT-PCR, western and HPLC, a PC3-15LOS clone was selected that possessed 10-fold 15-LO-1 enzyme activity compared with parental PC-3 cells. The PC3-15LOAS clone displayed little or no 15-LO-1 activity. These PC-3 cell lines were characterized for properties of tumorigenesis. The proliferation rates of the cell lines were as follows: PC3-15LOS > PC-3 = PC3-Zeo > PC3-15LOAS. Addition of a specific 15-LO-1 inhibitor, PD146176, caused a dose-dependent inhibition of proliferation in vitro. Overexpression of 15-LO-1 also caused [(3)H]thymidine incorporation to increase by 4.0-fold (P < 0.01). Compared with parental and PC-3-Zeo cells, PC3-15LOS enhanced whereas PC3-15LOAS reduced the ability of PC-3 cells to grow in an anchorage-independent manner, as assessed by colony formation in soft agar. These data suggested a pro-tumorigenic role for 15-LO-1 in PC-3 cells in vitro. Therefore, to clarify the role of 15-LO-1 in vivo, the effect of 15-LO-1 expression on the growth of tumors in nude mice was investigated. The PC-3 cell lines were inoculated subcutaneously into athymic nude mice. The frequency of tumor formation was increased and the sizes of the tumors formed were much larger in the PC3-15LOS compared with PC3-15LOAS, parental PC-3 and PC-3-Zeo cells. Immunohistochemistry for 15-LO-1 confirmed expression throughout the duration of the experiment. The expression of factor VIII, an angiogenesis marker, in tumor sections was increased in tumors derived from PC3-15LOS cells and decreased in those from PC3-15LOAS cells compared with tumors from parental or Zeo cells. These data further supported the evaluation by ELISA of vascular endothelial growth factor (VEGF) secretion by PC-3

  3. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass

    DEFF Research Database (Denmark)

    Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan

    2009-01-01

    in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release...

  5. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-01-01

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  6. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants

    Science.gov (United States)

    Withanage, Samanthi Priyanka; Hossain, Md Aktar; Kumar M., Sures; Roslan, Hairul Azman B; Abdullah, Mohammad Puad; Napis, Suhaimi B.; Shukor, Nor Aini Ab.

    2015-01-01

    Kenaf (Hibiscus cannabinus L.; Family: Malvaceae), is multipurpose crop, one of the potential alternatives of natural fiber for biocomposite materials. Longer fiber and higher cellulose contents are required for good quality biocomposite materials. However, average length of kenaf fiber (2.6 mm in bast and 1.28 mm in whole plant) is below the critical length (4 mm) for biocomposite production. Present study describes whether fiber length and cellulose content of kenaf plants could be enhanced by increasing GA biosynthesis in plants by overexpressing Arabidopsis thaliana Gibberellic Acid 20 oxidase (AtGA20ox) gene. AtGA20ox gene with intron was overexpressed in kenaf plants under the control of double CaMV 35S promoter, followed by in planta transformation into V36 and G4 varieties of kenaf. The lines with higher levels of bioactive GA (0.3–1.52 ng g−1 fresh weight) were further characterized for their morphological and biochemical traits including vegetative and reproductive growth, fiber dimension and chemical composition. Positive impact of increased gibberellins on biochemical composition, fiber dimension and their derivative values were demonstrated in some lines of transgenic kenaf including increased cellulose content (91%), fiber length and quality but it still requires further study to confirm the critical level of this particular bioactive GA in transgenic plants. PMID:26175614

  7. The dog as a naturally-occurring model for insulin-like growth factor type 1 receptor-overexpressing breast cancer: an observational cohort study

    International Nuclear Information System (INIS)

    Jaillardon, Laetitia; Abadie, Jérome; Godard, Tiffanie; Campone, Mario; Loussouarn, Delphine; Siliart, Brigitte; Nguyen, Frédérique

    2015-01-01

    Dogs spontaneously develop invasive mammary carcinoma with a high prevalence of the triple-negative (TN) subtype (lack of ER-Estrogen Receptor and PR-Progesterone Receptor expression, lack of HER2-Human Epidermal Growth Factor Receptor 2 overexpression), making this animal model relevant for investigating new therapeutic pathways. Insulin-like growth factor Type-1 receptor (IGF1R) is frequently overexpressed in primary human breast cancers, with a growing role in the TN phenotype. The purpose of this study was to investigate the Dog as a candidate model for IGF1R-overexpressing mammary carcinoma. 150 bitches with canine mammary carcinoma (CMC) and a known 2-year follow-up were retrospectively included. IGF1R expression was assessed by immunohistochemistry (IHC) using a similar scoring system as for HER2 in breast cancer. The prognostic value of the IGF1R expression was assessed in terms of overall and specific survival as well as disease-free interval (DFI). 47 CMC (31 %) were classified as luminal and 103 (69 %) as triple-negative (TN-CMC). 41 % of CMC overexpressed IGF1R (IHC score 3+) of which 76 % were TN-CMC and 62 % grade III. IGF1R overexpression was associated with aggressive features including lymphovascular invasion, histological grade III, low ER expression and the TN phenotype. Univariate and multivariate analyses revealed that IGF1R overexpression was associated with shorter overall and specific survivals and shorter DFI in TN-CMC. IGF1R overexpression is common and related to a poor outcome in canine invasive mammary carcinoma, particularly in the triple negative subtype, as in human breast cancer. Preclinical studies using the Dog as a spontaneous animal model could be considered to investigate new therapies targeting IGF1R in triple-negative breast cancer. The online version of this article (doi:10.1186/s12885-015-1670-6) contains supplementary material, which is available to authorized users

  8. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  9. Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner.

    Science.gov (United States)

    Edenharter, Oliver; Clement, Janik; Schneuwly, Stephan; Navarro, Juan A

    2017-12-01

    Friedreich ataxia (FRDA) is the most important autosomal recessive ataxia in the Caucasian population. FRDA patients display severe neurological and cardiac symptoms that reflect a strong cellular and axonal degeneration. FRDA is caused by a loss of function of the mitochondrial protein frataxin which impairs the biosynthesis of iron-sulfur clusters and in turn the catalytic activity of several enzymes in the Krebs cycle and the respiratory chain leading to a diminished energy production. Although FRDA is due to frataxin depletion, overexpression might also be very helpful to better understand cellular functions of frataxin. In this work, we have increased frataxin expression in neurons to elucidate specific roles that frataxin might play in these tissues. Using molecular, biochemical, histological and behavioral methods, we report that frataxin overexpression is sufficient to increase oxidative phosphorylation, modify mitochondrial morphology, alter iron homeostasis and trigger oxidative stress-dependent cell death. Interestingly, genetic manipulation of mitochondrial iron metabolism by silencing mitoferrin successfully improves cell survival under oxidative-attack conditions, although enhancing antioxidant defenses or mitochondrial fusion failed to ameliorate frataxin overexpression phenotypes. This result suggests that cell degeneration is directly related to enhanced incorporation of iron into the mitochondria. Drosophila frataxin overexpression might also provide an alternative approach to identify processes that are important in FRDA such as changes in mitochondrial morphology and oxidative stress induced cell death.

  10. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

    Science.gov (United States)

    Horiki, Mitsuru; Imamura, Takeshi; Okamoto, Mina; Hayashi, Makoto; Murai, Junko; Myoui, Akira; Ochi, Takahiro; Miyazono, Kohei; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2004-01-01

    Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo. PMID:15123739

  11. Overexpression of DOC-1R inhibits cell cycle G1/S transition by repressing CDK2 expression and activation.

    Science.gov (United States)

    Liu, Qi; Liu, Xing; Gao, Jinlan; Shi, Xiuyan; Hu, Xihua; Wang, Shusen; Luo, Yang

    2013-01-01

    DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.

  12. Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis.

    Science.gov (United States)

    Shen, Zongshan; Wang, Jiancheng; Huang, Qiting; Shi, Yue; Wei, Zhewei; Zhang, Xiaoran; Qiu, Yuan; Zhang, Min; Wang, Yi; Qin, Wei; Huang, Shuheng; Huang, Yinong; Liu, Xin; Xia, Kai; Zhang, Xinchun; Lin, Zhengmei

    2018-02-14

    Radiation-induced oral mucositis affects patient quality of life and reduces tolerance to cancer therapy. Unfortunately, traditional treatments are insufficient for the treatment of mucositis and might elicit severe side effects. Due to their immunomodulatory and anti-inflammatory properties, the transplantation of mesenchymal stem cells (MSCs) is a potential therapeutic strategy for mucositis. However, systemically infused MSCs rarely reach inflamed sites, impacting their clinical efficacy. Previous studies have demonstrated that chemokine axes play an important role in MSC targeting. By systematically evaluating the expression patterns of chemokines in radiation/chemical-induced oral mucositis, we found that CXCL2 was highly expressed, whereas cultured MSCs negligibly express the CXCL2 receptor CXCR2. Thus, we explored the potential therapeutic benefits of the transplantation of CXCR 2 -overexpressing MSCs (MSCs CXCR2 ) for mucositis treatment. Indeed, MSCs CXCR2 exhibited enhanced targeting ability to the inflamed mucosa in radiation/chemical-induced oral mucositis mouse models. Furthermore, we found that MSC CXCR2 transplantation accelerated ulcer healing by suppressing the production of pro-inflammatory chemokines and radiogenic reactive oxygen species (ROS). Altogether, these findings indicate that CXCR2 overexpression in MSCs accelerates ulcer healing, providing new insights into cell-based therapy for radiation/chemical-induced oral mucositis.

  13. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

    Science.gov (United States)

    Zang, Xinshan; Geng, Xiaoli; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Ni, Zhongfu; Yao, Yingyin; Xin, Mingming; Hu, Zhaorong; Sun, Qixin; Peng, Huiru

    2017-01-14

    The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H 2 O 2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

  14. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  15. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    International Nuclear Information System (INIS)

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-01-01

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  16. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  17. Essential oil obtained from micropropagated lavender, its effect on HSF cells and application in cosmetic emulsion as a natural protective substance.

    Science.gov (United States)

    Andrys, D; Adaszyńska-Skwirzyńska, M; Kulpa, D

    2018-04-01

    The aim of the study was to determine the influence of the essential oils isolated from the field - grown and micropropagated in vitro narrow - leaved lavender of the 'Munstead' cultivar, on human skin cells, and their capability to synthesise procollagen. The amount of procollagen type I produced by fibroblast cells was determined using ELISA kit. Essential oil isolated from micropropagated lavender was further used as a protective ingredient against the development of microorganisms in O/W cosmetic emulsion. The presented results demonstrate that the use of 0.01, 0.001 and 0.0001% essential oils isolated from in vitro plants stimulate HSF cells to the production of procollagen. It was further performed that the tested essential oil used in the concentration of 0.1% in a cosmetic emulsion is characterised by preservative effect for cosmetic preparations for the period of 3 months.

  18. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  19. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    Science.gov (United States)

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  20. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  1. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  2. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  3. Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Sora, Sakura; Yokota, Yuichiro; Nakano, Takashi

    2008-01-01

    Background and purpose: Overexpression of Bcl-2 is frequent in human cancers and has been associated with radioresistance. Here we investigated the potential impact of heavy ions on Bcl-2 overexpressing tumors. Materials and methods: Bcl-2 cells (Bcl-2 overexpressing HeLa cells) and Neo cells (neomycin resistant gene-expressing HeLa cells) exposed to γ-rays or heavy ions were assessed for the clonogenic survival, apoptosis and cell cycle distribution. Results: Whereas Bcl-2 cells were more resistant to γ-rays (0.2 keV/μm) and helium ions (16.2 keV/μm) than Neo cells, heavy ions (76.3-1610 keV/μm) yielded similar survival regardless of Bcl-2 overexpression. Carbon ions (108 keV/μm) decreased the difference in the apoptotic incidence between Bcl-2 and Neo cells, and prolonged G 2 /M arrest that occurred more extensively in Bcl-2 cells than in Neo cells. Conclusions: High-LET heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, which may be explained at least in part by the enhanced apoptotic response and prolonged G 2 /M arrest. Thus, heavy-ion therapy may be a promising modality for Bcl-2 overexpressing radioresistant tumors

  4. Peripheral blood aspirates overexpressing IGF-I via rAAV gene transfer undergo enhanced chondrogenic differentiation processes.

    Science.gov (United States)

    Frisch, Janina; Orth, Patrick; Rey-Rico, Ana; Venkatesan, Jagadeesh Kumar; Schmitt, Gertrud; Madry, Henning; Kohn, Dieter; Cucchiarini, Magali

    2017-11-01

    Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single-step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro-anabolic insulin-like growth factor I (IGF-I) in human peripheral blood aspirates via rAAV-mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type-II collagen, SOX9) activities in the samples relative to control (reporter rAAV-lacZ) treatment over extended periods of time (at least 21 days, the longest time-point evaluated). Interestingly, IGF-I gene transfer also triggered hypertrophic, osteo- and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF-I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.

    Science.gov (United States)

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-07-01

    Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

  6. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    Science.gov (United States)

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  7. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes.

    Science.gov (United States)

    Cardoza, R E; Malmierca, M G; Gutiérrez, S

    2014-09-01

    To investigate the effect of the overexpression of erg1 gene of Trichoderma harzianum CECT 2413 (T34) on the Trichoderma-plant interactions and in the biocontrol ability of this fungus. Transformants of T34 strain overexpressing erg1 gene did not show effect on the ergosterol level, although a drastic decrease in the squalene level was observed in the transformants at 96 h of growth. During interaction with plants, the erg1 overexpression resulted in a reduction of the priming ability of several tomato defence-related genes belonging to the salicylate pathway, and also of the TomLoxA gene, which is related to the jasmonate pathway. Interestingly, other jasmonate-related genes, such as PINI and PINII, were slightly induced. The erg1 overexpressed transformants also showed a reduced ability to colonize tomato roots. The ergosterol biosynthetic pathway might play an important role in regulating Trichoderma-plant interactions, although this role does not seem to be restricted to the final product; instead, other intermediates such as squalene, whose role in the Trichoderma-plant interaction has not been characterized, would also play an important role. The functional analysis of genes involved in the synthesis of ergosterol could provide additional strategies to improve the ability of biocontrol of the Trichoderma strains and their interaction with plants. © 2014 The Society for Applied Microbiology.

  9. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  10. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  11. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  12. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Directory of Open Access Journals (Sweden)

    Joos Ulrich

    2005-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. Methods 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. Results HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p Conclusion HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy.

  13. FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    Science.gov (United States)

    Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia

    2012-01-01

    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429

  14. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  15. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  16. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    Science.gov (United States)

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  17. Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck

    NARCIS (Netherlands)

    Michalides, R.; van Veelen, N.; Hart, A.; Loftus, B.; Wientjens, E.; Balm, A.

    1995-01-01

    We evaluated the prognostic significance of overexpression of cyclin D1 in 47 patients with surgically resected squamous cell carcinomas of the head and neck. Overexpression of cyclin D1 was detected immunohistochemically using an affinity-purified polyclonal antibody directed against the

  18. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  19. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  20. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance.

    Science.gov (United States)

    Wardhan, Vijay; Jahan, Kishwer; Gupta, Sonika; Chennareddy, Srinivasarao; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2012-07-01

    Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.

  1. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-01-01

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition

  2. Suppression of WIF-1 through promoter hypermethylation causes accelerated proliferation of the aryl hydrocarbon receptor (AHR) overexpressing MCF10AT1 breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Dalei; Wong, Patrick; Li, Wen; Vogel, Christoph F.; Matsumura, Fumio

    2011-01-01

    Highlights: → 5-Aza-2'-deoxycytidine (AZ) causes proliferation suppression and ERα recovery. → AZ down-regulates Wnt/β-catenin pathway mainly by increasing WIF-1 expression. → Both ERα and AhR have some effects on DNA methylation in breast cancer cells. → Artificial overexpression of ERα in ER negative cells increases WIF-1 expression. → WIF-1 promoter hypermethylation is one of the major causes for accelerated proliferation. -- Abstract: The cause for increased cell proliferation in AHR overexpressing breast cancer cells still remains unknown. Here we studied the molecular basis of aggressive cell proliferation of an AHR overexpressing and ERα functionally down-regulated MCF10AT1 cell line, designated as P20E, in comparison to a matched sub-line, P20C with normal AHR expression and ERα function. We found that a 4-day treatment of P20E cells with 5-aza-2'-deoxycytidine (AZ) caused a significant suppression of cell proliferation. Such an effect of AZ was accompanied with the significant recovery of ERα function. Among diagnostic markers of AZ-induced cellular changes we found conspicuous up-regulation of mRNA expression of Wnt inhibitory factor-1 (WIF-1), particularly in P20E. The possibility of AZ-induced demethylation on the promoter of WIF-1 gene was confirmed through methylation specific PCR assay. Such AZ-induced changes in P20E cells were also accompanied with the decrease in the binding of nuclear proteins to the 32 P labeled TRE (TCF response element) and the reduced accumulation of β-catenin protein in the cell nucleus, indicating the importance of Wnt/β-catenin pathway in maintaining the increased cell proliferation in P20E line over P20C line. The importance of WIF-1 in this regard has been validated by transfecting cells with siRNA against WIF-1, which caused an increase in cell proliferation. Moreover, artificial overexpression of ERα in both P20E as well as MDA-MB-231 cells increased the mRNA expression of WIF-1. Together these

  3. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    International Nuclear Information System (INIS)

    Lin, Zhong-Zhe; Jeng, Yung-Ming; Hu, Fu-Chang; Pan, Hung-Wei; Tsao, Hsin-Wei; Lai, Po-Lin; Lee, Po-Huang; Cheng, Ann-Lii; Hsu, Hey-Chi

    2010-01-01

    To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC). The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Aurora B was overexpressed in 98 (61%) of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003) and p53 mutation (P = 0.002) and was inversely associated with β-catenin mutation (P = 0.002). Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10) dephosphorylation, cell cycle disturbance, and apoptosis. Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment

  4. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    International Nuclear Information System (INIS)

    Terry, Mary Beth; Neugut, Alfred I; Mansukhani, Mahesh; Waye, Jerome; Harpaz, Noam; Hibshoosh, Hanina

    2003-01-01

    The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS), and intramucosal carcinoma). We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG 2 a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508). p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years) was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9) but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6). Heavy beer consumption (8+ bottles per week) was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0) but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7). Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence

  5. Reduced grain chalkiness and its possible physiological mechanism in transgenic rice overexpressing l-GalLDH

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-04-01

    Full Text Available Chalkiness is one of the key factors determining rice quality and price. Ascorbic acid (Asc is a major plant antioxidant that performs many functions in plants. l-Galactono-1,4-lactone dehydrogenase (l-GalLDH, EC1.3.2.3 is an enzyme that catalyzes the final step of Asc biosynthesis in plants. Here we show that the l-GalLDH-overexpressing transgenic rice, GO-2, which has constitutively higher leaf Asc content than wild-type (WT plants, exhibits significantly reduced grain chalkiness. Higher foliar ascorbate/dehydroascorbate (Asc/DHA ratios at 40, 60, 80, and 100 days of plant age were observed in GO-2. Further investigation showed that the enhanced level of Asc resulted in a significantly higher ribulose-1,5-bisphosphate (RuBP carboxylase/oxygenase (Rubisco protein level in GO-2 at 80 days. In addition, levels of abscisic acid (ABA and jasmonic acid (JA were lower in GO-2 at 60, 80, and 100 days. The results we present here indicate that the enhanced level of Asc is likely responsible for changing redox homeostasis in key developmental stages associated with grain filling and alters grain chalkiness in the l-GalLDH-overexpressing transgenic by maintaining photosynthetic function and affecting phytohormones associated with grain filling.

  6. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  7. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  8. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    Science.gov (United States)

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative

  9. Generation of OCIAD1 inducible overexpression human embryonic stem cell line: BJNhem20-OCIAD1-Tet-On

    Directory of Open Access Journals (Sweden)

    Deeti K. Shetty

    2016-03-01

    Full Text Available Human embryonic stem cell line BJNhem20-OCIAD1-Tet-On was generated using non-viral method. The constructs pCAG-Tet-On and pTRE-Tight vector driving OCIAD1 expression were transfected using microporation procedure. pCAG-Tet-On cells can be used for inducible expression of any coding sequence cloned into pTRE-Tight vector. For example, in human embryonic stem cells, Tet-On system has been used to generate SOX2 overexpression cell line (Adachi et al., 2010.

  10. Overexpression of miR‑21 promotes neural stem cell proliferation and neural differentiation via the Wnt/β‑catenin signaling pathway in vitro.

    Science.gov (United States)

    Zhang, Wei-Min; Zhang, Zhi-Ren; Yang, Xi-Tao; Zhang, Yong-Gang; Gao, Yan-Sheng

    2018-01-01

    The primary aim of the present study was to examine the effects of microRNA‑21 (miR‑21) on the proliferation and differentiation of rat primary neural stem cells (NSCs) in vitro. miR‑21 was overexpressed in NSCs by transfection with a miR‑21 mimic. The effects of miR‑21 overexpression on NSC proliferation were revealed by Cell Counting kit 8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assay, and miR‑21 overexpression was revealed to increase NSC proliferation. miR‑21 overexpression was confirmed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). mRNA and protein expression levels of key molecules (β‑catenin, cyclin D1, p21 and miR‑21) in the Wnt/β‑catenin signaling pathway were studied by RT‑qPCR and western blot analysis. RT‑qPCR and western blot analyses revealed that miR‑21 overexpression increased β‑catenin and cyclin D1 expression, and decreased p21 expression. These results suggested that miR‑21‑induced increase in proliferation was mediated by activation of the Wnt/β‑catenin signaling pathway, since overexpression of miR‑21 increased β‑catenin and cyclin D1 expression and reduced p21 expression. Furthermore, inhibition of the Wnt/β‑catenin pathway with FH535 attenuated the influence of miR‑21 overexpression on NSC proliferation, indicating that the factors activated by miR‑21 overexpression were inhibited by FH535 treatment. Furthermore, overexpression of miR‑21 enhanced the differentiation of NSCs into neurons and inhibited their differentiation into astrocytes. The present study indicated that in primary rat NSCs, overexpression of miR‑21 may promote proliferation and differentiation into neurons via the Wnt/β‑catenin signaling pathway in vitro.

  11. Insulin-like growth factor-1 receptor overexpression is associated with outcome in invasive urothelial carcinoma of urinary bladder: a retrospective study of patients treated using radical cystectomy.

    Science.gov (United States)

    Gonzalez-Roibon, Nilda; Kim, Jenny J; Faraj, Sheila F; Chaux, Alcides; Bezerra, Stephania M; Munari, Enrico; Ellis, Carla; Sharma, Rajni; Keizman, Daniel; Bivalacqua, Trinity J; Schoenberg, Mark; Eisenberger, Mario; Carducci, Michael; Netto, George J

    2014-06-01

    To assess the insulin-like growth factor-1 receptor (IGF1R) expression in urothelial carcinoma (UC) and its prognostic role in relation to clinicopathologic parameters. A total of 100 cases of invasive UC were evaluated using tissue microarrays. Membranous IGF1R staining was evaluated using immunohistochemistry. A scoring method analogous to that of HER2 expression in breast carcinoma was used, and the highest score was assigned in each tumor. IGF1R was considered overexpressed in cases with score≥1. We found IGF1R overexpression in 62% of invasive UC. IGF1R overexpression was associated with race (P=.04) and pT category (P=.03). Median follow-up was 29 months (range, 0.5-212). Progression rate was 60%, and overall mortality and cancer-specific mortality rates were 69% and 51%, respectively. In invasive UC, IGF1R overexpression was significantly associated with overall mortality and cancer-specific mortality (Mantel Cox P=.0002 and P=.006, respectively). IGF1R overexpression was associated with increased hazard ratios (HRs) for overall mortality (HR=2.63, P=.001) and cancer-specific mortality (HR=2.45, P=.01), independently and after adjusting for clinicopathologic features and treatment modalities. We found IGF1R overexpression in 62% of bladder UC. More importantly, IGF1R overexpression was a significant predictor of overall mortality and cancer-specific mortality, suggesting its potential role as a prognosticator in UC of bladder. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    International Nuclear Information System (INIS)

    Flanagan, Louise; Whyte, Lorna; Chatterjee, Namita; Tenniswood, Martin

    2010-01-01

    Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s) of the secretory isoform in breast tumor progression and metastasis. To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU) that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells

  13. Interaction of CDCP1 with HER2 Enhances HER2-Driven Tumorigenesis and Promotes Trastuzumab Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Abdullah Alajati

    2015-04-01

    Full Text Available Understanding the molecular pathways that contribute to the aggressive behavior of HER2-positive breast cancers may aid in the development of novel therapeutic interventions. Here, we show that CDCP1 and HER2 are frequently co-overexpressed in metastatic breast tumors and associated with poor patient prognosis. HER2 and CDCP1 co-overexpression leads to increased transformation ability, cell migration, and tumor formation in vivo, and enhanced HER2 activation and downstream signaling in different breast cancer cell lines. Mechanistically, we demonstrate that CDCP1 binds to HER2 through its intracellular domain, thereby increasing HER2 interaction with the non-receptor tyrosine kinase c-SRC (SRC, leading to trastuzumab resistance. Taken together, our findings establish that CDCP1 is a modulator of HER2 signaling and a biomarker for the stratification of breast cancer patients with poor prognosis. Our results also provide a rationale for therapeutic targeting of CDCP1 in HER2-positive breast cancer patients.

  14. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  15. Overexpression of SATB1 is associated with biologic behavior in human renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Chao Cheng

    Full Text Available Special AT-rich sequence-binding protein-1 (SATB1 has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of SATB1 in RCC remains unclear. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of SATB1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both, and upregulation of SATB1 was significantly associated with depth of invasion (P<0.001, lymph node status (P = 0.001 and TNM stage (P = 0.009. SATB1 knockdown inhibited the proliferation, migration and invasion of 786-O cells, whereas SATB1 overexpression promoted the growth and aggressive phenotype of ACHN cells in vitro. Furthermore, SATB1 expression was positively correlated with ZEB2 expression (P = 0.013, and inversely linked to levels of SATB2 and E-cadherin (P = 0.005 and P<0.001, respectively in ccRCC tissues. Our data provide a basis for the concept that overexpression of SATB1 may play a critical role in the acquisition of an aggressive phenotype for RCC cells through EMT, providing new insights into the significance of SATB1 in invasion and metastasis of ccRCC, which may contribute to fully elucidating the exact mechanism of development and progression of RCC.

  16. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  18. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  19. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice

    OpenAIRE

    He, Xiaosong; Li, Yaning; Lu, Haiyan; Zhang, Zhijun; Wang, Yongting; Yang, Guo-Yuan

    2013-01-01

    Damage of oligodendrocytes after ischemia has negative impact on white matter integrity and neuronal function. In this work, we explore whether Netrin-1 (NT-1) overexpression facilitates white matter repairing and remodeling. Adult CD-1 mice received stereotactic injection of adeno-associated virus carrying NT-1 gene (AAV-NT-1). One week after gene transfer, mice underwent 60 minutes of middle cerebral artery occlusion. The effect of NT-1 on neural function was evaluated by neurobehavioral te...

  20. Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M.; Hurst, Christian G.; Cui, Zhenghao; Evans, Lucy P.; Hatton, Colman J.; Pei, Dorothy T.; Ju, Meihua; Sinclair, David A.; Smith, Lois E. H.; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. PMID:24416337

  1. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy.

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M; Hurst, Christian G; Cui, Zhenghao; Evans, Lucy P; Hatton, Colman J; Pei, Dorothy T; Ju, Meihua; Sinclair, David A; Smith, Lois E H; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.

  2. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  3. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Murashchenko, Lidiia; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-08-01

    Acetolactate synthase is a mitochondrial enzyme that catalyses the conversion of two pyruvate molecules to an acetolactate molecule with release of carbon dioxide. The overexpression of the truncated version of the corresponding gene, ILV2, that codes for presumably cytosolic acetolactate synthase in the yeast Saccharomyces cerevisiae, led to a decrease in intracellular pyruvate concentration. This recombinant strain was also characterized by a four-fold increase in glycerol production, with a concomitant 1.8-fold reduction in ethanol production, when compared to that of the wild-type strain under anaerobic conditions in a glucose alcoholic fermentation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    International Nuclear Information System (INIS)

    Park, Choa; Lee, YoungJoo

    2014-01-01

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression

  5. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  6. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Zhang, Wanfang; Feng, Ai; Qiou, Xiaoyan; Zhao, Wanxue; Han, Zhaojun

    2016-05-01

    Imidacloprid is a principal insecticide for controlling rice planthoppers worldwide. Resistance to imidacloprid has been reported in a field population of Laodelphax striatellus. The present work was conducted to study the molecular mechanisms of imidacloprid resistance. An imidacloprid-resistant strain was produced by selecting a field population with imidacloprid for 24 generations. Piperonyl butoxide (PBO) showed a 1.70-fold synergistic effect. Enzyme activity assays were conducted, and cytochrome P450 monooxygenase showed 1.88-fold activity. The mRNA expression levels of 57 P450 genes were compared. Four CYP genes were found to be overexpressed and significantly different to the susceptible strain. Four strains were selected with imidacloprid for a short period, and the expression levels of ten identified detoxification genes were then compared. Only CYP353D1v2 overexpressed and was significantly different to the susceptible strain. Strong correlation was found between CYP353D1v2 expression levels and imidacloprid treatments. Additionally, gene-silencing RNAi via dsRNA feeding showed that depressing the expression of CYP353D1v2 could significantly enhance the sensitivity of L. striatellus to imidacloprid. Constitutive overexpression of four CYP genes was associated with imidacloprid resistance in long-term selection, and expression of CYP353D1v2 with imidacloprid resistance in short-term selection in L. striatellus. © 2015 Society of Chemical Industry.

  7. BAG3-dependent expression of Mcl-1 confers resistance of mutant KRAS colon cancer cells to the HSP90 inhibitor AUY922.

    Science.gov (United States)

    Wang, Chun Yan; Guo, Su Tang; Croft, Amanda; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2018-02-01

    Past studies have shown that mutant KRAS colon cancer cells are susceptible to apoptosis induced by the HSP90 inhibitor AUY922. Nevertheless, intrinsic and acquired resistance remains an obstacle for the potential application of the inhibitor in the treatment of the disease. Here we report that Mcl-1 is important for survival of colon cancer cells in the presence of AUY922. Mcl-1 was upregulated in mutant KRAS colon cancer cells selected for resistance to AUY922-induced apoptosis. This was due to its increased stability mediated by Bcl-2-associated athanogene domain 3 (BAG3), which was also increased in resistant colon cancer cells by heat shock factor 1 (HSF1) as a result of chronic endoplasmic reticulum (ER) stress. Functional investigations demonstrated that inhibition of Mcl-1, BAG3, or HSF1 triggered apoptosis in resistant colon cancer cells, and rendered AUY922-naïve colon cancer cells more sensitive to the inhibitor. Together, these results identify that the HSF1-BAG3-Mcl-1 signal axis is critical for protection of mutant KRAS colon cancer cells from AUY922-induced apoptosis, with potential implications for targeting HSF1/BAG3/Mcl-1 to improve the efficacy of AUY922 in the treatment of colon cancer. © 2017 Wiley Periodicals, Inc.

  8. Overexpression of the transcription factor Sp1 activates the OAS-RNAse L-RIG-I pathway.

    Directory of Open Access Journals (Sweden)

    Valéryane Dupuis-Maurin

    Full Text Available Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1 is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen.

  9. Overexpression of DJ-1/PARK7, the Parkinson's disease-related protein, improves mitochondrial function via Akt phosphorylation on threonine 308 in dopaminergic neuron-like cells.

    Science.gov (United States)

    Zhang, Yi; Gong, Xiao-Gang; Wang, Zhen-Zhen; Sun, Hong-Mei; Guo, Zhen-Yu; Hu, Jing-Hong; Ma, Ling; Li, Ping; Chen, Nai-Hong

    2016-05-01

    DJ-1/PARK7, the Parkinson's disease-related protein, plays an important role in mitochondrial function. However, the mechanisms by which DJ-1 affects mitochondrial function are not fully understood. Akt is a promoter of neuron survival and is partly involved in the neurodegenerative process. This research aimed at investigating a possible relationship between DJ-1 and Akt signalling in regulating mitochondrial function in the dopaminergic neuron-like cells SH-SY5Y and PC-12. Overexpression of DJ-1 was firstly validated at both the transcriptional and translational levels after transit transfection with plasmid pcDNA3-Flag-DJ-1. Confocal fluorescence microscopy demonstrated that overexpression of DJ-1 increased the mitochondrial mass, but did not disrupt the mitochondrial morphology. In addition, mitochondrial complex I activity was raised in DJ-1-overexpressing cells, and this rise occurred with an increase in cellular adenosine 5'-triphosphate content. Moreover, immunoblotting demonstrated that the levels of phosphoinositide 3-kinase and the total Akt were not altered in DJ-1-overexpressing cells, and nor was the Akt phosphorylation on serine 473 changed. By contrast, Akt phosphorylation on threonine 308 was significantly augmented by overexpression of DJ-1, and the expression of glycogen synthase kinase-3beta, a downstream effector of Akt, was suppressed. In summary, these results suggest that overexpression of DJ-1 improves the mitochondrial function, at least in part, through a mechanism involving Akt phosphorylation on threonine 308. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    International Nuclear Information System (INIS)

    Fillies, Thomas; Werkmeister, Richard; Diest, Paul J van; Brandt, Burkhard; Joos, Ulrich; Buerger, Horst

    2005-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy

  11. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Science.gov (United States)

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  12. The synergistic effect of beta-boswellic acid and Nurr1 overexpression on dopaminergic programming of antioxidant glutathione peroxidase-1-expressing murine embryonic stem cells.

    Science.gov (United States)

    Abasi, M; Massumi, M; Riazi, G; Amini, H

    2012-10-11

    Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1

  13. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  14. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    [eng] Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL a...

  15. Mantle cell lymphoma pathogenesis: another turn of the screw to cyclin D1 overexpression

    OpenAIRE

    Albero Gallego, Robert

    2017-01-01

    Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm derived from mature B cells characterized by the presence of the t(11;14)(q13;q32) translocation that leads to the overexpression of Cyclin D1. Cyclin D1 plays a well-established role in G1/S progression, although other functions including transcription or DNA damage response (DDR) can be regulated by this cyclin. Therefore, the main goal of this thesis is the characterization of the cyclin D1 non-canonical function in MCL and lymp...

  16. The overexpression and nuclear translocation of Trx-1 during hypoxia confers on HepG2 cells resistance to DDP, and GL-V9 reverses the resistance by suppressing the Trx-1/Ref-1 axis.

    Science.gov (United States)

    Zhao, Li; Li, Wei; Zhou, Yuxin; Zhang, Yi; Huang, Shaoliang; Xu, Xuefen; Li, Zhiyu; Guo, Qinglong

    2015-05-01

    Microenvironmental hypoxia gives many tumor cells the capacity for drug resistance. Thioredoxin family members play critical roles in the regulation of cellular redox homeostasis in a stressed environment. In this study, we established a hypoxia-drug resistance (hypoxia-DR) model using HepG2 cells and discovered that the overexpression and nuclear translocation of thioredoxin-1 (Trx-1) are closely associated with this resistance through the regulation of the metabolism by the oxidative stress response to glycolysis. Intranuclear Trx-1 enhances the DNA-binding activity of HIF-1α via its interaction with and reducing action on Ref-1, resulting in increased expression of glycolysis-related proteins (PDHK1, HKII, and LDHA), glucose uptake, and lactate generation under hypoxia. Meanwhile, we found that GL-V9, a newly synthesized flavonoid derivative, shows an ability to reverse the hypoxia-DR and has low toxicity both in vivo and in vitro. GL-V9 could inhibit the expression and nuclear translocation of Trx-1 and then suppress HIF-1α DNA-binding activity by inhibiting the Trx-1/Ref-1 axis. As a result, glycolysis is weakened and oxidative phosphorylation is enhanced. Thus, GL-V9 leads to an increment in intracellular ROS generation and consequently intensified apoptosis induced by DDP. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2017-04-01

    Full Text Available Aim: Osteosarcoma (OS is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1, a subunit of the cytochrome bc1 complex (complex III of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.

  18. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts

    NARCIS (Netherlands)

    Yu, Hongyou; de Vos, Paul; Ren, Yijin

    OBJECTIVE: The hypothesis of the present study is that overexpression of osteoprotegerin (OPG) promotes preosteoblast maturation. MATERIALS AND METHODS: The preosteoblast cell line MC3T3-E1 was transfected with OPG overexpression. OPG expression was confirmed by enzyme-linked immunosorbent assay

  19. Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba

    Science.gov (United States)

    Shaneka S. Lawson; Charles H. Michler

    2014-01-01

    One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital...

  20. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nan-Yang Li

    2018-02-01

    Full Text Available Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1 in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.

  2. Effects of clusterin over-expression on metastatic progression and therapy in breast cancer

    Directory of Open Access Journals (Sweden)

    Chatterjee Namita

    2010-03-01

    Full Text Available Abstract Background Clusterin is a secreted glycoprotein that is upregulated in a variety of cell lines in response to stress, and enhances cell survival. A second nuclear isoform of clusterin that is associated with cell death has also been identified. The aim of this study was to determine the role(s of the secretory isoform in breast tumor progression and metastasis. Methods To investigate the role of secretory clusterin in the biology of breast cancer tumor growth and resistance to therapy we have engineered an MCF-7 cell line (MCF-7CLU that over-expresses clusterin. We have measured the in vitro effects of clusterin over-expression on cell cycle, cell death, and sensitivity to TNFalpha and tamoxifen. Using an orthotopic model of breast cancer, we have also determined the effects of over-expression of clusterin on tumor growth and metastatic progression. Results In vitro, over-expression of secretory clusterin alters the cell cycle kinetics and decreases the rate of cell death, resulting in the enhancement of cell growth. Over-expression of secretory clusterin also blocks the TNFalpha-mediated induction of p21 and abrogates the cleavage of Bax to t-Bax, rendering the MCF-7CLU cells significantly more resistant to the cytokine than the parental cells. Orthotopic primary tumors derived from MCF-7CLU cells grow significantly more rapidly than tumors derived from parental MCF-7 cells and, unlike the parental cells, metastasize frequently to the lungs. Conclusions These data suggest that secretory clusterin, which is frequently up-regulated in breast cancers by common therapies, including anti-estrogens, may play a significant role in tumor growth, metastatic progression and subsequent drug resistance in surviving cells.

  3. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    Science.gov (United States)

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  4. ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation

    Directory of Open Access Journals (Sweden)

    Tina Zimmermann

    2016-10-01

    Full Text Available Huntington's disease (HD is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor. By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA chemical and two genetic HD mouse models (R6/2 and N171-82Q on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by BDNF neural progenitors was found in QA-lesioned mice, whereas genetic mouse models displayed only minor improvements. Tumor formation was absent, and regeneration was attributed to enhanced neuronal and striatal differentiation. In addition, adult neurogenesis was preserved in a BDNF-dependent manner. Our findings provide significant insight for establishing therapeutic strategies for HD to ameliorate neurodegenerative symptoms.

  5. Overexpression of octamer transcription factors 1 or 2 alone has no effect on HIV-1 transcription in primary human CD4 T cells

    International Nuclear Information System (INIS)

    Zhang Mingce; Genin, Anna; Cron, Randy Q.

    2004-01-01

    We explored the binding of octamer (Oct) transcription factors to the HIV-1 long terminal repeat (LTR) by gel shift assays and showed none of the previously identified four potential Oct binding sites bound Oct-1 or Oct-2. Overexpression of Oct-1 or Oct-2 had no effect on HIV-1 LTR activity in transiently transfected primary human CD4 T cells. Next, primary human CD4 T cells were co-transfected with a green fluorescent protein (GFP)-expression vector and an Oct-1 or Oct-2 expression plasmid. The transfected cells were stimulated for 2 days and then infected with the NL4-3 strain of HIV-1. After 3 days of infection, there were no differences in HIV-1 p24 supernatant levels. Apoptosis of infected or bystander cells overexpressing Oct-1 or Oct-2 compared to control was also unaffected. Our studies demonstrate that Oct-1 and Oct-2 fail to bind to the HIV-1 LTR and have no effect on HIV-1 transcription in primary human CD4 T cells

  6. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    International Nuclear Information System (INIS)

    Lin, K.; Lin, Y.; McPhie, P.; Cheng S.

    1994-01-01

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TRβ and TRα genes was evaluated at both the mRNA and protein levels. The expression of TRβ1 and TRα1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRα1 protein is low in all cell lines examined. However, TRβ1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low in HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TRβ1 is overexpressed is stimulated by the thyroid hormone, 3,3',5-triiodo-L-thyronine. These results suggest that TRβ1 not TRα1, is probably involved in the proliferation of hepatoma cells

  7. Recombinant adenovirus-mediated overexpression of PTEN and KRT10 improves cisplatin resistance of ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Wu, H; Wang, K; Liu, W; Hao, Q

    2015-06-18

    Drug resistance is a major cause of treatment failure in ovarian cancer patients, and novel therapeutic strategies are urgently needed. Overexpression of phosphatase and tensin homolog (PTEN) has been shown to preserve the cisplatin-resistance of ovarian cancer cells, while cisplatin-induced keratin 10 (KRT10) overexpression mediates the resistance-reversing effect of PTEN. However, whether overexpression of PTEN or KRT10 can improve the cisplatin resistance of ovarian cancer in vivo has not been investigated. Therefore, we investigated the effects of adenovirus-mediated PTEN or KRT10 overexpression on the cisplatin resistance of ovarian cancer in vivo. Recombinant adenoviruses carrying the gene for PTEN or KRT10 were constructed. The effects of overexpression of PTEN and KRT10 on cisplatin resistance of ovarian cancer cells were examined using the 3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) and TdT-mediated dUTP nick-end labeling (TUNEL) assays in vitro. Subcutaneously transplanted nude mice, as a model of human ovarian cancer, were used to test the effects of PTEN and KRT10 on cisplatin resistance of ovarian cancer in vivo. The MTT assay showed that recombinant adenovirus-mediated overexpression of KRT10 and PTEN enhanced the proliferation inhibition effect of cisplatin on C13K cells. Recombinant adenovirus-mediated overexpression of KRT10 and PTEN also increased the cisplatin-induced apoptosis rate of C13K cells. Furthermore, recombinant adenovirus-mediated overexpression of KRT10 and PTEN enhanced the inhibitory effect of cisplatin on C13K xenograft tumor growth. Thus, recombinant adenovirus-mediated overexpression of KRT10 and PTEN may improve the cisplatin resistance of ovarian cancer in vitro and in vivo.

  8. Significant Overexpression of DVL1 in Taiwanese Colorectal Cancer Patients with Liver Metastasis

    Directory of Open Access Journals (Sweden)

    Shiu-Ru Lin

    2013-10-01

    Full Text Available Undetected micrometastasis plays a key role in the metastasis of cancer in colorectal cancer (CRC patients. The aim of this study is to identify a biomarker of CRC patients with liver metastasis through the detection of circulating tumor cells (CTCs. Microarray and bioinformatics analysis of 10 CRC cancer tissue specimens compared with normal adjacent tissues revealed that 31 genes were up-regulated (gene expression ratio of cancer tissue to paired normal tissue > 2 in the cancer patients. We used a weighted enzymatic chip array (WEnCA including 31 prognosis-related genes to investigate CTCs in 214 postoperative stage I–III CRC patients and to analyze the correlation between gene expression and clinico-pathological parameters. We employed the immunohistochemistry (IHC method with polyclonal mouse antibody against DVL1 to detect DVL1 expression in 60 CRC patients. CRC liver metastasis occurred in 19.16% (41/214 of the patients. Using univariate analysis and multivariate proportional hazards regression analysis, we found that DVL1 mRNA overexpression had a significant, independent predictive value for liver metastasis in CRC patients (OR: 5.764; 95% CI: 2.588–12.837; p < 0.0001 on univariate analysis; OR: 3.768; 95% CI: 1.469–9.665; p = 0.006 on multivariate analysis. IHC staining of the immunoreactivity of DVL1 showed that DVL1 was localized in the cytoplasm of CRC cells. High expression of DVL1 was observed in 55% (33/60 of CRC tumor specimens and was associated significantly with tumor depth, perineural invasion and liver metastasis status (all p < 0.05. Our experimental results demonstrated that DVL1 is significantly overexpressed in CRC patients with liver metastasis, leading us to conclude that DVL1 could be a potential prognostic and predictive marker for CRC patients.

  9. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Grosskinsky, Dominik Kilian

    2015-01-01

    %), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold...

  11. Gene Overexpression: Uses, Mechanisms, and Interpretation

    Science.gov (United States)

    2012-01-01

    The classical genetic approach for exploring biological pathways typically begins by identifying mutations that cause a phenotype of interest. Overexpression or misexpression of a wild-type gene product, however, can also cause mutant phenotypes, providing geneticists with an alternative yet powerful tool to identify pathway components that might remain undetected using traditional loss-of-function analysis. This review describes the history of overexpression, the mechanisms that are responsible for overexpression phenotypes, tests that begin to distinguish between those mechanisms, the varied ways in which overexpression is used, the methods and reagents available in several organisms, and the relevance of overexpression to human disease. PMID:22419077

  12. Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice

    DEFF Research Database (Denmark)

    Olesen, Mikkel V; Christiansen, Søren Hofman Oliveira; Gøtzsche, Casper René

    2012-01-01

    overexpression was found to be associated with modest anxiolytic-like effect in the open field and elevated plus maze tests, but no effect was seen on depression-like behavior using the tail suspension and forced swim tests. However, the rAAV-Y1 vector modestly aggravated kainate-induced seizures. These data...... in the hippocampus of adult mice and tested the animals in anxiety- and depression-like behavior. Hippocampal Y1 receptors have been suggested to mediate seizure-promoting effect, so the effects of rAAV-induced Y1 receptor overexpression were also tested in kainate-induced seizures. Y1 receptor transgene...

  13. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1 Improves Salinity Tolerance in Tobacco.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available Calreticulin (CRT is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD, peroxidase (POD and catalase (CAT than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.

  14. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  15. Postneonatal Mortality and Liver Changes in Cloned Pigs Associated with Human Tumor Necrosis Factor Receptor I-Fc and Human Heme Oxygenase-1 Overexpression.

    Science.gov (United States)

    Kim, Geon A; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Oh, Hyun Ju; Hwang, Joing-Ik; Ahn, Curie; Saadeldin, Islam M; Lee, Byeong Chun

    2017-01-01

    Soluble human tumor necrosis factor (shTNFRI-Fc) and human heme oxygenase 1 (hHO-1) are key regulators for protection against oxidative and inflammatory injury for xenotransplantation. Somatic cells with more than 10 copy numbers of shTNFRI-Fc and hHO-1 were employed in somatic cell nuclear transfer to generate cloned pigs, thereby resulting in seven cloned piglets. However, produced piglets were all dead within 24 hours after birth. Obviously, postnatal death with liver apoptosis was reported in the higher copy number of shTNFRI-Fc and hHO-1 piglets. In liver, the transcript levels of ferritin heavy chain, light chain, transferrin, and inducible nitric oxide synthase were significantly highly expressed compared to those of lower copy number of shTNFRI-Fc and hHO-1 piglets ( P hHO-1 piglets ( P hHO-1 overexpression may apparently induce free iron in the liver and exert oxidative stress by enhancing reactive oxygen species production and block normal postneonatal liver metabolism.

  16. [Monocarboxylate transporter 1 enhances the sensitivity of breast cancer cells to 3-bromopyruvate in vitro].

    Science.gov (United States)

    Li, Qi-Xiang; Zhang, Pei; Liu, Fang; Wang, Xian-Zhi; Li, Lu; Wang, Zhong-Kun; Jiang, Chen-Chen; Zheng, Hai-Lun; Liu, Hao

    2017-05-20

    To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.

  17. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  18. miRNA array analysis determines miR-205 is overexpressed in head and neck squamous cell carcinoma and enhances cellular proliferation

    Directory of Open Access Journals (Sweden)

    Howard JD

    2013-08-01

    Full Text Available MicroRNAs (miRNAs play a critical role in cell cycle and pro-survival signal regulation. Consequently, their deregulation can enhance tumorigenesis and cancer progression. In the current investigation, we determined whether cancer- or human papillomavirus (HPV-specific miRNA deregulation could further elucidate signal transduction events unique to head and neck squamous cell carcinoma (HNSCC. Twenty-nine newly diagnosed HNSCC tumors (HPV-positive: 14, HPV-negative: 15 and four normal mucosa samples were analyzed for global miRNA expression. Differential miRNA expression analysis concluded HNSCC is characterized by a general upregulation of miRNAs compared to normal mucosa. Additionally, miR-449a and miR-129-3p were statistically significant miRNAs differentially expressed between HPV-positive and HPV-negative HNSCC. The upregulation of miR-449a was also validated within an independent dataset obtained from TCGA containing 279 HNSCCs and 39 normal adjacent mucosa samples. To gain a better understanding of miRNA-mediated cell cycle deregulation in HNSCC, we functionally evaluated miR-205, a transcript upregulated in our cancer-specific analysis and a putative regulator of E2F1. Modulation of miR-205 with a miRNA mimic and inhibitor revealed miR-205 is capable of regulating E2F1 expression in HNSCC and overexpression of this transcript enhances proliferation. This study demonstrates miRNA expression is highly deregulated in HNSCC and functional evaluations of these miRNAs may reveal novel HPV context dependent mechanisms in this disease.

  19. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  20. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  1. Hematopoietic Overexpression of FOG1 Does Not Affect B-Cells but Reduces the Number of Circulating Eosinophils

    Science.gov (United States)

    Du Roure, Camille; Versavel, Aude; Doll, Thierry; Cao, Chun; Pillonel, Vincent; Matthias, Gabriele; Kaller, Markus; Spetz, Jean-François; Kopp, Patrick; Kohler, Hubertus; Müller, Matthias; Matthias, Patrick

    2014-01-01

    We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage. PMID:24747299

  2. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells.

    Science.gov (United States)

    Raja, Srikumar M; Clubb, Robert J; Bhattacharyya, Mitra; Dimri, Manjari; Cheng, Hao; Pan, Wei; Ortega-Cava, Cesar; Lakku-Reddi, Alagarsamy; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2008-10-01

    ErbB2 (or Her2/Neu) overexpression in breast cancer signifies poorer prognosis, yet it has provided an avenue for targeted therapy as demonstrated by the success of the humanized monoclonal antibody Trastuzumab (Herceptin). Resistance to Trastuzumab and eventual failure in most cases, however, necessitate alternate ErbB2-targeted therapies. HSP90 inhibitors such as 17-allylaminodemethoxygeldanamycin (17-AAG), potently downregulate the cell surface ErbB2. While the precise mechanisms of Trastuzumab or 17-AAG action remain unclear, ubiquitinylation-dependent proteasomal or lysosomal degradation of ErbB2 appears to play a substantial role. As Trastuzumab and 17-AAG induce the recruitment of distinct E3 ubiquitin ligases, Cbl and CHIP respectively, to ErbB2, we hypothesized that 17-AAG and Trastuzumab combination could induce a higher level of ubiquitinylation and downregulation of ErbB2 as compared to single drug treatments. We present biochemical and cell biological evidence that combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2. Importantly, combined 17-AAG and Trastuzumab treatment induced synergistic growth arrest and cell death specifically in ErbB2-overexpressing but not in ErbB2-low breast cancer cells. Our results suggest the 17-AAG and Trastuzumab combination as a mechanism-based combinatorial targeted therapy for ErbB2-overexpressing breast cancer patients.

  3. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Mingzhu Dou

    2016-12-01

    Full Text Available Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.

  4. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

    Science.gov (United States)

    Pang, Yongqi; Li, Lijuan; Ren, Fei; Lu, Pingli; Wei, Pengcheng; Cai, Jinghui; Xin, Lingguo; Zhang, Juan; Chen, Jia; Wang, Xuechen

    2010-06-01

    Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  5. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions.

    Science.gov (United States)

    Bi, Huihui; Shi, Jianxin; Kovalchuk, Natalia; Luang, Sukanya; Bazanova, Natalia; Chirkova, Larissa; Zhang, Dabing; Shavrukov, Yuri; Stepanenko, Anton; Tricker, Penny; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy; Borisjuk, Nikolai

    2018-05-14

    Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterised for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T 2 and T 3 transgenic lines for drought tolerance, growth and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss, and exhibited improved recovery after severe drought, compared to control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density. This article is protected by copyright. All rights reserved.

  6. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  7. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Antti Siltanen

    2011-04-01

    Full Text Available After severe myocardial infarction (MI, heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF in the myoblast sheets. We studied the ability of wild type (L6-WT and human HGF-expressing (L6-HGF L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15 or L6-HGF (n = 16 myoblast sheet therapy. Control rats (n = 13 underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further

  8. Analysis of 30 putative BRCA1 splicing mutations in hereditary breast and ovarian cancer families identifies exonic splice site mutations that escape in silico prediction.

    Directory of Open Access Journals (Sweden)

    Barbara Wappenschmidt

    Full Text Available Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.

  9. CUB-domain-containing protein 1 overexpression in solid cancers promotes cancer cell growth by activating Src family kinases.

    Science.gov (United States)

    Leroy, C; Shen, Q; Strande, V; Meyer, R; McLaughlin, M E; Lezan, E; Bentires-Alj, M; Voshol, H; Bonenfant, D; Alex Gaither, L

    2015-10-29

    The transmembrane glycoprotein, CUB (complement C1r/C1s, Uegf, Bmp1) domain-containing protein 1 (CDCP1) is overexpressed in several cancer types and is a predictor of poor prognosis for patients on standard of care therapies. Phosphorylation of CDCP1 tyrosine sites is induced upon loss of cell adhesion and is thought to be linked to metastatic potential of tumor cells. Using a tyrosine-phosphoproteomics screening approach, we characterized the phosphorylation state of CDCP1 across a panel of breast cancer cell lines. We focused on two phospho-tyrosine pTyr peptides of CDCP1, containing Tyr707 and Tyr806, which were identified in all six lines, with the human epidermal growth factor 2-positive HCC1954 cells showing a particularly high phosphorylation level. Pharmacological modulation of tyrosine phosphorylation indicated that, the Src family kinases (SFKs) were found to phosphorylate CDCP1 at Tyr707 and Tyr806 and play a critical role in CDCP1 activity. We demonstrated that CDCP1 overexpression in HEK293 cells increases global phosphotyrosine content, promotes anchorage-independent cell growth and activates several SFK members. Conversely, CDCP1 downregulation in multiple solid cancer cell lines decreased both cell growth and SFK activation. Analysis of primary human tumor samples demonstrated a correlation between CDCP1 expression, SFK and protein kinase C (PKC) activity. Taken together, our results suggest that CDCP1 overexpression could be an interesting therapeutic target in multiple solid cancers and a good biomarker to stratify patients who could benefit from an anti-SFK-targeted therapy. Our data also show that multiple tyrosine phosphorylation sites of CDCP1 are important for the functional regulation of SFKs in several tumor types.

  10. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    Science.gov (United States)

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  11. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  12. Up-regulation of Long Non-coding RNA TUG1 in Hibernating Thirteen-lined Ground Squirrels

    Directory of Open Access Journals (Sweden)

    Jacques J. Frigault

    2016-04-01

    Full Text Available Mammalian hibernation is associated with multiple physiological, biochemical, and molecular changes that allow animals to endure colder temperatures. We hypothesize that long non-coding RNAs (lncRNAs, a group of non-coding transcripts with diverse functions, are differentially expressed during hibernation. In this study, expression levels of lncRNAs H19 and TUG1 were assessed via qRT-PCR in liver, heart, and skeletal muscle tissues of the hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus. TUG1 transcript levels were significantly elevated 1.94-fold in skeletal muscle of hibernating animals when compared with euthermic animals. Furthermore, transcript levels of HSF2 also increased 2.44-fold in the skeletal muscle in hibernating animals. HSF2 encodes a transcription factor that can be negatively regulated by TUG1 levels and that influences heat shock protein expression. Thus, these observations support the differential expression of the TUG1HSF2 axis during hibernation. To our knowledge, this study provides the first evidence for differential expression of lncRNAs in torpid ground squirrels, adding lncRNAs as another group of transcripts modulated in this mammalian species during hibernation.

  13. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice

    Directory of Open Access Journals (Sweden)

    Zhigang Zheng

    2017-09-01

    Full Text Available Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1 and agamous-like 24 (AGL24. Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1, a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae. Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis-acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA and methyl jasmonate (MeJA, respectively, were characteristic of P. violascens in comparison with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  14. Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice.

    Science.gov (United States)

    Zheng, Zhigang; Yang, Xiaoming; Fu, Yaping; Zhu, Longfei; Wei, Hantian; Lin, Xinchun

    2017-01-01

    Because of the long and unpredictable flowering period in bamboo, the molecular mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1) and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether it works in bamboo flowering are still unknown. In this study, we cloned PvPin1 , a homolog of Pin1At , from Phyllostachys violascens (Bambusoideae). Bioinformatics analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1 was widely expressed in all tested bamboo tissues, with the highest expression in young leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before bamboo flowering then declined during flower development. Overexpression of PvPin1 significantly delayed flowering time by downregulating SOC1 and AGL24 expression in Arabidopsis under greenhouse conditions and conferred a significantly late flowering phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence of the PvPin1 promoter was cloned, and cis -acting element prediction showed that ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison with Arabidopsis . On promoter activity analysis, exogenous ABA and MeJA could significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be a repressor in flowering, and its delay of flowering time could be regulated by ABA and MeJA in bamboo.

  15. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  16. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K; Lin, Y; McPhie, P [Chang-Gung College of Medicine and Technology, Graduate Institute of Clinical Medicine, Taoyuan (Taiwan, Province of China); Cheng, S [National Cancer Inst., Bethesda, MD (United States)

    1994-12-31

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TR{beta}1 and TR{alpha} genes was evaluated at both the mRNA and protein levels. The expression of TR{beta}1 and TR{alpha}1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRaplha1 protein is low in all cell lines examined. However, TR{Beta}1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TR{beta}1 is overexpressed is stimulated by the thyroid hormone, 3,3`,5- triiodo-L-thyronine. These results suggest that TR{beta}1, not TR{alpha}1, is probably involved in the prolifaration of hepatoma cells.

  17. Enhancing eNOS activity with simultaneous inhibition of IKKβ restores vascular function in Ins2(Akita+/-) type-1 diabetic mice.

    Science.gov (United States)

    Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy

    2015-10-01

    The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.

  18. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  19. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases.

    Science.gov (United States)

    Botta, A; Malena, A; Tibaldi, E; Rocchi, L; Loro, E; Pena, E; Cenci, L; Ambrosi, E; Bellocchi, M C; Pagano, M A; Novelli, G; Rossi, G; Monaco, H L; Gianazza, E; Pantic, B; Romeo, V; Marin, O; Brunati, A M; Vergani, L

    2013-08-15

    Myotonic dystrophy type-1 (DM1) is the most prevalent form of muscular dystrophy in adults. This disorder is an RNA-dominant disease, caused by expansion of a CTG repeat in the DMPK gene that leads to a misregulation in the alternative splicing of pre-mRNAs. The longer muscleblind-like-1 (MBNL1) transcripts containing exon 5 and the respective protein isoforms (MBNL142-43) were found to be overexpressed in DM1 muscle and localized exclusively in the nuclei. In vitro assays showed that MBNL142-43 bind the Src-homology 3 domain of Src family kinases (SFKs) via their proline-rich motifs, enhancing the SFK activity. Notably, this association was also confirmed in DM1 muscle and myotubes. The recovery, mediated by an siRNA target to Ex5-MBNL142-43, succeeded in reducing the nuclear localization of both Lyn and MBNL142-43 proteins and in decreasing the level of tyrosine phosphorylated proteins. Our results suggest an additional molecular mechanism in the DM1 pathogenesis, based on an altered phosphotyrosine signalling pathway.

  20. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.