WorldWideScience

Sample records for house mouse genome

  1. Maternal-foetal genomic conflict and speciation: no evidence for hybrid placental dysplasia in crosses between two house mouse subspecies

    Czech Academy of Sciences Publication Activity Database

    Kropáčková, L.; Piálek, Jaroslav; Gergelits, Václav; Forejt, Jiří; Reifová, R.

    2015-01-01

    Roč. 28, č. 3 (2015), s. 688-698 ISSN 1010-061X R&D Projects: GA ČR GA13-08078S Institutional support: RVO:68081766 ; RVO:68378050 Keywords : hybrid placental dysplasia * genomic conflicts * speciation * X chromosome * house mouse * Mus musculus musculus * Mus musculus domesticus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.747, year: 2015

  2. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus

    Science.gov (United States)

    Harr, Bettina; Karakoc, Emre; Neme, Rafik; Teschke, Meike; Pfeifle, Christine; Pezer, Željka; Babiker, Hiba; Linnenbrink, Miriam; Montero, Inka; Scavetta, Rick; Abai, Mohammad Reza; Molins, Marta Puente; Schlegel, Mathias; Ulrich, Rainer G.; Altmüller, Janine; Franitza, Marek; Büntge, Anna; Künzel, Sven; Tautz, Diethard

    2016-01-01

    Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory. PMID:27622383

  3. The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data.

    Science.gov (United States)

    Booker, Tom R; Ness, Rob W; Keightley, Peter D

    2017-09-01

    Characterizing variation in the rate of recombination across the genome is important for understanding several evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the hotspot diversity of natural populations or whether broad-scale variation in the rate of recombination is conserved between subspecies. In this study, we constructed fine-scale recombination rate maps for a natural population of the Eastern house mouse, Mus musculus castaneus We performed simulations to assess the accuracy of recombination rate inference in the presence of phase errors, and we used a novel approach to quantify phase error. The spatial distribution of recombination events is strongly positively correlated between our castaneus map, and a map constructed using inbred lines derived predominantly from M. m. domesticus Recombination hotspots in wild castaneus show little overlap, however, with the locations of double-strand breaks in wild-derived house mouse strains. Finally, we also find that genetic diversity in M. m. castaneus is positively correlated with the rate of recombination, consistent with pervasive natural selection operating in the genome. Our study suggests that recombination rate variation is conserved at broad scales between house mouse subspecies, but it is not strongly conserved at fine scales. Copyright © 2017 by the Genetics Society of America.

  4. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions.

    Science.gov (United States)

    Turner, Leslie M; Harr, Bettina

    2014-12-09

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.

  5. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1, homologues of human genes involved in adaptations (e.g. alpha-amylase genes or in genetic diseases (e.g. Huntingtin and Parkin. Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice

  6. Functional organization of the genome may shape the species boundary in the house mouse

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Václav; Munclinger, P.; Wang, L.; Teeter, K. C.; Tucker, P. K.

    2015-01-01

    Roč. 32, č. 5 (2015), s. 1208-1220 ISSN 0737-4038 R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : hybrid zone * mouse genome * speciation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.649, year: 2015

  7. A report from the Sixth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Saint Mary`s Hospital Medical School, London (United Kingdom). Dept. of Biochemistry and Molecular Genetics

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  8. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  10. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation.

    Science.gov (United States)

    Garagna, Silvia; Page, Jesus; Fernandez-Donoso, Raul; Zuccotti, Maurizio; Searle, Jeremy B

    2014-12-01

    Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.

  11. Meeting Report: The Twelfth International Mouse Genome Conference

    Energy Technology Data Exchange (ETDEWEB)

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  12. 78 FR 64002 - South Farallon Islands Invasive House Mouse Eradication Project; Farallon National Wildlife...

    Science.gov (United States)

    2013-10-25

    ...-FF08RSFC00] South Farallon Islands Invasive House Mouse Eradication Project; Farallon National Wildlife... Statement (revised DEIS) for the South Farallon Islands Invasive House Mouse Eradication Project on the... non-native invasive house mice from the South Farallon Islands, part of the Farallon National Wildlife...

  13. 10. international mouse genome conference

    Energy Technology Data Exchange (ETDEWEB)

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  14. Generation of Knock-in Mouse by Genome Editing.

    Science.gov (United States)

    Fujii, Wataru

    2017-01-01

    Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.

  15. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  16. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  17. Genomes of the Mouse Collaborative Cross.

    Science.gov (United States)

    Srivastava, Anuj; Morgan, Andrew P; Najarian, Maya L; Sarsani, Vishal Kumar; Sigmon, J Sebastian; Shorter, John R; Kashfeen, Anwica; McMullan, Rachel C; Williams, Lucy H; Giusti-Rodríguez, Paola; Ferris, Martin T; Sullivan, Patrick; Hock, Pablo; Miller, Darla R; Bell, Timothy A; McMillan, Leonard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of

  18. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    Science.gov (United States)

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  20. Life history and bioeconomy of the house mouse.

    Science.gov (United States)

    Berry, R J; Bronson, F H

    1992-11-01

    1. More is known about the western European house mouse, Mus (musculus) domesticus than any other non-human mammal. If laboratory and field information is combined, an extremely valuable understanding of the species' bioeconomy could be obtained. 2. The seven stages of mouse life-history are surveyed (up to birth, nest life, sex life, social structure, population statics and stability, senescence, and death), and the interactions between the changing phenotype and the environment are described. 3. These interactions can be used to build up a model of the opportunities and compromises which result in the fitness of individual mice. It is not yet possible to quantify such a model, but this should in principle be achievable.

  1. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  2. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    Science.gov (United States)

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  3. Host subspecific viral strains in European house mice: Murine cytomegalovirus in the Eastern (Mus musculus musculus) and Western house mouse (Mus musculus domesticus).

    Science.gov (United States)

    Čížková, Dagmar; Baird, Stuart J E; Těšíková, Jana; Voigt, Sebastian; Ľudovít, Ďureje; Piálek, Jaroslav; Goüy de Bellocq, Joëlle

    2018-06-09

    Murine cytomegalovirus (MCMV) has been reported from house mice (Mus musculus) worldwide, but only recently from Eastern house mice (M. m. musculus), of particular interest because they form a semi-permeable species barrier in Europe with Western house mice, M. m. domesticus. Here we report genome sequences of EastMCMV (from Eastern mice), and set these in the context of MCMV genomes from genus Mus hosts. We show EastMCMV and WestMCMV are genetically distinct. Phylogeny splitting analyses show a genome wide (94%) pattern consistent with no West-East introgression, the major exception (3.8%) being a genome-terminal region of duplicated genes involved in host immune system evasion. As expected from its function, this is a region of maintenance of ancestral polymorphism: The lack of clear splitting signal cannot be interpreted as evidence of introgression. The EastMCMV genome sequences reported here can therefore serve as a well-described resource for exploration of murid MCMV diversity. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  5. Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus)

    Czech Academy of Sciences Publication Activity Database

    Kváč, Martin; McEvoy, J.; Loudová, M.; Stenger, B.; Sak, Bohumil; Květoňová, Dana; Ditrich, Oleg; Rašková, Veronika; Moriarty, E.; Rost, M.; Macholán, Miloš; Piálek, Jaroslav

    2013-01-01

    Roč. 43, č. 10 (2013), s. 805-817 ISSN 0020-7519 R&D Projects: GA ČR GA206/08/0640; GA MŠk(CZ) LH11061 Institutional support: RVO:60077344 ; RVO:67985904 ; RVO:68081766 Keywords : Cryptosporidium tyzzeri * house mouse * hybrid zone * coevolution Subject RIV: EG - Zoology; GJ - Animal Vermins ; Diseases, Veterinary Medicine (BC-A) Impact factor: 3.404, year: 2013

  6. Isolation of three novel rat and mouse papillomaviruses and their genomic characterization.

    Directory of Open Access Journals (Sweden)

    Eric Schulz

    Full Text Available Despite a growing knowledge about the biological diversity of papillomaviruses (PV, only little is known about non-human PV in general and about PV mice models in particular. We cloned and sequenced the complete genomes of two novel PV types from the Norway rat (Rattus norvegicus; RnPV2 and the wood mouse (Apodemus sylvaticus; AsPV1 as well as a novel variant of the recently described MmuPV1 (originally designated as MusPV from a house mouse (Mus musculus; MmuPV1 variant. In addition, we conducted phylogenetic analyses using a systematically representative set of 79 PV types, including the novel sequences. As inferred from concatenated amino acid sequences of six proteins, MmuPV1 variant and AsPV1 nested within the Beta+Xi-PV super taxon as members of the Pi-PV. RnPV2 is a member of the Iota-PV that has a distant phylogenetic position from Pi-PV. The phylogenetic results support a complex scenario of PV diversification driven by different evolutionary forces including co-divergence with hosts and adaptive radiations to new environments. PV types particularly isolated from mice and rats are the basis for new animal models, which are valuable to study PV induced tumors and new treatment options.

  7. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  8. Testing parasite 'intimacy': the whipworm Trichuris muris in the European house mouse hybrid zone.

    Science.gov (United States)

    Wasimuddin; Bryja, Josef; Ribas, Alexis; Baird, Stuart J E; Piálek, Jaroslav; Goüy de Bellocq, Joëlle

    2016-05-01

    Host-parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. 'Intimately' associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free-living stage have been proposed as 'intimacy' factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt-COX1, ITS1-5.8S-ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt-COX1 and three clear ITS1-5.8S-ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an 'intimate' parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.

  9. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM

  10. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    Science.gov (United States)

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  11. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    Science.gov (United States)

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data

    DEFF Research Database (Denmark)

    André, Viola; Gau, Christine; Scheideler, Angelika

    2018-01-01

    Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse...... material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions....

  13. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  14. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    Science.gov (United States)

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  15. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    Science.gov (United States)

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Astonishing advances in mouse genetic tools for biomedical research.

    Science.gov (United States)

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  18. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    Science.gov (United States)

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  19. A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Pengpeng Ma

    2015-11-01

    Full Text Available Maternal genomic imprints are established during oogenesis. Histone deacetylases (HDACs 1 and 2 are required for oocyte development in mouse, but their role in genomic imprinting is unknown. We find that Hdac1:Hdac2−/− double-mutant growing oocytes exhibit global DNA hypomethylation and fail to establish imprinting marks for Igf2r, Peg3, and Srnpn. Global hypomethylation correlates with increased retrotransposon expression and double-strand DNA breaks. Nuclear-associated DNMT3A2 is reduced in double-mutant oocytes, and injecting these oocytes with Hdac2 partially restores DNMT3A2 nuclear staining. DNMT3A2 co-immunoprecipitates with HDAC2 in mouse embryonic stem cells. Partial loss of nuclear DNMT3A2 and HDAC2 occurs in Sin3a−/− oocytes, which exhibit decreased DNA methylation of imprinting control regions for Igf2r and Srnpn, but not Peg3. These results suggest seminal roles of HDAC1/2 in establishing maternal genomic imprints and maintaining genomic integrity in oocytes mediated in part through a SIN3A complex that interacts with DNMT3A2.

  20. Molecular analyses of the agouti allele in the Japanese house mouse identify a novel variant of the agouti gene.

    Science.gov (United States)

    Iwasa, Masahiro A; Kawamura, Sayaka; Myoshu, Hikari; Suzuki, Taichi A

    2018-03-01

    It has been thought that the Japanese house mouse carries the A w allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the A w allele seems to be doubtful in them. To ascertain whether the A w allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or A w /A w . PCR I, PCR II, and PCR III amplify only in the A and A w alleles, the a and A w alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and A w /A w by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the A w allele and seems to be a novel type similar to the a allele.

  1. Genomic Locus Modulating IOP in the BXD RI Mouse Strains

    Directory of Open Access Journals (Sweden)

    Rebecca King

    2018-05-01

    Full Text Available Intraocular pressure (IOP is the primary risk factor for developing glaucoma, yet little is known about the contribution of genomic background to IOP regulation. The present study leverages an array of systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD recombinant inbred (RI strain set was used to identify genomic loci modulating IOP. We measured the IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and immunohistochemistry and quantitative PCR (qPCR were used for validation. Of the 38 BXD strains examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL was found on Chr.8 (96 to 103 Mb. Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8, Cdh11 and Gm8730. Only two genes (Cdh8 and Cdh11 were candidates for modulating IOP based on the presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant analysis revealed that the SNPs in Cdh8 (Cadherin 8 were predicted to not change protein function; while the SNPs in Cdh11 (Cadherin 11 would not be tolerated, affecting protein function. Furthermore, immunohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on Chr. 8. Within this QTL, there is one good candidate gene, Cdh11.

  2. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  3. Efficacy and Palatability of Different Rodenticide Formulations Applied against House Mouse (Mus musculus L. in Plant Storage Facilities

    Directory of Open Access Journals (Sweden)

    Goran Jokić

    2008-01-01

    Full Text Available Palatability (daily intake of different rodenticide formulations based on bromadiolone was compared in experiments with house mouse (Mus musculus L. in agricultural storage facilities, and rodent numbers were assessed at the beginning and end of experiment, as well as rodenticide efficacy. The dynamic of bait intake was monitored for ten days in facilities of the Institute of Animal Husbandry in Zemun and the Agricultural Cooperatives at Starčevo and Omoljica. The experiments complied with the relevant standard method of OEPP/EPPO. Agricultural products were stored either as bulk commodities or in sacs laid on pallete racks in the treated facilities. Baits were laid in boxes on mice routes below palletes holding sacs and on places where significant damage had been observed, at 1-3 m spacing and in 10-20 g portions. Mouse abundance was estimated based on the highest and lowest daily intakes of bait by mice over a period of 10 days, which was divided by the mouse daily feed requirement. The presence of house mouse was also monitored over the next 20 days. The efficacy of test products was computed using Abbott’s formula.

  4. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    Science.gov (United States)

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  5. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  6. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  7. Genomic targets of Brachyury (T in differentiating mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Amanda L Evans

    Full Text Available The T-box transcription factor Brachyury (T is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC(n repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species.

  8. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    Science.gov (United States)

    Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James

    2015-02-14

    Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the

  9. FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies.

    Science.gov (United States)

    Abugessaisa, Imad; Noguchi, Shuhei; Hasegawa, Akira; Harshbarger, Jayson; Kondo, Atsushi; Lizio, Marina; Severin, Jessica; Carninci, Piero; Kawaji, Hideya; Kasukawa, Takeya

    2017-08-29

    The FANTOM5 consortium described the promoter-level expression atlas of human and mouse by using CAGE (Cap Analysis of Gene Expression) with single molecule sequencing. In the original publications, GRCh37/hg19 and NCBI37/mm9 assemblies were used as the reference genomes of human and mouse respectively; later, the Genome Reference Consortium released newer genome assemblies GRCh38/hg38 and GRCm38/mm10. To increase the utility of the atlas in forthcoming researches, we reprocessed the data to make them available on the recent genome assemblies. The data include observed frequencies of transcription starting sites (TSSs) based on the realignment of CAGE reads, and TSS peaks that are converted from those based on the previous reference. Annotations of the peak names were also updated based on the latest public databases. The reprocessed results enable us to examine frequencies of transcription initiations on the recent genome assemblies and to refer promoters with updated information across the genome assemblies consistently.

  10. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene

    NARCIS (Netherlands)

    Himes, Blanca E.; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S.; Myers, Rachel A.; Gignoux, Christopher R.; Levin, Albert M.; Gauderman, W. James; Yang, James J.; Mathias, Rasika A.; Romieu, Isabelle; Torgerson, Dara G.; Roth, Lindsey A.; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J.; Lemanske, Robert F.; Zeiger, Robert S.; Strunk, Robert C.; Martinez, Fernando D.; Boushey, Homer; Chinchilli, Vernon M.; Israel, Elliot; Mauger, David; Koppelman, Gerard H.; Postma, Dirkje S.; Nieuwenhuis, Maartje A. E.; Vonk, Judith M.; Lima, John J.; Irvin, Charles G.; Peters, Stephen P.; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A.; Tantisira, Kelan G.; Raby, Benjamin A.; Bleecker, Eugene R.; Meyers, Deborah A.; London, Stephanie J.; Barnes, Kathleen C.; Gilliland, Frank D.; Williams, L. Keoki; Burchard, Esteban G.; Nicolae, Dan L.; Ober, Carole; DeMeo, Dawn L.; Silverman, Edwin K.; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D.; Weiss, Scott

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify

  11. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity.

    Science.gov (United States)

    Gendreau, Kerry L; Haney, Robert A; Schwager, Evelyn E; Wierschin, Torsten; Stanke, Mario; Richards, Stephen; Garb, Jessica E

    2017-02-16

    Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in

  12. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  13. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Liane B.

    2013-10-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  14. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  15. The role of cohesin genes in the meiosis of male house mouse

    OpenAIRE

    Šebestová, Lenka

    2015-01-01

    Cohesin genes play an important role in cell division. They ensure proper chromosome segregation during mitosis and meiosis. This study is focused on the role of cohesin genes during meiosis in male house mouse (Mus musculus). At first, this study introduces key processes of mammalian meiosis. Next, the structure of cohesin complex is described; it consists of a heterodimer SMC proteins - SMC3 and SMC1α or SMC1β, which are enclosed to the ring by cleavable subunit RAD21, RAD21L or REC8. Fourt...

  16. Measures of linkage disequilibrium among neighbouring SNPs indicate asymmetries across the house mouse hybrid zone

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Luzynski, K.; Pool, J. E.; Janoušek, V.; Dufková, Petra; Vyskočilová, Martina; Teeter, K. C.; Nachman, M. W.; Munclinger, P.; Macholán, Miloš; Piálek, Jaroslav; Tucker, P. K.

    2011-01-01

    Roč. 20, č. 14 (2011), s. 2985-3000 ISSN 0962-1083 R&D Projects: GA ČR GA206/08/0640 Grant - others:NSF(US) DEB0746560 Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z50450515 Keywords : house mouse * hybrid zones * linkage disequilibrium * SNP markers Subject RIV: EG - Zoology Impact factor: 5.522, year: 2011

  17. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  18. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    Science.gov (United States)

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  19. Charles River altered Schaedler flora (CRASF) remained stable for four years in a mouse colony housed in individually ventilated cages.

    Science.gov (United States)

    Stehr, Matthias; Greweling, Marina C; Tischer, Sabine; Singh, Mahavir; Blöcker, Helmut; Monner, David A; Müller, Werner

    2009-10-01

    As recommendations for specific pathogen-free housing change, mouse facilities need to re-derive their colonies repeatedly in order to eliminate specified bacteria or viruses. This paper describes the establishment of a new mouse facility using as starting point a small colony of CD-1 mice colonized with the Charles River altered Schaedler flora (CRASF) housed in individually ventilated cages (IVCs). The import of new strains was performed exclusively via embryo transfer using CD-1 mice as recipients. The integrity of the CRASF in caecum samples of the original CD-1 colony and of three inbred mouse lines imported into the colony was proven by a quantitative realtime polymerase chain reaction approach. Furthermore, we searched for bacterial contaminants in the gut flora using non-specific 16S rRNA primers. The bacterial sequences found were closely related to but not exclusively sequences of altered Schaedler flora (ASF) members, suggesting that the ASF is heterogeneous rather than restricted to the eight defined bacteria. Moreover, no pathogens were found, neither using the non-specific 16S rRNA primers nor in routine quarterly health monitoring. As one effect of this defined gut flora, interleukin-10 knockout mice are devoid of colitis in our facility. In conclusion, our approach building up a mouse facility using foster mothers and embryo transfer as well as a strict barrier system and IVCs is suitable to maintain a colony free from contaminating bacteria over the long term. CRASF remained stable for seven mouse generations and was efficiently transferred to the imported mouse strains.

  20. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data

    Science.gov (United States)

    Gau, Christine; Scheideler, Angelika; Aguilar-Pimentel, Juan A.; Amarie, Oana V.; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hölter, Sabine M.; Janik, Dirk; Moreth, Kristin; Neff, Frauke; Östereicher, Manuela; Racz, Ildiko; Rathkolb, Birgit; Rozman, Jan; Bekeredjian, Raffi; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Schmidt-Weber, Carsten; Wolf, Eckhard; Wurst, Wolfgang; Gailus-Durner, Valérie; Brielmeier, Markus; Fuchs, Helmut; Hrabé de Angelis, Martin

    2018-01-01

    Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a “barren” regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions. PMID:29659570

  1. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data.

    Directory of Open Access Journals (Sweden)

    Viola André

    2018-04-01

    Full Text Available Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a "barren" regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions.

  2. Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations

    Czech Academy of Sciences Publication Activity Database

    Čížková, Dagmar; Goüy de Bellocq, J.; Baird, S. J. E.; Piálek, Jaroslav; Bryja, Josef

    2011-01-01

    Roč. 106, č. 5 (2011), s. 727-740 ISSN 0018-067X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z60930519 Keywords : MHC * house mouse * selection * population structure * trans-species polymorphism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  3. The genomic ancestry, landscape genetics and invasion history of introduced mice in New Zealand.

    Science.gov (United States)

    Veale, Andrew J; Russell, James C; King, Carolyn M

    2018-01-01

    The house mouse ( Mus musculus ) provides a fascinating system for studying both the genomic basis of reproductive isolation, and the patterns of human-mediated dispersal. New Zealand has a complex history of mouse invasions, and the living descendants of these invaders have genetic ancestry from all three subspecies, although most are primarily descended from M. m. domesticus . We used the GigaMUGA genotyping array (approximately 135 000 loci) to describe the genomic ancestry of 161 mice, sampled from 34 locations from across New Zealand (and one Australian city-Sydney). Of these, two populations, one in the south of the South Island, and one on Chatham Island, showed complete mitochondrial lineage capture, featuring two different lineages of M. m. castaneus mitochondrial DNA but with only M. m. domesticus nuclear ancestry detectable. Mice in the northern and southern parts of the North Island had small traces (approx. 2-3%) of M. m. castaneus nuclear ancestry, and mice in the upper South Island had approximately 7-8% M. m. musculus nuclear ancestry including some Y-chromosomal ancestry-though no detectable M. m. musculus mitochondrial ancestry. This is the most thorough genomic study of introduced populations of house mice yet conducted, and will have relevance to studies of the isolation mechanisms separating subspecies of mice.

  4. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk.

    Science.gov (United States)

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B; Huson, Daniel H; Frick, Julia-Stefanie

    2016-04-25

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    Directory of Open Access Journals (Sweden)

    Medrano Juan F

    2006-03-01

    Full Text Available Abstract Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis: Affymetrix430 2.0 (75.6%, ABI Genome Survey (81.24%, Agilent (79.33%, Codelink (78.09%, Sentrix (90.47%; and four array-ready oligosets: Sigma (47.95%, Operon v.3 (69.89%, Operon v.4 (84.03%, and MEEBO (84.03%. The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here

  6. The uncharacterized gene 1700093K21Rik and flanking regions are correlated with reproductive isolation in the house mouse, Mus musculus.

    Science.gov (United States)

    Kass, David H; Janoušek, Václav; Wang, Liuyang; Tucker, Priscilla K

    2014-06-01

    Reproductive barriers exist between the house mouse subspecies, Mus musculus musculus and M. m. domesticus, members of the Mus musculus species complex, primarily as a result of hybrid male infertility, and a hybrid zone exists where their ranges intersect in Europe. Using single nucleotide polymorphisms (SNPs) diagnostic for the two taxa, the extent of introgression across the genome was previously compared in these hybrid populations. Sixty-nine of 1316 autosomal SNPs exhibited reduced introgression in two hybrid zone transects suggesting maladaptive interactions among certain loci. One of these markers is within a region on chromosome 11 that, in other studies, has been associated with hybrid male sterility of these subspecies. We assessed sequence variation in a 20 Mb region on chromosome 11 flanking this marker, and observed its inclusion within a roughly 150 kb stretch of DNA showing elevated sequence differentiation between the two subspecies. Four genes are associated with this genomic subregion, with two entirely encompassed. One of the two genes, the uncharacterized 1700093K21Rik gene, displays distinguishing features consistent with a potential role in reproductive isolation between these subspecies. Along with its expression specifically within spermatogenic cells, we present various sequence analyses that demonstrate a high rate of molecular evolution of this gene, as well as identify a subspecies amino acid variant resulting in a structural difference. Taken together, the data suggest a role for this gene in reproductive isolation.

  7. The genomic ancestry, landscape genetics and invasion history of introduced mice in New Zealand

    Science.gov (United States)

    Russell, James C.; King, Carolyn M.

    2018-01-01

    The house mouse (Mus musculus) provides a fascinating system for studying both the genomic basis of reproductive isolation, and the patterns of human-mediated dispersal. New Zealand has a complex history of mouse invasions, and the living descendants of these invaders have genetic ancestry from all three subspecies, although most are primarily descended from M. m. domesticus. We used the GigaMUGA genotyping array (approximately 135 000 loci) to describe the genomic ancestry of 161 mice, sampled from 34 locations from across New Zealand (and one Australian city—Sydney). Of these, two populations, one in the south of the South Island, and one on Chatham Island, showed complete mitochondrial lineage capture, featuring two different lineages of M. m. castaneus mitochondrial DNA but with only M. m. domesticus nuclear ancestry detectable. Mice in the northern and southern parts of the North Island had small traces (approx. 2–3%) of M. m. castaneus nuclear ancestry, and mice in the upper South Island had approximately 7–8% M. m. musculus nuclear ancestry including some Y-chromosomal ancestry—though no detectable M. m. musculus mitochondrial ancestry. This is the most thorough genomic study of introduced populations of house mice yet conducted, and will have relevance to studies of the isolation mechanisms separating subspecies of mice. PMID:29410804

  8. Comparison of in-house biotin-avidin tetanus IgG enzyme-linked-immunosorbent assay (ELISA) with gold standard in vivo mouse neutralization test for the detection of low level antibodies.

    Science.gov (United States)

    Sonmez, Cemile; Coplu, Nilay; Gozalan, Aysegul; Akin, Lutfu; Esen, Berrin

    2017-06-01

    Detection of anti-tetanus antibody levels is necessary for both determination of the immune status of individuals and also for planning preventive measures. ELISA is the preferred test among in vitro tests however it can be affected by the cross reacting antibodies. A previously developed in-house ELISA test was found not reliable for the antibody levels ≤1.0IU/ml. A new method was developed to detect low antibody levels correctly. The aim of the present study was to compare the results of the newly developed in-house biotin-avidin tetanus IgG ELISA test with the in vivo mouse neutralization test, for the antibody levels ≤1.0IU/ml. A total of 54 serum samples with the antibody levels of three different levels, =0.01IU/ml, 0.01-0.1IU/ml, 0.1-1IU/ml, which were detected by in vivo mouse neutralization test were studied by the newly developed in-house biotin-avidin tetanus IgG ELISA test. Test was validated by using five different concentrations (0.01IU/ml, 0.06IU/ml, 0.2IU/ml, 0.5IU/ml, 1.0IU/ml). A statistically significant correlation (r 2 =0.9967 p=0,001) between in vivo mouse neutralization test and in-house biotin-avidin tetanus IgG ELISA test, was observed. For the tested concentrations intra-assay, inter-assay, accuracy, sensitivity, specificity and coefficients of variations were determined as ≤15%. In-house biotin-avidin tetanus IgG ELISA test can be an alternative method to in vivo mouse neutralization method for the detection of levels ≤1.0IU/ml. By using in-house biotin-avidin tetanus IgG ELISA test, individuals with non protective levels, will be reliably detected. Copyright © 2017. Published by Elsevier B.V.

  9. Chromosome-wise dissection of the genome of the extremely big mouse line DU6i

    NARCIS (Netherlands)

    M.R. Bevova (Marianna); Y.S. Aulchenko (Yurii); G. Aksu (Guzide); U. Renne (Ulla); K. Brockmann

    2006-01-01

    textabstractThe extreme high-body-weight-selected mouse line DU6i is a polygenic model for growth research, harboring many small-effect QTL. We dissected the genome of this line into 19 autosomes and the Y chromosome by the construction of a new panel of chromosome substitution strains (CSS). The

  10. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice.

    Science.gov (United States)

    White, Michael A; Ikeda, Akihiro; Payseur, Bret A

    2012-08-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.

  11. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  12. Comparative glycopattern analysis of mucins in the Brunner's glands of the guinea-pig and the house mouse (Rodentia).

    Science.gov (United States)

    Scillitani, Giovanni; Mentino, Donatella

    2015-09-01

    The mucins secreted by the Brunner's glands and the duodenal goblet cells of the Guinea-pig and the house mouse were compared by conventional and FITC-conjugated lectin histochemistry. Methylation/saponification and sialidase digestion were performed prior to lectin binding to detect the residues subterminal to sulfated groups and sialic acid, respectively. In the Guinea-pig the Brunner's glands produce class-III stable sulfosialomucins. Sialic acid is mostly 2,6-linked to galactose or to N-acetylgalactosamine and is in part O-acetylated in C7, C8, and C9. Sulfated groups are probably linked to sialic acid and N-acetylgalactosamine. Terminal residuals of N-acetylglucosamine, galactose, N-acetylgalactosamine and fucose linked in α1,2, α1,3, and α1,4 are also present. Duodenal goblet cells of the Guinea-pig present a lower number of residuals in respect to the Brunner's glandular ones, with sialic acid and N-acetylgalactosamine subterminal to sulfated groups. In the house mouse the Brunner's glands produce class-III stable neutral mucins, binding to same lectins as in the Guinea-pig except for those specific to sialic acid. A diversity of fucosylated residuals higher than in the Guinea-pig is observed. The mouse duodenal goblet cells lack stable class-III mucins, have little sialic acid and present a lower number of residuals in respect to the correspondent Brunner's glands. Regulation of the acidic intestinal microenvironment, prevention of pathologies and hosting of microflora can explain the observed results and the differences observed between the two rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    Science.gov (United States)

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo.

    Science.gov (United States)

    Zou, Zhiyuan; Sun, Zhaolin; Li, Pan; Feng, Tao; Wu, Sen

    2016-12-14

    Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26 lacZ , we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.

  15. A Comparison Between House Mouse Lines Selected for Attack Latency or Nest-Building : Evidence for a Genetic Basis of Alternative Behavioral Strategies

    NARCIS (Netherlands)

    Sluyter, Frans; Bult, Abel; Lynch, Carol B.; Oortmerssen, Geert A. van; Koolhaas, Jaap M.

    House mouse lines bidirectionally selected for either nest-building behavior or attack latency were tested for both attack latency and nest-building behavior under identical conditions. Male mice selected for high nest-building behavior had shorter attack latencies, i.e., were more aggressive, than

  16. Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma.

    Directory of Open Access Journals (Sweden)

    Rebecca King

    2018-01-01

    Full Text Available Central corneal thickness (CCT is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG. The present study uses the BXD Recombinant Inbred (RI strains to identify novel quantitative trait loci (QTLs modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60-100 days of age. The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org. The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2 contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2, with the highest significance level of p = 10-6 for

  17. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution

    Directory of Open Access Journals (Sweden)

    Rodolphe François

    2006-08-01

    Full Text Available Abstract Background Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. Results The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. Conclusion Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.

  18. Genome characterization of the selected long- and short-sleep mouse lines.

    Science.gov (United States)

    Dowell, Robin; Odell, Aaron; Richmond, Phillip; Malmer, Daniel; Halper-Stromberg, Eitan; Bennett, Beth; Larson, Colin; Leach, Sonia; Radcliffe, Richard A

    2016-12-01

    The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.

  19. Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing.

    Science.gov (United States)

    Aida, Tomomi; Imahashi, Risa; Tanaka, Kohichi

    2014-01-01

    Gene-targeted mutant animals, such as knockout or knockin mice, have dramatically improved our understanding of the functions of genes in vivo and the genetic diversity that characterizes health and disease. However, the generation of targeted mice relies on gene targeting in embryonic stem (ES) cells, which is a time-consuming, laborious, and expensive process. The recent groundbreaking development of several genome editing technologies has enabled the targeted alteration of almost any sequence in any cell or organism. These technologies have now been applied to mouse zygotes (in vivo genome editing), thereby providing new avenues for simple, convenient, and ultra-rapid production of knockout or knockin mice without the need for ES cells. Here, we review recent achievements in the production of gene-targeted mice by in vivo genome editing. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: a legacy of colonial and contemporary times.

    Science.gov (United States)

    Lippens, C; Estoup, A; Hima, M K; Loiseau, A; Tatard, C; Dalecky, A; Bâ, K; Kane, M; Diallo, M; Sow, A; Niang, Y; Piry, S; Berthier, K; Leblois, R; Duplantier, J-M; Brouat, C

    2017-08-01

    Knowledge of the genetic make-up and demographic history of invasive populations is critical to understand invasion mechanisms. Commensal rodents are ideal models to study whether complex invasion histories are typical of introductions involving human activities. The house mouse Mus musculus domesticus is a major invasive synanthropic rodent originating from South-West Asia. It has been largely studied in Europe and on several remote islands, but the genetic structure and invasion history of this taxon have been little investigated in several continental areas, including West Africa. In this study, we focussed on invasive populations of M. m. domesticus in Senegal. In this focal area for European settlers, the distribution area and invasion spread of the house mouse is documented by decades of data on commensal rodent communities. Genetic variation at one mitochondrial locus and 16 nuclear microsatellite markers was analysed from individuals sampled in 36 sites distributed across the country. A combination of phylogeographic and population genetics methods showed that there was a single introduction event on the northern coast of Senegal, from an exogenous (probably West European) source, followed by a secondary introduction from northern Senegal into a coastal site further south. The geographic locations of these introduction sites were consistent with the colonial history of Senegal. Overall, the marked microsatellite genetic structure observed in Senegal, even between sites located close together, revealed a complex interplay of different demographic processes occurring during house mouse spatial expansion, including sequential founder effects and stratified dispersal due to human transport along major roads.

  1. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    Science.gov (United States)

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. On the tear proteome of the house mouse (Mus musculus musculus in relation to chemical signalling

    Directory of Open Access Journals (Sweden)

    Romana Stopkova

    2017-07-01

    Full Text Available Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs have the capacity to selectively transport volatile organic compounds (VOCs in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8% and female-biased (7% proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides, and SCGB/ABP (i.e., secretoglobin families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.

  3. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  4. Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases.

    Directory of Open Access Journals (Sweden)

    Danielle A Fanslow

    Full Text Available Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.

  5. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    Directory of Open Access Journals (Sweden)

    Blanca E Himes

    Full Text Available Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR. The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS data. We used Efficient Mixed Model Association (EMMA analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG and two human AHR GWAS (i.e., SHARP, DAG, the Kv channel interacting protein 4 (KCNIP4 gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04, while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04. The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  6. Dioxin induces genomic instability in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Merja Korkalainen

    Full Text Available Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI, i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Mouse embryonic fibroblasts (C3H10T1/2 were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days. For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay, was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response.

  7. Genetic localization of Cd63, a member of the transmembrane 4 superfamily, reveals two distinct loci in the mouse genome

    Energy Technology Data Exchange (ETDEWEB)

    Gwynn, B.; Eicher, E.M.; Peters, L.L. [Jackson Lab., Bar Harbor, ME (United States)

    1996-07-15

    The membrane protein CD63, a molecular marker for early stages of melanoma progression, has been associated with platelet storage pool deficiency disorders (SPD). CD63 localizes to the membranes of platelets, lysosomes, and melanosomes, all of which are affected in a specific subgroup of SPD. The cDNA encoding CD63 detects two closely related sequences that map to different regions of the mouse genome. One locus maps to mouse Chromosome (Chr) 10 in a region that shares linkage homology with the human chromosome encoding human CD63. The second locus maps to mouse Chr 18 in a region that bears no known human CD63-related genes. No SPD has been localized to these regions of either the mouse or the human chromosomes. 15 refs., 2 figs.

  8. GATM, the human ortholog of the mouse imprinted Gatm gene, escapes genomic imprinting in placenta

    Directory of Open Access Journals (Sweden)

    Toshinobu Miyamoto

    2005-03-01

    Full Text Available The GATM gene encodes L-arginine:glycine amidinotransferase, which catalyzes the conversion of L-arginine into guanidinoacetate, the rate-limiting step in the synthesis of creatine. Since, deficiencies in creatine synthesis and transport lead to certain forms of mental retardation in human, the human GATM gene appears to be involved in brain development. Recently it has been demonstrated that the mouse Gatm is expressed during development and is imprinted with maternal expression in the placenta and yolk sac, but not in embryonic tissues. We investigated the imprinting status of the human GATM by analyzing its expression in four human placentas. GATM was biallelically expressed, thus suggesting that this gene escapes genomic imprinting in placentas, differently from what has been reported in mouse extra-embryonic tissues.

  9. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    International Nuclear Information System (INIS)

    Jacquet, P.; Buset, J.; Neefs, M.; Vankerkom, J.; Benotmane, M.A.; Derradji, H.; Hildebrandt, G.; Baatout, S.

    2010-01-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  10. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P., E-mail: pjacquet@sckcen.be [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Buset, J.; Neefs, M. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Boeretang 200, B-2400 Mol (Belgium); Benotmane, M.A.; Derradji, H. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Hildebrandt, G. [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, D-04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, D-18059 Rostock (Germany); Baatout, S. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  11. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    Science.gov (United States)

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  12. Genome wide analysis of inbred mouse lines identifies a locus containing Ppar-gamma as contributing to enhanced malaria survival.

    Directory of Open Access Journals (Sweden)

    Selina E R Bopp

    2010-05-01

    Full Text Available The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-gamma in malaria infection.

  13. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  14. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Science.gov (United States)

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  15. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  16. Mouse Resource Browser-a database of mouse databases

    NARCIS (Netherlands)

    Zouberakis, Michael; Chandras, Christina; Swertz, Morris; Smedley, Damian; Gruenberger, Michael; Bard, Jonathan; Schughart, Klaus; Rosenthal, Nadia; Hancock, John M.; Schofield, Paul N.; Kollias, George; Aidinis, Vassilis

    2010-01-01

    The laboratory mouse has become the organism of choice for discovering gene function and unravelling pathogenetic mechanisms of human diseases through the application of various functional genomic approaches. The resulting deluge of data has led to the deployment of numerous online resources and the

  17. The Functional Genomics Initiative at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  18. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  19. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    Directory of Open Access Journals (Sweden)

    Jaya Chilakapati

    2015-06-01

    Full Text Available The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid concentrations but no clear dose-related increases in DEG numbers.

  20. Endonucleases : new tools to edit the mouse genome

    NARCIS (Netherlands)

    Wijshake, Tobias; Baker, Darren J.; van de Sluis, Bart

    2014-01-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it

  1. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Directory of Open Access Journals (Sweden)

    Mitchell S Turker

    Full Text Available Exposure to a small number of high-energy heavy charged particles (HZE ions, as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  2. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  3. Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy.

    OpenAIRE

    Hauffe, H C; Searle, J B

    1998-01-01

    Following the discovery of over 40 Robertsonian (Rb) races of Mus musculus domesticus in Europe and North Africa, the house mouse has been studied extensively as an ideal model to determine the chromosomal changes that may cause or accompany speciation. Current models of chromosomal speciation are based on the assumption that heterozygous individuals have a particularly low fertility, although recent studies indicate otherwise. Despite their importance, fertility estimates for the house mouse...

  4. Genome Transfer Prevents Fragmentation and Restores Developmental Potential of Developmentally Compromised Postovulatory Aged Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Yamada

    2017-03-01

    Full Text Available Changes in oocyte quality can have great impact on the developmental potential of early embryos. Here we test whether nuclear genome transfer from a developmentally incompetent to a developmentally competent oocyte can restore developmental potential. Using in vitro oocyte aging as a model system we performed nuclear transfer in mouse oocytes at metaphase II or at the first interphase, and observed that development to the blastocyst stage and to term was as efficient as in control embryos. The increased developmental potential is explained primarily by correction of abnormal cytokinesis at anaphase of meiosis and mitosis, by a reduction in chromosome segregation errors, and by normalization of the localization of chromosome passenger complex components survivin and cyclin B1. These observations demonstrate that developmental decline is primarily due to abnormal function of cytoplasmic factors involved in cytokinesis, while the genome remains developmentally fully competent.

  5. Sequence relationships between the genome and the intracellular RNA species 1,3,6 and 7 of mouse hepatitis virus strain A59

    NARCIS (Netherlands)

    Horzinek, M.C.; Spaan, W.J.M.; Rottier, P.J.M.; Zeijst, B.A.M. van der

    1982-01-01

    We have shown by T1 oligonucleotide fingerprinting that the genome of mouse hepatitis virus strain A59 and its intracellular RNA 1 have identical fingerprints and that RNA 1 and the subgenomic RNAs 3, 6, and 7 contain common sequences. To localize the homologous region between the RNAs, we compared

  6. Conserved cis-regulatory regions in a large genomic landscape control SHH and BMP-regulated Gremlin1 expression in mouse limb buds

    Directory of Open Access Journals (Sweden)

    Zuniga Aimée

    2012-08-01

    Full Text Available Abstract Background Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1 is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1 locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. Results Three highly conserved regions (HMCO1-3 were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1, is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1

  7. The detailed 3D multi-loop aggregate/rosette chromatin architecture and functional dynamic organization of the human and mouse genomes

    DEFF Research Database (Denmark)

    Knoch, Tobias A; Wachsmuth, Malte; Kepper, Nick

    2016-01-01

    BACKGROUND: The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture...... of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture (T2C), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. RESULTS: The genome is compacted...... into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence...

  8. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  9. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  10. Sexual selection and the rodent baculum: an intraspecific study in the house mouse (Mus musculus domesticus).

    Science.gov (United States)

    Ramm, Steven A; Khoo, Lin; Stockley, Paula

    2010-01-01

    The rapid divergence of genitalia is a pervasive trend in animal evolution, thought to be due to the action of sexual selection. To test predictions from the sexual selection hypothesis, we here report data on the allometry, variation, plasticity and condition dependence of baculum morphology in the house mouse (Mus musculus domesticus). We find that that baculum size: (a) exhibits no consistent pattern of allometric scaling (baculum size being in most cases unrelated to body size), (b) exhibits low to moderate levels of phenotypic variation, (c) does not exhibit phenotypic plasticity in response to differences in perceived levels of sexual competition and (d) exhibits limited evidence of condition dependence. These patterns provide only limited evidence in support of the sexual selection hypothesis, and no consistent support for any particular sexual selection mechanism; however, more direct measures of how genital morphology influences male fertilization success are required.

  11. Genome engineering via homologous recombination in mouse embryonic stem (ES cells: an amazingly versatile tool for the study of mammalian biology

    Directory of Open Access Journals (Sweden)

    BABINET CHARLES

    2001-01-01

    Full Text Available The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1 the isolation and culture of embryonic stem cells (ES, which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2 the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene ''targeting''. As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice. Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc. and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.

  12. Colonization, mouse-style

    Directory of Open Access Journals (Sweden)

    Searle Jeremy B

    2010-10-01

    Full Text Available Abstract Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325

  13. Time-dependent distinct roles of Toll-like receptor 4 in a house dust mite-induced asthma mouse model.

    Science.gov (United States)

    Ishii, T; Niikura, Y; Kurata, K; Muroi, M; Tanamoto, K; Nagase, T; Sakaguchi, M; Yamashita, N

    2018-03-01

    House dust mites (HDMs) are a common source of allergens that trigger both allergen-specific and innate immune responses in humans. Here, we examined the effect of allergen concentration and the involvement of Toll-like receptor 4 (TLR4) in the process of sensitization to house dust mite allergens in an HDM extract-induced asthma mouse model. Intranasal administration of HDM extract induced an immunoglobulin E response and eosinophilic inflammation in a dose-dependent manner from 2.5 to 30 μg/dose. In TLR4-knockout mice, the infiltration of eosinophils and neutrophils into the lung was decreased compared with that in wild-type mice in the early phase of inflammation (total of three doses). However, in the late phase of inflammation (total of seven doses), eosinophil infiltration was significantly greater in TLR4-knockout mice than in wild-type mice. This suggests that the roles of TLR4 signaling are different between the early phase and the later phase of HDM allergen-induced inflammation. Thus, innate immune response through TLR4 regulated the response to HDM allergens, and the regulation was altered during the phase of inflammation. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  14. Genomic organization and phylogenetic utility of deer mouse (Peromyscus maniculatus lymphotoxin-alpha and lymphotoxin-beta

    Directory of Open Access Journals (Sweden)

    Prescott Joseph

    2008-10-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are among the most common mammals in North America and are important reservoirs of several human pathogens, including Sin Nombre hantavirus (SNV. SNV can establish a life-long apathogenic infection in deer mice, which can shed virus in excrement for transmission to humans. Patients that die from hantavirus cardiopulmonary syndrome (HCPS have been found to express several proinflammatory cytokines, including lymphotoxin (LT, in the lungs. It is thought that these cytokines contribute to the pathogenesis of HCPS. LT is not expressed by virus-specific CD4+ T cells from infected deer mice, suggesting a limited role for this pathway in reservoir responses to hantaviruses. Results We have cloned the genes encoding deer mouse LTα and LTβ and have found them to be highly similar to orthologous rodent sequences but with some differences in promoters elements. The phylogenetic analyses performed on the LTα, LTβ, and combined data sets yielded a strongly-supported sister-group relationship between the two murines (the house mouse and the rat. The deer mouse, a sigmodontine, appeared as the sister group to the murine clade in all of the analyses. High bootstrap values characterized the grouping of murids. Conclusion No conspicuous differences compared to other species are present in the predicted amino acid sequences of LTα or LTβ; however, some promoter differences were noted in LTβ. Although more extensive taxonomic sampling is required to confirm the results of our analyses, the preliminary findings indicate that both genes (analyzed both separately and in combination hold potential for resolving relationships among rodents and other mammals at the subfamily level.

  15. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    Science.gov (United States)

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  17. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  18. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    Science.gov (United States)

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P model, and may have implications for the effects of these strategies on experimental outcomes.

  19. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  20. A new chromosomal race of the house mouse, Mus musculus domesticus, in the Vulcano Island-Aeolian Archipelago, Italy.

    Science.gov (United States)

    Solano, Emanuela; Castiglia, Riccardo; Corti, Marco

    2007-07-01

    In this paper we describe a new Robertsonian (Rb) race of the house mouse from Vulcano (Aeolian archipelago) through the identification of the metacentric chromosomes. We analysed fifteen mice. All the specimens were found to have the same karyotype 2n=26. This karyotype is characterized by Rb(1.2), Rb(3.9), Rb(4.13), Rb(5.14), Rb(8.12), Rb(10.16) and Rb(15.17). The differences between the race of Vulcano and the races in a neighbour island (Lipari) consist in the presence of Rb(10.16) and Rb(15.17) in the former and Rb(6.16) and Rb(10.15) in the latter. We discuss the possible hypotheses regarding the origin between these two races including the possible occurrence of a whole arm reciprocal translocation (WART) on the Vulcano island.

  1. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  2. Indirect Genetic Effects for group-housed animals

    DEFF Research Database (Denmark)

    Alemu, Setegn Worku

    This thesis investigated social interactions in group-housed animals. The main findings of this thesis: 1) Statistical methods to estimate indirect genetic effects when interactions differ between kin vs. non-kin were developed. 2) Indirect genetic effects contribute a substantial amount...... of heritable variation for bite mark traits in group-housed min. 3) Indirect genetic effects estimation needs to take into account systematic interactions due to sex or kin for bite mark trait in group-housed min. 4) Genomic selection can be used to increase the response to selection for survival time in Brown...

  3. Partnering for functional genomics research conference: Abstracts of poster presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  4. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies.

    Science.gov (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja

    2017-11-15

    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  5. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  6. STRAIN-SPECIFIC BEHAVIORAL-RESPONSE TO ENVIRONMENTAL ENRICHMENT IN THE MOUSE

    NARCIS (Netherlands)

    VANDEWEERD, HA; BAUMANS, [No Value; KOOLHAAS, JM; VANZUTPHEN, LFM

    The influence of environmental enrichment on the behaviour of the mouse has been studied in two inbred strains (C57BL and BALB/c). Male mice of each of the two strains were subjected to behavioural tests after being housed for two months either under standard housing conditions or in an enriched

  7. Detection of Mouse Mammary Tumour Virus in house mice

    DEFF Research Database (Denmark)

    Steffensen, Lise K; Leirs, Herwig; Heiberg, Ann-Charlotte

    The prevalence of human breast cancer (HBC) is affected by several parameters. For the past decades MMTV, Mouse Mammary Tumor Virus, known to cause breast cancer in mice, has been hypothesized to affect the frequency of hormone dependent HBC. Though conclusive evidence has not been produced, still...

  8. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Ramensky Vasily E

    2007-01-01

    Full Text Available Abstract Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci ( Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at http://bioinfo.embl.it/SnpApplet/. For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse SNP Miner to derive a list of candidate phenotype-causing mutations within a previously

  9. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model.

    Directory of Open Access Journals (Sweden)

    Chunqing Ai

    Full Text Available Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.

  10. Genomic localization of the Z/EG transgene in the mouse genome.

    Science.gov (United States)

    Colombo, Sophie; Kumasaka, Mayuko; Lobe, Corrinne; Larue, Lionel

    2010-02-01

    The Z/EG transgenic mouse line, produced by Novak et al., displays tissue-specific EGFP expression after Cre-mediated recombination. The autofluorescence of EGFP allows the visualization of cells of interest displaying Cre recombination. The initial construct was designed such that cells without Cre recombination express the beta-galactosidase marker, facilitating counterselection. We used inverse PCR to identify the site of integration of the Z/EG transgene, to improve the efficiency of homozygous Z/EG mouse production. Recombined cells produced large amounts of EGFP protein, resulting in higher levels of fluorescence and therefore greater contrast with nonrecombined cells. We mapped the transgene to the G1 region of chromosome 5. This random insertion was found to have occurred 230-bp upstream from the start codon of the Rasa4 gene. The insertion of the Z/EG transgene in the C57BL/6 genetic background had no effect on Rasa4 expression. Homozygous Z/EG mice therefore had no obvious phenotype. (c) 2009 Wiley-Liss, Inc.

  11. Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Kramerov, D.A.; Ryskov, A.P.; Skryabin, K.G.; Lukanidin, E.M.

    1983-01-01

    In this paper is described the properties of a novel mouse mdg-like element, the A2 sequence, which is the most abundant repetitive sequence. We also characterized an ubiquitous B2 sequence that represents, after B1, the dominant family among the short interspersed repeats of the mouse genome. The existence of some putative transposition intermediates was shown for repeats of both A and B types of the mouse genome. These are closed circular DNA of the A type and small polyadenylated B + RNAs. The fundamental question that arises is whether these sequences are simply selfish DNA capable of transpositions or do they fulfill some useful biological functions within the genome. 66 references, 11 figures, 1 table

  12. Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies

    Science.gov (United States)

    Scofield, David C.; Rytlewski, Jeffrey D.; Childress, Paul; Shah, Kishan; Tucker, Aamir; Khan, Faisal; Peveler, Jessica; Li, Ding; McKinley, Todd O.; Chu, Tien-Min G.; Hickman, Debra L.; Kacena, Melissa A.

    2018-05-01

    This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the

  13. Multiple RNAs from the mouse carboxypeptidase M locus: functional RNAs or transcription noise?

    Directory of Open Access Journals (Sweden)

    Castilho Beatriz A

    2009-02-01

    Full Text Available Abstract Background A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Results Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE and directional cloning. Conclusion This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological

  14. Development of a Method to Implement Whole-Genome Bisulfite Sequencing of cfDNA from Cancer Patients and a Mouse Tumor Model

    Directory of Open Access Journals (Sweden)

    Elaine C. Maggi

    2018-01-01

    Full Text Available The goal of this study was to develop a method for whole genome cell-free DNA (cfDNA methylation analysis in humans and mice with the ultimate goal to facilitate the identification of tumor derived DNA methylation changes in the blood. Plasma or serum from patients with pancreatic neuroendocrine tumors or lung cancer, and plasma from a murine model of pancreatic adenocarcinoma was used to develop a protocol for cfDNA isolation, library preparation and whole-genome bisulfite sequencing of ultra low quantities of cfDNA, including tumor-specific DNA. The protocol developed produced high quality libraries consistently generating a conversion rate >98% that will be applicable for the analysis of human and mouse plasma or serum to detect tumor-derived changes in DNA methylation.

  15. Oak Ridge National Laboratory REVIEW, Vol. 34, No. 1, 2001

    International Nuclear Information System (INIS)

    Krause, C

    2001-01-01

    The titles in the table of contents from this journal are: Editorial: Unraveling Complex Biological Systems; Systems Biology: New Views of Life; Genes and Proteins: A Primer; Complex Biological Systems in Mice; Gene Chip Engineers; Searching for Mouse Models of Human Disorders; Mouse Models for the Human Disease of Chronic Hereditary Tyrosinemia; Obesity-related Gene in Mouse Discovered at ORNL; MicroCAT ''Sees'' Hidden Mouse Defects; Curing Cancer in Mice; Search for Signs of Inflammatory Disease; Surprises in the Mouse Genome; Protein Identification by Mass Spectrometry; Rapid Genetic Disease Screening Possible Using Laser Mass Spectrometry; Lab on a Chip Used for Protein Studies; The Mouse House: From Old to New; Human Genome Analyzed Using Supercomputer; Protein Prediction Tool Has Good Prospects; Microbe Probe: Studying Bacterial Genomes; SNS and Biological Research; Accessing Information on the Human Genome Project; A Model Fish for Pollutant Studies; Controlling Carbon in Hybrid Poplar Trees; and Disease Detectives

  16. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    International Nuclear Information System (INIS)

    Holstege, Henne; Wessels, Lodewyk FA; Nederlof, Petra M; Jonkers, Jos; Beers, Erik van; Velds, Arno; Liu, Xiaoling; Joosse, Simon A; Klarenbeek, Sjoerd; Schut, Eva; Kerkhoven, Ron; Klijn, Christiaan N

    2010-01-01

    Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1 Δ/Δ ;p53 Δ/Δ , Brca2 Δ/Δ ;p53 Δ/Δ and p53 Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2 Δ/Δ ;p53 Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. The selection of the oncogenome during

  17. Population biology of house mice (Mus musculus L.) on sub ...

    African Journals Online (AJOL)

    1993-05-03

    May 3, 1993 ... Studies on the feral house mouse Mus musculus in habitats ranging from deserts ... Previous studies on mice at Marion Island focused on ..... and food availability) may decrease the rate of development .... Wiley, New York.

  18. MouseMine: a new data warehouse for MGI.

    Science.gov (United States)

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface.

  19. Mottled Neuherberg (Mo sup(N)), a new male-lethal coat colour mutation of the house mouse (Mus musculus)

    International Nuclear Information System (INIS)

    Schroeder, J.H.

    1975-01-01

    A new semidominant X-chromosomal mutation, Mottled Neuherberg (Mo sup(N)), which causes coat colour variegation is described. Mo sup(N) arose in the second postirradiation generation after 2 x 200 R of X-rays (24 hours apart) to oocytes of X/O mice. Heterozygous Mo sup(N) females have irregular patches of fully and lightly coloured fur over the whole coat with curly vibrissae. Their viability is reduced, about 3% of the heterozygotes dying prenatally and 6 to 28% dying postnatally before weaning. Survivors are fertile without externally visible abnormalities. Hemizygous Mo sup(N) males die in utero after implantation. The recombination frequency between Mo sup(N) and tabby (Ta) was 3.65 +- 3.16% (with 95% -confidence limits). Therefore, it is suggested that Mo sup(N) is a new allele of the mottled (Mo) locus of the house mouse. Mo sup(N)-bearing ova seem to have a lower chance of becoming fertilized by wild-type spermatozoa than by Ta-bearing spermatozoa. (orig.) [de

  20. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  1. Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy.

    Science.gov (United States)

    Hauffe, H C; Searle, J B

    1998-11-01

    Following the discovery of over 40 Robertsonian (Rb) races of Mus musculus domesticus in Europe and North Africa, the house mouse has been studied extensively as an ideal model to determine the chromosomal changes that may cause or accompany speciation. Current models of chromosomal speciation are based on the assumption that heterozygous individuals have a particularly low fertility, although recent studies indicate otherwise. Despite their importance, fertility estimates for the house mouse are incomplete because traditional measurements, such as anaphase I nondisjunction and germ cell death, are rarely estimated in conjunction with litter size. In an attempt to bridge this gap, we have taken advantage of the house mouse hybrid zone in Upper Valtellina (Lombardy, Italy) in which five Rb races interbreed. We present data on the fertility of naturally occurring ("wild-caught") hybrids and of offspring from laboratory crosses of wild-caught mice ("laboratory-reared"), using various measurements. Wild-caught mice heterozygous for one fusion were more infertile than predicted from past studies, possibly due to genic hybridity; laboratory-reared heterozygotes carrying seven or eight trivalents at meiosis I and heterozygotes carrying one pentavalent also had low fertilities. These low fertilities are especially significant given the probable occurrence of a reinforcement event in Upper Valtellina.

  2. Micro-evolutionary divergence patterns of mandible shapes in wild house mouse (Mus musculus populations

    Directory of Open Access Journals (Sweden)

    Tautz Diethard

    2011-10-01

    Full Text Available Abstract Background Insights into the micro-evolutionary patterns of morphological traits require an assessment of the natural variation of the trait within and between populations and closely related species. The mouse mandible is a particularly suitable morphological trait for such an analysis, since it has long been used as a model to study the quantitative genetics of shape. In addition, many distinct populations, sub-species and closely related species are known for the house mouse. However, morphological comparisons among wild caught animals require an assessment in how far environmental and technical factors could interfere with the shape change measurements. Results Using geometric morphometrics, we have surveyed mandible shapes in 15 natural populations of the genus Mus, with a focus on the subspecies Mus musculus domesticus. In parallel we have carefully assessed possibly confounding technical and biological factors. We find that there are distinct differences on average between populations, subspecies and species, but these differences are smaller than differences between individuals within populations. Populations from summer-dry regions, although more ancestral, are less distinct from each other than are populations from the more recently colonized northern areas. Populations with especially distinct shapes occur in an area of sympatry of M. m. domesticus and M. spretus and on recently colonized sub-antarctic islands. We have also studied a number of inbred strains to assess in how far their mandible shapes resemble those from the wild. We find that they fall indeed into the shape space of natural variation between individuals in populations. Conclusions Although mandible shapes in natural populations can be influenced by environmental variables, these influences are insufficient to explain the average extent of shape differences between populations, such that evolutionary processes must be invoked to explain this level of diversity

  3. Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).

    Science.gov (United States)

    Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y

    1996-02-01

    Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.

  4. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  5. Viral Diversity of House Mice in New York City.

    Science.gov (United States)

    Williams, Simon H; Che, Xiaoyu; Garcia, Joel A; Klena, John D; Lee, Bohyun; Muller, Dorothy; Ulrich, Werner; Corrigan, Robert M; Nichol, Stuart; Jain, Komal; Lipkin, W Ian

    2018-04-17

    The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus. IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology. Copyright © 2018 Williams et al.

  6. R2d2 Drives Selfish Sweeps in the House Mouse.

    Science.gov (United States)

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. The truth about mouse, human, worms and yeast

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2004-01-01

    Full Text Available Abstract Genome comparisons are behind the powerful new annotation methods being developed to find all human genes, as well as genes from other genomes. Genomes are now frequently being studied in pairs to provide cross-comparison datasets. This 'Noah's Ark' approach often reveals unsuspected genes and may support the deletion of false-positive predictions. Joining mouse and human as the cross-comparison dataset for the first two mammals are: two Drosophila species, D. melanogaster and D. pseudoobscura; two sea squirts, Ciona intestinalis and Ciona savignyi; four yeast (Saccharomyces species; two nematodes, Caenorhabditis elegans and Caenorhabditis briggsae; and two pufferfish (Takefugu rubripes and Tetraodon nigroviridis. Even genomes like yeast and C. elegans, which have been known for more than five years, are now being significantly improved. Methods developed for yeast or nematodes will now be applied to mouse and human, and soon to additional mammals such as rat and dog, to identify all the mammalian protein-coding genes. Current large disparities between human Unigene predictions (127,835 genes and gene-scanning methods (45,000 genes still need to be resolved. This will be the challenge during the next few years.

  8. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2014-09-01

    Full Text Available Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  9. Adaptive evolution and effective population size in wild house mice

    Czech Academy of Sciences Publication Activity Database

    Phifer-Rixey, M.; Bonhomme, F.; Boursot, P.; Churchill, G. A.; Piálek, Jaroslav; Tucker, P.; Nachman, M.

    2012-01-01

    Roč. 29, č. 10 (2012), s. 2949-2955 ISSN 0737-4038 R&D Projects: GA ČR GA206/08/0640 Institutional support: RVO:68081766 Keywords : substitution * adaptation * evolution * effective population size * house mouse Subject RIV: EG - Zoology Impact factor: 10.353, year: 2012

  10. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  11. Of mice and (Viking?) men: phylogeography of British and Irish house mice

    OpenAIRE

    Searle, Jeremy B.; Jones, Catherine S.; Gündüz, İslam; Scascitelli, Moira; Jones, Eleanor P.; Herman, Jeremy S.; Rambau, R. Victor; Noble, Leslie R.; Berry, R.J.; Giménez, Mabel D.; Jóhannesdóttir, Fríða

    2008-01-01

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA...

  12. Of mice and (Viking?) men: phylogeography of British and Irish house mice.

    Science.gov (United States)

    Searle, Jeremy B; Jones, Catherine S; Gündüz, Islam; Scascitelli, Moira; Jones, Eleanor P; Herman, Jeremy S; Rambau, R Victor; Noble, Leslie R; Berry, R J; Giménez, Mabel D; Jóhannesdóttir, Fríoa

    2009-01-22

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.

  13. Shifting of Immune Responsiveness to House Dust Mite by Influenza A Infection: Genomic Insights

    KAUST Repository

    Al-Garawi, A.

    2011-12-14

    Respiratory viral infections have been associated with an increased incidence of allergic asthma. However, the mechanisms by which respiratory infections facilitate allergic airway disease are incompletely understood.We previously showed that exposure to a low dose of house dust mite (HDM) resulted in enhanced HDM-mediated allergic airway inflammation, and, importantly, marked airway hyperreactivity only when allergen exposure occurred during an acute influenza A infection. In this study, we evaluated the impact of concurrent influenza infection and allergen exposure at the genomic level, using whole-genome micro-array. Our data showed that, in contrast to exposure to a low dose of HDM, influenza A infection led to a dramatic increase in gene expression, particularly of TLRs, C-type lectin receptors, several complement components, as well as FcεR1. Additionally, we observed increased expression of a number of genes encoding chemokines and cytokines associated with the recruitment of proinflammatory cells. Moreover, HDM exposure in the context of an influenza A infection resulted in the induction of unique genes, including calgranulin A (S100a8), an endogenous damage-associated molecular pattern and TLR4 agonist. In addition, we observed significantly increased expression of serum amyloid A (Saa3) and serine protease inhibitor 3n (Serpina3n). This study showed that influenza infection markedly increased the expression of multiple gene classes capable of sensing allergens and amplifying the ensuing immune-inflammatory response. We propose that influenza A infection primes the lung environment in such a way as to lower the threshold of allergen responsiveness, thus facilitating the emergence of a clinically significant allergic phenotype. Copyright © 2012 by The American Association of Immunologists, Inc.

  14. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  15. The European dimension for the mouse genome mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Auwerx, J.; Avner, P.; Baldock, R.; Ballabio, A.; Balling, R.; Barbacid, M.; Berns, A.; Bradley, A.; Brown, S.; Carmeliet, P.; Chambon, P.; Cox, R.; Davidson, D.; Davies, K.; Duboule, D.; Forejt, Jiří; Granucci, F.; Hastie, N.; Angelis, M. H. de; Jackson, I.; Kioussis, D.; Kollias, G.; Lathrop, M.; Lendahl, U.; Malumbres, M.; von Melchner, H.; Müller, W.; Partanen, J.; Ricciardi-Castagnoli, P.; Rigby, P.; Rosen, B.; Rosenthal, N.; Skarnes, B.; Stewart, A. F.; Thornton, J.; Tocchini-Valentini, G.; Wagner, E.; Wahli, W.; Wurst, W.

    2004-01-01

    Roč. 16, - (2004), s. 925-927 ISSN 1061-4036 R&D Projects: GA MŠk(CZ) LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : The European Mouse Mutagenesis Consortium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 24.695, year: 2004

  16. How Random Is Social Behaviour? Disentangling Social Complexity through the Study of a Wild House Mouse Population

    Science.gov (United States)

    Perony, Nicolas; Tessone, Claudio J.; König, Barbara; Schweitzer, Frank

    2012-01-01

    Out of all the complex phenomena displayed in the behaviour of animal groups, many are thought to be emergent properties of rather simple decisions at the individual level. Some of these phenomena may also be explained by random processes only. Here we investigate to what extent the interaction dynamics of a population of wild house mice (Mus domesticus) in their natural environment can be explained by a simple stochastic model. We first introduce the notion of perceptual landscape, a novel tool used here to describe the utilisation of space by the mouse colony based on the sampling of individuals in discrete locations. We then implement the behavioural assumptions of the perceptual landscape in a multi-agent simulation to verify their accuracy in the reproduction of observed social patterns. We find that many high-level features – with the exception of territoriality – of our behavioural dataset can be accounted for at the population level through the use of this simplified representation. Our findings underline the potential importance of random factors in the apparent complexity of the mice's social structure. These results resonate in the general context of adaptive behaviour versus elementary environmental interactions. PMID:23209394

  17. Comparative Genome Viewer

    International Nuclear Information System (INIS)

    Molineris, I.; Sales, G.

    2009-01-01

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  18. CyanoBase: the cyanobacteria genome database update 2010

    OpenAIRE

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2009-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in var...

  19. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  20. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Li Wei

    2005-05-01

    Full Text Available Abstract Background Comparative whole genome analysis of Mammalia can benefit from the addition of more species. The pig is an obvious choice due to its economic and medical importance as well as its evolutionary position in the artiodactyls. Results We have generated ~3.84 million shotgun sequences (0.66X coverage from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project" together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. Conclusion The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted on the human genome by bisecting the evolutionary branch between human and mouse with the mouse branch being approximately 3 times as long as the human branch. Additionally, the joint alignment of the shot-gun sequences to the human-mouse alignment offers the investigator a rapid way to defining specific regions for analysis and resequencing.

  1. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    Directory of Open Access Journals (Sweden)

    Patrick Arbogast

    Full Text Available A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2 and cone densities of 3000-6500/mm(2. Two cone opsins, shortwave sensitive (S and middle-to-longwave sensitive (M, are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones. In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2. Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.

  2. CyanoBase: the cyanobacteria genome database update 2010.

    Science.gov (United States)

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  3. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  4. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  5. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria

    NARCIS (Netherlands)

    Salzman, NH; de Jong, H; Paterson, Y; Harmsen, HJM; Welling, GW; Bos, NA

    2002-01-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of

  6. Comparative genome and evolutionary analysis of naturally occurring Beilong virus in brown and black rats.

    Science.gov (United States)

    Woo, Patrick C Y; Wong, Annette Y P; Wong, Beatrice H L; Lam, Carol S F; Fan, Rachel Y Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2016-11-01

    Recently, we reported the presence of Beilong virus in spleen and kidney samples of brown rats and black rats, suggesting that these rodents could be natural reservoirs of Beilong virus. In this study, four genomes of Beilong virus from brown rats and black rats were sequenced. Similar to the Beilong virus genome sequenced from kidney mesangial cell line culture, those of J-virus from house mouse and Tailam virus from Sikkim rats, these four genomes from naturally occurring Beilong virus also contain the eight genes (3'-N-P/V/C-M-F-SH-TM-G-L-5'). In these four genomes, the attachment glycoprotein encoded by the G gene consists of 1046 amino acids; but for the original Beilong virus genome sequenced from kidney mesangial cell line, the G CDS was predicted to be prematurely terminated at position 2205 (TGG→TAG), resulting in a 734-amino-acid truncated G protein. This phenomenon of a lack of nonsense mutation in naturally occurring Beilong viruses was confirmed by sequencing this region of 15 additional rodent samples. Phylogenetic analyses showed that the cell line and naturally occurring Beilong viruses were closely clustered, without separation into subgroups. In addition, these viruses were further clustered with J-virus and Tailam virus, with high bootstrap supports of >90%, forming a distinct group in Paramyxoviridae. Brown rats and black rats are natural reservoirs of Beilong virus. Our results also supports that the recently proposed genus, Jeilongvirus, should encompass Beilong virus, J-virus and Tailam virus as members. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice

    International Nuclear Information System (INIS)

    Gotoh, Koshichi; Inoue, Kimiko; Ogura, Atsuo; Oishi, Michio

    2006-01-01

    In-gel competitive reassociation (IGCR) is a method for differential subtraction of polymorphic (RFLP) DNA fragments between two DNA samples of interest without probes or specific sequence information. Here, we applied the IGCR procedure to two cloned mice derived from an F1 hybrid of the C57BL/6Cr and DBA/2 strains, in order to investigate the possibility of genomic alteration in the cloned mouse genomes. Each of the five of the genomic alterations we detected between the two cloned mice corresponded to the 'intra-strain' polymorphisms in the C57BL/6Cr and DBA/2 mouse strains. Our result suggests that no severe aberration of genome sequences occurs due to somatic cell nuclear transfer

  8. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    Science.gov (United States)

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  9. 78 FR 50082 - South Farallon Islands Invasive House Mouse Eradication Project; Farallon National Wildlife...

    Science.gov (United States)

    2013-08-16

    ... Farallon Islands and Noonday Rock. In 1969 the Refuge was expanded to include the South Farallon Islands... to eradicate non-native, invasive house mice from the South Farallon Islands, part of the Farallon... the problem of invasive house mice on the South Farallon Islands. DATES: We will accept comments...

  10. Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Takuya Sato

    2015-07-01

    Full Text Available Mouse spermatogonial stem cells (SSCs can be cultured for multiplication and maintained for long periods while preserving their spermatogenic ability. Although the cultured SSCs, named germline stem (GS cells, are targets of genome modification, this process remains technically difficult. In the present study, we tested TALEN and double-nicking CRISPR/Cas9 on GS cells, targeting Rosa26 and Stra8 loci as representative genes dispensable and indispensable in spermatogenesis, respectively. Harvested GS cell colonies showed a high targeting efficiency with both TALEN and CRISPR/Cas9. The Rosa26-targeted GS cells differentiated into fertility-competent sperm following transplantation. On the other hand, Stra8-targeted GS cells showed defective spermatogenesis following transplantation, confirming its prime role in the initiation of meiosis. TALEN and CRISPR/Cas9, when applied in GS cells, will be valuable tools in the study of spermatogenesis and for revealing the genetic mechanism of spermatogenic failure.

  11. Chromosome-wise dissection of the genome of the extremely big mouse line DU6i.

    Science.gov (United States)

    Bevova, Marianna R; Aulchenko, Yurii S; Aksu, Soner; Renne, Ulla; Brockmann, Gudrun A

    2006-01-01

    The extreme high-body-weight-selected mouse line DU6i is a polygenic model for growth research, harboring many small-effect QTL. We dissected the genome of this line into 19 autosomes and the Y chromosome by the construction of a new panel of chromosome substitution strains (CSS). The DU6i chromosomes were transferred to a DBA/2 mice genetic background by marker-assisted recurrent backcrossing. Mitochondria and the X chromosome were of DBA/2 origin in the backcross. During the construction of these novel strains, >4000 animals were generated, phenotyped, and genotyped. Using these data, we studied the genetic control of variation in body weight and weight gain at 21, 42, and 63 days. The unique data set facilitated the analysis of chromosomal interaction with sex and parent-of-origin effects. All analyzed chromosomes affected body weight and weight gain either directly or in interaction with sex or parent of origin. The effects were age specific, with some chromosomes showing opposite effects at different stages of development.

  12. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Brandl, Julian

    2017-01-01

    , counting 801 different components in mouse. By employing our mouse RECON to the CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative methods...... to study protein secretion through graphical visualizations of omics data. We have demonstrated the use of these methods to identify potential new and known targets for engineering improved growth and IgG production, as well as the general observation that CHO cells seem to have less strict transcriptional...... regulation of protein secretion than healthy mouse cells.  Conclusions: The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein...

  13. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    Science.gov (United States)

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  14. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Full Text Available Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%, predicted hydrophobicity and molecular weight (Da using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1 client workstation, (2 web server, (3 application server, and (4 database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs, 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence

  15. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  16. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  17. X-y interactions underlie sperm head abnormality in hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Nachman, Michael W

    2014-04-01

    The genetic basis of hybrid male sterility in house mice is complex, highly polygenic, and strongly X linked. Previous work suggested that there might be interactions between the Mus musculus musculus X and the M. m. domesticus Y with a large negative effect on sperm head morphology in hybrid males with an F1 autosomal background. To test this, we introgressed the M. m. domesticus Y onto a M. m. musculus background and measured the change in sperm morphology, testis weight, and sperm count across early backcross generations and in 11th generation backcross males in which the opportunity for X-autosome incompatibilities is effectively eliminated. We found that abnormality in sperm morphology persists in M. m. domesticus Y introgression males, and that this phenotype is rescued by M. m. domesticus introgressions on the X chromosome. In contrast, the severe reductions in testis weight and sperm count that characterize F1 males were eliminated after one generation of backcrossing. These results indicate that X-Y incompatibilities contribute specifically to sperm morphology. In contrast, X-autosome incompatibilities contribute to low testis weight, low sperm count, and sperm morphology. Restoration of normal testis weight and sperm count in first generation backcross males suggests that a small number of complex incompatibilities between loci on the M. m. musculus X and the M. m. domesticus autosomes underlie F1 male sterility. Together, these results provide insight into the genetic architecture of F1 male sterility and help to explain genome-wide patterns of introgression across the house mouse hybrid zone.

  18. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  19. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... adenine dinucleotide (NAD) intermediate (Rongvaux et al., 2002). Thereupon ... in house mouse, Norway rat and human. It was not difficult to ... species in freshwater regions, and has been a new model organism in aquatic ...

  20. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics

    DEFF Research Database (Denmark)

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies...

  1. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  2. Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism

    NARCIS (Netherlands)

    Dallas, J.F.; Bonhomme, F.; Boursot, P.; Britton-Davidian, J.; Bauchau, V.

    1998-01-01

    Genetic evidence was assessed for inbreeding and population subdivision in a Robertsonian fusion (Rb) race of the western European form of house mouse, Mus musculus domesticus, in central Belgium. Inbreeding, and the factors responsible for subdivision (genetic drift and extinction-recolonization)

  3. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  4. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  5. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    Directory of Open Access Journals (Sweden)

    Robert C. Karn

    2013-12-01

    Full Text Available The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6 and the genome rat (BN/SsNHsd/Mcwi. Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

  6. Genome-Wide Association Identifies Multiple Genomic Regions Associated with Susceptibility to and Control of Ovine Lentivirus

    Science.gov (United States)

    2012-10-17

    to varying degrees of dyspnea (respiratory distress), cachexia (body condition wasting), mastitis , arthritis, and/or encephalitis [5,6]. One of the...General Transcription Factor IIH, polypeptide 5), the gene order does not agree with other mammal genomes including cow , human, dog, and mouse, and it may

  7. Sperm-related phenotypes implicated in both maintenance and breakdown of a natural species barrier in the house mouse

    Science.gov (United States)

    Albrechtová, Jana; Albrecht, Tomáš; Baird, Stuart J. E.; Macholán, Miloš; Rudolfsen, Geir; Munclinger, Pavel; Tucker, Priscilla K.; Piálek, Jaroslav

    2012-01-01

    The house mouse hybrid zone (HMHZ) is a species barrier thought to be maintained by a balance between dispersal and natural selection against hybrids. While the HMHZ is characterized by frequency discontinuities for some sex chromosome markers, there is an unexpected large-scale regional introgression of a Y chromosome across the barrier, in defiance of Haldane's rule. Recent work suggests that a major force maintaining the species barrier acts through sperm traits. Here, we test whether the Y chromosome penetration of the species barrier acts through sperm traits by assessing sperm characteristics of wild-caught males directly in a field laboratory set up in a Y introgression region of the HMHZ, later calculating the hybrid index of each male using 1401 diagnostic single nucleotide polymorphisms (SNPs). We found that both sperm count (SC) and sperm velocity were significantly reduced across the natural spectrum of hybrids. However, SC was more than rescued in the presence of the invading Y. Our results imply an asymmetric advantage for Y chromosome introgression consistent with the observed large-scale introgression. We suggest that selection on sperm-related traits probably explains a large component of patterns observed in the natural hybrid zone, including the Y chromosome penetration. PMID:23055063

  8. Mouse housing system using pressurized cages intraventilated by direct-current microfans.

    Science.gov (United States)

    Martinewski, Alexandre; Correia, Caio S C; de Souza, Nívea L; Merusse, José L B

    2012-03-01

    We performed the initial assessment of an alternative pressurized intraventilated (PIV) caging system for laboratory mice that uses direct-current microfans to achieve cage pressurization and ventilation. Twenty-nine pairs of female SPF BALB/c mice were used, with 19 experimental pairs kept in PIV cages and 10 control pairs kept in regular filter-top (FT) cages. Both groups were housed in a standard housing room with a conventional atmospheric control system. For both systems, intracage temperatures were in equilibrium with ambient room temperature. PIV cages showed a significant difference in pressure between days 1 and 8. Air speed (and consequently airflow rate) and the number of air changes hourly in the PIV cages showed decreasing trends. In both systems, ammonia concentrations increased with time, with significant differences between groups starting on day 1. Overall, the data revealed that intracage pressurization and ventilation by using microfans is a simple, reliable system, with low cost, maintenance requirements, and incidence of failures. Further experiments are needed to determine the potential influence of this system on the reproductive performance and pulmonary integrity in mice.

  9. FANTOM5 CAGE profiles of human and mouse samples

    NARCIS (Netherlands)

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S. B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples,

  10. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara

    2012-01-01

    and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily......The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  11. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research.

    Science.gov (United States)

    Miano, Joseph M; Zhu, Qiuyu Martin; Lowenstein, Charles J

    2016-06-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. © 2016 American Heart Association, Inc.

  12. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research

    Science.gov (United States)

    Miano, Joseph M.; Zhu, Qiuyu Martin; Lowenstein, Charles J.

    2016-01-01

    Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of labs could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any lab can quickly assemble reagents for developing new mouse models for cardiovascular research. Here we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for two-component and three-component CRISPR editing are summarized with a number of applications in mice including frameshift mutations, deletion of enhancers and non-coding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions. PMID:27102963

  13. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei

    2017-08-29

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  14. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Mummery, Christine L.; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Nakachi, Yutaka; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Nakahara, Fumio; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Nakamura, Toshiyuki; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Nakamura, Yukio; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Orlando, Valerio; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Nozaki, Tadasuke; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Ogishima, Soichi; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Kojima, Miki; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Kubosaki, Atsutaka; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Manabe, Ri-ichiroh; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Murata, Mitsuyoshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Nagao-Sato, Sayaka; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Nakazato, Kenichi; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Ninomiya, Noriko; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  15. Mitochondrial DNA sequence variation and evolution of Old World house mice (Mus musculus)

    Czech Academy of Sciences Publication Activity Database

    Macholán, Miloš; Mrkvicová Vyskočilová, Martina; Bejček, V.; Šťastný, K.

    2012-01-01

    Roč. 61, 3-4 (2012), s. 284-307 ISSN 0139-7893 R&D Projects: GA ČR GA206/06/0707; GA ČR GA206/08/0640 Institutional support: RVO:67985904 Keywords : Bayesian skyline plot * control region * house mouse Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  16. Genomics: Looking at Life in New Ways

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mark D. (Case-Western Reserve University)

    2003-10-22

    The availability of complete or nearly complete mouse, human, and rat genomes (in addition to those from many other species) has resulted in a series of new and powerful opportunities to apply the technologies and approaches developed for large-scale genome sequencing to the study of disease. New approaches to biological problems are being explored that involve concepts from computer science such as systems theory and modern large scale computing techniques. A recent project at Celera Genomics involved sequencing protein coding regions from several humans and a chimpanzee. Computational models of evolutionary divergence enabled us to identify genes with unique evolutionary signatures. These genes give us some insight into features that may be uniquely human. The laboratory mouse and rat have long been favorite mammalian models of human disease. Integrated approaches to the study of disease that combine genetics, DNA sequence analysis, and careful analysis of phenotype at a molecular level are becoming more common and powerful. In addition, evaluation of the variation inherent in normal populations is now being used to build networks to describe heart function based on the interaction of multiple phenotypes in randomized populations using a factorial design.

  17. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  18. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  19. A universal genomic coordinate translator for comparative genomics.

    Science.gov (United States)

    Zamani, Neda; Sundström, Görel; Meadows, Jennifer R S; Höppner, Marc P; Dainat, Jacques; Lantz, Henrik; Haas, Brian J; Grabherr, Manfred G

    2014-06-30

    Genomic duplications constitute major events in the evolution of species, allowing paralogous copies of genes to take on fine-tuned biological roles. Unambiguously identifying the orthology relationship between copies across multiple genomes can be resolved by synteny, i.e. the conserved order of genomic sequences. However, a comprehensive analysis of duplication events and their contributions to evolution would require all-to-all genome alignments, which increases at N2 with the number of available genomes, N. Here, we introduce Kraken, software that omits the all-to-all requirement by recursively traversing a graph of pairwise alignments and dynamically re-computing orthology. Kraken scales linearly with the number of targeted genomes, N, which allows for including large numbers of genomes in analyses. We first evaluated the method on the set of 12 Drosophila genomes, finding that orthologous correspondence computed indirectly through a graph of multiple synteny maps comes at minimal cost in terms of sensitivity, but reduces overall computational runtime by an order of magnitude. We then used the method on three well-annotated mammalian genomes, human, mouse, and rat, and show that up to 93% of protein coding transcripts have unambiguous pairwise orthologous relationships across the genomes. On a nucleotide level, 70 to 83% of exons match exactly at both splice junctions, and up to 97% on at least one junction. We last applied Kraken to an RNA-sequencing dataset from multiple vertebrates and diverse tissues, where we confirmed that brain-specific gene family members, i.e. one-to-many or many-to-many homologs, are more highly correlated across species than single-copy (i.e. one-to-one homologous) genes. Not limited to protein coding genes, Kraken also identifies thousands of newly identified transcribed loci, likely non-coding RNAs that are consistently transcribed in human, chimpanzee and gorilla, and maintain significant correlation of expression levels across

  20. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  1. Genome Variation Map: a data repository of genome variations in BIG Data Center.

    Science.gov (United States)

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2018-01-04

    The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genome Variation Map: a data repository of genome variations in BIG Data Center

    Science.gov (United States)

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  3. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  4. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    Science.gov (United States)

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  5. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Tae Woo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  6. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  7. Comparative genome analysis of trypanotolerance QTL | Nganga ...

    African Journals Online (AJOL)

    Homologous sequences were used in the definition of synteny relationships and subsequent identification of the shared disease response genes. The homologous genes within the human genome were then identified and aligned to the bovine radiation hybrid map in order to identify the mouse/bovine homologous regions.

  8. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  9. No postnatal maternal effect on male aggressiveness in wild-derived strains of house mice

    Czech Academy of Sciences Publication Activity Database

    Ďureje, Ľudovít; Vošlajerová Bímová, Barbora; Piálek, Jaroslav

    2011-01-01

    Roč. 37, č. 1 (2011), s. 48-55 ISSN 0096-140X R&D Projects: GA AV ČR KJB600930701 Institutional research plan: CEZ:AV0Z60930519 Keywords : aggression * cross-fostering * wild-derived inbred strains * house mouse Subject RIV: EG - Zoology Impact factor: 2.630, year: 2011

  10. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  11. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis

    NARCIS (Netherlands)

    Zanivan, S.; Meves, A.; Behrendt, K.; Schoof, E.M.; Neilson, L.J.; Cox, J.; Tang, H.R.; Kalna, G.; Ree, J.H. van; Deursen, J.M.A. van; Trempus, C.S.; Machesky, L.M.; Linding, R.; Wickstrom, S.A.; Fassler, R.; Mann, M.

    2013-01-01

    Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic

  12. Respiratory allergen from house dust mite is present in human milk and primes for allergic sensitization in a mouse model of asthma.

    Science.gov (United States)

    Macchiaverni, P; Rekima, A; Turfkruyer, M; Mascarell, L; Airouche, S; Moingeon, P; Adel-Patient, K; Condino-Neto, A; Annesi-Maesano, I; Prescott, S L; Tulic, M K; Verhasselt, V

    2014-03-01

    There is an urgent need to identify environmental risk and protective factors in early life for the prevention of allergy. Our study demonstrates the presence of respiratory allergen from house dust mite, Der p 1, in human breast milk. Der p 1 in milk is immunoreactive, present in similar amounts as dietary egg antigen, and can be found in breast milk from diverse regions of the world. In a mouse model of asthma, oral exposure to Der p through breast milk strongly promotes sensitization rather than protect the progeny as we reported with egg antigen. These data highlight that antigen administration to the neonate through the oral route may contribute to child allergic sensitization and have important implications for the design of studies assessing early oral antigen exposure for allergic disease prevention. The up-to-now unknown worldwide presence of respiratory allergen in maternal milk allows new interpretation and design of environmental control epidemiological studies for allergic disease prevention. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    OpenAIRE

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2012-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chroma...

  14. Genomic Resource and Genome Guided Comparison of Twenty Type Strains of the Genus Methylobacterium

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    2017-12-01

    Full Text Available Bacteria of the genus Methylobacterium are widespread in diverse habitats ranging from soil, water and plant (phyllosphere, rhizosphere and endosphere. In the present study, we in house generated genomic data resource of six type strains along with fourteen database genomes of the Methylobacterium genus to carry out phylogenomic, taxonomic, comparative and ecological studies of this genus. Overall, the genus shows high diversity and genetic variation primarily due to its ability to acquire genetic material from diverse sources through horizontal gene transfer. As majority of species identified in this study are plant associated with their genomes equipped with methylotrophy and photosynthesis related gene along with genes for plant probiotic traits. Most of the species genomes are equipped with genes for adaptation and defense for UV radiation, oxidative stress and desiccation. The genus has an open pan-genome and we predicted the role of gain/loss of prophages and CRISPR elements in diversity and evolution. Our genomic resource with annotation and analysis provides a platform for interspecies genomic comparisons in the genus Methylobacterium, and to unravel their natural genome diversity and to study how natural selection shapes their genome with the adaptive mechanisms which allow them to acquire diverse habitat lifestyles. This type strains genomic data display power of Next Generation Sequencing in rapidly creating resource paving the way for studies on phylogeny and taxonomy as well as for basic and applied research for this important genus.

  15. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    Science.gov (United States)

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.

  16. Subspecies-specific response to ACTH challenge test in the house mouse (Mus musculus)

    Czech Academy of Sciences Publication Activity Database

    Daniszová, Kristina; Mikula, O.; Macholán, M.; Pospíšilová, I.; Vošlajerová Bímová, Barbora; Hiadlovská, Z.

    2017-01-01

    Roč. 252, October (2017), s. 186-192 ISSN 0016-6480 R&D Projects: GA ČR GAP506/11/1792 Institutional support: RVO:68081766 Keywords : ACTH challenge * Endocrine activity * Corticosterone * Hormone metabolites * Mouse * Noninvasive monitoring Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.585, year: 2016

  17. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  18. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score.

    Science.gov (United States)

    Lee, Hayan; Schatz, Michael C

    2012-08-15

    Genome resequencing and short read mapping are two of the primary tools of genomics and are used for many important applications. The current state-of-the-art in mapping uses the quality values and mapping quality scores to evaluate the reliability of the mapping. These attributes, however, are assigned to individual reads and do not directly measure the problematic repeats across the genome. Here, we present the Genome Mappability Score (GMS) as a novel measure of the complexity of resequencing a genome. The GMS is a weighted probability that any read could be unambiguously mapped to a given position and thus measures the overall composition of the genome itself. We have developed the Genome Mappability Analyzer to compute the GMS of every position in a genome. It leverages the parallelism of cloud computing to analyze large genomes, and enabled us to identify the 5-14% of the human, mouse, fly and yeast genomes that are difficult to analyze with short reads. We examined the accuracy of the widely used BWA/SAMtools polymorphism discovery pipeline in the context of the GMS, and found discovery errors are dominated by false negatives, especially in regions with poor GMS. These errors are fundamental to the mapping process and cannot be overcome by increasing coverage. As such, the GMS should be considered in every resequencing project to pinpoint the 'dark matter' of the genome, including of known clinically relevant variations in these regions. The source code and profiles of several model organisms are available at http://gma-bio.sourceforge.net

  19. Alignment of whole genomes.

    Science.gov (United States)

    Delcher, A L; Kasif, S; Fleischmann, R D; Peterson, J; White, O; Salzberg, S L

    1999-01-01

    A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications. PMID:10325427

  20. Comparison of methods for genomic localization of gene trap sequences

    Directory of Open Access Journals (Sweden)

    Ferrin Thomas E

    2006-09-01

    Full Text Available Abstract Background Gene knockouts in a model organism such as mouse provide a valuable resource for the study of basic biology and human disease. Determining which gene has been inactivated by an untargeted gene trapping event poses a challenging annotation problem because gene trap sequence tags, which represent sequence near the vector insertion site of a trapped gene, are typically short and often contain unresolved residues. To understand better the localization of these sequences on the mouse genome, we compared stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default parameters for each algorithm. Known genome coordinates for the cognate set of full-length genes (1,659 sequences were used to evaluate localization results. Results In general, all three programs performed well in terms of localizing sequences to a general region of the genome, with only relatively subtle errors identified for a small proportion of the sequence tags. However, large differences in performance were noted with regard to correctly identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most susceptible to localizing sequence tags incorrectly to pseudogenes. Conclusion The differences in performance for sequence tags and full-length reference sequences were surprisingly small. Characteristic variations in localization results for each program were noted that affect the localization of sequence at exon boundaries, in particular.

  1. Subspecific origin and haplotype diversity in the laboratory mouse

    Czech Academy of Sciences Publication Activity Database

    Yang, H.; Wang, J. R.; Didion, J. P.; Buus, R. J.; Bell, T. A.; Welsh, C. E.; Bonhomme, F.; Yu, A. H.-T.; Nachman, M. W.; Piálek, Jaroslav; Tucker, P.; Boursot, P.; McMillan, L.; Churchill, G. A.; de Villena, F. P.

    2011-01-01

    Roč. 45, č. 7 (2011), s. 648-655 ISSN 1061-4036 R&D Projects: GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z60930519 Keywords : inbred strains * house mice * resource * genome * genes * SNPS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 35.532, year: 2011

  2. A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus.

    Directory of Open Access Journals (Sweden)

    Sophie von Merten

    Full Text Available It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.

  3. Identification and classification of conserved RNA secondary structures in the human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Bejerano, Gill; Siepel, Adam

    2006-01-01

    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars...... for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set......, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization....

  4. Quantitative LC-MS Provides No Evidence for m6 dA or m4 dC in the Genome of Mouse Embryonic Stem Cells and Tissues.

    Science.gov (United States)

    Schiffers, Sarah; Ebert, Charlotte; Rahimoff, René; Kosmatchev, Olesea; Steinbacher, Jessica; Bohne, Alexandra-Viola; Spada, Fabio; Michalakis, Stylianos; Nickelsen, Jörg; Müller, Markus; Carell, Thomas

    2017-09-04

    Until recently, it was believed that the genomes of higher organisms contain, in addition to the four canonical DNA bases, only 5-methyl-dC (m 5 dC) as a modified base to control epigenetic processes. In recent years, this view has changed dramatically with the discovery of 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC), and 5-carboxy-dC (cadC) in DNA from stem cells and brain tissue. N 6 -methyldeoxyadenosine (m 6 dA) is the most recent base reported to be present in the genome of various eukaryotic organisms. This base, together with N 4 -methyldeoxycytidine (m 4 dC), was first reported to be a component of bacterial genomes. In this work, we investigated the levels and distribution of these potentially epigenetically relevant DNA bases by using a novel ultrasensitive UHPLC-MS method. We further report quantitative data for m 5 dC, hmdC, fdC, and cadC, but we were unable to detect either m 4 dC or m 6 dA in DNA isolated from mouse embryonic stem cells or brain and liver tissue, which calls into question their epigenetic relevance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Genomic analysis of murine DNA-dependent protein kinase

    International Nuclear Information System (INIS)

    Fujimori, A.; Abe, M.

    2003-01-01

    Full text: The gene of catalytic subunit of DNA dependent protein kinase is responsible gene for SCID mice. The molecules play a critical role in non-homologous end joining including the V(D)J recombination. Contribution of the molecules to the difference of radiosensitivity and the susceptibility to cancer has been suggested. Here we show the entire nucleotide sequence of approximately 193 kbp and 84 kbp genomic regions encoding the entire DNA-PKcs gene in the mouse and chicken respectively. Retroposon was found in the intron 51 of mouse genomic DNA-PKcs gene but in human and chicken. Comparative analysis of these two species strongly suggested that only two genes, DNA-PKcs and MCM4, exist in the region of both species. Several conserved sequences and cis elements, however, were predicted. Recently, the orthologous region for the human DNA-PKcs locus was completed. The results of further comparative study will be discussed

  6. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  7. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  8. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  9. Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Georgi K Marinov

    Full Text Available Mitochondria contain their own circular genome, with mitochondria-specific transcription and replication systems and corresponding regulatory proteins. All of these proteins are encoded in the nuclear genome and are post-translationally imported into mitochondria. In addition, several nuclear transcription factors have been reported to act in mitochondria, but there has been no comprehensive mapping of their occupancy patterns and it is not clear how many other factors may also be found in mitochondria. Here we address these questions by using ChIP-seq data from the ENCODE, mouseENCODE and modENCODE consortia for 151 human, 31 mouse and 35 C. elegans factors. We identified 8 human and 3 mouse transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding in ENCODE and other publicly available ChIP-seq data for most factors previously reported to localize there. As the first global analysis of nuclear transcription factors binding in mitochondria, this work opens the door to future studies that probe the functional significance of the phenomenon.

  10. Subspecies-specific response to ACTH challenge test in the house mouse (Mus musculus)

    Czech Academy of Sciences Publication Activity Database

    Daniszová, K.; Mikula, Ondřej; Macholán, Miloš; Pospíšilová, I.; Vošlajerová Bímová, Barbora; Hiadlovská, Zuzana

    2017-01-01

    Roč. 252, October (2017), s. 186-192 ISSN 0016-6480 R&D Projects: GA ČR GAP506/11/1792 Institutional support: RVO:67985904 Keywords : ACTH challenge * endocrine activity * corticosterone * hormone metabolities * mouse * noninvasive monitoring Subject RIV: EA - Cell Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.585, year: 2016

  11. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  12. 75 FR 4100 - Affirmative Fair Housing, Marketing (AFHM) Plan-Multifamily Housing, Affirmative Fair Housing...

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-01] Affirmative Fair Housing, Marketing (AFHM) Plan-Multifamily Housing, Affirmative Fair Housing Marketing (AFHM) Plan-Single Family Housing and Affirmative Fair Housing Marketing (AFHM) Plan- Cooperatives/Condominiums AGENCY: Office of...

  13. Strain screen and haplotype association mapping of wheel running in inbred mouse strains.

    Science.gov (United States)

    Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia

    2010-09-01

    Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.

  14. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    Science.gov (United States)

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  15. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition

    DEFF Research Database (Denmark)

    Dahl, John Arne; Jung, Inkyung; Aanes, Håvard

    2016-01-01

    device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (μChIP-seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell....... Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4...

  16. Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos

    International Nuclear Information System (INIS)

    Jacquet, P

    2012-01-01

    Results obtained from the end of the 1950s suggested that ionizing radiation could induce foetal malformations in some mouse strains when administered during early pre-implantation stages. Starting in 1989, data obtained in Germany also showed that radiation exposure during that period could lead to a genomic instability in the surviving foetuses. Furthermore, the same group reported that both malformations and genomic instability could be transmitted to the next generation foetuses after exposure of zygotes to relatively high doses of radiation. As such results were of concern for radiation protection, we investigated this in more detail during recent years, using mice with varying genetic backgrounds including mice heterozygous for mutations involved in important cellular processes like DNA repair, cell cycle regulation or apoptosis. The main parameters which were investigated included morphological development, genomic instability and gene expression in the irradiated embryos or their own progeny. The aim of this review is to critically reassess the results obtained in that field in the different laboratories and to try to draw general conclusions on the risks of developmental defects and genomic instability from an exposure of early embryos to moderate doses of ionizing radiation. Altogether and in the range of doses normally used in diagnostic radiology, the risk of induction of embryonic death and of congenital malformation following the irradiation of a newly fertilised egg is certainly very low when compared to the ‘spontaneous’ risks for such effects. Similarly, the risk of radiation induction of a genomic instability under such circumstances seems to be very small. However, this is not a reason to not apply some precaution principles when possible. One way of doing this is to restrict the use of higher dose examinations on all potentially pregnant women to the first ten days of their menstrual cycle when conception is very unlikely to have occurred

  17. Ionizing radiation induced genomic instability and its relation to radiation carcinogenesis

    International Nuclear Information System (INIS)

    Wang Zhongwen

    2000-01-01

    There are widespread testimonies that the genomic instability induced by ionizing irradiation exits in mammal and its vitro cells. Genomic instability can enhance the frequency of genetic changes among the progeny of the original irradiated cells. In the radiation-leukemogenesis, there is no significant difference between controls and CBA/H mouses of PPI (preconception patent irradiation), but the offsprings of the PPI recipients show a different character (shorter latent period and higher incidence) after an extra γ-radiation. The radiation-induced genomic instability may get the genome on the verge of mutation and lead to carcinogens following mutation of some critical genes. The genomic instability, as the early event of initiation of carcinomas, may be play a specific or unique role

  18. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  19. Autonomous houses. Autonomous house

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S. (Tokai University, Tokyo (Japan). Faculty of Engineering)

    1991-09-30

    Self-sufficiency type houses are outlined. On condition that people gain a certain amount of income in relation with the society, they self-suffice under the given environment, allowing themselves to accept a minimum of industrial products with small environmental load. Ordinary supply from outside of fossil energy and materials which depend on it is minimized. Types are classified into three: energy, energy materials and perfect self-sufficiency. A study project for environment symbiotic houses is progressing which is planned by the Ministry of Construction and Institute of Building Energy Conservation and is invested by a private company. Its target is making a house for halving an environmental load by CO{sub 2}, for the purpose of creating the environment symbiotic house which is nice to and in harmony with the global environment and human beings. As a part of the studies on energy-saving and resource conservation on houses, introduced is a plan of an autonomous house at Izu-Atagawa. The passive method and high thermal-insulation are used for air conditioning, and hot spring water for hot water supply. Electric power is generated by hydroelectric power generation using mountain streams and by solar cells. Staple food is purchased, while subsidiary food is sufficed. 17 refs., 4 figs., 1 tab.

  20. SCORHE: a novel and practical approach to video monitoring of laboratory mice housed in vivarium cage racks.

    Science.gov (United States)

    Salem, Ghadi H; Dennis, John U; Krynitsky, Jonathan; Garmendia-Cedillos, Marcial; Swaroop, Kanchan; Malley, James D; Pajevic, Sinisa; Abuhatzira, Liron; Bustin, Michael; Gillet, Jean-Pierre; Gottesman, Michael M; Mitchell, James B; Pohida, Thomas J

    2015-03-01

    The System for Continuous Observation of Rodents in Home-cage Environment (SCORHE) was developed to demonstrate the viability of compact and scalable designs for quantifying activity levels and behavior patterns for mice housed within a commercial ventilated cage rack. The SCORHE in-rack design provides day- and night-time monitoring with the consistency and convenience of the home-cage environment. The dual-video camera custom hardware design makes efficient use of space, does not require home-cage modification, and is animal-facility user-friendly. Given the system's low cost and suitability for use in existing vivariums without modification to the animal husbandry procedures or housing setup, SCORHE opens up the potential for the wider use of automated video monitoring in animal facilities. SCORHE's potential uses include day-to-day health monitoring, as well as advanced behavioral screening and ethology experiments, ranging from the assessment of the short- and long-term effects of experimental cancer treatments to the evaluation of mouse models. When used for phenotyping and animal model studies, SCORHE aims to eliminate the concerns often associated with many mouse-monitoring methods, such as circadian rhythm disruption, acclimation periods, lack of night-time measurements, and short monitoring periods. Custom software integrates two video streams to extract several mouse activity and behavior measures. Studies comparing the activity levels of ABCB5 knockout and HMGN1 overexpresser mice with their respective C57BL parental strains demonstrate SCORHE's efficacy in characterizing the activity profiles for singly- and doubly-housed mice. Another study was conducted to demonstrate the ability of SCORHE to detect a change in activity resulting from administering a sedative.

  1. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  2. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    Science.gov (United States)

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  3. Innova House - Ottawa`s advanced house

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-31

    A pilot program was developed to provide the housing industry with a means to field test innovative technologies, products and building systems, and to evaluate their overall performance. Under Canada`s Advanced House Program, ten demonstration houses were designed, built and monitored. Ottawa`s Innova House, was one of the ten houses built for this program. The innovative energy saving features of the house included (1) air distribution with small diameter ducts and an electronically commutated motor, a 2.6 kW grid-connected photovoltaic system, (3) an energy recovery ventilator (ERV) with free-cooling mode, (4) a 94 per cent efficient integrated gas heating and hot water system, (5) airtight drywall construction, (6) CFC-free exterior insulation, (7) a natural-gas-engine heat pump for air conditioning, (8) a prototype sealed combustion gas range and clothes dryer, and (9) a manifold plumbing system to conserve water. It was designed to consume one half of the energy consumed in an R-2000 home and one third of the energy of a conventional house. Several of the mechanical elements did not perform at expected levels, (lower than expected efficiencies from the heating and cooling systems and a malfunctioning ERV), nevertheless, overall performance of the house was still very close to the targets. The construction and operation of the house was described. tabs., figs.

  4. Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease.

    Directory of Open Access Journals (Sweden)

    Georgina Caruana

    Full Text Available Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU.ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS we identified novel recessive alleles for Fras1, Ift140 and Lig1.In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.

  5. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  6. Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes

    Directory of Open Access Journals (Sweden)

    Lang Thierry

    2009-03-01

    Full Text Available Abstract Background Mammal macrophages (MΦ display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L. Indeed, the intracellular development of L. amazonensis amastigote relies on the biogenesis and dynamic remodelling of a phagolysosome, termed the parasitophorous vacuole, primarily within dermal MΦ. Results Using BALB/c mouse bone marrow-derived MΦ loaded or not with amastigotes, we analyzed the transcriptional signatures of MΦ 24 h later, when the amastigote population was growing. Total RNA from MΦ cultures were processed and hybridized onto Affymetrix Mouse430_2 GeneChips®, and some transcripts were also analyzed by Real-Time quantitative PCR (RTQPCR. A total of 1,248 probe-sets showed significant differential expression. Comparable fold-change values were obtained between the Affymetrix technology and the RTQPCR method. Ingenuity Pathway Analysis software® pinpointed the up-regulation of the sterol biosynthesis pathway (p-value = 1.31e-02 involving several genes (1.95 to 4.30 fold change values, and the modulation of various genes involved in polyamine synthesis and in pro/counter-inflammatory signalling. Conclusion Our findings suggest that the amastigote growth relies on early coordinated gene expression of the MΦ lipid and polyamine pathways. Moreover, these MΦ hosting multiplying L. amazonensis amastigotes display a transcriptional profile biased towards parasite-and host tissue-protective processes.

  7. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  8. The Evolution of Polymorphic Hybrid Incompatibilities in House Mice.

    Science.gov (United States)

    Larson, Erica L; Vanderpool, Dan; Sarver, Brice A J; Callahan, Colin; Keeble, Sara; Provencio, Lorraine P; Kessler, Michael D; Stewart, Vanessa; Nordquist, Erin; Dean, Matthew D; Good, Jeffrey M

    2018-04-24

    Resolving the mechanistic and genetic bases of reproductive barriers between species is essential to understanding the evolutionary forces that shape speciation. Intrinsic hybrid incompatibilities are often treated as fixed between species, yet there can be considerable variation in the strength of reproductive isolation between populations. The extent and causes of this variation remain poorly understood in most systems. We investigated the genetic basis of variable hybrid male sterility (HMS) between two recently diverged subspecies of house mice, Mus musculus domesticus and M. m. musculus We found that polymorphic HMS has a surprisingly complex genetic basis, with contributions from at least five autosomal loci segregating between two closely related wild-derived strains of M. m. musculus One of the HMS-linked regions on Chromosome 4 also showed extensive introgression among inbred laboratory strains and transmission ratio distortion (TRD) in hybrid crosses. Using additional crosses and whole genome sequencing of sperm pools, we showed that TRD was limited to hybrid crosses and was not due to differences in sperm motility between M. m. musculus strains. Based on these results, we argue that TRD likely reflects additional incompatibilities that reduce hybrid embryonic viability. In some common inbred strains of mice, selection against deleterious interactions appears to have unexpectedly driven introgression at loci involved in epistatic hybrid incompatibilities. The highly variable genetic basis to F1 hybrid incompatibilities between closely related mouse lineages argues that a thorough dissection of reproductive isolation will require much more extensive sampling of natural variation than has been commonly utilized in mice and other model systems. Copyright © 2018, Genetics.

  9. Housing markets and housing policies in India

    OpenAIRE

    Tiwari, Piyush; Rao, Jyoti

    2016-01-01

    Issues of housing in India are synonymous with ignorance of housing in active government involvement at the policy and program formulation levels. They are also due to the problems that unplanned urbanization, income disparity, poverty, illiteracy, and unemployment brought. These issues extenuated the housing problem, causing a housing shortage of 51 million in 2011. Though India has a long history of establishing policies, programs, and institutions to cater to housing, without allocating ad...

  10. Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes

    Directory of Open Access Journals (Sweden)

    Wang Shengqi

    2010-10-01

    Full Text Available Abstract Background Previous studies have shown that microRNA precursors (pre-miRNAs have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear. Results We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability. Conclusions We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were

  11. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene

    DEFF Research Database (Denmark)

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne

    2002-01-01

    Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse...

  12. 24 CFR 982.608 - Congregate housing: Voucher housing assistance payment.

    Science.gov (United States)

    2010-04-01

    ... Housing Types Congregate Housing § 982.608 Congregate housing: Voucher housing assistance payment. (a... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Congregate housing: Voucher housing assistance payment. 982.608 Section 982.608 Housing and Urban Development Regulations Relating to Housing and...

  13. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus

    Directory of Open Access Journals (Sweden)

    Farrell Regina M

    2004-09-01

    Full Text Available Abstract Background Human infections with Sin Nombre virus (SNV and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS, a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC from deer mouse bone marrow using commercially-available house mouse (Mus musculus granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.

  14. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  15. Sampling the genomic pool of protein tyrosine kinase genes using the polymerase chain reaction with genomic DNA.

    Science.gov (United States)

    Oates, A C; Wollberg, P; Achen, M G; Wilks, A F

    1998-08-28

    The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.

  16. Housing and Health: The relationship between housing conditions ...

    African Journals Online (AJOL)

    okanlawon

    2011-10-22

    Oct 22, 2011 ... Housing and Health: The relationship between housing ... The authors in chapter one, deal extensively with historical context of housing and health chronologically ... Housing and Health: Time Again for Public Health Action.

  17. Genomic Relatedness of Chlamydia Isolates Determined by Amplified Fragment Length Polymorphism Analysis

    OpenAIRE

    Meijer, Adam; Morré, Servaas A.; Van Den Brule, Adriaan J. C.; Savelkoul, Paul H. M.; Ossewaarde, Jacobus M.

    1999-01-01

    The genomic relatedness of 19 Chlamydia pneumoniae isolates (17 from respiratory origin and 2 from atherosclerotic origin), 21 Chlamydia trachomatis isolates (all serovars from the human biovar, an isolate from the mouse biovar, and a porcine isolate), 6 Chlamydia psittaci isolates (5 avian isolates and 1 feline isolate), and 1 Chlamydia pecorum isolate was studied by analyzing genomic amplified fragment length polymorphism (AFLP) fingerprints. The AFLP procedure was adapted from a previously...

  18. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    Science.gov (United States)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  19. Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse.

    Science.gov (United States)

    Kang, Heekyoung; Seong, Gi-Sang; Sohn, Hae-Jin; Kim, Jong-Hyun; Lee, Sang-Eun; Park, Mi Yeoun; Lee, Won-Ja; Shin, Ho-Joon

    2015-10-01

    Increasing numbers of Primary Amoebic Meningoencephalitis (PAM) cases due to Naegleria fowleri are becoming a serious issue in subtropical and tropical countries as a Neglected Tropical Disease (NTD). To establish a rapid and effective diagnostic tool, a PCR-based detection technique was developed based on previous PCR methods. Four kinds of primer pairs, Nfa1, Nae3, Nf-ITS, and Naegl, were employed in the cultured amoebic trophozoites and a mouse with PAM experimentally developed by N. fowleri inoculation (PAM-mouse). For the extraction of genomic DNA from N. fowleri trophozoites (1×10(6)), simple boiling with 10μl of PBS (pH 7.4) at 100°C for 30min was found to be the most rapid and efficient procedure, allowing amplification of 2.5×10(2) trophozoites using the Nfa-1 primer. The primers Nfa1 and Nae3 amplified only N. fowleri DNA, whereas the ITS primer detected N. fowleri and N. gruberi DNA. Using the PAM-mouse brain tissue, the Nfa1 primer was able to amplify the N. fowleri DNA 4 days post infection with 1ng/μl of genomic DNA being detectable. Using the PAM-mouse CSF, amplification of the N. fowleri DNA with the Nae3 primer was possible 5 days post infection showing a better performance than the Nfa1 primer at day 6. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Impact of genome assembly status on ChIP-Seq and ChIP-PET data mapping

    Directory of Open Access Journals (Sweden)

    Sachs Laurent

    2009-12-01

    Full Text Available Abstract Background ChIP-Seq and ChIP-PET can potentially be used with any genome for genome wide profiling of protein-DNA interaction sites. Unfortunately, it is probable that most genome assemblies will never reach the quality of the human genome assembly. Therefore, it remains to be determined whether ChIP-Seq and ChIP-PET are practicable with genome sequences other than a few (e.g. human and mouse. Findings Here, we used in silico simulations to assess the impact of completeness or fragmentation of genome assemblies on ChIP-Seq and ChIP-PET data mapping. Conclusions Most currently published genome assemblies are suitable for mapping the short sequence tags produced by ChIP-Seq or ChIP-PET.

  1. CpG methylation differences between neurons and glia are highly conserved from mouse to human.

    Science.gov (United States)

    Kessler, Noah J; Van Baak, Timothy E; Baker, Maria S; Laritsky, Eleonora; Coarfa, Cristian; Waterland, Robert A

    2016-01-15

    Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. City of Ljubljana: Its housing, population and housing conditions

    Directory of Open Access Journals (Sweden)

    Maša Filipovič

    2007-01-01

    Full Text Available The article gives an overview of key aspect of housing in Municipality of Ljubljana. The characteristics of households, of housing and their relation influence the housing situation in the city. Characteristic of housing refer mainly to quality of the dwellings, affordability and correspondence to the wishes of the inhabitants. The second important dimensions are households and their characteristics. In Europe and Slovenia increase in number of household can be observed, which in turn are becoming smaller. The housing policy has a role in establishing a balance between households and housing, i.e. ensuring that housing corresponds to the needs of individual households and to their number. For achieving this, knowledge and appropriate data are of vital importance. In the article we present the results of the Housing survey 2005. We observe housing conditions in a comparative perspective (Ljubljana in comparison to Maribor, Slovenia and selected European cities and according to three dimensions: housing fund, households and housing conditions.

  3. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  4. Energy house - dream house

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    An energy house a prefabricated house with an extensive minimization of heat losses, is air-conditioned by means of a combined heating system consisting of hot water cycle and recirculating heating. The energy system is trivalent: wind power, solar energy with heat pumps and normal oil heating.

  5. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  6. Lack of evidence that the XqYq pairing tips at meiosis in the mouse show hypersensitivity to DNAse I.

    Science.gov (United States)

    Separovic, E R; Chandley, A C

    1987-01-01

    In situ nick translation procedures have been applied to meiotic metaphase I divisions of the normal and XY, Sxr mouse. Unlike in man, where the pairing tips of the XY bivalent show a special sensitivity to DNAse I nicking, no such sensitivity can be detected for either of these types of mouse. Hypersensitivity in the D-band equivalent region of the X chromosome does, however, exist, this site being early replicating in somatic cells and housing the X inactivation centre (Xce).

  7. Simultaneous gene finding in multiple genomes.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Performance of Genomic Selection in Mice

    OpenAIRE

    Legarra, Andrés; Robert-Granié, Christèle; Manfredi, Eduardo; Elsen, Jean-Michel

    2008-01-01

    Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments suggest using massive genetic marker information, known as “genomic selection.” There is little evidence of its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the combination of both. We analyzed four traits from a heterogeneous mouse population (http://...

  9. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice

    OpenAIRE

    White, Michael A.; Ikeda, Akihiro; Payseur, Bret A.

    2012-01-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located jus...

  10. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    Science.gov (United States)

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  11. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    OpenAIRE

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-01-01

    Summary Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically req...

  12. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  13. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Boore, Jeffrey L.

    2005-04-12

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  15. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    Science.gov (United States)

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  16. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    Science.gov (United States)

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  17. 7 CFR 1944.664 - Housing preservation and replacement housing assistance.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Housing preservation and replacement housing...) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing...

  18. Genetic recombination is directed away from functional genomic elements in mice.

    Science.gov (United States)

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  19. Transgenic mouse - Methods and protocols, 2nd edition

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2011-09-01

    Full Text Available Marten H. Hofner (from the Dept. of Pathology of the Groningen University and Jan M. van Deursen (from the Mayo College of Medicine at Rochester, MN, USA provided us with the valuable second edition of Transgenic mouse: in fact, eventhough we are in the –omics era and already equipped with the state-of-the-art techniques in whatsoever field, still we need to have gene(s functional analysis data to understand common and complex deseases. Transgenesis is still an irreplaceable method and protocols to well perform it are more than welcome. Here, how to get genetic modified mice (the quintessential model of so many human deseases considering how much of the human genes are conserved in the mouse and the great block of genic synteny existing between the two genomes is analysed in deep and presented in clearly detailed step by step protocols....

  20. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  1. Automated MicroSPECT/MicroCT Image Analysis of the Mouse Thyroid Gland.

    Science.gov (United States)

    Cheng, Peng; Hollingsworth, Brynn; Scarberry, Daniel; Shen, Daniel H; Powell, Kimerly; Smart, Sean C; Beech, John; Sheng, Xiaochao; Kirschner, Lawrence S; Menq, Chia-Hsiang; Jhiang, Sissy M

    2017-11-01

    The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131 I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123 I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAF V600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123 I gamma photon intensity in MATLAB. The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123 I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123 I gamma photon intensity. MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention

  2. Understanding Housing Delays and Relocations Within the Housing First Model.

    Science.gov (United States)

    Zerger, Suzanne; Pridham, Katherine Francombe; Jeyaratnam, Jeyagobi; Hwang, Stephen W; O'Campo, Patricia; Kohli, Jaipreet; Stergiopoulos, Vicky

    2016-01-01

    This study explores factors contributing to delays and relocations during the implementation of the Housing First model in Toronto, Ontario. While interruptions in housing tenure are expected en route to recovery and housing stability, consumer and service provider views on finding and keeping housing remain largely unknown. In-person interviews and focus groups were conducted with 48 study participants, including 23 case managers or housing workers and 25 consumers. The following three factors contributed to housing delays and transfers: (1) the effectiveness of communication and collaboration among consumers and service providers, (2) consumer-driven preferences and ambivalence, and (3) provider prioritization of consumer choice over immediate housing access. Two strategies--targeted communications and consumer engagement in housing searches--supported the housing process. Several factors affect the timing and stability of housing. Communication between and among providers and consumers, and a shared understanding of consumer choice, can further support choice and recovery.

  3. Structural Variation Shapes the Landscape of Recombination in Mouse.

    Science.gov (United States)

    Morgan, Andrew P; Gatti, Daniel M; Najarian, Maya L; Keane, Thomas M; Galante, Raymond J; Pack, Allan I; Mott, Richard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination

  4. RatMap--rat genome tools and data.

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  5. RatMap—rat genome tools and data

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M.; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB–Genetics at Göteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided. PMID:15608244

  6. Housing management and maintenance practise of Dutch housing associations

    NARCIS (Netherlands)

    Straub, A.

    This paper summarises the state-of-the-art in housing management and maintenance practise of Dutch housing associations based on a survey conducted among almost all housing associations. We address the question what the current developments are in housing management and maintenance practice in the

  7. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  8. 24 CFR 92.252 - Qualification as affordable housing: Rental housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Qualification as affordable housing: Rental housing. 92.252 Section 92.252 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Project Requirements § 92.252...

  9. 24 CFR 8.28 - Housing certificate and housing voucher programs.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Housing certificate and housing voucher programs. 8.28 Section 8.28 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND...

  10. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  11. Behavioral and omics analyses study on potential involvement of dipeptide balenine through supplementation in diet of senescence-accelerated mouse prone 8

    Directory of Open Access Journals (Sweden)

    Nobuhiro Wada

    2016-12-01

    Full Text Available This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME, supplementation on senescence-accelerated mouse prone 8 (SAMP8, an Alzheimer's disease (AD model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+WME supplemented diet for 26 weeks were subjected to four behavioral tests – open field, Y-maze, novel object recognition, and water-filled multiple T-maze – to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah were revealed over the SAMR1 (senescence-accelerated mouse resistant 1 mouse, to be oppositely regulated/recovered under the balenine (+WME supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO: GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  12. Genetic analysis of radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  13. White House Office of the Vice President Announces New Memorandum of Understanding in Clinical Proteogenomics Between the United States and Australia | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The White House Office of the Vice President has announced the signing of three Memoranda of Understanding (MOUs) that will make available an unprecedented international dataset to advance cancer research and care.

  14. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Genomic interval engineering of mice identified a novel modulator of triglyceride production

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Jong, M.C.; Frazer, K.A.; Gong, E.; Krauss, R.M.; Cheng, J.F.; Boffelli, D.; Rubin, E.M.

    1999-10-01

    To accelerate the biological annotation of novel genes discovered in sequenced of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450 kb region on mouse chromosome 11 which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepatic very-low density lipoprotein (VLDL) triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450 kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine and hepatic triglyceride production is of particular importance due to the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.

  16. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria.

    Science.gov (United States)

    Salzman, Nita H; de Jong, Hendrik; Paterson, Yvonne; Harmsen, Hermie J M; Welling, Gjalt W; Bos, Nicolaas A

    2002-11-01

    Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including Lactobacillus spp., Helicobacter spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the Cytophaga-Flavobacter-Bacteroides phylum, which the authors named 'mouse intestinal bacteria'. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the Eubacterium rectale-Clostridium coccoides group and three clustered within the Bacteroides group. One of the novel sequences was distantly related to Verrucomicrobium spinosum and one was distantly related to Bacillus mycoides. Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence in situ hybridization (FISH).

  17. Genetic variation in house mice (Mus, Muridae, Rodentia) from the Czech and Slovak Republics

    Czech Academy of Sciences Publication Activity Database

    Šugerková, Monika; Munclinger, P.; Božíková, E.; Piálek, Jaroslav; Macholán, Miloš

    2002-01-01

    Roč. 51, č. 2 (2002), s. 81-92 ISSN 0139-7893 R&D Projects: GA AV ČR IAA6045601; GA AV ČR IAA6045902; GA ČR GA206/01/0989; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z5045916 Keywords : house mouse * genetic variation * allozymes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.234, year: 2002 http://www.ivb.cz/folia/51/2/081-092.pdf

  18. Characterization of a male reproductive transcriptome for Peromyscus eremicus (Cactus mouse

    Directory of Open Access Journals (Sweden)

    Lauren L. Kordonowy

    2016-10-01

    Full Text Available Rodents of the genus Peromyscus have become increasingly utilized models for investigations into adaptive biology. This genus is particularly powerful for research linking genetics with adaptive physiology or behaviors, and recent research has capitalized on the unique opportunities afforded by the ecological diversity of these rodents. Well characterized genomic and transcriptomic data is intrinsic to explorations of the genetic architecture responsible for ecological adaptations. Therefore, this study characterizes the transcriptome of three male reproductive tissues (testes, epididymis and vas deferens of Peromyscus eremicus (Cactus mouse, a desert specialist. The transcriptome assembly process was optimized in order to produce a high quality and substantially complete annotated transcriptome. This composite transcriptome was generated to characterize the expressed transcripts in the male reproductive tract of P. eremicus, which will serve as a crucial resource for future research investigating our hypothesis that the male Cactus mouse possesses an adaptive reproductive phenotype to mitigate water-loss from ejaculate. This study reports genes under positive selection in the male Cactus mouse reproductive transcriptome relative to transcriptomes from Peromyscus maniculatus (deer mouse and Mus musculus. Thus, this study expands upon existing genetic research in this species, and we provide a high quality transcriptome to enable further explorations of our proposed hypothesis for male Cactus mouse reproductive adaptations to minimize seminal fluid loss.

  19. Introduction of the human proα1(I) collagen gene into proα1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    International Nuclear Information System (INIS)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-01-01

    The Mov-13 mouse strain carries a retroviral insertion in the proα1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of proα2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse proα1(I) collagen gene into homozygous cell lines to assess whether the human or mouse proα1(I) chains can associate with the endogenous mouse proα2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human α1 chains and one mouse α2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both α1(I) and α2(I) chains in the human-mouse hybrid molecules were retarded, compared to the α(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse α1 and α2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human α chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected proα1(I) genes have on the synthesis, assembly, and function of collagen I

  20. 24 CFR 982.617 - Shared housing: Rent and voucher housing assistance payment.

    Science.gov (United States)

    2010-04-01

    ... Special Housing Types Shared Housing § 982.617 Shared housing: Rent and voucher housing assistance payment... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Shared housing: Rent and voucher housing assistance payment. 982.617 Section 982.617 Housing and Urban Development Regulations Relating to...

  1. Assisted Housing - Public Housing Authorities - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    Department of Housing and Urban Development — Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing...

  2. Housing culture

    DEFF Research Database (Denmark)

    Roesdahl, Else; Scholkmann, Barbara

    2007-01-01

    On houses and their furniture and fittings, and on the study of this - with a comparison of rural, urban, monastic and aristocratic housing, and a special section on heating technologies.......On houses and their furniture and fittings, and on the study of this - with a comparison of rural, urban, monastic and aristocratic housing, and a special section on heating technologies....

  3. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Charles R Farber

    2011-04-01

    Full Text Available Significant advances have been made in the discovery of genes affecting bone mineral density (BMD; however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39 affecting at least one BMD trait on chromosomes (Chrs. 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2 gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

  4. Aggression and commensalism in house mouse: a comparative study across Europe and the Near East

    Czech Academy of Sciences Publication Activity Database

    Frynta, D.; Slábová, M.; Váchová, H.; Volfová, R.; Munclinger, Pavel

    2005-01-01

    Roč. 31, - (2005), s. 283-293 ISSN 0096-140X R&D Projects: GA ČR GA206/01/0989; GA ČR GP206/03/D148; GA AV ČR IAA6111410 Institutional research plan: CEZ:AV0Z50450515 Keywords : agonistic behaviour * wild mouse * hybrid zone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.112, year: 2005

  5. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Petr; Franke, V.; Schultz, R.M.

    2015-01-01

    Roč. 113, Jul 29 (2015), s. 305-349 ISSN 0070-2153 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA MŠk LH13084 EU Projects: European Commission 315997 Grant - others:GA AV ČR(CZ) M200521202 Institutional support: RVO:68378050 Keywords : Genome activation * Maternal mRNA * Mouse oocyte * RNA degradation * Small RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.677, year: 2015

  6. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

    DEFF Research Database (Denmark)

    Siepel, Adam; Bejerano, Gill; Pedersen, Jakob Skou

    2005-01-01

    We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three...... species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo......-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially...

  7. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.

    Science.gov (United States)

    Miura, Hiromi; Quadros, Rolen M; Gurumurthy, Channabasavaiah B; Ohtsuka, Masato

    2018-01-01

    CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.

  8. 24 CFR 982.606 - Congregate housing: Who may reside in congregate housing.

    Science.gov (United States)

    2010-04-01

    ... Special Housing Types Congregate Housing § 982.606 Congregate housing: Who may reside in congregate housing. (a) An elderly person or a person with disabilities may reside in a congregate housing unit. (b... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Congregate housing: Who may reside...

  9. Mass Housing and Changings in Housing Demand, Case of Diyarbakir, Turkey

    OpenAIRE

    M. Oguz Sinemillioglu; Can Tuncay Akın; Havva Özyılmaz

    2005-01-01

    The aim of this study is to analyze changings in housing demand, especially in term of house size in Diyarbakır case, in Turkey. Though Housing in Turkey is in a free market system, there is a Mass Housing Administration (TOKÃ ) has been doing mass houses for, relatively, middle class income people. Diyarbakır, one of the cities that TOKÃ has done two thousand houses, has taken too much migration, so that the demand in housing form and structure has different alterations. This process should ...

  10. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    2010-02-01

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  11. CDBG Housing Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to housing, including multifamily rehab, housing services, code enforcement, operation and repair of foreclosed property and public housing...

  12. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR.

    Science.gov (United States)

    Krause, Claudia J; Popp, Oliver; Thirunarayanan, Nanthakumar; Dittmar, Gunnar; Lipp, Martin; Müller, Gerd

    2016-03-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR-induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.

  13. Assessment of housing design decisions in informal housing ...

    African Journals Online (AJOL)

    The rapid urbanisation of cities in developing countries has witnessed a growth in the volume of housing construction in the urban areas. The demand for housing and the inability of government to meet this demand has encouraged the growth of informal housing. The concept of healthy buildings is of great importance, ...

  14. Genome editing reveals a role for OCT4 in human embryogenesis.

    Science.gov (United States)

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  15. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  16. Situation-Based Housing

    DEFF Research Database (Denmark)

    Duelund Mortensen, Peder

    2011-01-01

    Presentation of urban housing research on flexible housing types in the Copenhagen Region: Theoretical background, methodology, analyse of spatial organization, interviews and results. Cases: Pærehaven in Ølby, Køge and M-house in Ørestad, Copenhagen......Presentation of urban housing research on flexible housing types in the Copenhagen Region: Theoretical background, methodology, analyse of spatial organization, interviews and results. Cases: Pærehaven in Ølby, Køge and M-house in Ørestad, Copenhagen...

  17. Biology and genomics of an historic therapeutic Escherichia coli bacteriophage collection

    DEFF Research Database (Denmark)

    Baig, Abiyad; Colom, Joan; Barrow, Paul

    2017-01-01

    We have performed microbiological and genomic characterization of an historic collection of nine bacteriophages, specifically infecting a K1 E. coli O18:K1:H7 ColV+ strain. These phages were isolated from sewage and tested for their efficacy in vivo for the treatment of systemic E. coli infection...... in a mouse infection model by Smith and Huggins (1982). The aim of the study was to identify common microbiological and genomic characteristics, which co-relate to the performance of these phages in in vivo study. These features will allow an informed selection of phages for use as therapeutic agents...

  18. 24 CFR 8.25 - Public housing and multi-family Indian housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Public housing and multi-family Indian housing. 8.25 Section 8.25 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development NONDISCRIMINATION BASED ON HANDICAP IN FEDERALLY ASSISTED PROGRAMS AND...

  19. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  20. Sustained housing-type social buffering following social housing in male rats.

    Science.gov (United States)

    Kiyokawa, Yasushi; Ishida, Aya; Takeuchi, Yukari; Mori, Yuji

    2016-05-01

    In social animals, recovery from the adverse effects of distressing stimuli is promoted by subsequent cohousing with a conspecific animal(s). This phenomenon has been termed housing-type social buffering. We previously found that social housing induced housing-type social buffering in fear-conditioned male rats. This buffering took the form of attenuated conditioned hyperthermia in response to an auditory conditioned stimulus (CS). Here, we assessed whether this social buffering is sustained even if the subject is housed alone after a period of social housing. When fear-conditioned subjects were housed alone during a 48-h period between conditioning and re-exposure to the auditory CS, they exhibited conditioned hyperthermia in response to the CS. However, conditioned hyperthermia was not observed when the 12-h period of social housing began 24 and 36h after conditioning during the 48-h period. This was not the case when the 12-h period of social housing began 0 and 12h after the conditioning. These results suggest that housing-type social buffering is sustained for 12h after the 12-h period of social housing. We next considered whether increasing the duration of social housing would extend the period of social buffering. We observed social buffering of conditioned hyperthermia 24 and 48, but not 96h after a 24-h period of social housing. These results suggest that social buffering was extended when the duration of social housing was increased. Taken together, our findings indicate that housing-type social buffering is sustained after a period of social housing. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Active house concept versus passive House

    NARCIS (Netherlands)

    Zeiler, W.; Boxem, G.; Vehler, R.; Verhoeven, M.; Fremouw, M.

    2009-01-01

    The passive house concept is the present trend in energy efficient sustainable dwellings. Within the passive house concept every effort is made to minimize the energy use. Substantial savings can be achieved by passive energy systems, especially natural ventilation, summer shading and winter solar

  2. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    Science.gov (United States)

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  3. Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone?

    Directory of Open Access Journals (Sweden)

    Dufková Petra

    2008-10-01

    Full Text Available Abstract Background The Mus musculus musculus/M. m. domesticus contact zone in Europe is characterised by sharp frequency discontinuities for sex chromosome markers at the centre of wider clines in allozyme frequencies. Results We identify a triangular area (approximately 330 km2 where the musculus Y chromosome introgresses across this front for up to 22 km into domesticus territory. Introgression of the Y chromosome is accompanied by a perturbation of the census sex ratio: the sex ratio is significantly female biased in musculus localities and domesticus localities lacking Y chromosome introgression. In contrast, where the musculus Y is detected in domesticus localities, the sex ratio is close to parity, and significantly different from both classes of female biased localities. The geographic position of an abrupt cline in an X chromosome marker, and autosomal clines centred on the same position, seem unaffected by the musculus Y introgression. Conclusion We conclude that sex ratio distortion is playing a role in the geographic separation of speciation genes in this section of the mouse hybrid zone. We suggest that clines for genes involved in sex-ratio distortion have escaped from the centre of the mouse hybrid zone, causing a decay in the barrier to gene flow between the two house mouse taxa.

  4. Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.

    Science.gov (United States)

    Scherthan, Harry

    2017-01-01

    The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.

  5. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  6. Understanding role of genome dynamics in host adaptation of gut commensal, L. reuteri

    Directory of Open Access Journals (Sweden)

    Shikha Sharma

    2017-10-01

    Full Text Available Lactobacillus reuteri is a gram-positive gut commensal and exhibits noteworthy adaptation to its vertebrate hosts. Host adaptation is often driven by inter-strain genome dynamics like expansion of insertion sequences that lead to acquisition and loss of gene(s and creation of large dynamic regions. In this regard we carried in-house genome sequencing of large number of L. reuteri strains origination from human, chicken, pig and rodents. We further next generation sequence data in understanding invasion and expansion of an IS element in shaping genome of strains belonging to human associated lineage. Finally, we share our experience in high-throughput genomic library preparation and generating high quality sequence data of a very low GC bacterium like L. reuteri.

  7. Satisfaction with housing and housing support for people with psychiatric disabilities.

    Science.gov (United States)

    Brolin, Rosita; Rask, Mikael; Syrén, Susanne; Baigi, Amir; Brunt, David Arthur

    2015-01-01

    The aim of this study was to investigate the degree of satisfaction with housing and housing support for people with psychiatric disabilities in Sweden. A total of 370 residents, in supported housing and in ordinary housing with housing support, completed a new questionnaire and reported a high degree of overall satisfaction, but many of them wanted to move somewhere else. Differences were found between the two different types of housing concerning satisfaction with housing support, social life and available choices. Security and privacy, as well as other's influence on the choice of residential area and dwelling proved to be important predictors for satisfaction.

  8. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    Science.gov (United States)

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  9. An intron capture strategy used to identify and map a lysyl oxidase-like gene on chromosome 9 in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wydner, K.S.; Passmore, H.C. [Rutgers Univ., Piscataway, NJ (United States); Kim, Houngho; Csiszar, K.; Boyd, C.D. [UMDNJ, New Brunswick, NJ (United States)

    1997-03-01

    An intron capture strategy involving use of polymerase chain reaction was used to identify and map the mouse homologue of a human lysyl oxidase-like gene (LOXL). Oligonucleotides complementary to conserved domains within exons 4 and 5 of the human lysyl oxidase-like gene were used to amplify the corresponding segment from mouse genomic DNA. Sequencing of the resulting mouse DNA fragment of approximately 1 kb revealed that the exon sequences at the ends of the amplified fragment are highly homologous (90% nucleotide identity) to exons 4 and 5 of the human lysyl oxidase-like gene. An AluI restriction site polymorphism within intron 4 was used to map the mouse lysyl oxidase-like gene (Loxl) to mouse Chromosome 9 in a region that shares linkage conservation with human chromosome 15q24, to which the LOXL was recently mapped. 22 refs., 3 figs.

  10. Development of a Measure of Housing and Housing Services.

    Science.gov (United States)

    Clark, Colleen; Young, M Scott; Teague, Gregory; Rynearson-Moody, Sarah

    2016-01-01

    The Housing Program Measure (HPM) was designed to document critical elements of a range of housing program types and associated services. Qualitative methods, including literature review and open-ended interviews, were used to determine pertinent HPM domains and to develop the pool of items. The measure was pre-tested, and reliability and validity analyses were applied to revise and strengthen the measure. The resulting measure furthers homelessness research by providing a tool that can be used to define housing and housing services interventions across diverse projects and disciplines, to facilitate program management by matching housing resources to the needs of homeless individuals, and to support model development by measuring progress to goals.

  11. Frequency of chromosome damage in synanthropic house mice as in index of genotoxic effects of environmental contamination

    International Nuclear Information System (INIS)

    Gileva, E.A.; Bol'shakov, A.V.N.; Kosareva, N.L.; Gabitova, A.T.

    1993-01-01

    Environmental contamination of the human habitat by a large number of chemical compounds with genotoxic activity increases genetic risk for the populations of large cities, industrial zones, and many agricultural regions. Moreover, the level of genetic danger for the population at large not involved in work with genotoxicants remains practically unknown since the detection of direct genotoxic environment effect on the human population is complicated by a number of circumstances (complexities related to selecting an adequate control as a result of migration and ethnic heterogeneity of the human population, high cost mass studies, etc.). It is clear that to evaluate the genotoxic potential of the environment, we need to use indicator organisms that are as close to man as possible in genome organization, physiological features, and reactions to mutagenic factors. Such organisms are, first of all, mammals, and among them, house mice should be given special attention; they live side by side with man, and mutagens enter their tissues along the same pathways as in human tissues. Although the direct extrapolation of degree of genetic danger from mouse to human is difficult, with synanthropoic mice, we can estimate the total mutagenic effect of the environment in various regions and population centers and compare this with estimates obtained from regions with a known degree of genetic risk (for example, for the Chernobyl zone)

  12. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice

    DEFF Research Database (Denmark)

    Lund, Anders H; Turner, Geoffrey; Trubetskoy, Alla

    2002-01-01

    We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration...... retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways...... that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large...

  13. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  14. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation

    Directory of Open Access Journals (Sweden)

    Dan R. Montonye

    2018-05-01

    Full Text Available Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ, two age groups (4 week and 8 week old, and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA and permutational multivariate analysis of variance (PERMANOVA demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt predicted

  15. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation.

    Science.gov (United States)

    Montonye, Dan R; Ericsson, Aaron C; Busi, Susheel B; Lutz, Cathleen; Wardwell, Keegan; Franklin, Craig L

    2018-01-01

    Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ), two age groups (4 week and 8 week old), and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing) were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) predicted differences in

  16. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  17. Sydney Opera House Rise

    DEFF Research Database (Denmark)

    2013-01-01

    Sydney Opera House Exhibition (2013) A CITA research and exhibition project, for Sydney Opera House exhibition "Danish Design at the House".......Sydney Opera House Exhibition (2013) A CITA research and exhibition project, for Sydney Opera House exhibition "Danish Design at the House"....

  18. Economic analysis of passive houses and low-energy houses compared with standard houses

    International Nuclear Information System (INIS)

    Audenaert, A.; Cleyn, S.H. de; Vankerckhove, B.

    2008-01-01

    As the energy demand used for space heating accounts for 78% of EU15 household delivered energy consumption, significant reductions in energy demand can be achieved by promoting low-energy buildings. Our study investigates three building types: the standard house, the low-energy house and the passive house. As more far-reaching measures concerning energy savings usually lead to higher investments, the aim of our study is to perform an economic analysis in order to determine the economic viability of the three building types

  19. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment

    NARCIS (Netherlands)

    Scott, Jeffrey G; Warren, Wesley C; Beukeboom, Leo W; Bopp, Daniel; Clark, Andrew G; Giers, Sarah D; Hediger, Monika; Jones, Andrew K; Kasai, Shinji; Leichter, Cheryl A; Li, Ming; Meisel, Richard P; Minx, Patrick; Murphy, Terence D; Nelson, David R; Reid, William R; Rinkevich, Frank D; Robertson, Hugh M; Sackton, Timothy B; Sattelle, David B; Thibaud-Nissen, Francoise; Tomlinson, Chad; van de Zande, Louis; Walden, Kimberly; Wilson, Richard K; Liu, Nannan

    2014-01-01

    BACKGROUND: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal

  20. Inherently variable responses to glucocorticoid stress among endogenous retroviruses isolated from 23 mouse strains.

    Science.gov (United States)

    Hsu, Karen; Lee, Young-Kwan; Chew, Alex; Chiu, Sophia; Lim, Debora; Greenhalgh, David G; Cho, Kiho

    2017-10-01

    Active participation of endogenous retroviruses (ERVs) in disease processes has been exemplified by the finding that the HERV (human ERV)-W envelope protein is involved in the pathogenesis of multiple sclerosis, an autoimmune disease. We also demonstrated that injury-elicited stressors alter the expression of murine ERVs (MuERVs), both murine leukemia virus-type and mouse mammary tumor virus (MMTV)-type (MMTV-MuERV). In this study, to evaluate MMTV-MuERVs' responses to stress (e.g., injury, infection)-elicited systemic glucocorticoid (GC) levels, we examined the GC-stress response of 64 MMTV-MuERV promoters isolated from the genomes of 23 mouse strains. All 64 promoters responded to treatment with a synthetic GC, dexamethasone (DEX), at a wide range from a 0.6- to 85.7-fold increase in reporter activity compared to no treatment. An analysis of the 10 lowest and 10 highest DEX responders revealed specific promoter elements exclusively present in either the three lowest or the two highest responders. Each promoter had a unique profile of transcription regulatory elements and the glucocorticoid response element (GRE) was identified in all promoters with the number of GREs ranging from 2 to 7. The three lowest DEX responders were the only promoters with two GREs. The findings from this study suggest that certain MMTV-MuERVs are more responsive to stress-elicited systemic GC elevation compared to the others. The mouse strain-specific genomic MMTV-MuERV profiles and individual MMTV-MuERVs' differential responses to GC-stress might explain, at least in part, the variable inflammatory responses to injury and/or infection, often observed among different mouse strains. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Assisted Housing - Public Housing Developments - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    Department of Housing and Urban Development — The general location of an entire Public Housing Development. A distinct address is chosen to represent the general location of an entire Public Housing Development,...

  2. The impact of housing policies and housing markets on ethnic spatial segregation

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter; Andersson, Roger; Wessel, Terje

    2015-01-01

    This paper examines how ethnic segregation is connected to an ethnic division of the housing market and a spatial separation of different housing tenures in four Nordic cities. Explanations for the differences across the cities are found by comparing housing markets and housing policies....... The housing markets are in all four cities ethnically segmented with high concentrations of immigrants in some forms of tenures (especially social/public housing) and low concentrations in others. We further discuss the reasons for the observed pattern. The paper shows that the spatial distribution...... housing, while co-operative housing is crucial in the fourth. It is also shown that a policy of neighbourhood tenure mix in one of the cities has resulted in a relatively low degree of segregation in spite of high concentrations of immigrants in social/public housing....

  3. Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation.

    Science.gov (United States)

    Pujar, Shashikant; O'Leary, Nuala A; Farrell, Catherine M; Loveland, Jane E; Mudge, Jonathan M; Wallin, Craig; Girón, Carlos G; Diekhans, Mark; Barnes, If; Bennett, Ruth; Berry, Andrew E; Cox, Eric; Davidson, Claire; Goldfarb, Tamara; Gonzalez, Jose M; Hunt, Toby; Jackson, John; Joardar, Vinita; Kay, Mike P; Kodali, Vamsi K; Martin, Fergal J; McAndrews, Monica; McGarvey, Kelly M; Murphy, Michael; Rajput, Bhanu; Rangwala, Sanjida H; Riddick, Lillian D; Seal, Ruth L; Suner, Marie-Marthe; Webb, David; Zhu, Sophia; Aken, Bronwen L; Bruford, Elspeth A; Bult, Carol J; Frankish, Adam; Murphy, Terence; Pruitt, Kim D

    2018-01-04

    The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  4. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  5. Construction of a llama bacterial artificial chromosome library with approximately 9-fold genome equivalent coverage.

    Science.gov (United States)

    Airmet, K W; Hinckley, J D; Tree, L T; Moss, M; Blumell, S; Ulicny, K; Gustafson, A K; Weed, M; Theodosis, R; Lehnardt, M; Genho, J; Stevens, M R; Kooyman, D L

    2012-01-01

    The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 10⁹ bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama.

  6. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    Science.gov (United States)

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  7. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  9. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  10. Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition

    Directory of Open Access Journals (Sweden)

    Seung-Wook Shin

    2012-11-01

    During the maternal-to-zygotic transition (MZT, maternal proteins in oocytes are degraded by the ubiquitin–proteasome system (UPS, and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT.

  11. Understanding of Danish passive houses based on pilot project Comfort Houses

    Energy Technology Data Exchange (ETDEWEB)

    Brunsgaard, C.

    2010-12-15

    The aim of the research is to investigate the notion of passive houses in Denmark. When this PhD thesis was initiated, the Danish building industry has just started to become interested in the passive house concept, but the knowledge was very limited. To be able to speed up the process of constructing Danish passive houses or other low energy concepts Saint-Gobain Isover Scandinavia took the initiative to the pilot project of the Comfort Houses, ten single-family houses constructed as passive houses, and wanted to share the knowledge with the building industry and other interested. This PhD thesis was a part of the strategy. If the concept of passive houses should be successfully promoted and achieve a significant sale in Denmark, it is believed that it is necessary to do a holistic approach. Besides energy savings and new structural solutions more qualitative aspects like architecture, everyday life and the future ways of living needs to be integrated in the future understanding of passive houses. This Ph.D. thesis therefore studies the following research question: What can the experience from the Comfort Houses enlighten about the future production and use of Danish passive houses? This understanding is achieved through studies of different study fields to be able to create a more holistic understanding of the concept both covering qualitative and quantitative analysis. The main focus will be on the study fields Design Process, Architecture and Everyday Life and the Indoor environment, which will answer the following sub-research questions: 1) How has the consortiums behind the Comfort Houses approached the design process according to teamwork, method and tools? And what barriers and possibilities lie within the approaches? 2) How do the occupants of the Comfort Houses experience the passive house architecture and the technical service systems? And has their everyday life changed by moving into a passive house? If so, how? 3) To what extent do the Comfort Houses

  12. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  13. Family Open House

    Science.gov (United States)

    Search Family Open House Join us for an afternoon of science fun. The Fermilab Family Open House is a party for children of all ages to learn about the world of physics. The Open House is supported by Open House? Check out our YouTube video to learn more! Explore physics concepts with hands-on

  14. Radon house doctor

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Brennan, T.; Wadach, J.B.; O'Neil, R.

    1986-01-01

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  15. Inability of Kaplan radiation leukemia virus to replicate on mouse fibroblasts is conferred by its long terminal repeat

    International Nuclear Information System (INIS)

    Rassart, E.; Paquette, Y.; Jolicoeur, P.

    1988-01-01

    The molecularly cloned infectious Kaplan radiation leukemia virus has previously been shown to be unable to replicate on mouse fibroblasts. To map the viral sequences responsible for this, we constructed chimeric viral DNA genomes in vitro with parental cloned infectious viral DNAs from the nonfibrotropic (F-) BL/VL3 V-13 radiation leukemia virus and the fibrotropic (F+) endogenous BALB/c or Moloney murine leukemia viruses (MuLV). Infectious chimeric MuLVs, recovered after transfection of Ti-6 lymphocytes with these recombinant DNAs, were tested for capacity to replicate on mouse fibroblasts in vitro. We found that chimeric MuLVs harboring the long terminal repeat (LTR) of a fibrotropic MuLV replicated well on mouse fibroblasts. Conversely, chimeric MuLVs harboring the LTR of a nonfibrotropic MuLV were restricted on mouse fibroblasts. These results indicate that the LTR of BL/VL3 radiation leukemia virus harbors the primary determinant responsible for its inability to replicate on mouse fibroblasts in vitro. Our results also show that the primary determinant allowing F+ MuLVs (endogenous BALB/c and Moloney MuLVs) to replicate on mouse fibroblasts in vitro resides within the LTR

  16. Housing First or no housing? Housing and homelessness at the end of alcohol and drug treatment.

    Science.gov (United States)

    Dyb, Evelyn

    2016-10-01

    The rate of alcohol and drug dependency is high among homeless persons in Norway as well as in other Western societies. National homeless surveys also show a certain correlation between discharge from institutions and homelessness. However, the rate of homelessness versus the rate with fixed abode at the end of specialised alcohol and drug treatment has not been examined using quantitative methods. A cross-sectional survey was conducted in alcohol and drug treatment units in the national health services and private clinics. The survey investigates the housing outcome at the end of treatment compared to the situation at the start of treatment using an individual questionnaire for patients ending treatment in a specific time window. Housing outcome is measured by the odds ratio of having a fixed abode at the end of treatment in relation to main intoxicating substance, type of treatment (in- and outpatient), completing versus cutting short the treatment, housing situation at the start of treatment, socioeconomic capital, mental health problems, individual plan, medical assisted treatment, and a set of background variables. The housing versus homeless situation hardly changes during the treatment period. In both a bivariate analysis and a simple multivariate model, principal intoxicating substance is the strongest predictor of having a fixed abode both before and after treatment. However, a more sophisticated analysis indicates that socioeconomic resources and social capital play along with the preferred intoxicating substance as predictors of having permanent housing. After more than a decade of a housing-led national homeless policy, and wide embracement of Housing First approaches in the European Union, homeless persons entering specialised alcohol and drug treatment are likely to return to the streets and hostels at the end of treatment. Access to housing after treatment is very limited for those lacking resources to solve their housing problem without assistance

  17. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Directory of Open Access Journals (Sweden)

    Melissa K Boles

    2009-12-01

    Full Text Available An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn, inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.

  18. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    Science.gov (United States)

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and

  19. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  20. Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis; Rubin, EdwardM.; Couronne, Olivier

    2005-06-13

    Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A total of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.

  1. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  2. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    Science.gov (United States)

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  3. House Price, House Quality and Economic Growth

    NARCIS (Netherlands)

    De Vries, P.; Boelhouwer, P.J.

    2010-01-01

    The literature on housing markets suggest that periods of economic growth are characterised by a demand for better housing quality and increasing prices. The basic principles of the theory are that the short-run price fluctuations occur due to market imperfection, while over the long term, causality

  4. Livable Housing Design: The voluntary provision of inclusive housing in Australia

    Directory of Open Access Journals (Sweden)

    Margaret Louise Ward

    2014-06-01

    Full Text Available This paper reports on a study of the voluntary provision of inclusive housing. The impetus for the study is the Livable Housing Design initiative, an agreement among Australian housing industry and community leaders in 2010 to a national guideline and voluntary strategy with a target to provide minimum access features in all new housing by 2020. Situated in and around Brisbane, Australia, the study problematises the assumption that the housing industry will respond voluntarily; an assumption which this study concludes is unfounded. The Livable Housing Design initiative asks individual agents to consider the needs of people beyond the initial contract, to proceed with objective reasoning and to do the right thing voluntarily. Instead, the study found that interviewees focused on their immediate contractual obligations, were reluctant to change established practices and saw little reason to do more than was legally required of them. This paper argues that the highly-competitive and risk-averse nature of the industry works against a voluntary approach for inclusive housing and, if the 2020 target of the Livable Housing Design.

  5. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  6. Tech House

    Science.gov (United States)

    1978-01-01

    The members of the Swain family- Dr. Charles "Bill" Swain, wife Elaine, daughter Carol, 17, son "Chuck", 12, and dog Susie have an interesting assignment. They are active participants in an important NASA research program involving the application of space-age technology to home construction. b' Transplanted Floridians, the Swains now reside in NASA's Tech House, loatedat Langley Research Center, Hampton, Virginia. Their job is to use and help evaluate the variety of advanced technology systems in Tech House. A contemporary three-bedroom home, Tech House incorporates NASA technology, the latest commercial building techniques and other innovations, all designed to reduce energy and water consumption and to provide new levels of comfort, convenience, security and fire safety. Tech House equipment performed well in initial tests, but a house is not a home until it has people. That's where the Swains come in. NASA wants to see how the various systems work under actual living conditions, to confirm the effectiveness of the innovations or to determine necessary modifications for improvement. The Swains are occupying the house for a year, during which NASA engineers are computer monitoring the equipment and assembling a record of day-to-day performance. . Tech House is a laboratory rather than a mass production prototype, but its many benefits may influence home design and construction. In a period of sharply rising utility costs, widespread adoption of Tech House features could provide large-scale savings to homeowners and potentially enormous national benefit in resources conservation. Most innovations are aerospace spinoffs: Some of the equipment is now commercially available; other systems are expected to be in production within a few years. Around 1980, a Tech House-type of home could be built for $45-50,000 (1 976 dollars). It is estimated that the homeowner would save well over $20,000 (again 1976 dollars) in utility costs over the average mortgage span of 20 years.

  7. The Special Importance of Housing Policy for the Housing Situation of Ethnic Minorities

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter; Magnusson Turner, Lena; Søholt, Susanne

    The purpose of this article is to uncover, whether housing policy has a special importance for immigrants, compared with the whole population, by comparing housing policies and immigrants’ housing outcomes in four Nordic countries: Denmark, Finland, Norway and Sweden. There are substantial...... population varies much. These differences can only to some extent be explained by income inequalities on the housing markets in the countries, inequalities that affect immigrants. Other important explanations of why immigrants perform worse on the housing market is the shortage of rental housing (Norway......’ housing options are strict needs test for social/public housing (Finland)....

  8. The Special Importance of Housing Policy for the Housing Situation of Ethnic Minorities

    DEFF Research Database (Denmark)

    Andersen, Hans Skifter; Turner, Lena Magnusson; Søholt, Susanne

    2013-01-01

    The purpose of this article is to uncover, whether housing policy has a special importance for immigrants, compared with the whole population, by comparing housing policies and immigrants’ housing outcomes in four Nordic countries: Denmark, Finland, Norway and Sweden. There are substantial...... population varies much. These differences can only to some extent be explained by income inequalities on the housing markets in the countries, inequalities that affect immigrants. Other important explanations of why immigrants perform worse on the housing market is the shortage of rental housing (Norway......’ housing options are strict needs test for social/public housing (Finland)....

  9. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage.

    Science.gov (United States)

    Denissova, Natalia G; Nasello, Cara M; Yeung, Percy L; Tischfield, Jay A; Brenneman, Mark A

    2012-01-01

    Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.

  10. Female presence and estrous state influence mouse ultrasonic courtship vocalizations.

    Directory of Open Access Journals (Sweden)

    Jessica L Hanson

    Full Text Available The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1 vocalizations varied among males, 2 the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3 the frequency (kHz, bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4 syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls.

  11. An integrated clinical and genomic information system for cancer precision medicine.

    Science.gov (United States)

    Jang, Yeongjun; Choi, Taekjin; Kim, Jongho; Park, Jisub; Seo, Jihae; Kim, Sangok; Kwon, Yeajee; Lee, Seungjae; Lee, Sanghyuk

    2018-04-20

    Increasing affordability of next-generation sequencing (NGS) has created an opportunity for realizing genomically-informed personalized cancer therapy as a path to precision oncology. However, the complex nature of genomic information presents a huge challenge for clinicians in interpreting the patient's genomic alterations and selecting the optimum approved or investigational therapy. An elaborate and practical information system is urgently needed to support clinical decision as well as to test clinical hypotheses quickly. Here, we present an integrated clinical and genomic information system (CGIS) based on NGS data analyses. Major components include modules for handling clinical data, NGS data processing, variant annotation and prioritization, drug-target-pathway analysis, and population cohort explorer. We built a comprehensive knowledgebase of genes, variants, drugs by collecting annotated information from public and in-house resources. Structured reports for molecular pathology are generated using standardized terminology in order to help clinicians interpret genomic variants and utilize them for targeted cancer therapy. We also implemented many features useful for testing hypotheses to develop prognostic markers from mutation and gene expression data. Our CGIS software is an attempt to provide useful information for both clinicians and scientists who want to explore genomic information for precision oncology.

  12. Exploring the Housing Needs of Older People in Standard and Sheltered Social Housing.

    Science.gov (United States)

    Fox, Siobhan; Kenny, Lorna; Day, Mary Rose; O'Connell, Cathal; Finnerty, Joe; Timmons, Suzanne

    2017-01-01

    Objective: Our home can have a major impact on our physical and mental health; this is particularly true for older people who may spend more time at home. Older people in social (i.e., public) housing are particularly vulnerable. Housing options for older people in social housing include standard design dwellings or specially designed "sheltered housing." The most suitable housing model should be identified, with older people consulted in this process. Method: Survey of older people (aged ≥60) living in standard or sheltered social housing. Data were analyzed using descriptive and inferential statistics in SPSS Version 22. Results: Overall, 380 surveys were returned (response rate = 47.2%). All older people had similar housing needs. Those in sheltered housing were more satisfied with the physical home design and reported more positive outcomes. Older people in standard housing were less likely to have necessary adaptations to facilitate aging-in-place. Discussion: Older people in standard housing reported more disability/illnesses, are worried about the future, and felt less safe at home. However, few wanted to move, and very few viewed sheltered housing as an alternative, suggesting limited knowledge about their housing options. Future social housing designs should be flexible, that is, adaptable to the needs of the tenants over time.

  13. Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes

    International Nuclear Information System (INIS)

    Rosen, Mitchell B.; Das, Kaberi P.; Wood, Carmen R.; Wolf, Cynthia J.; Abbott, Barbara D.; Lau, Christopher

    2013-01-01

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) detected in the environment. Using a transient transfection assay developed in COS-1 cells, our group has previously evaluated a variety of PFAAs for activity associated with activation of peroxisome proliferator-activated receptor alpha (PPARα). Here we use primary heptatocytes to further assess the biological activity of a similar group of PFAAs using custom designed Taqman Low Density Arrays. Primary mouse and human hepatoyctes were cultured for 48 h in the presence of varying concentrations of 12 different PFAAs or Wy14,643, a known activator of PPARα. Total RNA was collected and the expression of 48 mouse or human genes evaluated. Gene selection was based on either in-house liver microarray data (mouse) or published data using primary hepatocytes (human). Gene expression in primary mouse hepatocytes was more restricted than expected. Genes typically regulated in whole tissue by PPARα agonists were not altered in mouse cells including Acox1, Me1, Acaa1a, Hmgcs1, and Slc27a1. Cyp2b10, a gene regulated by the constitutive androstane receptor and a transcript normally up-regulated by in vivo exposure to PFAAs, was also unchanged in cultured mouse hepatocytes. Cyp4a14, Ehhadh, Pdk4, Cpt1b, and Fabp1 were regulated as expected in mouse cells. A larger group of genes were differentially expressed in human primary hepatocytes, however, little consistency was observed across compounds with respect to which genes produced a significant dose response making the determination of relative biological activity difficult. This likely reflects weaker activation of PPARα in human versus rodent cells as well as variation among individual cell donors. Unlike mouse cells, CYP2B6 was up-regulated in human hepatocytes by a number of PFAAs as was PPARδ. Rankings were conducted on the limited

  14. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    Science.gov (United States)

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  15. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Orthologous microRNA genes are located in cancer-associated genomic regions in human and mouse.

    Directory of Open Access Journals (Sweden)

    Igor V Makunin

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short non-coding RNAs that regulate differentiation and development in many organisms and play an important role in cancer. METHODOLOGY/PRINCIPAL FINDINGS: Using a public database of mapped retroviral insertion sites from various mouse models of cancer we demonstrate that MLV-derived retroviral inserts are enriched in close proximity to mouse miRNA loci. Clustered inserts from cancer-associated regions (Common Integration Sites, CIS have a higher association with miRNAs than non-clustered inserts. Ten CIS-associated miRNA loci containing 22 miRNAs are located within 10 kb of known CIS insertions. Only one CIS-associated miRNA locus overlaps a RefSeq protein-coding gene and six loci are located more than 10 kb from any RefSeq gene. CIS-associated miRNAs on average are more conserved in vertebrates than miRNAs associated with non-CIS inserts and their human homologs are also located in regions perturbed in cancer. In addition we show that miRNA genes are enriched around promoter and/or terminator regions of RefSeq genes in both mouse and human. CONCLUSIONS/SIGNIFICANCE: We provide a list of ten miRNA loci potentially involved in the development of blood cancer or brain tumors. There is independent experimental support from other studies for the involvement of miRNAs from at least three CIS-associated miRNA loci in cancer development.

  17. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.

    Directory of Open Access Journals (Sweden)

    Christel Cazalet

    2010-02-01

    Full Text Available Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these

  18. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse

    Directory of Open Access Journals (Sweden)

    Barbora Kuntová

    2018-02-01

    Full Text Available Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE, and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO. Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14 and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.

  19. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    Science.gov (United States)

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  20. Essays on Housing Markets

    DEFF Research Database (Denmark)

    Bäckman, Claes

    In Denmark and in many countries around the world, housing markets are of considerable importance for households and policy-makers alike. As the boom and bust in the US and Danish housing market so aptly demonstrated, disruptions in the housing market potentially have wide-ranging consequences...... for individual households and for the aggregate economy. Housing is important because we all have to live somewhere, but also because it serves as a considerable source of both wealth and debt. As such, housing market policy can not only create vast benefits for many, but can also have substantial negative...... impacts for all, and should therefore be a topic of major interest for economists and policy makers alike. This Ph.D. thesis, entitled “Essays on Housing Markets”, analyzes the Danish housing market during the 2000s, with a focus on how policy changes affected house prices and how changes in house prices...

  1. The bishops and housing.

    Science.gov (United States)

    Shellabarger, Thomas

    2005-01-01

    According to Catholic social teaching, housing is not a commodity but a human right. To ensure that all people--especially low-income elderly and other vulnerable populations--have access to affordable housing, the church has established a variety of programs, services, and advocacy efforts. Much of this work is based on key concepts: preserving existing housing stock, creating new programs to provide more options for the underserved, empowering residents and communities to deal with housing issues, establishing partnerships to make organizations' efforts more successful, making housing affordable, and ending discrimination in housing. Although church ministries, community groups, the private sector, and other players must work together to find solutions to the housing crisis, federal leadership is essential. Especially with the housing affordability gap growing and the U.S. population aging, the federal government must provide the resources, leadership, and direction for effective housing solutions.

  2. Global similarity and local divergence in human and mouse gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-09-01

    Full Text Available Abstract Background A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species. Results At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction ( Conclusion The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.

  3. Radon in houses

    International Nuclear Information System (INIS)

    Toohey, R.E.; Essling, M.A.; Markun, F.

    1985-01-01

    The purpose of this study is to determine the concentrations of 222 Rn and its short-lived daughter products in the air of single-family houses in the midwestern US. During the past year, more than 200 houses were added to the study, resulting in a total of more than 400 houses. So far, results are available for 270 of these houses, equally divided between the Chicago area and Bloomsburg, Pennsylvania. 6 refs

  4. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats.

    Science.gov (United States)

    Shao, Yanjiao; Wang, Liren; Guo, Nana; Wang, Shengfei; Yang, Lei; Li, Yajing; Wang, Mingsong; Yin, Shuming; Han, Honghui; Zeng, Li; Zhang, Ludi; Hui, Lijian; Ding, Qiurong; Zhang, Jiqin; Geng, Hongquan; Liu, Mingyao; Li, Dali

    2018-05-04

    Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Finding the missing honey bee genes: lessons learned from a genome upgrade.

    Science.gov (United States)

    Elsik, Christine G; Worley, Kim C; Bennett, Anna K; Beye, Martin; Camara, Francisco; Childers, Christopher P; de Graaf, Dirk C; Debyser, Griet; Deng, Jixin; Devreese, Bart; Elhaik, Eran; Evans, Jay D; Foster, Leonard J; Graur, Dan; Guigo, Roderic; Hoff, Katharina Jasmin; Holder, Michael E; Hudson, Matthew E; Hunt, Greg J; Jiang, Huaiyang; Joshi, Vandita; Khetani, Radhika S; Kosarev, Peter; Kovar, Christie L; Ma, Jian; Maleszka, Ryszard; Moritz, Robin F A; Munoz-Torres, Monica C; Murphy, Terence D; Muzny, Donna M; Newsham, Irene F; Reese, Justin T; Robertson, Hugh M; Robinson, Gene E; Rueppell, Olav; Solovyev, Victor; Stanke, Mario; Stolle, Eckart; Tsuruda, Jennifer M; Vaerenbergh, Matthias Van; Waterhouse, Robert M; Weaver, Daniel B; Whitfield, Charles W; Wu, Yuanqing; Zdobnov, Evgeny M; Zhang, Lan; Zhu, Dianhui; Gibbs, Richard A

    2014-01-30

    The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.

  6. Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes.

    Directory of Open Access Journals (Sweden)

    Kris Popendorf

    Full Text Available BACKGROUND: With the number of available genome sequences increasing rapidly, the magnitude of sequence data required for multiple-genome analyses is a challenging problem. When large-scale rearrangements break the collinearity of gene orders among genomes, genome comparison algorithms must first identify sets of short well-conserved sequences present in each genome, termed anchors. Previously, anchor identification among multiple genomes has been achieved using pairwise alignment tools like BLASTZ through progressive alignment tools like TBA, but the computational requirements for sequence comparisons of multiple genomes quickly becomes a limiting factor as the number and scale of genomes grows. METHODOLOGY/PRINCIPAL FINDINGS: Our algorithm, named Murasaki, makes it possible to identify anchors within multiple large sequences on the scale of several hundred megabases in few minutes using a single CPU. Two advanced features of Murasaki are (1 adaptive hash function generation, which enables efficient use of arbitrary mismatch patterns (spaced seeds and therefore the comparison of multiple mammalian genomes in a practical amount of computation time, and (2 parallelizable execution that decreases the required wall-clock and CPU times. Murasaki can perform a sensitive anchoring of eight mammalian genomes (human, chimp, rhesus, orangutan, mouse, rat, dog, and cow in 21 hours CPU time (42 minutes wall time. This is the first single-pass in-core anchoring of multiple mammalian genomes. We evaluated Murasaki by comparing it with the genome alignment programs BLASTZ and TBA. We show that Murasaki can anchor multiple genomes in near linear time, compared to the quadratic time requirements of BLASTZ and TBA, while improving overall accuracy. CONCLUSIONS/SIGNIFICANCE: Murasaki provides an open source platform to take advantage of long patterns, cluster computing, and novel hash algorithms to produce accurate anchors across multiple genomes with

  7. Detection and analysis of ancient segmental duplications in mammalian genomes.

    Science.gov (United States)

    Pu, Lianrong; Lin, Yu; Pevzner, Pavel A

    2018-05-07

    Although segmental duplications (SDs) represent hotbeds for genomic rearrangements and emergence of new genes, there are still no easy-to-use tools for identifying SDs. Moreover, while most previous studies focused on recently emerged SDs, detection of ancient SDs remains an open problem. We developed an SDquest algorithm for SD finding and applied it to analyzing SDs in human, gorilla, and mouse genomes. Our results demonstrate that previous studies missed many SDs in these genomes and show that SDs account for at least 6.05% of the human genome (version hg19), a 17% increase as compared to the previous estimate. Moreover, SDquest classified 6.42% of the latest GRCh38 version of the human genome as SDs, a large increase as compared to previous studies. We thus propose to re-evaluate evolution of SDs based on their accurate representation across multiple genomes. Toward this goal, we analyzed the complex mosaic structure of SDs and decomposed mosaic SDs into elementary SDs, a prerequisite for follow-up evolutionary analysis. We also introduced the concept of the breakpoint graph of mosaic SDs that revealed SD hotspots and suggested that some SDs may have originated from circular extrachromosomal DNA (ecDNA), not unlike ecDNA that contributes to accelerated evolution in cancer. © 2018 Pu et al.; Published by Cold Spring Harbor Laboratory Press.

  8. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  9. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic

  10. Housing preferences of young adults in Indonesia: housing attributes and consequences

    Science.gov (United States)

    Farasa, N.; Kusuma, H. E.

    2018-03-01

    Nowadays, the housing demand of young adults in Indonesia is important issues for the sustainable development of the market. Facing differences of life phases, such as marriage, leaving home after graduation, and new job positioning, young adults become the main segment facing constant housing choice decisions in the housing market. In their particular phase of life, young adults have distinct preferences for housing attributes which bring a great influence on their lives in the future. Data was gathered from a survey questionnaire that was answered by 180 young adults in Indonesia, ranging from age 22-33 years. The findings suggest that the green area and view, location, simplicity, home design, and accessibility are the significant parts as housing attributes for young adults’ housing preferences in Indonesia. The effect of these attributes has many consequences such as security, personalization, mood/ambiance, maintenance, interaction, image, flexibility, environmental, economy, durability, convenience, comfort, and circulation. The biggest group of young adults who prefer comfort as their wanted consequences tend to have high preferences on housing attributes of the green area and view, and simplicity.

  11. Housing of Hobson's Choice

    DEFF Research Database (Denmark)

    Vestergaard, Hedvig

    2010-01-01

    This paper looks at policies implemented to improve troubled housing estates during more than two decades. Based on evaluations of implemented programmes and case studies the paper provides a basis for discussing a number of questions: • Why do we have troubled housing estates? • What...... is the definition of troubled housing estates? • Who lives on troubled housing estates? • Who owns and manages the troubled housing estates? • What have been the reasons behind improvement programmes for troubled housing estates? • What kind of improvement programmes have been implemented and with what kind...... of results? • Have improvement programmes changed the position of the estates on the local housing markets? • What are the changes in policies and results? • What are the perspectives for policy initiatives in the field of troubled housing estates?...

  12. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  13. Mouse nucleolin binds to 4.5S RNAH, a small noncoding RNA

    International Nuclear Information System (INIS)

    Hirose, Yutaka; Harada, Fumio

    2008-01-01

    4.5S RNAH is a rodent-specific small noncoding RNA that exhibits extensive homology to the B1 short interspersed element. Although 4.5S RNAH is known to associate with cellular poly(A)-terminated RNAs and retroviral genomic RNAs, its function remains unclear. In this study, we analyzed 4.5S RNAH-binding proteins in mouse nuclear extracts using gel mobility shift and RNA-protein UV cross-linking assays. We found that at least nine distinct polypeptides (p170, p110, p93, p70, p48, p40, p34, p20, and p16.5) specifically interacted with 4.5S RNAHin vitro. Using anti-La antibody, p48 was identified as mouse La protein. To identify the other 4.5S RNAH-binding proteins, we performed expression cloning from a mouse cDNA library and obtained cDNA clones derived from nucleolin mRNA. We identified p110 as nucleolin using nucleolin-specific antibodies. UV cross-linking analysis using various deletion mutants of nucleolin indicated that the third of four tandem RNA recognition motifs is a major determinant for 4.5S RNAH recognition. Immunoprecipitation of nucleolin from the subcellular fractions of mouse cell extracts revealed that a portion of the endogenous 4.5S RNAH was associated with nucleolin and that this complex was located in both the nucleoplasm and nucleolus

  14. A phylogenomic study of human, dog, and mouse.

    Directory of Open Access Journals (Sweden)

    Gina Cannarozzi

    2007-01-01

    Full Text Available In recent years the phylogenetic relationship of mammalian orders has been addressed in a number of molecular studies. These analyses have frequently yielded inconsistent results with respect to some basal ordinal relationships. For example, the relative placement of primates, rodents, and carnivores has differed in various studies. Here, we attempt to resolve this phylogenetic problem by using data from completely sequenced nuclear genomes to base the analyses on the largest possible amount of data. To minimize the risk of reconstruction artifacts, the trees were reconstructed under different criteria-distance, parsimony, and likelihood. For the distance trees, distance metrics that measure independent phenomena (amino acid replacement, synonymous substitution, and gene reordering were used, as it is highly improbable that all of the trees would be affected the same way by any reconstruction artifact. In contradiction to the currently favored classification, our results based on full-genome analysis of the phylogenetic relationship between human, dog, and mouse yielded overwhelming support for a primate-carnivore clade with the exclusion of rodents.

  15. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.

    Science.gov (United States)

    Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi

    2014-01-01

    With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).

  16. Evolutionary Genomics of Life in (and from) the Sea

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Dehal, Paramvir; Fuerstenberg, Susan I.

    2006-01-09

    High throughput genome sequencing centers that were originally built for the Human Genome Project (Lander et al., 2001; Venter et al., 2001) have now become an engine for comparative genomics. The six largest centers alone are now producing over 150 billion nucleotides per year, more than 50 times the amount of DNA in the human genome, and nearly all of this is directed at projects that promise great insights into the pattern and processes of evolution. Unfortunately, this data is being produced at a pace far exceeding the capacity of the scientific community to provide insightful analysis, and few scientists with training and experience in evolutionary biology have played prominent roles to date. One of the consequences is that poor quality analyses are typical; for example, orthology among genes is generally determined by simple measures of sequence similarity, when this has been discredited by molecular evolutionary biologists decades ago. Here we discuss the how genomes are chosen for sequencing and how the scientific community can have input. We describe the PhIGs database and web tools (Dehal and Boore 2005a; http://PhIGs.org), which provide phylogenetic analysis of all gene families for all completely sequenced genomes and the associated 'Synteny Viewer', which allows comparisons of the relative positions of orthologous genes. This is the best tool available for inferring gene function across multiple genomes. We also describe how we have used the PhIGs methods with the whole genome sequences of a tunicate, fish, mouse, and human to conclusively demonstrate that two rounds of whole genome duplication occurred at the base of vertebrates (Dehal and Boore 2005b). This evidence is found in the large scale structure of the positions of paralogous genes that arose from duplications inferred by evolutionary analysis to have occurred at the base of vertebrates.

  17. No Evidence that Infection Alters Global Recombination Rate in House Mice.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Recombination rate is a complex trait, with genetic and environmental factors shaping observed patterns of variation. Although recent studies have begun to unravel the genetic basis of recombination rate differences between organisms, less attention has focused on the environmental determinants of crossover rates. Here, we test the effect of one ubiquitous environmental pressure-bacterial infection-on global recombination frequency in mammals. We applied MLH1 mapping to assay global crossover rates in male mice infected with the pathogenic bacterium Borrelia burgdorferi, the causative agent of Lyme Disease, and uninfected control animals. Despite ample statistical power to identify biologically relevant differences between infected and uninfected animals, we find no evidence for a global recombination rate response to bacterial infection. Moreover, broad-scale patterns of crossover distribution, including the number of achiasmate bivalents, are not affected by infection status. Although pathogen exposure can plastically increase recombination in some species, our findings suggest that recombination rates in house mice may be resilient to at least some forms of infection stress. This negative result motivates future experiments with alternative house mouse pathogens to evaluate the generality of this conclusion.

  18. Reptile genomes open the frontier for comparative analysis of amniote development and regeneration.

    Science.gov (United States)

    Tollis, Marc; Hutchins, Elizabeth D; Kusumi, Kenro

    2014-01-01

    Developmental genetic studies of vertebrates have focused primarily on zebrafish, frog and mouse models, which have clear application to medicine and well-developed genomic resources. In contrast, reptiles represent the most diverse amniote group, but have only recently begun to gather the attention of genome sequencing efforts. Extant reptilian groups last shared a common ancestor ?280 million years ago and include lepidosaurs, turtles and crocodilians. This phylogenetic diversity is reflected in great morphological and behavioral diversity capturing the attention of biologists interested in mechanisms regulating developmental processes such as somitogenesis and spinal patterning, regeneration, the evolution of "snake-like" morphology, the formation of the unique turtle shell, and the convergent evolution of the four-chambered heart shared by mammals and archosaurs. The complete genome of the first non-avian reptile, the green anole lizard, was published in 2011 and has provided insights into the origin and evolution of amniotes. Since then, the genomes of multiple snakes, turtles, and crocodilians have also been completed. Here we will review the current diversity of available reptile genomes, with an emphasis on their evolutionary relationships, and will highlight how these genomes have and will continue to facilitate research in developmental and regenerative biology.

  19. GenExp: an interactive web-based genomic DAS client with client-side data rendering.

    Directory of Open Access Journals (Sweden)

    Bernat Gel Moreno

    Full Text Available BACKGROUND: The Distributed Annotation System (DAS offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. RESULTS: Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. CONCLUSIONS: GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp.

  20. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  1. 20 CFR 654.407 - Housing.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Housing. 654.407 Section 654.407 Employees... EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.407 Housing. (a) Housing... occupants against the elements. (b) Housing shall have flooring constructed of rigid materials, smooth...

  2. The role of outsourcing in the project house - mining house relationship

    OpenAIRE

    2008-01-01

    M.Phil. The relationship between the Mining House / Owner and Project House can be spectacularly successful for both partners (and has resulted in the emergence of a few successful new project houses and plant operation companies all over the world), but can also be disastrous for both parties, if managed incorrectly. The main requirement for a successful relationship between a Mining- and Project House is that there must be something in it for both parties. This is not only measured in cu...

  3. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  4. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  5. Self-Organization of Genome Expression from Embryo to Terminal Cell Fate: Single-Cell Statistical Mechanics of Biological Regulation

    Directory of Open Access Journals (Sweden)

    Alessandro Giuliani

    2017-12-01

    Full Text Available A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC. This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche and sandpile-type critical behavior. Genome avalanche patterns—competition between order (scaling and disorder (divergence reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality. This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.

  6. Potential implementation of light steel housing system for affordable housing project in Malaysia

    Science.gov (United States)

    Saikah, M.; Kasim, N.; Zainal, R.; Sarpin, N.; Rahim, M. H. I. A.

    2017-11-01

    An unparalleled number between housing demand and housing supply in Malaysia has increased the housing prices, which gives consequences to the homeownership issue. One way to reduce the housing price is by faster increase the number of affordable housing, but the construction sector faces difficulties in delivering as expected number by using conventional and current industrialised building system (IBS) due to the issue related high project cost, time and labour. Therefore, light steel housing (LSH) system as one of another type of IBS method can be utilised in housing construction project. This method can replace the conventional method that was currently used in the construction of affordable housing project. The objectives of this study are to identify the potential of LSH and influencing factors of system implementation. This is an initial stage to review the previous study related to LSH implementation in developed and developing countries. The previous study will be analysed regarding advantages and disadvantages of LSH and factors that influence the implementation of the system. Based on the literature review it is expected to define the potential and influencing factors of the LSH system. The findings are meaningful in framing and enhance construction housing method of an affordable housing project in Malaysia.

  7. Assisted Housing - Housing Choice Vouchers by Tract - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    Department of Housing and Urban Development — The U.S. Department of Housing and Urban Development’s (HUD) Housing Choice Voucher Program (HCVP) is the federal government's major program for assisting very...

  8. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    Science.gov (United States)

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  9. Finding the missing honey bee genes: Lessons learned from a genome upgrade

    KAUST Repository

    Elsik, Christine G; Worley, Kim C; Bennett, Anna K; Beye, Martin; Camara, Francisco; Childers, Christopher P; de Graaf, Dirk C; Debyser, Griet; Deng, Jixin; Devreese, Bart; Elhaik, Eran; Evans, Jay D; Foster, Leonard J; Graur, Dan; Guigo, Roderic; Hoff, Katharina Jasmin; Holder, Michael E; Hudson, Matthew E; Hunt, Greg J; Jiang, Huaiyang; Joshi, Vandita; Khetani, Radhika S; Kosarev, Peter; Kovar, Christie L; Ma, Jian; Maleszka, Ryszard; Moritz, Robin F A; Munoz-Torres, Monica C; Murphy, Terence D; Muzny, Donna M; Newsham, Irene F; Reese, Justin T; Robertson, Hugh M; Robinson, Gene E; Rueppell, Olav; Solovyev, Victor; Stanke, Mario; Stolle, Eckart; Tsuruda, Jennifer M; Vaerenbergh, Matthias Van; Waterhouse, Robert M; Weaver, Daniel B; Whitfield, Charles W; Wu, Yuanqing; Zdobnov, Evgeny M; Zhang, Lan; Zhu, Dianhui; Gibbs, Richard A; Patil, S.; Gubbala, S.; Aqrawi, P.; Arias, F.; Bess, C.; Blankenburg, K. B.; Brocchini, M.; Buhay, C.; Challis, D.; Chang, K.; Chen, D.; Coleman, P.; Drummond, J.; English, A.; Evani, U.; Francisco, L.; Fu, Q.; Goodspeed, R.; Haessly, T. H.; Hale, W.; Han, H.; Hu, Y.; Jackson, L.; Jakkamsetti, A.; Jayaseelan, J. C.; Kakkar, N.; Kalra, D.; Kandadi, H.; Lee, S.; Li, H.; Liu, Y.; Macmil, S.; Mandapat, C. M.; Mata, R.; Mathew, T.; Matskevitch, T.; Munidasa, M.; Nagaswamy, U.; Najjar, R.; Nguyen, N.; Niu, J.; Opheim, D.; Palculict, T.; Paul, S.; Pellon, M.; Perales, L.; Pham, C.; Pham, P.

    2014-01-01

    Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. 2014 Elsik et al.; licensee BioMed Central Ltd.

  10. Finding the missing honey bee genes: Lessons learned from a genome upgrade

    KAUST Repository

    Elsik, Christine G

    2014-01-30

    Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. 2014 Elsik et al.; licensee BioMed Central Ltd.

  11. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development

    Directory of Open Access Journals (Sweden)

    Yawei Gao

    2017-12-01

    Full Text Available Pre-implantation embryo development is an intricate and precisely regulated process orchestrated by maternally inherited proteins and newly synthesized proteins following zygotic genome activation. Although genomic and transcriptomic studies have enriched our understanding of the genetic programs underlying this process, the protein expression landscape remains unexplored. Using quantitative mass spectrometry, we identified nearly 5,000 proteins from 8,000 mouse embryos of each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst. We found that protein expression in zygotes, morulas, and blastocysts is distinct from 2- to 8-cell embryos. Analysis of protein phosphorylation identified critical kinases and signal transduction pathways. We highlight key factors and their important roles in embryo development. Combined analysis of transcriptomic and proteomic data reveals coordinated control of RNA degradation, transcription, and translation and identifies previously undefined exon-junction-derived peptides. Our study provides an invaluable resource for further mechanistic studies and suggests core factors regulating pre-implantation embryo development.

  12. Spatial Analysis on Future Housing Markets: Economic Development and Housing Implications

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2014-01-01

    Full Text Available A coupled projection method combining formal modelling and other statistical techniques was developed to delineate the relationship between economic and social drivers for net new housing allocations. Using the example of employment growth in Tyne and Wear, UK, until 2016, the empirical analysis yields housing projections at the macro- and microspatial levels (e.g., region to subregion to elected ward levels. The results have important implications for the strategic planning of locations for housing and employment, demonstrating both intuitively and quantitatively how local economic developments affect housing demand.

  13. Social Housing Provision in Copenhagen

    DEFF Research Database (Denmark)

    Tsenkova, Sasha; Vestergaard, Hedvig

    -profit housing providers, and a wide range of fiscal and regulatory instruments enhancing the competitive performance of the social housing sector. The research analyses recent housing policy measures and their impact on new social housing provision in Copenhagen. The emphasis is on the mix of housing policy......The paper provides an overview of trends and processes of change affecting new social housing provision in Denmark with a focus on Copenhagen. The local responses are reviewed within the context of changes to the unitary national housing system that functions with a robust range of private and non...... instruments implemented in three major policy domains-fiscal, financial and regulatory-to promote the production of new social housing. The system of new social housing provision is examined as a dynamic process of interaction between public and private institutions defining housing policy outcomes...

  14. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  15. Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning.

    Science.gov (United States)

    Shetty, Ronak; Joshi, Divyesh; Jain, Mamta; Vasudevan, Madavan; Paul, Jasper Chrysolite; Bhat, Ganesh; Banerjee, Poulomi; Abe, Takaya; Kiyonari, Hiroshi; VijayRaghavan, K; Inamdar, Maneesha S

    2018-04-04

    Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein that promotes directional cell migration and angiogenesis in vitro and is implicated in human carcinomas and coronary artery disease. To study the role of Rudhira during development in vivo, we generated the first knockout mouse for rudhira and show that Rudhira is essential for mouse development. Rudhira null embryos die at embryonic day (E) 9.5 accompanied by severe vascular patterning defects in embryonic and extra-embryonic tissues. To identify the molecular processes downstream of rudhira, we analyzed the transcriptome of intact knockout yolk sacs. Genome-wide transcriptome analysis showed that Rudhira functions in angiogenesis and its related processes such as cell adhesion, extracellular matrix organization, peptidase activity and TGFβ signaling. Since Rudhira is also expressed in endothelial cells (ECs), we further generated Tie2Cre-mediated endothelial knockout (CKO) of rudhira. CKO embryos survive to E11.5 and similar to the global knockout, display gross vascular patterning defects, showing that endothelial Rudhira is vital for development. Further, Rudhira knockdown ECs in culture fail to sprout in a spheroid-sprouting assay, strongly supporting its role in vascular patterning. Our study identifies an essential role for Rudhira in blood vessel remodeling and provides a mouse model for cardiovascular development.

  16. Radon in Syrian houses

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Alsawaf, A.

    1996-01-01

    A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991-1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be 45 Bq m -3 with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling. (author)

  17. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  18. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  19. Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract.

    Science.gov (United States)

    Sturdevant, Gail L; Caldwell, Harlan D

    2014-10-01

    Chlamydia muridarum and Chlamydia trachomatis, mouse and human strains, respectively, have been used to study immunity in a murine model of female genital tract infection. Despite evidence that unique genes of these otherwise genomically similar strains could play a role in innate immune evasion in their respective mouse and human hosts, there have been no animal model findings to directly support this conclusion. Here, we infected C57BL/6 and adaptive immune-deficient Rag1(-/-) female mice with these strains and evaluated their ability to spontaneously resolve genital infection. Predictably, C57BL/6 mice spontaneously cleared infection caused by both chlamydial strains. In contrast, Rag1(-/-) mice which lack mature T and B cell immunity but maintain functional innate immune effectors were incapable of resolving C. muridarum infection but spontaneously cleared C. trachomatis infection. This distinct dichotomy in adaptive and innate immune-mediated clearance between mouse and human strains has important cautionary implications for the study of natural immunity and vaccine development in the mouse model. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Do housing regimes matter? : Assessing the concept of housing regimes through configurations of housing outcomes

    NARCIS (Netherlands)

    Dewilde, C.L.

    2017-01-01

    Based on a conceptualisation of de-commodification as the right to decent and affordable housing, we assessed to what extent this right is realised for low-to-moderate-income owners and renters across Western European housing regimes in 1995 and 2012. If differences in the social production of

  1. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Science.gov (United States)

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  2. 38 CFR 18.445 - Housing.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Housing. 18.445 Section....445 Housing. (a) Housing provided by a recipient. A recipient that provides housing to its nonhandicapped students shall provide comparable, convenient, and accessible housing to qualified handicapped...

  3. Conservation of Repeats at the Mammalian KCNQ1OT1-CDKN1C Region Suggests a Role in Genomic Imprinting

    Directory of Open Access Journals (Sweden)

    Marcos De Donato

    2017-06-01

    Full Text Available KCNQ1OT1 is located in the region with the highest number of genes showing genomic imprinting, but the mechanisms controlling the genes under its influence have not been fully elucidated. Therefore, we conducted a comparative analysis of the KCNQ1/KCNQ1OT1-CDKN1C region to study its conservation across the best assembled eutherian mammalian genomes sequenced to date and analyzed potential elements that may be implicated in the control of genomic imprinting in this region. The genomic features in these regions from human, mouse, cattle, and dog show a higher number of genes and CpG islands (detected using cpgplot from EMBOSS, but lower number of repetitive elements (including short interspersed nuclear elements and long interspersed nuclear elements, compared with their whole chromosomes (detected by RepeatMasker. The KCNQ1OT1-CDKN1C region contains the highest number of conserved noncoding sequences (CNS among mammals, where we found 16 regions containing about 38 different highly conserved repetitive elements (using mVista, such as LINE1 elements: L1M4, L1MB7, HAL1, L1M4a, L1Med, and an LTR element: MLT1H. From these elements, we found 74 CNS showing high sequence identity (>70% between human, cattle, and mouse, from which we identified 13 motifs (using Multiple Em for Motif Elicitation/Motif Alignment and Search Tool with a significant probability of occurrence, 3 of which were the most frequent and were used to find transcription factor–binding sites. We detected several transcription factors (using JASPAR suite from the families SOX, FOX, and GATA. A phylogenetic analysis of these CNS from human, marmoset, mouse, rat, cattle, dog, horse, and elephant shows branches with high levels of support and very similar phylogenetic relationships among these groups, confirming previous reports. Our results suggest that functional DNA elements identified by comparative genomics in a region densely populated with imprinted mammalian genes may be

  4. Rabbit models for biomedical research revisited via genome editing approaches

    Science.gov (United States)

    HONDA, Arata; OGURA, Atsuo

    2017-01-01

    Although the laboratory rabbit has long contributed to many paradigmatic studies in biology and medicine, it is often considered to be a “classical animal model” because in the last 30 years, the laboratory mouse has been more often used, thanks to the availability of embryonic stem cells that have allowed the generation of gene knockout (KO) animals. However, recent genome-editing strategies have changed this unrivaled condition; so far, more than 10 mammalian species have been added to the list of KO animals. Among them, the rabbit has distinct advantages for application of genome-editing systems, such as easy application of superovulation, consistency with fertile natural mating, well-optimized embryo manipulation techniques, and the short gestation period. The rabbit has now returned to the stage of advanced biomedical research. PMID:28579598

  5. Eimeria genomics: Where are we now and where are we going?

    Science.gov (United States)

    Blake, Damer P

    2015-08-15

    The evolution of sequencing technologies, from Sanger to next generation (NGS) and now the emerging third generation, has prompted a radical frameshift moving genomics from the specialist to the mainstream. For parasitology, genomics has moved fastest for the protozoa with sequence assemblies becoming available for multiple genera including Babesia, Cryptosporidium, Eimeria, Giardia, Leishmania, Neospora, Plasmodium, Theileria, Toxoplasma and Trypanosoma. Progress has commonly been slower for parasites of animals which lack zoonotic potential, but the deficit is now being redressed with impact likely in the areas of drug and vaccine development, molecular diagnostics and population biology. Genomics studies with the apicomplexan Eimeria species clearly illustrate the approaches and opportunities available. Specifically, more than ten years after initiation of a genome sequencing project a sequence assembly was published for Eimeria tenella in 2014, complemented by assemblies for all other Eimeria species which infect the chicken and Eimeria falciformis, a parasite of the mouse. Public access to these and other coccidian genome assemblies through resources such as GeneDB and ToxoDB now promotes comparative analysis, encouraging better use of shared resources and enhancing opportunities for development of novel diagnostic and control strategies. In the short term genomics resources support development of targeted and genome-wide genetic markers such as single nucleotide polymorphisms (SNPs), with whole genome re-sequencing becoming viable in the near future. Experimental power will develop rapidly as additional species, strains and isolates are sampled with particular emphasis on population structure and allelic diversity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Labour Mobility and Housing: The Impact of Housing Tenure and Housing Affordability on Labour Migration in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lux, Martin; Sunega, Petr

    2012-01-01

    Roč. 49, č. 3 (2012), s. 489-504 ISSN 0042-0980 R&D Projects: GA ČR GA403/09/1915 Institutional research plan: CEZ:AV0Z70280505 Keywords : housing * housing policy * housing tenure Subject RIV: AO - Sociology, Demography Impact factor: 1.493, year: 2012 http://usj.sagepub.com/content/early/2011/05/20/0042098011405693

  7. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R., E-mail: tzachare@msu.edu

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  8. Evaluation of different sources of DNA for use in genome wide studies and forensic application.

    Science.gov (United States)

    Al Safar, Habiba S; Abidi, Fatima H; Khazanehdari, Kamal A; Dadour, Ian R; Tay, Guan K

    2011-02-01

    In the field of epidemiology, Genome-Wide Association Studies (GWAS) are commonly used to identify genetic predispositions of many human diseases. Large repositories housing biological specimens for clinical and genetic investigations have been established to store material and data for these studies. The logistics of specimen collection and sample storage can be onerous, and new strategies have to be explored. This study examines three different DNA sources (namely, degraded genomic DNA, amplified degraded genomic DNA and amplified extracted DNA from FTA card) for GWAS using the Illumina platform. No significant difference in call rate was detected between amplified degraded genomic DNA extracted from whole blood and amplified DNA retrieved from FTA™ cards. However, using unamplified-degraded genomic DNA reduced the call rate to a mean of 42.6% compared to amplified DNA extracted from FTA card (mean of 96.6%). This study establishes the utility of FTA™ cards as a viable storage matrix for cells from which DNA can be extracted to perform GWAS analysis.

  9. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic

  10. 34 CFR 104.45 - Housing.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Housing. 104.45 Section 104.45 Education Regulations of... Postsecondary Education § 104.45 Housing. (a) Housing provided by the recipient. A recipient that provides housing to its nonhandicapped students shall provide comparable, convenient, and accessible housing to...

  11. 45 CFR 605.45 - Housing.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Housing. 605.45 Section 605.45 Public Welfare... § 605.45 Housing. (a) Housing provided by the recipient. A recipient that provides housing to its nonhandicapped students shall provide comparable, convenient, and accessible housing to handicapped students at...

  12. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  13. Situation based housing

    DEFF Research Database (Denmark)

    Duelund Mortensen, Peder; Welling, Helen; Wiell Nordberg, Lene

    2007-01-01

    of the average family's lifestyle. These dwellings were ground-breaking when they were built, but today are clearly a product of their time. The reaction to functionalism and the postwar mass production gave rise to flexible dwelling with countless possibilities for room division. The housing of this period has...... characteristics which in the long run have proven to be unfortunate both in terms in terms of durability and architectural quality. Today there is a focus on the development of more open and functionally non-determined housing. A number of new housing schemes in and around Copenhagen reveal a variety...... of approaches to these goals. This working paper reviews not only a selection of new housing types, but also dwellings from the past, which each contain an aspect of changeability. Our study is based on information from users in the selected housing schemes, gathered from questionnaires, information about...

  14. How healthy and sustainable is the Dutch housing mix? Measuring and comparing the theoretical housing market balance of Dutch regional housing markets

    Directory of Open Access Journals (Sweden)

    Leonie B. Janssen-Jansen

    2015-01-01

    Full Text Available Housing and its distribution over groups of households dominates debates on urban socio-spatial justice. Amsterdam even received the label ‘Just City’ as the large stock of social housing in the core of the city is said to increase societal equity. Within the Netherlands, however, the Greater Amsterdam housing market is perceived to be the most dysfunctional. As the discussion is fed by highly political and ideological perspectives, it is difficult to assess at face value how balanced the housing mix of a housing market is and to what extent it meets the community’s needs. Consequently, it is difficult to inform politicians about strategies that contribute to a healthy and sustainable housing mix and address the lack of affordable housing which is high on urban policy agendas worldwide. In an attempt to go beyond ideological and political discussions, the aim of this interdisciplinary paper is to develop a metric to measure and compare the theoretical balance of housing markets across regions and across groups of households based on income. The metric will be applied to the case of the Netherlands. The findings of the theoretical model show that large-scale provisions for low-income households may not always result in an improved housing market balance.

  15. 75 FR 5706 - Federal Housing Administration: Insurance for Manufactured Housing: Reopening of Public Comment...

    Science.gov (United States)

    2010-02-04

    ... 2502-AI45 Federal Housing Administration: Insurance for Manufactured Housing: Reopening of Public.... ACTION: Proposed rule; reopening of public comment period. SUMMARY: On September 15, 2008, HUD published a proposed rule entitled ``Federal Housing Administration: Insurance for Manufactured Housing.'' The...

  16. 24 CFR 3.405 - Housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Housing. 3.405 Section 3.405 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development... Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 3.405 Housing. (a) Generally...

  17. The architects house

    DEFF Research Database (Denmark)

    Welling, Helen

    2007-01-01

    The architects house is an article on Edward Heiberg's own house built in 1924. Edward Heiberg was a strong advocate of functionalism, and of the notion that hitherto individualistic and emotional architecture should be replaced by an objective function-based architecture with dwellings...... for everyone. In 1924 he designed a house for himself and his family: one of the first examples of functionalism in Denmark....

  18. TARP Monthly Housing Scorecard

    Data.gov (United States)

    Department of the Treasury — Treasury and the U.S. Department of Housing and Urban Development (HUD) jointly produce a Monthly Housing Scorecard on the health of the nation’s housing market. The...

  19. Assisted Housing - Public Housing Buildings - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    Department of Housing and Urban Development — The approximate physical location of each individual Public Housing Building. If the building has more than one entrance or street address, the address of the...

  20. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  1. Inadequate housing in Ghana

    Directory of Open Access Journals (Sweden)

    Franklin Obeng-Odoom

    2011-01-01

    Full Text Available Two themes are evident in housing research in Ghana. One involves the study of how to increase the number of dwellings to correct the overall housing deficit, and the other focuses on how to improve housing for slum dwellers. Between these two extremes, there is relatively little research on why the existing buildings are poorly maintained. This paper is based on a review of existing studies on inadequate housing. It synthesises the evidence on the possible reasons for this neglect, makes a case for better maintenance and analyses possible ways of reversing the problem of inadequate housing.

  2. Student Housing a Resilient Housing Rental Market: Case of Federal Polytechnic Neighbourhood Bauchi, Nigeria

    Directory of Open Access Journals (Sweden)

    Zubairu Abubakar Ghani

    2018-03-01

    Full Text Available In the last three decades globally higher institutions (HIs have been experiencing an unprecedented upsurge in student population and student enrolment in His generally outstrip the HIs student housing. In many countries of the world like Nigeria, HIs are obviously incapacitated in accommodating the growing student population which compelled numerous students to overflow into their HIs’ neighbourhood seeking for alternative housing accommodation in the private housing rental market. Indeed the scenario of HIs student's housing shortfalls and increasing students housing demand evolved the interest of many people in a student housing rental market. This is because it has been uncovered that business in student housing rental is lucrative and guaranteeing business that ensured profit for a long term. This paper, therefore, explores the nature and landscape of student housing rental in Nigeria where the business is immature then drawn the conclusion.

  3. Nencki Genomics Database--Ensembl funcgen enhanced with intersections, user data and genome-wide TFBS motifs.

    Science.gov (United States)

    Krystkowiak, Izabella; Lenart, Jakub; Debski, Konrad; Kuterba, Piotr; Petas, Michal; Kaminska, Bozena; Dabrowski, Michal

    2013-01-01

    We present the Nencki Genomics Database, which extends the functionality of Ensembl Regulatory Build (funcgen) for the three species: human, mouse and rat. The key enhancements over Ensembl funcgen include the following: (i) a user can add private data, analyze them alongside the public data and manage access rights; (ii) inside the database, we provide efficient procedures for computing intersections between regulatory features and for mapping them to the genes. To Ensembl funcgen-derived data, which include data from ENCODE, we add information on conserved non-coding (putative regulatory) sequences, and on genome-wide occurrence of transcription factor binding site motifs from the current versions of two major motif libraries, namely, Jaspar and Transfac. The intersections and mapping to the genes are pre-computed for the public data, and the result of any procedure run on the data added by the users is stored back into the database, thus incrementally increasing the body of pre-computed data. As the Ensembl funcgen schema for the rat is currently not populated, our database is the first database of regulatory features for this frequently used laboratory animal. The database is accessible without registration using the mysql client: mysql -h database.nencki-genomics.org -u public. Registration is required only to add or access private data. A WSDL webservice provides access to the database from any SOAP client, including the Taverna Workbench with a graphical user interface.

  4. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

    KAUST Repository

    Mock, Thomas

    2017-01-17

    The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.

  5. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus

    KAUST Repository

    Mock, Thomas; Otillar, Robert P.; Strauss, Jan; McMullan, Mark; Paajanen, Pirita; Schmutz, Jeremy; Salamov, Asaf; Sanges, Remo; Toseland, Andrew; Ward, Ben J.; Allen, Andrew E.; Dupont, Christopher L.; Frickenhaus, Stephan; Maumus, Florian; Veluchamy, Alaguraj; Wu, Taoyang; Barry, Kerrie W.; Falciatore, Angela; Ferrante, Maria I.; Fortunato, Antonio E.; Glö ckner, Gernot; Gruber, Ansgar; Hipkin, Rachel; Janech, Michael G.; Kroth, Peter G.; Leese, Florian; Lindquist, Erika A.; Lyon, Barbara R.; Martin, Joel; Mayer, Christoph; Parker, Micaela; Quesneville, Hadi; Raymond, James A.; Uhlig, Christiane; Valas, Ruben E.; Valentin, Klaus U.; Worden, Alexandra Z.; Armbrust, E. Virginia; Clark, Matthew D.; Bowler, Chris; Green, Beverley R.; Moulton, Vincent; Oosterhout, Cock van; Grigoriev, Igor V.

    2017-01-01

    The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.

  6. Assisted Housing - Multifamily Properties - Assisted

    Data.gov (United States)

    Department of Housing and Urban Development — HUD's Multifamily Housing property portfolio consist primarily of rental housing properties with five or more dwelling units such as apartments or town houses, but...

  7. 24 CFR 1715.27 - Fair housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fair housing. 1715.27 Section 1715.27 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN...

  8. Friendly vertical housing: case of walk-up flat housing development in Yogyakarta

    Science.gov (United States)

    Fosterharoldas Swasto, Deva

    2018-03-01

    In Yogyakarta Province, the local government have developed walk-up flats housing for more than ten years since the mid of the 2000s. Yogyakarta City and Sleman Regency was pioneering the construction with some blocks of flats in several locations. However, after this period, there is limited evaluation about the effectiveness of the occupancy. One of the issues is related to the sustainable housing development. Concerning this situation, it is proposed to examine how the development of walk-up flats housing in Yogyakarta City and Sleman Regency can be evaluated based on specific housing indicator, as a part of sustainable housing development concept. This paper would like to explore the phenomenon on how ‘friendly’ the flats is. The researcher will qualitatively asses variables from the walk-up flat cases in Yogyakarta City and Sleman Regency. The results suggested that the physical quality of the vertical housing situation could be enhanced to meet residents’ satisfaction.

  9. Mouse allergen exposure and immunologic responses: IgE-mediated mouse sensitization and mouse specific IgG and IgG4 levels

    NARCIS (Netherlands)

    Matsui, Elizabeth C.; Krop, Esmeralda J. M.; Diette, Gregory B.; Aalberse, Rob C.; Smith, Abigail L.; Eggleston, Peyton A.

    2004-01-01

    Although there is evidence that contact with mice is associated with IgE-mediated mouse sensitization and mouse specific antibody responses, the exposure-response relationships remain unclear. To determine whether IgE-mediated mouse sensitization and mouse specific IgG (mIgG) and mIgG4 levels

  10. American Housing Survey (AHS)

    Data.gov (United States)

    Department of Housing and Urban Development — The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics...

  11. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    Directory of Open Access Journals (Sweden)

    Thomas Höfner

    2015-03-01

    Full Text Available Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin.

  12. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  13. Rabbit models for biomedical research revisited via genome editing approaches

    OpenAIRE

    HONDA, Arata; OGURA, Atsuo

    2017-01-01

    Although the laboratory rabbit has long contributed to many paradigmatic studies in biology and medicine, it is often considered to be a “classical animal model” because in the last 30 years, the laboratory mouse has been more often used, thanks to the availability of embryonic stem cells that have allowed the generation of gene knockout (KO) animals. However, recent genome-editing strategies have changed this unrivaled condition; so far, more than 10 mammalian species have been added to the ...

  14. United States housing, 2012

    Science.gov (United States)

    Delton Alderman

    2013-01-01

    Provides current and historical information on housing market in the United States. Information includes trends for housing permits and starts, housing completions for single and multifamily units, and sales and construction. This report will be updated annually.

  15. "House Arrest" or "Developmental Arrest"? A Study of Youth Under House Arrest.

    Science.gov (United States)

    Chamiel, Elad; Walsh, Sophie D

    2018-06-01

    Studies have examined the potential benefits and risks of alternative forms of detention, such as house arrest, for adults but, despite its growing use, little research has examined the implications of house arrest for juveniles. The current research examined the experience of 14 adolescents under house arrest. Six main themes were identified in the narratives of the participants: the experience of detention, daily schedule and utilization of time, emotions and self-reflection, relationships with peers, relation to parents and supervisor(s), and contact with professionals. Findings emphasized the potential developmental dangers of house arrest at the critical stage of adolescence. Yet, analysis also showed that the period of house arrest has the potential to be a period of positive changes, and can be used for successful rehabilitation.

  16. Assisted Housing - Low Income Housing Tax Credit Properties - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    Department of Housing and Urban Development — The Low-Income Housing Tax Credit (LIHTC) is the primary Federal program for creating affordable housing in the United States. The LIHTC database, created by HUD and...

  17. A Painted House In Ankara: Dedebayrak House

    Directory of Open Access Journals (Sweden)

    Muzaffer Karaaslan

    2016-06-01

    Full Text Available The conservative family lifestyle in the Ottoman State affected the ways that houses were planned and decorated. Different decorative programs emerged with major differences in each period. New techniques and styles began to be seen in the 18th century thanks to the influence of the West. This article will focus on the decoration of Dedebayrak House in Ankara. Decoration in the architecture found within the boundaries of Ankara consist mostly of geometrical or floral decorations and various inscriptions. The Dedebayrak House not only has these kind of decorations, but also it has these decorations in its architectural descriptions, so it makes this house the only one to have survived in Ankara. Moreover, this building is especially important as the décor included work belonging to Nakkaş Mustafa. However, these decorative features do not remain today. The situation in Turkey is such that architecture is not conserved, which leads to many historically important buildings vanishing. Neither local authorities, nor the owner of these buildings look after these buildings properly, leading their specific historical features to be lost. This situation both damages the urban fabric and harms the historical heritage of the city. Therefore, decorative features in the building will be analysed both on their own and compared to other buildings in Ankara in order to create an overall picture.

  18. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    Energy Technology Data Exchange (ETDEWEB)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  19. Is Housing a Health Insult?

    Science.gov (United States)

    Baker, Emma; Beer, Andrew; Lester, Laurence; Pevalin, David; Whitehead, Christine; Bentley, Rebecca

    2017-05-26

    In seeking to understand the relationship between housing and health, research attention is often focussed on separate components of people's whole housing 'bundles'. We propose in this paper that such conceptual and methodological abstraction of elements of the housing and health relationship limits our ability to understand the scale of the accumulated effect of housing on health and thereby contributes to the under-recognition of adequate housing as a social policy tool and powerful health intervention. In this paper, we propose and describe an index to capture the means by which housing bundles influence health. We conceptualise the index as reflecting accumulated housing 'insults to health'-an Index of Housing Insults (IHI). We apply the index to a sample of 1000 low-income households in Australia. The analysis shows a graded association between housing insults and health on all outcome measures. Further, after controlling for possible confounders, the IHI is shown to provide additional predictive power to the explanation of levels of mental health, general health and clinical depression beyond more traditional proxy measures. Overall, this paper reinforces the need to look not just at separate housing components but to embrace a broader understanding of the relationship between housing and health.

  20. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC Lineages

    Directory of Open Access Journals (Sweden)

    Sabiha Shaik

    2017-10-01

    Full Text Available Escherichia coli sequence type 131 (ST131, a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12, ST405 (n = 10, and ST648 (n = 18, and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.

  1. Adventure of Architecture Example of Housing and Housing Areas

    Directory of Open Access Journals (Sweden)

    Ali Asasoğlu

    2013-08-01

    Full Text Available Housing and the concept of space associated with this requirement are among the initial attitudes towards the human reign over the nature. The dawn of the structured environment found life with this approach within the nature. Both, housing and the housing design process overlap with the historical development of modern man, and is covered within the concept of architecture today. The contribution made by culture within this period is yet another undeniable fact. While the interaction between architecture and culture are moving forward thereby leaving traces in every era throughout the history, the culture of housing and housing design exhibits a parallel attitude which is a subsidiary, yet a highly title with a close human relationship. Culture and architecture are two closely interacting aspects which are drawing the borders of each other from time to time, hinting at quality and quantity, and evaluating such. Quite naturally, the structure which is in a deep relationship with mankind is in an exchange with all physical, social and economic qualities of the human. These qualities are fundamental determinants of the concept of culture as a human trait. The process of architecture which is usually defined as a sequence of eras that involve social movements, impulses and trends, sometimes kept moving ahead in the pursuit of individual leadership and styles. The concerns regarding the solution of space problems, setting up /designing venues and arranging the environment in line with the requirements brought up increasingly complex issues and stacks of solutions which follow such problems. It is this dynamic structure which forms the basis of the architectural problem to date. Starting with the housing and residential concepts, this study brings a critical view on the application samples and methods of the relationship between architecture and culture in terms of our country in particular while putting emphasis on the architectural venture of the

  2. Performance analysis on natural energy autonomous house, HARBEMAN house; Shizen energy jiritsu house (HARBEMAN house) no simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, T; Saito, T [Tohoku University, Sendai (Japan)

    1997-11-25

    Outlined herein are a procedure developed to simulate performance of an energy-autonomous (independent) solar house referred to as HARBEMAN HOUSE (HH) built in 1996 in City of Sendai, comparison between the simulated and observed results, and characteristics of the solar house. The house is equipped with a solar collector and sky radiator, both installed on the roof, the former facing south to collect solar energy and generate hot water whereas the latter facing north to radiate heat and generate cool water. Both are connected to an underground heat-insulated tank having a capacity of 31m{sup 3}, which stores hot or cool water to keep their conditions for extended periods. The solar system operates in heat- or cool-storage mode. In the heat-storage mode, quantity of heat stored increases, although at a slow rate, as tank capacity increases. In the cool-storage mode, on the other hand, quantity of cool stored increases in proportion to tank capacity. This is because solar energy is collected throughout the year whereas cooling by radiation is concentrated in early spring. Loss rate of heat stored increases as tank capacity increases, and the opposite trend is observed with cool stored. 12 refs., 7 figs., 2 tabs.

  3. Identification of a new genomic hot spot of evolutionary diversification of protein function.

    Directory of Open Access Journals (Sweden)

    Aline Winkelmann

    Full Text Available Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.

  4. A mouse model of hereditary coproporphyria identified in an ENU mutagenesis screen

    Directory of Open Access Journals (Sweden)

    Ashlee J. Conway

    2017-08-01

    Full Text Available A genome-wide ethyl-N-nitrosourea (ENU mutagenesis screen in mice was performed to identify novel regulators of erythropoiesis. Here, we describe a mouse line, RBC16, which harbours a dominantly inherited mutation in the Cpox gene, responsible for production of the haem biosynthesis enzyme, coproporphyrinogen III oxidase (CPOX. A premature stop codon in place of a tryptophan at amino acid 373 results in reduced mRNA expression and diminished protein levels, yielding a microcytic red blood cell phenotype in heterozygous mice. Urinary and faecal porphyrins in female RBC16 heterozygotes were significantly elevated compared with that of wild-type littermates, particularly coproporphyrinogen III, whereas males were biochemically normal. Attempts to induce acute porphyric crises were made using fasting and phenobarbital treatment on females. While fasting had no biochemical effect on RBC16 mice, phenobarbital caused significant elevation of faecal coproporphyrinogen III in heterozygous mice. This is the first known investigation of a mutagenesis mouse model with genetic and biochemical parallels to hereditary coproporphyria.

  5. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  6. In-Migration and Housing Choice in Ho Chi Minh City: Toward Sustainable Housing Development in Vietnam

    Directory of Open Access Journals (Sweden)

    Ducksu Seo

    2017-09-01

    Full Text Available Since the initiation of Vietnam’s Doi Moi policy in 1986, the rate of urbanization has rapidly increased with a great influx of immigrants from rural areas. With such migration becoming a large acceleration factor for urban growth, the shortage of housing has become a critical problem in the cities. The Vietnamese government encouraged self-built housing and public–private partnerships to produce different types of housing stock. There are few available academic studies about housing choice in Vietnam to help understand movement dynamics and to foster sustainable housing development. The purpose of this study is to analyze housing choice and moving determinants in Ho Chi Minh City, and thereby establish recommendations for sustainable housing development in Vietnam. For an empirical study, a citizen questionnaire survey was conducted in HCMC and an in-depth analysis was carried out. The results indicate that the row house type for single-family housing is strongly preferred, but a preference for apartments is also observed for future planning. The factors influencing housing choice and movement are family income, housing ownership, housing typology, and commuting environment. These phenomena suggest that the government should prudently consider affordable housing development in many districts. The results of this study will help to establish policies for sustainable housing development in Ho Chi Minh City, Vietnam.

  7. Housing Programs for Homeless Individuals With Mental Illness: Effects on Housing and Mental Health Outcomes.

    Science.gov (United States)

    Benston, Elizabeth A

    2015-08-01

    This systematic review analyzed the best available research in the United States on permanent supportive housing programs for homeless individuals with mental illness and the effect of these programs on housing status and mental health. It updates older and broader reviews that included weaker studies or those that did not analyze permanent housing as an input and housing and mental health as primary outcomes. The literature search (1980-2013) yielded 14 studies (randomized controlled trials and quasi-experimental studies). The studies found that a majority of participants placed in experimental housing programs with case management support remained in housing for at least one year or experienced more days housed than homeless relative to a comparison group. Although this finding is in line with previous literature reviews on permanent supportive housing, this analysis found limitations in each of the 14 reviewed studies, such as attrition, selection and response bias, imprecise definitions and implementation of housing programs, and a lack of appropriate controls. Only three of the reviewed studies reported using a housing fidelity assessment tool to test whether the housing intervention was faithful to theoretical standards, and conceptions and implementation of housing varied widely across studies, threatening internal and external validity. Pitfalls in the best available studies on permanent supportive housing programs in the United States limit the ability of research to inform the policy goal of ending chronic homelessness and demonstrate a need for further experimental research upon which to make funding and policy decisions, especially in light of prioritized federal funds.

  8. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  9. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  10. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  11. Vascular defects and sensorineural deafness in a mouse model of Norrie disease.

    Science.gov (United States)

    Rehm, Heidi L; Zhang, Duan-Sun; Brown, M Christian; Burgess, Barbara; Halpin, Chris; Berger, Wolfgang; Morton, Cynthia C; Corey, David P; Chen, Zheng-Yi

    2002-06-01

    Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.

  12. Scottish Passive House: Insights into Environmental Conditions in Monitored Passive Houses

    Directory of Open Access Journals (Sweden)

    Janice Foster

    2016-04-01

    Full Text Available Climate change and sustainability legislation in recent years has led to significant changes in construction approaches in the UK housing sector. This has resulted in the adoption of new building typologies, including the German Passivhaus (Passive House standard. This standard aims to improve occupant comfort and energy efficiency, potentially changing the ways in which homes operate and how occupants interact with them. With increasing construction of low energy dwellings, there is an emerging gap in knowledge in relation to occupant health and wellbeing, thermal comfort, and indoor air quality (IAQ. Using data collected from a two year Building Performance Evaluation (BPE study funded by Innovate UK, the environmental data (temperature, relative humidity and carbon dioxide concentrations from five Certified Passive House homes in Scotland was compared. The results demonstrate problems with overheating with peak temperatures exceeding 30 °C. Imbalanced mechanical ventilation with heat recovery (MVHR systems were identified in 80% of the dwellings and inadequate IAQ was found due to poor ventilation. Only one of the Passive Houses studied exhibited thermal conditions and IAQ which were, on the whole within Passive House parameters. This paper outlines the insights and the main issues of Scottish Passive House in the broader context of sustainability.

  13. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  14. Sustainable Housing Design

    DEFF Research Database (Denmark)

    Lauring, Gert Michael

    2016-01-01

    Sustainable Housing Design. Integrating technical and housing quality aspects of sustainable architecture in civil engineering education. Summary An integrated design approach to sustainable architecture is outlined that combines concerns for zero energy building, good indoor climate and adequate...... phases. The outcome shows that integrated design further solutions where sustainable urban forms of settlement can be highly energy efficient while also attractive from a user perspective. Key words: Sustainable architecture, integrated design, zero-energy-housing, dense urban living. 1. Introduction...... When designing sustainable housing, energy optimization and satisfactory indoor climates are central issues that need to be incorporated from early design phases if to reach a coherent design. It might also be argued that the energy consumption of contemporary buildings only plays a rela-tively minor...

  15. Smart Solar Housing Renovation

    NARCIS (Netherlands)

    Ham, M.; Bruijn, de D.M.P.; Vos, S.J.H.; Weijers, K.A.M.; Straver, M.C.W.; Scartezzini, J.L.

    2009-01-01

    After World War II, the demand for houses in the Netherlands was enormous. Large housing construction programs were established in the fifties, sixties and seventies. Nowadays, these houses are facing some societal, economic and technological problems. On the other hand, many of the occupants are

  16. An HMM-based comparative genomic framework for detecting introgression in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Kevin J Liu

    2014-06-01

    Full Text Available One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM-a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs to simultaneously capture the (potentially reticulate evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes. Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.

  17. 24 CFR 982.352 - Eligible housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Eligible housing. 982.352 Section 982.352 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT...

  18. 24 CFR 1007.20 - Eligible housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Eligible housing. 1007.20 Section 1007.20 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT...

  19. 24 CFR 982.619 - Cooperative housing.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Cooperative housing. 982.619 Section 982.619 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN...

  20. Environmental Health Disparities in Housing

    Science.gov (United States)

    2011-01-01

    The physical infrastructure and housing make human interaction possible and provide shelter. How well that infrastructure performs and which groups it serves have important implications for social equity and health. Populations in inadequate housing are more likely to have environmental diseases and injuries. Substantial disparities in housing have remained largely unchanged. Approximately 2.6 million (7.5%) non-Hispanic Blacks and 5.9 million Whites (2.8%) live in substandard housing. Segregation, lack of housing mobility, and homelessness are all associated with adverse health outcomes. Yet the experience with childhood lead poisoning in the United States has shown that housing-related disparities can be reduced. Effective interventions should be implemented to reduce environmental health disparities related to housing. PMID:21551378

  1. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count (HIC)....

  2. 24 CFR 983.52 - Housing type.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Housing type. 983.52 Section 983.52 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT PROJECT-BASED...

  3. Dutch house price fundamentals

    NARCIS (Netherlands)

    Haffner, M.E.A.; de Vries, P.

    2009-01-01

    This paper discusses house price developments in the Netherlands, specifically focussing on the question whether current house prices in the Dutch owner-occupied market are likely to decrease. We analyse three aspects of the question based on a literature review: (1) whether there is a house price

  4. Effect of a change in housing conditions on body weight, behavior and brain neurotransmitters in male C57BL/6J mice.

    Science.gov (United States)

    Pasquarelli, Noemi; Voehringer, Patrizia; Henke, Julia; Ferger, Boris

    2017-08-30

    The development of modern housing regimes such as individually ventilated cage (IVC) systems has become very popular and attractive in order to reduce spreading of pathogenic organisms and to lower the risk to develop a laboratory animal allergy for staff members. Additionally, optimal housing of laboratory animals contributes to improve animal health status and ensures high and comparable experimental and animal welfare standards. However, it has not been clearly elucidated whether 1) a change to IVC systems have an impact on various physiological phenotypic parameters of mice when compared to conventional, standard cages and 2) if this is further affected by changing from social to single housing. Therefore, we investigated the influence of a change in housing conditions (standard cages with social housing changed to standard or IVC cages combined with social or single housing) on body weight, behavior and a neurochemical fingerprint of male C57BL/6J mice. Body weight progression was significantly reduced when changing mice to single or social IVC cages as well as in single standard cages when compared to social standard housing. Automated motor activity measurement in the open field showed that mice maintained in social husbandry with standard cages displayed the lowest exploratory behavior but the highest activity difference upon amphetamine treatment. Elevated plus maze test revealed that a change to IVC single and social housing as well as single standard housing produced anxiety-related behavior when compared to maintenance in social standard housing. Additionally, postmortem neurochemical analysis of the striatum using high-performance liquid chromatography coupled to electrochemical detection showed significant differences in striatal dopamine and serotonin turnover levels. In summary, our data indicate a crucial influence of a change in housing conditions on several mouse phenotype parameters. We propose that the maintenance of well-defined housing

  5. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  6. 24 CFR 81.22 - Housing plans.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Housing plans. 81.22 Section 81.22 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development THE... LOAN MORTGAGE CORPORATION (FREDDIE MAC) Housing Goals § 81.22 Housing plans. (a) If the Secretary...

  7. Understanding of Danish Passive Houses based on Pilot Project Comfort Houses

    DEFF Research Database (Denmark)

    Brunsgaard, Camilla

    are necessary to support the integrated design process like: actors in the design teams have to adapt expectations and agree about the aim and they have to establish an interest in each other’s field of specialisations. Finally, it has to be possible to implement the different expertises in the project from...... the architecture, how their everyday life is in the house and how they experience the indoor environment. And the occupants’ experiences were compared with measured data of the indoor environment, which evaluate both the performance of the house compared to the expected, but also the occupants’ behaviour...... on when optimising the work with passive houses in Denmark. The findings will hopefully support a more holistic approach to future development of passive and low energy houses....

  8. 45 CFR 1170.45 - Housing.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Housing. 1170.45 Section 1170.45 Public Welfare... ACTIVITIES Postsecondary Education § 1170.45 Housing. (a) Housing provided by the recipient. A recipient that provides housing to its nonhandicapped students shall provide comparable, convenient, and accessible...

  9. 22 CFR 142.45 - Housing.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Housing. 142.45 Section 142.45 Foreign... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Postsecondary Education § 142.45 Housing. (a) Housing provided by the recipient. A recipient that provides housing to its nonhandicapped students shall provide...

  10. Housing and family: an introduction

    NARCIS (Netherlands)

    Mulder, C.H.; Lauster, N.T.

    2010-01-01

    This paper introduces the Housing Studies special issue 'Housing and Family'. The issue consists of a collection of papers in which a number of connections between housing and family issues are highlighted. Three themes are addressed: the influence of the family of origin on housing characteristics

  11. 22 CFR 217.45 - Housing.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Housing. 217.45 Section 217.45 Foreign... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Postsecondary Education § 217.45 Housing. (a) Housing provided by the recipient. A recipient that provides housing to its nonhandicapped students shall provide...

  12. Housing Retention in Single-Site Housing First for Chronically Homeless Individuals With Severe Alcohol Problems

    Science.gov (United States)

    Malone, Daniel K.; Clifasefi, Seema L.

    2013-01-01

    Objectives. We studied housing retention and its predictors in the single-site Housing First model. Methods. Participants (n = 111) were chronically homeless people with severe alcohol problems who lived in a single-site Housing First program and participated in a larger nonrandomized controlled trial (2005–2008) conducted in Seattle, Washington. At baseline, participants responded to self-report questionnaires assessing demographic, illness burden, alcohol and other drug use, and psychiatric variables. Housing status was recorded over 2 years. Results. Participants were interested in housing, although a sizable minority did not believe they would be able to maintain abstinence-based housing. Only 23% of participants returned to homelessness during the 2-year follow-up. Commonly cited risk factors—alcohol and other drug use, illness burden, psychiatric symptoms, and homelessness history—did not predict resumed homelessness. Active drinkers were more likely to stay in this housing project than nondrinkers. Conclusions. We found that single-site Housing First programming fills a gap in housing options for chronically homeless people with severe alcohol problems. PMID:24148063

  13. Social housing for workers – A new housing model for Ho Chi Minh City, Vietnam

    Science.gov (United States)

    Ngo, L. M.

    2018-04-01

    Urbanization in Ho Chi Minh City (HCMC), Vietnam is rapidly increasing. Therefore, social housing for workers who work at industrial park and processing areas, is indispensable. There are difficulties and conflicts which still remain in developing the social housing for those people in HCMC. For example, the demand of social housing is high, however employers and/or business owners did not fully pay their attentions on social houses to support the workers. On another hand, even if they built the houses, these one seem not to be sufficient for the demands and/or unable to be competed to the rental housing market from private landlords. Building a social housing model for those workers is a vital importance, this aims to improve the quality of life for the workers; for examples, healthcare, personal safety, social relationships, emotional well-being, quality of living environment, etc. In this research, we study the investment, management, and operation of the social housing for workers in HCMC. This also seeks a new housing model which will adapt the criteria towards the sustainable economic development of HCMC.

  14. Mouse adhalin

    DEFF Research Database (Denmark)

    Liu, L; Vachon, P H; Kuang, W

    1997-01-01

    . To analyze the biological roles of adhalin, we cloned the mouse adhalin cDNA, raised peptide-specific antibodies to its cytoplasmic domain, and examined its expression and localization in vivo and in vitro. The mouse adhalin sequence was 80% identical to that of human, rabbit, and hamster. Adhalin...... was specifically expressed in striated muscle cells and their immediate precursors, and absent in many other cell types. Adhalin expression in embryonic mouse muscle was coincident with primary myogenesis. Its expression was found to be up-regulated at mRNA and protein levels during myogenic differentiation...

  15. 12 CFR 1282.22 - Housing plans.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Housing plans. 1282.22 Section 1282.22 Banks and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION ENTERPRISE HOUSING GOALS AND MISSION Housing Goals § 1282.22 Housing plans. (a) If the Director determines, under § 1282.21, that an...

  16. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  17. Medium-Density Mixed Housing: sustainable design and construction of South African social housing

    CSIR Research Space (South Africa)

    Osman, A

    2010-09-01

    Full Text Available Medium-Density Mixed Housing (MDMH), of which social housing (SH) is one component, is perceived to have the capacity to contribute to the transformation of fragmented South African cities more than the massive roll-out of government subsidised ‘one-house...

  18. Differential Health and Social Needs of Older Adults Waitlisted for Public Housing or Housing Choice Vouchers.

    Science.gov (United States)

    Carder, Paula; Luhr, Gretchen; Kohon, Jacklyn

    2016-01-01

    Affordable housing is an important form of income security for low-income older persons. This article describes characteristics of older persons waitlisted for either public housing or a housing choice voucher (HCV; previously Section 8) in Portland, Oregon. 358 persons (32% response rate) completed a mailed survey with questions about demographics, health and housing status, food insecurity, and preference for housing with services. Findings indicate that many waitlisted older persons experienced homelessness or housing instability, poor health, high hospital use, and food insecurity. Public housing applicants were significantly more likely to report lower incomes, homelessness, and food insecurity than HCV applicants. We conclude with policy implications for housing and health agencies that serve low-income older persons.

  19. House Restaurant at The Cliff House Sample Tasting Dinner Menu 2017

    OpenAIRE

    House Restaurant at the Cliff House

    2017-01-01

    Our award winning, Michelin star restaurant at The Cliff House Hotel, Ireland, brings foodies from all over the world to this seaside village in West Waterford. Both our main House Restaurant as well as our easy, unpretentious bar food honour the great Irish produce of Waterford, Cork and the Irish Sea. House Restaurant operates for dinner Wednesday - Saturday inclusive in Winter and Tuesday - Saturday inclusive in Summer, opening Sunday nights on bank holiday weekends. Bar Restaurant is o...

  20. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...