WorldWideScience

Sample records for hot-water systems

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  3. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  4. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  5. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  7. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  10. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  11. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  12. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  13. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  14. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  15. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  16. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  17. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  18. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  19. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    Science.gov (United States)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  20. Numerical Simulation of a Solar Domestic Hot Water System

    International Nuclear Information System (INIS)

    Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V

    2014-01-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed

  1. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  2. Feasibility analysis of domestic hot water systems using TRNSYS

    International Nuclear Information System (INIS)

    Gill, G.S.; Fung, A.S.

    2008-01-01

    A study was conducted in which 17 conventional and solar-based domestic hot water (DHW) systems were simulated using the TRYNSYS simulation model, and their results were compared. According to Natural Resources Canada, DHW heating currently accounts for 25 per cent of Canadian residential energy consumption and 25 per cent of Canadian residential greenhouse gas (GHG) emissions. The objective of this simulation study was to investigate the fuel consumption of DHW systems, their GHG emissions and 30-year life cycle costs. Another aspect of the study was to model and analyze the effect of time of use (TOU) electricity pricing which was developed by the Ontario Energy Board (OEB) to provide stable and predictable electricity pricing. TOU electricity pricing also promotes energy conservation. In addition, the TOU electricity price charged per kilowatt-hour changes throughout the day to reflect the changes in cost to produce electricity at different times of the day. The Ontario government plans to equip all homes and businesses with smart meters using TOU pricing by 2010. Therefore, this study also investigated the effects of the TOU feature by optimizing its use in the effort to reduce overall energy costs and greenhouse gas (GHG) emissions. The results revealed that a DHW system with solar pre-heat and electrical back-up is the best system for energy conservation and GHG reduction. The best system in terms of 30-year life cycle cost is a high efficiency DHW system with an on demand modulating gas combo boiler with gray water heat recovery. 23 refs., 7 tabs., 8 figs

  3. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  4. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  5. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  6. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  7. System design package for SIMS prototype system 3, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using liquid flat plat collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system. The SIMS Prototype Heating and Hot Water System, Model Number 3 has been installed in a residence at Glendo State Park, Glendo, Wyoming.

  8. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  9. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  10. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  11. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  12. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  13. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  14. System design package for IBM system one: solar heating and domestic hot water

    Science.gov (United States)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  15. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  16. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  17. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  18. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  19. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  20. Radiological performance of hot water layer system in open pool type reactor

    OpenAIRE

    Amr Abdelhady

    2013-01-01

    The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL) in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than th...

  1. Solar heating and domestic hot water system installed at North Dallas High School

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  2. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    Science.gov (United States)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  3. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    Science.gov (United States)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  4. The occurrence of legionalla in hot water distribution systems of some Finnish apartment and office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zacheus, O M; Kuittinen, M H; Martikainen, P J [National Public Health Institute, Dept. Environ. Hyg. and Toxicol., Kuopio (FI)

    1991-01-01

    A project concerning the effect of water temperature and water quality on the microbiology of hot water distribution systems in Finnish apartment and office buildings was started in 1989. Here we report preliminary results on the occurrence of legionella. Samples were taken from showerpipes and from hot water mains before and after calorifiers of 17 buildings. Water temperature in the showerpipes ranged from 39 to 55 deg. C. Water temperature before calorifiers ranged from 40 to 52 deg. C and after them from 39 to 59 deg. C. Water temperature did not explain well the occurrence of legionalla. Legionalla pneumophila was isolated from six systems. The isolates were serogroups 1, 5 and 6. Legionella concentrations in positive samples ranged from 100 to 350 000 CFU/l. Highest concentrations of legionalla were obtained from showerpipes and hot water mains before calorifiers. Four legionella positive distribution systems were decontaminated by raising the water temperature to 60-70 deg. C and cleaning taps and showerheads, and flushing them twice a day. The numbers of legionellas in the hot water mains fell below detection limit (50 CFU/l) and their numbers also decreased in showerpipes. Decontamination failed in some parts of the distribution systems where water temperature remained below 60 deg. C. (author) 26 refs.

  5. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  6. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  7. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  8. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  9. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  10. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  11. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  12. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  13. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  14. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  15. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  16. Sanitary hot water consumption patterns in commercial and industrial sectors in South Africa: Impact on heating system design

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2006-01-01

    A large amount of individual sanitary hot water consumers are present in the South African residential sector. This led to several studies being done on hot water consumption patterns in this sector. Large amounts of sanitary hot water are also consumed in the commercial sector in buildings such as hotels and in large residences such as those found in the mining industry. The daily profiles of sanitary hot water consumption are not related to any technical process but rather to human behavior and varying ambient conditions. The consumption of sanitary hot water, therefore, represents a challenge to the electrical utility because it is an energy demand that remains one of the biggest contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. It also represents a challenge to sanitary hot water system designers because the amount of hot water as well as the daily profile in which it is consumed impacts significantly on system design. This paper deals with hot water consumption in the commercial and industrial sectors. In the commercial sector, we look at hotels and in the industrial sector at large mining residences. Both of them are served by centralized hot water systems. Measured results from the systems are compared to data obtained from previous publications. A comparison is also made to illustrate the impact that these differences will have on sanitary hot water system design. Simulations are conducted for these systems using a simulation program developed in previous studies. The results clearly show significant differences in the required heating and storage capacity for the new profiles. A twin peak profile obtained from previous studies in the residential sector was used up to now in studies of heating demand and system design in commercial buildings. The results shown here illustrate the sanitary hot water consumption profile differs significantly from the twin peaks profile with a very high morning

  17. Energy behavior of solar hot water systems under different conditions

    International Nuclear Information System (INIS)

    Fuentes Lombá, Osmanys; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Hernández, Massipe J. Raúl; Cueva Gonzales, Wagner

    2017-01-01

    By means of numerical simulations in TRNSYS v14 the influence of the solar absorption area of a system for heating water with solar energy, composed by a flat solar collector and a tank thermo-accumulator, on its energy efficiency. For the study, the solar collectors EDWARDS, ISOFOTÓN 1, ISOFOTÓN 2, MADE, ROLDAN and IBERSOLAR of absorption area 2, 1,9, 1,88, 2, 1,9 and 2,3 m2 respectively were chosen. For each collector, the energy performance was simulated for one year, setting 200 L for the accumulation volume and 50 °C for the intake temperature. Despite the different characteristics of each collector, their behavior is quite similar showing a very mature technology. (author)

  18. Looking beyond installation: Why households struggle to make the most of solar hot water systems

    International Nuclear Information System (INIS)

    Gill, Nicholas; Osman, Peter; Head, Lesley; Voyer, Michelle; Harada, Theresa; Waitt, Gordon; Gibson, Chris

    2015-01-01

    This paper examines household responses to sustainability issues and adoption of energy saving technologies. Our example of solar hot water systems highlights the complexity and variability of responses to low-carbon technologies. While SHW systems have the potential to provide the majority of household hot water and to lower carbon emissions, little research has been done to investigate how SHW systems are integrated into everyday life. We draw on cultural understandings of the household to identify passive and active users of SHW systems and utilize a model that illustrates how technology use is dependent on inter-relations between cultural norms, systems of provision, the material elements of homes, and practice. A key finding is that households can be ill-prepared to make the most of their SHW systems and lack post-installation support to do so. Thus, informed and efficient use of SHW systems is hit and miss. Current policy is largely aimed at subsidizing purchase and installation on the assumption that this is sufficient for emission reduction goals. Our analysis provides evidence to the contrary. Areas we highlight for policy and practice improvement are independent pre-purchase advice, installation quality, and practical guidance on system operation and interaction with patterns of hot water use. - Highlights: • We interview Australian households about their experience with SHW systems. • We identify active and passive users of SHW. Active users tend to be dissatisfied with their system. • Passive users tend to be satisfied but have relatively inefficient systems. • Householders struggle to integrate hot water use and system operation, compromising efficiency. • Policy should encompass pre and post-installation support as much as incentives to install.

  19. Solar hot water system installed at Quality Inn, Key West, Florida

    Science.gov (United States)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  20. Study on Thermal Performance Assessment of Solar Hot Water Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2014-07-01

    Full Text Available Solar Hot Water Systems (SHWS are gaining popularity in Malaysia due to increasing cost of electricity and also awareness of environmental issues related to the use of fossil fuels. The introduction of solar hot water systems in Malaysia is an indication that it has potential market. However, there is a need for a proper methodology for rating the energy performance of these systems. The main objective of this study is to assess the thermal performance of several SHWS subject to four different locations in Malaysia using combined direct measurement and computer modelling using the TRNSYS simulation program. The results showed distinct differences in performance of the systems as a result of locations and manufacturers. The findings could be used further in developing an acceptable rating system for SHWS in Malaysia.

  1. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  2. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  3. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  4. Prototype Solar Domestic Hot Water Systems (A collation of Quarterly Reports)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report is a collection of quarterly reports from Solar Engineering and Manufacturing Company (SEMCO) covering the period from November 1976 through September 1977. SEMCO, under NASA/MSFC Contract NAS8-32248, is developing two prototype solar domestic hot water systems consisting of the following subsystems: collector, storage, control, transport, and auxiliary energy. These two systems are being installed at sites in Loxahatchee, Florida (OTS-27) and Macon, Georgia (OTS-28).

  5. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  6. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  7. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    Science.gov (United States)

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  8. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  9. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  10. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  11. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    Science.gov (United States)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  12. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  13. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  14. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  15. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the test...

  16. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  17. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  19. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

    DEFF Research Database (Denmark)

    Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

    2017-01-01

    This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...

  20. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  1. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  2. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  3. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  4. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  5. Microbial growth in domestic hot water systems with special emphasis on connections to district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, S [Lund Institute of Technology, Dept. of Heat and Power Engineering, Lund (SE); Krongaard Kristensen, K [Regional Food and Hygiene Authority, Koebenhavns Amt Vest, Glostrup (DK)

    1991-01-01

    It is by now well-estalished that domestic hot water systems often harbour Legionella bacteria. Measurements into a number of Danish systems have revealed many other bacteria, among them the thermophilic species Thermus, which is predominantly found on heating coils, where local temperatures are higher. This bacterium not only hampers heat transfer due to fouling, but may also be pathogenic, due to release of endotoxins. Its presence may explain a wide spectrum of symptoms experienced by people after hot baths, such as rashes and itching. The paper summarizes these findings, and on this basis engineering and microbiological considerations are presented in an effort to find ways of future control strategies that go beyond Legionella prevention. Special attention is given to district heating connections, in which low supply and return temperatures are generally wanted in the primary circuit. (author) 16 refs.

  6. Development of hot water supply system for a small district heating reactor

    International Nuclear Information System (INIS)

    Murase, Toshihiko; Narabayashi, Tadashi; Shimazu, Yoichiro

    2007-01-01

    On the earth, there are many environmental problems. For example, rapid increase of world population causes the enormous consumption of fossil fuel and emission of CO 2 into the global air. Now, mankaind faced to deal with these serious problems. One solution for these problems is utilization of nuclear reactors. Currently, about 65% of thermal output of a nuclear reactor is thrown away to the sea or the atmosphere through a turbine condenser. When a hot-water pipeline from a nuclear plant will be constructed, the exhaust heat from nuclear reactor will able to be utilized. Therefore, authors began to study nuclear power plant system for district heating. This reactor is based on a PWR plant. Its thermal output is 10 MWth and its electrical output is 3.4 MW. The nuclear plant supply electricity and heat for 2000 to 3000 houses. The plant aim to supply all the energy for the adjacent pepole's life, for example, heat, electricity and hydrogen for fuel battery car. This total-energy supply system assumed to be built in Northern area such as Hokkaido in Japan. In order to develop an optimum thermal design method for the system, heat transport experiments and thermal-hydraulic calculations were carried out. Using a metal pipe covered with foam-polyurethane thermal insulator, feed-water temperature and return-water temperature was measured to evaluate heat loss. As the result, the heat loss from the hot-water temperature was very little. The thermal-hydraulic calculation method was verified and applied to actual pipeline size calculation. The result of heat loss calculation will be 0.2degC/5 km. considering these results, the best pipe specification was obtained. (author)

  7. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  8. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  9. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  10. High pressure, low pressure and hot water heating systems in hospitals. Hochdruck-, Niederdruck- und Warmwasserheizungsanlagen im Krankenhaus

    Energy Technology Data Exchange (ETDEWEB)

    Riedle, K [H. Riedle GmbH, Wiesbaden (Germany)

    1994-07-01

    In hospital nowadays the limitation of the use of steam boilers and their direct supply network to the possible minimum is aimed at when the heating system is exchanged or retrofitted. Independent of the fact whether high pressure or low pressure steam or hot water is used the optimum water treatment should be carried out with a minimum of chemical substances. Here hydroquinone, neutralizing amines, carbohydrazide, sodium sulphite and tannins can be used. The dimensioning of hot water heating circuits is shown with examples. (BWI)

  11. Justify of implementation of a hot water layer system in swimming pool research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Gordon, Ana Maria Pinho Leite; Sordi, Gian-Maria A.A.

    2001-01-01

    The IPEN/CNEN-SP has a swimming pool research reactor (IEA-R1m) in operation since 1957 at 2 MW. In 1998, after some modifications, its nominal power increased to 5 MW. Among these modifications some adaptations had to be accomplished in the radiological protection and operational procedure. The present work aim to study the need of implementation of a hot water layer in order to reduce the dose in the workers in the vicinity of the reactor swimming pool. Applying the principles of radioprotection optimization, it was concluded that the decision of the construction of one hot water layer system in the reactor swimming pool, is not necessary. (author)

  12. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...

  13. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  14. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  15. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  16. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  17. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  18. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  19. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  20. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  1. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  2. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  3. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, Dimitrios K.; Koukios, Emmanuel G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993

  4. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.K.; Koukios, E.G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993. [Author

  5. Emergency cooling system with hot-water jet pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Reinsch, A.O.W.

    1977-01-01

    The ECCS for a PWR or BWR uses hot-water jet pumps to remove the thermal energy generated in the reactor vessel and stored in the water. The hot water expands in the nozzle part (Laval nozzle) of the jet pump and sucks in coolant (borated water) coming from a storage tank containing subcooled water. This water is mixing with the hot water/steam mixture from the Laval nozzle. The steam is condensed. The kinetic energy of the water is converted into a pressure increase which is sufficient to feed the water into the reactor vessel. The emergency cooling may further be helped by a jet condenser also operating according to the principle of a jet pump and condensing the steam generated in the reactor vessel. (DG) [de

  6. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Hot water supply system; 1999 nendo gakujutsu koenkai gaiyo. Kyuto

    Energy Technology Data Exchange (ETDEWEB)

    Oze, H. [Toyo University, Tokyo (Japan)

    1999-12-05

    G-5 and 6 measure and investigate actual state of use of hot water supply systems in dormitories used by persons living alone without their families and by unmarried persons to collect fundamental data. G-5 considers how hot water is used, by making a questionnaire survey on the subject houses, and identifies the consumption trend of heat, water and hot water in the hot water supply systems as a whole. G-6 selected eleven houses from among the houses discussed in the previous report to identify the trend of use of hot water by each house. Also, quantity of hot water used in every day of the week is estimated. G-7 discusses methods for estimating water temperatures at faucets of water pipes from the water sources. This is intended to raise the accuracy of tap water temperature conversion coefficient by districts used for calculating estimated heat quantity as a parameter 'hot water supply energy consumption coefficient' to evaluate energy saving performance of a hot water supply facility. G-8 performs numerical simulations changing different parameters in the hot water supply piping system by using a heat loss calculation model for the existing household hot water supply piping. It executes evaluation on energy conservation performance of each model. G-9 estimates efficiency of instantaneous household gas hot water supply devices, not only on thermal efficiency of devices during steady state combustion, but also on non-steady state such as start-up, and discusses methods to derive actual efficiency by using calculations. (translated by NEDO)

  7. Experimental and simulation validation of ABHE for disinfection of Legionella in hot water systems

    International Nuclear Information System (INIS)

    Altorkmany, Lobna; Kharseh, Mohamad; Ljung, Anna-Lena; Staffan Lundström, T.

    2017-01-01

    Highlights: • ABHE system can supply a continues thermal treatment of water with saving energy. • Mathematical and experimental validation of ABHE performance are presented. • EES-based model is developed to simulate ABHE system. • Energy saving by ABHE is proved for different initial working parameters. - Abstract: The work refers to an innovative system inspired by nature that mimics the thermoregulation system that exists in animals. This method, which is called Anti Bacteria Heat Exchanger (ABHE), is proposed to achieve continuous thermal disinfection of bacteria in hot water systems with high energy efficiency. In particular, this study aims to demonstrate the opportunity to gain energy by means of recovering heat over a plate heat exchanger. Firstly, the thermodynamics of the ABHE is clarified to define the ABHE specification. Secondly, a first prototype of an ABHE is built with a specific configuration based on simplicity regarding design and construction. Thirdly, an experimental test is carried out. Finally, a computer model is built to simulate the ABHE system and the experimental data is used to validate the model. The experimental results indicate that the performance of the ABHE system is strongly dependent on the flow rate, while the supplied temperature has less effect. Experimental and simulation data show a large potential for saving energy of this thermal disinfection method by recovering heat. To exemplify, when supplying water at a flow rate of 5 kg/min and at a temperature of 50 °C, the heat recovery is about 1.5 kW while the required pumping power is 1 W. This means that the pressure drop is very small compared to the energy recovered and consequently high saving in total cost is promising.

  8. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  9. Optimization of China's centralized domestic hot water system by applying Danish elements

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries that have district heating (DH) infrastructure, such as Denmark and China, combine spacing heating (SH) and DHW together, with the aim of having...

  10. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  11. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  12. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    Science.gov (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  13. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  14. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  15. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  16. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  17. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  18. Simulation of the solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.; Koukios, E.

    2004-01-01

    The main object of this paper is the documentation and study of the main factors behind the spectacular diffusion of solar energy use for domestic hot water production in Greece. The time pattern of the diffusion of flat-plate solar collectors since its 'out of the blue' first appearance in 1974, shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 91,000 m 2 by 1980. A rate slow down in the early 1980s was followed by a brief period of explosive growth, with the annual sales figure reaching its peak value of more than 185,000 m 2 in mid-1980s. A rapid decline of the growth rate down to the present annual sales level followed. The installed solar collectors pattern has the characteristic form of an S-shape curve, representing the overall penetration of the flat-plate solar collector use for domestic hot water production in the Greek economy and society. This evolution has gone through an inflection point around 1987, i.e. at a time when about 1,000,000 m 2 of collectors had already been installed. By the year 2000, about 2,070,000 m 2 of collectors had been installed, with a tendency to level off by 2010, unless some the present conditions determining this phenomenon change. (author)

  19. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  20. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals.

    Science.gov (United States)

    Mietzner, S; Schwille, R C; Farley, A; Wald, E R; Ge, J H; States, S J; Libert, T; Wadowsky, R M; Miuetzner, S

    1997-12-01

    Thermal treatment and copper-silver ionization are often used for controlling Legionella pneumophila in high-volume hospital plumbing systems, although the comparative efficacies of these measures in high-volume systems are unknown. Thermal treatment of a hot water circuit was accomplished by flushing hot water (> 60 degrees C) through distal fixtures for 10 minutes. Copper-silver ionization was conducted in three circuits by installing units into return lines immediately upstream from hot water tanks. Recovery rates of L. pneumophila were monitored by culturing swab samples from faucets. Concentrations of copper and silver in water samples were determined by atomic absorption spectrophotometry. Four heat-flush treatments failed to provide long-term control of L. pneumophila. In contrast, ionization treatment reduced the rate of recovery of L. pneumophila from 108 faucets from 72% to 2% within 1 month and maintained effective control for at least 22 months. Only three samples (1.9%) of hot water from faucets exceeded Environmental Protection Agency standards for silver, and none exceeded the standards for copper. Of 24 samples obtained from hot water tanks, 42% and 50% exceeded the silver and copper standards, respectively. Copper-silver ionization effectively controls L. pneumophila in high-volume plumbing systems and is superior to thermal treatment; however, high concentrations of copper and silver can accumulate at the bottom of hot water tanks.

  1. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    Abstract District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one c...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization...... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  2. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  3. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  4. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  5. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  6. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  7. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  8. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating.

    Science.gov (United States)

    Mathys, Werner; Stanke, Juliane; Harmuth, Margarita; Junge-Mathys, Elisabeth

    2008-03-01

    A total of 452 samples from hot water systems of randomly selected single family residences in the suburbs of two German cities were analysed for the occurrence of Legionella. Technical data were documented using a standardized questionnaire to evaluate possible factors promoting the growth of the bacterium in these small plumbing systems. All houses were supplied with treated groundwater from public water works. Drinking water quality was within the limits specified in the German regulations for drinking water and the water was not chlorinated. The results showed that plumbing systems in private houses that provided hot water from instantaneous water heaters were free of Legionella compared with a prevalence of 12% in houses with storage tanks and recirculating hot water where maximum counts of Legionella reached 100,000 CFU/100ml. The presence of L. pneumophila accounted for 93.9% of all Legionella positive specimens of which 71.8% belonged to serogroup 1. The volume of the storage tank, interrupting circulation for several hours daily and intermittently raising hot water temperatures to >60 degrees C had no influence on Legionella counts. Plumbing systems with copper pipes were more frequently contaminated than those made of synthetic materials or galvanized steel. An inhibitory effect due to copper was not present. Newly constructed systems (water preparation had a marked influence. More than 50% of all houses using district heating systems were colonized by Legionella. Their significantly lower hot water temperature is thought to be the key factor leading to intensified growth of Legionella. Although hot water systems using solar energy to supplement conventional hot water supplies operate at temperatures 3 degrees C lower than conventional systems, this technique does not seem to promote proliferation of the bacterium. Our data show convincingly that the temperature of the hot water is probably the most important or perhaps the only determinant factor for

  9. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  10. SOLCOST. Solar Hot Water Handbook. A Simplified Design Method for Sizing and Costing Residential and Commercial Solar Service Hot Water Systems. Second Edition.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet offers a preview of information services available from Solcost, a research and development project. The first section explains that Solcost calculates system and costs performance for solar heated and cooled new and retrofit constructions, such as residential buildings and single zone commercial buildings. For a typical analysis,…

  11. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  12. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  13. Avoidance of damages in hot water heating systems. Part 1. Corrosion and hot water - locating; Vermeidung von Schaeden in Warmwasserheizungen. Teil 1. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, I.; Hannemann, M.

    2003-01-01

    In the following article the most important working fluids are presented, their influence on heating systems as also the most important water treatment possibilities are shown. (GL) [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  14. Optimal operation by dynamic programming in a solar/electric hot-water system; Taiyonetsu/denryoku kyuto system no doteki keikakuho ni yoru saiteki un`yo

    Energy Technology Data Exchange (ETDEWEB)

    Edo, S; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    With regard to utilization of a solar/electric hot-water system, a discussion was given by using a dynamic programming method on operation of a system which minimizes power charge. The discussed system is an installation in a welfare facility accommodating 100 persons, where solar heat is stored in a heat storage tank from a heat collector, and utilized for hot water supply. If the solar heat is insufficient for required hot water quantity, the water is heated by using an electric heater. The discussion compared the system operation using the dynamic programming method with the following two systems: the operation method 1, which does not utilize insolation forecast and the operation method 2, in which insolation forecast is utilized and late-night electric power is utilized for heating water in shortage. As a result of the calculation, the operation using the dynamic programming method conducts heat storage by utilizing the late-night power even if insolation is sufficient in winter in order to suppress heating by utilizing late-night power for days with less insolation. Thus, suppression is given on excessive utilization of day-time power and on rise in annual maximum power demand. It was found that the present system reduces power consumption by 37.7% when compared with the operation method 1, and 22.7% when compared even with the operation method 2. 3 refs., 5 figs., 3 tabs.

  15. Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  16. Longevity characteristics of flat solar water-heating collectors in hot-water-supply systems. Part 1. Procedure for calculating collector thermal output

    International Nuclear Information System (INIS)

    Avezova, N.R.; Ruziev, O. S.; Suleimanov, Sh. I.; Avezov, R. R.; Vakhidov, A.

    2013-01-01

    A procedure for calculating longevity indices (daily and monthly variations and, hence, annual thermal output) of flat solar water-heating collectors, amount of conditional fuel saved per year by using solar energy, and cost of solar fuel and thermal energy generated in hot-water-supply systems is described. (authors)

  17. A run-around heat exchanger system to improve the energy efficiency of a home appliance using hot water

    International Nuclear Information System (INIS)

    Park, Jae Sung; Jacobi, Anthony M.

    2009-01-01

    A significant portion of the energy consumed by many home appliances using hot water is used to heat cold supply water. Such home appliances generally are supplied water at a temperature lower than the ambient temperature, and the supply water is normally heated to its maximum operating temperature, often using natural gas or an electrical heater. In some cases, it is possible to pre-heat the supply water and save energy that would normally be consumed by the natural gas or electrical heater. In order to save the energy consumed by an appliance using water heater, a run-around heat exchanger system is used to transfer heat from the ambient to the water before an electrical heater is energized. A simple model to predict the performance of this system is developed and validated, and the model is used to explore design and operating issues relevant to the run-around heat exchanger system. Despite the additional power consumption by the fan and pump of the run-around heat exchanger system, the experimental data and analysis show that for some systems the overall energy efficiency of the appliance can be improved, saving about 6% of the energy used by the baseline machine.

  18. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  19. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  20. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama

    Science.gov (United States)

    1980-01-01

    The solar energy system installed at the Huntsville Senior Citizen Center is described. Detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are presented.

  1. Technical comparison of domestic hot water system which used in China and Denmark

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2014-01-01

    and environmentally friendly energy-consumption system, such as Denmark and China. Nevertheless, the development of DHW networks in these two countries differs significantly. This article detailed the comparisons in technical aspect: common preparation methods of DHW through district heating was introduced in China...... and Denmark with the analysis on temperature level, hygienic situation of DHW system, circular system, flow capacity and heat metering....

  2. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  3. Solar-heating and hot water system--St. Louis, Missouri

    Science.gov (United States)

    1981-01-01

    Sunlight supplies about half heat energy needs of small office. System includes six tilt-adjustable commercial collectors and 1,000 gallon energy storage tank. Report contains description of system and components, drawings and photographs, manufacturer's data, and related material.

  4. Testing of Solar Heated Domestic Hot Water System for Solahart Scandinavia ApS

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1997-01-01

    The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report.......The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report....

  5. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  6. Environmental performance evaluation of hot water supplying systems for domestic use

    OpenAIRE

    Luiz Alexandre Kulay; Rafael Selvaggio Viñas; Ivanildo Hespanhol

    2015-01-01

    The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmenta...

  7. Environmental performance evaluation of hot water supplying systems for domestic use

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Kulay

    2015-04-01

    Full Text Available The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmental perspective. The systems were operated under similar conditions. The analysis was conducted by using the Life Cycle Assessment technique, for the impact categories of Climate Change, Acidification Eutrophication and Water, Metal and Fossil Resource depletion. The results indicated that the electric and hybrid systems are less harmful to the environment for all the impact categories under analysis. On the other hand, the gas system provided the worst performance of the group. The solar heating system was penalized due to its dependence on electricity to operate under the conditions in which the study was conducted.

  8. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  9. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  10. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  11. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  12. Cost-effectiveness optimization of a solar hot water heater with integrated storage system

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian; Syahri, M.; Shahrir, A.; Mohd Yusof Othman; Baharuddin Yatim

    2006-01-01

    Solar processes are generally characterized by high first cost and low operating costs. Therefore, the basic economic problem is one of comparing an initial known investment with estimated future operating cost. This paper present the cost-benefit ratio of solar collector with integrated storage system. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector are performed and the ratio of AC/AEG or the cost benefit ratio is presented for difference combination of mass flow rate, solar collector length and channel depth. Using these cost-effectiveness curves, the user can select optimum design features, which correspond to minimum AC/AEG

  13. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  14. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  15. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    Science.gov (United States)

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  16. Legionella contamination in hot water systems of hospitals, nursing homes, hotels, factories and spas in Tuscany-Italy

    Directory of Open Access Journals (Sweden)

    Antonella Lo Nostro

    2011-03-01

    Full Text Available

    Abstract Following the report of many cases of Legionnaires’ disease associated with accommodation facilities such as hotels, spas, workplaces, hospitals and nursing homes, we verified if Legionella pneumophila and Legionella spp. were present in some of those structures in Tuscany, in order to estimate the species and serogroups in circulation. Legionella pneumophila serogroup 1 (30.9% was the most frequently isolated species along with serogroups 3 (16.1% and 6 (13.3%; these three serogroups are identified, in literature, as those most responsible for Legionnaires’ disease (LD. Studying all analyzed structures, we found some parts of the water system where Legionella concentration was higher than 103CFU/L, indicated, in Italy, as the maximum admitted concentration value above which a decontamination treatment is necessary when one or more cases of healthcare-acquired Legionnaires’ disease are observed. Moreover disinfection is recommended in any case when counts exceed 104CFU/L.
    Consequently, in order to prevent cases of Legionnaires’ disease, a continuous surveillance of the water
    systems of all accommodation facilities is necessary, with particular attention to hospitals and nursing
    homes where immunocompromised patients lodge, so as to promptly estimate the presence of the pathogen and consequently plan the most suitable intervention activities. We concluded that, in any structure, a continuous surveillance and disinfecting treatment of water systems is necessary. Moreover, after any disinfection treatment the temperature of the hot water flowing in the system must be necessarily maintained near 51°C in order to minimize the probability of recontamination from Legionella and limit the
    risk of LD in consumers.

  17. Domestic hot water use study, multi-family building energy monitoring and analysis for DHW system sizing criteria development

    International Nuclear Information System (INIS)

    Goldner, F.S.

    1993-01-01

    Thirty New York City multifamily building combined steam heating and domestic hot water (DHW) plants were instrumented for monitoring (mostly hourly) apartment, outdoor, boiler and DHW temperatures and burner on-off times. In nine of these buildings, which had been upgraded, additional data collected were: stack temperature, DHW flow in 15-minute increments, oil ampersand boiler make-up water flows, and DHW temperature before and after the mixing (tempering) valve and on the circulating return line. The project's objectives are to develop comprehensive operating data on combined DHW and heating systems to be used in system design and specifications and for improving operating procedures. DHW requirements in multi-family buildings are currently calculated on the basis of questionable standards. These new, more precise DHW flow data result in a better basis for sizing than existed heretofore. There is a critical need for improved specifications and performance in newly constructed and renovated buildings. Better system choices among various instantaneous generation and storage scenarios will result in savings derived from smaller initial equipment investments as well as more energy efficient operations. The data being generated define figures for DHW energy use so that more reliable and accurate predictions of savings can be calculated. This paper presents DHW demand patterns, seasonal variations, weekday vs. weekend consumption, consumption vs. occupancy levels, coincidence of 15- and 60-minute demand periods, and average vs. peak demand levels. This project is sponsored by New York State Energy Research and Development Authority (NYSERDA). The results of this research are being reviewed for inclusion in a revision of DHW guidelines for the next edition of the ASHRAE Handbook

  18. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2018-01-01

    Full Text Available The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  19. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Science.gov (United States)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  20. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  1. Fiscal 1974 Sunshine Project result report. Research on solar cooling/heating and hot water supply system; 1974 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply system. This 3- year project from fiscal 1974 to 1976 aims to predict the share of solar energy in future cooling/heating and hot water supply energy demand, and develop simulation technology. The project surveys and analyzes current domestic and overseas development states, and studies various systems to obtain characteristics of every system, pursuit an optimum implementation, and establish a diffusion plan. Future energy consumptions and prices are predicted in relation to energy saving, and the utilization impact of solar energy is analyzed. Study is also made on diffusion plan, profitability and performance evaluation method. Among these schedules, in fiscal 1974 based on the survey and analysis on previous domestic and overseas development states, features and problems were arranged every system and application. The basic study on system simulation, and rough feasibility study on solar heat systems by conventional technique were carried out. The basic data on performance evaluation standards were also prepared. (NEDO)

  2. Development of a Performance Calculation Program for Solar Domestic Hot Water Systems with Improved Prediction of Thermal Stratification

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Li, Zhe

    2016-01-01

    The transient fluid flow and heat transfer in a hot water tank during cooling caused by standby heat loss were investigated by computational fluid dynamics (CFD) calculations and by thermal measurements in previous investigation. It is elucidated how thermal stratification in the tank is influenced...... by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions....

  3. Simulation of the interaction of a solar domestic hot water tank system with a compact plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, D.J.; Lightstone, M.F. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering; Harrison, S.; Cruickshank, C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2008-08-15

    An external natural convection heat exchanger (NCHE) was used as an alternative to forced convection for transferring energy from solar collector loops to a hot water storage tank. A computational fluid dynamics (CFD) program was used to predict interactions between the natural convection-driven side-arm heat exchanger and a hot water storage tank. A solar domestic hot water tank with a vertical compact plate natural convection heat exchanger was modelled. In addition, the heat exchanger was modelled as a section of pipe with high flow resistance and a volumetric energy source. Transient analyses were conducted and the CFD model was then compared with data obtained from laboratory experiments. Simulations were conducted on the fluid domain in order to investigate the influence of the flow on the thermal stratification in the tank, the heat transfer inside the tank, and the natural convection in the tank loop. Buoyancy for an incompressible fluid with constant fluid properties was modelled using a Boussinesq approximation. Temperature distributions were measured as a function of time. Results of the study indicated that assuming a constant thermal expansion coefficient in evaluation buoyancy forces for a wide range of operating temperatures did not result in accurate predictions. Future studies will model natural convection with a full buoyancy model. 11 refs., 2 tabs., 5 figs.

  4. TOTAL AND HOT-WATER EXTRACTABLE CARBON RELATIONSHIP IN CHERNOZEM SOIL UNDER DIFFERENT CROPPING SYSTEMS AND LAND USE

    Directory of Open Access Journals (Sweden)

    Srdjan Šeremešić

    2013-12-01

    Full Text Available A study was conducted to determine the hot water extractable organic carbon (HWOC in 9 arable and 3 non arable soil samples on Haplic Chernozem. The hot water extractable carbon represents assimilative component of the total organic matter (OM that could contain readily available nutrients for plant growth. The obtained fraction of organic carbon (C makes up only a small percentage of the soil OM and directly reflects the changes in the rhizosphere. This labile fraction of the organic matter was separated by hot water extraction at 80°C. In our study the HWOC content in different samples ranged from 125 mg g-1 to 226 mg g-1. On the plots that are under native vegetation, higher values were determined (316 mg g-1 to 388 mg g-1. Whereas samples from arable soils were lower in HWOC. It was found that this extraction method can be successfully used to explain the dynamics of the soil OM. Soil samples with lower content of the total OM had lower HWOC content, indicating that the preservation of the OM depends on the renewal of its labile fractions.

  5. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  6. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  7. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  8. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  9. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems

    Energy Technology Data Exchange (ETDEWEB)

    Wigginton, A.; McSpirit, S.; Sims, C.D. [University of Kentucky, Lexington, KY (United States). Dept. of Biology

    2007-10-15

    In 2000, a coal slurry impoundment failure in Martin County, Kentucky, caused concerns about contaminants entering municipal water supplies. Water samples taken from impacted and reference area hot water tanks often exceeded US EPA drinking water guidelines. Concentrations of As, Cd, Cr, Cu, Fe, Mn, and Pb had maxima of 119; 51.9; 154; 170,000; 976,000; 8,710; and 12,700 {mu}g/L, respectively. Significantly different metal accumulation between counties indicated this procedure's utility for assessing long-term municipal water quality. Correlations between metal concentrations were strong and consistent for As, Ba, Cd, Cr, Co, and Fe indicating that some metals accumulate proportionally with others.

  10. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  11. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  12. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  13. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  14. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  15. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  16. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply.

    Science.gov (United States)

    Rakić, Anita; Štambuk-Giljanović, Nives

    2016-02-01

    The purpose of this study was to evaluate the prevalence of Legionella spp. and compare the quality of hot water between four facilities for accommodation located in Southern Croatia (the Split-Dalmatian County). The research included data collection on the technical and technological characteristics in the period from 2009 to 2012. The survey included a type of construction material for the distribution and internal networks, heating system water heater type, and water consumption. Changes in water quality were monitored by determination of the physical and chemical parameters (temperature, pH, free chlorine residual concentrations, iron, zinc, copper and manganese) in the samples, as well as the presence and concentration of bacteria Legionella spp. The temperature is an important factor for the development of biofilms, and it is in negative correlation with the appearance of Legionella spp. Positive correlations between the Fe and Zn concentrations and Legionella spp. were established, while the inhibitory effect of a higher Cu concentration on the Legionella spp. concentration was proven. Legionella spp. were identified in 38/126 (30.2%) of the water samples from the heating system with zinc-coated pipes, as well as in 78/299 (26.1%) of the samples from systems with plastic pipes. A similar number of Legionella spp. positive samples were established regardless of the type of the water heating system (central or independent). The study confirms the necessity of regular microbial contamination monitoring of the drinking water distribution systems (DWDSs).

  17. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  18. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.

    2014-01-01

    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  19. Cascade Utilization of Energy in Solar Photovoltaic Hot Water System%太阳能光伏热水系统的能量梯级利用

    Institute of Scientific and Technical Information of China (English)

    关欣; 王艳迪; 向勇涛; 郭志波

    2012-01-01

    为了实现太阳能光伏发电系统中用于冷却太阳能电池的低品位热能利用,本文提出了太阳能光伏热水系统。通过对单体光伏光热系统(PV/T)的实验研究表明,在单体PV/T放置角度为30°,流量为200 L/h时,集热效率可达到最大值65.6%,系统的平均发电效率为14.3%,瞬时综合效率最大为83%,达到了能量的梯级利用。%To realize the use of low-grade thermal energy after cooling solar cells in solar photovoltaic systems,this paper puts forward a solar photovoltaic hot water system(PV/T).The experiment of the PV/T system shows,at the condition that inclination is 30°,and flow rate is 200 L/h,the maximum heat-collecting efficiency can be achieved at 65.6%and the average power generation efficiency is 14.3%, the maximum instantaneous overall efficiency is 83%,which realize the cascade utilization of energy.

  20. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  1. Solar heating still in the early stages. Changes for hot water production - VDI meeting 'Efficient heating systems'

    Energy Technology Data Exchange (ETDEWEB)

    Goehringer, P

    1976-10-01

    More and more realism replaces the initial euphoria concerning the discussion on solar heating. Not only the possibilities are considered these days, but also the limits of this still controversial way of heating. This impression was deepened by a meeting of the VDI-Gesellschaft Technische Gebaeudeausruestung (Society for the technical equipment of buildings) held in Bonn. The heating of water with solar energy during the summer is viewed optimistically by the experts - as far as space heating is concerned, the sun collector is conceded only a very modest position in Central Europe within integrated heating systems. It is true that solar technology in the USA is already very sophisticated and economically feasible in many cases; however, techniques cannot be adopted unconditionally for Europe, as the average values of global solar radiation are much lower here. Thus, different technologies will be required.

  2. Solar action: solar hot water in The Netherlands

    International Nuclear Information System (INIS)

    Van de Water, Adrie

    2001-01-01

    This paper focuses on the use of solar hot water systems in the Netherlands, and reports on the Dutch Solar Domestic Hot Water System agreement signed in 1999 and set up to enhance the development of the market for solar domestic hot water (SDHW) systems and their application as a sustainable energy source. The Dutch Thermal Solar Energy Programme's objectives and goals, the subsidy schemes for thermal solar energy administered by Senter - an agency of the Ministry of Economic Affairs (MEA), and the project-based and individual approaches to boosting the sales of SDHW systems are examined. Large system sales, the targeting of consumers via a national campaign, and national publicity using the slogan 'Sustainable energy. Goes without saying' commissioned by the MEA are discussed along with the support shown by the Dutch power distribution companies for SDHW systems, marketing aspects, and the outlook for sales of SDHW systems

  3. Application of elements of systems for solar heating and hot water supply in medical planning modules and submodules; Prilagane na elementi na sistemi za slynchevo otoplenie i dostavyane na topla voda v meditsinski planirovychni moduli i podmoduli

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, L. [Civil Engineering Higher School, Sofia (Bulgaria)

    2011-07-01

    Here is reviewed the application of some characteristic elements of well-known innovative solutions of systems for solar heating and hot water supply in buildings - in medical modules and submodules in extreme situations - natural disaster, industrial average or military conflict. Also are given exemplary schemes of situation of the characteristic elements of the planning schemes of selected modules in accordance with the dimensions of the refrigeration chambers. (author)

  4. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    Science.gov (United States)

    Culhane, Thomas Henry

    -help strategies, the greater flexibility they provide may lead to superior long-term outcomes in a time of uncertain and rising energy and commodities prices and an increasing availability of new, less expensive, increasingly modular, and more efficient technologies that are easier for individual households to install and use, especially if the State or non-governmental institutions can provide implementation support. The descriptive statistics and the multivariate models obtained through the analysis of the data gathered in the surveys show that while purchase price and running costs for dedicated water heating systems are considerations for families desiring hot water, the infrastructural demands of modern appliances vis a vis a consumer's given built environment and the historical/cultural legacy of the consumer's past hot water choices and practices are often more important determinants of the kind of water heating used and desired today. Our study shows, for example, that while higher income is associated with owning a water heater in a simple model with few explanatory variables (Model 3) it's significance disappears when controlling for Ethnicity and infrastructural elements (Model 1). This might suggest that while within communities there is a point at which making more money implies a shift to consumer "modernity", overall the availability of more money in these neighborhoods as a whole doesn't guarantee that the utility promised by modern appliances will be realized. A similar point can be made about formal education levels, which appear insignificant in our models. Policy that aimed merely at sending more kids to school would not address the great deficiencies that many Egyptian schools are noted for. There is no guarantee that merely expanding Egypt's "universal education" policy to include children who have fallen through the cracks would help increase consumer awareness or consumer choice. On the other hand both water availability and presence of hot water pipes, as

  5. Modelling and multi-scenario analysis for electric heat tracing system combined with low temperature district heating for domestic hot water supply

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Low temperature district heating (LTDH) is a cost-efficient way of supplying space heating and domestic hot water (DHW) for buildings in urban areas. However, there is concern that the potential hygiene problems (Legionella) might occur if LTDH is implemented, especially for large buildings...... performance on heat loss saving, and it also gave benefits to district heating network by sharing part of the heating load....

  6. Development of hot water utilizing power plants in fiscal 1999. Development of binary cycle power plant (Development of system to detect well bottom information when geothermal hot water is excavated); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (chinetsusei kussakuji kotei joho kenchi system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental research has been performed on the MWD system to identify on the real time basis the information about well bottom when geothermal hot water is excavated (azimuth, inclination, pressure and temperature). This paper summarizes the achievements in fiscal 1999. In the developmental research on the detection device, attempts were made in improving the zonde, and enhancing its heat resisting performance. In addition, data were acquired on electronics parts as a result of the heat resistance identifying test. For the on-the-ground devices, improvement was made to add the experiment analyzing program with a program to remove the downhole motor pressure noise. The pressure noise during excavation in the actual wells was collected. In the analyzing system, use of PC, improvement, and operation check were performed on the well trace projecting and indicating system. Operation of the well trace estimating system was checked by using the actual data in order to prepare the operation manual. With regard to the well evaluation supporting system, improvement, operation check and that by using the actual data were executed on the PC version temperature analyzing system. Performance of the zonde was verified by the actual geothermal well test. (NEDO)

  7. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  8. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks...

  9. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system; 1976 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1974-76 research result on solar cooling/heating and hot water supply systems. Research was made on survey and analysis of current R and D states, system analysis, energy impact analysis, installation sites of solar collectors, diffusion policy, profitability, and performance evaluation method. Main research results obtained are as follows. The effect of solar cooling/heating and hot water supply on the Japanese energy demand in 2000 is estimated to be 13% for residences and 5% for the other buildings. Environment pollution derived from solar cooling/heating is extremely less than that from conventional energy quantitatively. The facility cost is estimated to be probably 27,000yen/m{sup 2} in collector cost, and nearly 100,000yen/t in heat storage tank cost. As design data for solar cooling/heating systems, the estimation method of heat collection for every solar radiation rank, performance comparison of honeycomb type collectors, and various data for air heat collection systems are presented. (NEDO)

  10. Collective solar hot water: best practices

    International Nuclear Information System (INIS)

    Beutin, Philippe; Grouzard, Patrice; Coroller, Francoise

    2005-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a collection of good practices concerning the selection and installation of collective solar water heating systems in France. A first note presents the Garantie de Resultats solaires (GRS - Guarantee of Solar Results), a kind of certification that gives a long term guarantee of the annual solar energy produced quantity as a function of the hot water consumption. An overview of the collective solar market is given, followed by informations on the financial incentives for feasibility studies and installations, the technical design and optimization of a collective solar project, its economic assessment, etc. Numerous examples of collective of solar heating operations in collective buildings are presented, in various regions of France, in the east (Alsace), the center (Auvergne, Ile de France (Paris region)), and the south (Languedoc-Roussillon, Midi-Pyrennes, PACA), giving technical data, financing, partnerships, etc

  11. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  12. NORTH PORTAL - HOT WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540. The method used for the calculations is based on Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote plumbing fixture and the main supply. The pressure drop for the hot water system is based on the total length of the supply piping from the cold water supply source through the water heater to the most remote hot water outlet. Equivalent fixture units are then assigned using Section 4.4.1. For hot water, the values are reduced by 25 percent in accordance with the UPC. The demand load in gpm is then determined based on the number of fixture units. The demand load and the pressure drop between the source and the most remote fixture is used to determine the pipe size and the corresponding friction losses for a given flow velocity not to exceed 10 feet/second

  13. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  14. The Design of Hot Water Supply System of Solar Energy and Air Source Heat Pump%太阳能+空气源热泵的热水供应系统设计

    Institute of Scientific and Technical Information of China (English)

    卢春萍

    2015-01-01

    太阳能集中热水系统受到天气的影响难以全天候运行,需要设置辅助加热装置。以广州市宾馆热水供应为例,对太阳能空气源热泵的热水系统进行设计,包括空气源热泵热水机组选型计算、太阳能集热管面积计算、储热水箱的确定、集热循环水泵的确定。%Influenced by weather condition,it is difficult to run for hot water supply system of solar en-ergy all the time,and the auxiliary heating device need setting.Taking hot water supply in a hotel of Guangzhou city as an example in this paper,the heat pump system of solar energy and air source was designed,including the calculation of equipment selection of the air source heat pump, the calculation of the collector area,the determination of the heat storage tank,and the determina-tion of the circulating pump of the heat collection.

  15. FY 1977 Annual report on Sunshine Project results. Research on solar energy systems for air conditioning and hot water supply; 1977 nendo taiyo netsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at research and development of utilization of solar energy for air conditioning and hot water supply, as part of the researches on systems under Sunshine Project for utilization of solar energy. This project is focused on the research items, selected from those pursued by the 3-year project beginning in FY1974 as the ones considered to be important for the future diffusion and promotion of the systems for utilization of solar energy. The 3-year project has produced the software and hardware results, based on development of the devices and construction of a solar house. At this stage of time, it is pointed out that studies on economic viability of the system, development of the software for diffusion of the solar systems, and development of new, more suitable systems and methods for utilization of solar energy are important. In this fiscal year, the four themes (studies on economic viability of the conceptual solar system designs, simplified methods for designing the systems, evaluation of system performance, and studies on energy-saving effects and economic viability) are taken up, viewed from development of the software for diffusion and promotion of the systems for utilizing solar energy, based on the results obtained by the previous 3-year project. (NEDO)

  16. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  17. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  18. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  19. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for multiple dwelling); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This R and D was intended to develop the following technologies for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for a multiple dwelling economically by solar energy: development of equipment constituting solar cooling/heating and hot-water supply system, and development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. In fiscal 1979, a study was implemented in which emphasis was placed on the experiment of a test housing with a solar cooling/heating and hot-water supply system incorporated for the purpose of proving the results of the research since fiscal 1974. In the overall flow of this project, the following research contents were partially performed or being performed successively during the period of seven years. (1) Examination of various methods, (2) Development of thermally driven freezer, (3) High performance heat collecter, (4) Heat storage device, (5) Types of multiple dwelling suitable for solar energy utilization, (6) Construction of experimental multiple dwelling, (7) Experiment in houses actually in use by people, (8) Confirmation of system improvements and results on the basis of experimental measurements, and (9) Evaluation as a solar system for multiple dwelling. (NEDO)

  20. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  1. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  2. Effect of insolation forecasting error on reduction of electricity charges for solar hot water system; Taiyonetsu kyuto system no denki ryokin sakugen koka ni oyobosu nissharyo yosoku gosa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1996-10-27

    A solar hot water system can be economically operated if inexpensive midnight power is purchased to cover the shortage of solar energy predicted for the following day. Investigations were conducted because error in insolation prediction affects the system operation and electric charge reduction effect. The target temperature of the heat accumulation tank at every predetermined time point is calculated on the previous evening in consideration of predicted insolation so that the water will be as hot as prescribed at the feeding time on the following day. Midnight power is used for uniform heating to attain the target temperature for 7 o`clock on the following morning. The uniform heating continues from 8 o`clock to the feeding time, this time using solar energy and daytime power to attain the target temperature. Accordingly, the division between the midnight power and daytime power is determined in view of the target temperature for 7 o`clock on the following morning, which target temperature is so set that the charge will be the minimum by optimizing the allocation of the above-said two. When the insolation prediction error rate is beyond 30%, the electric charge grows higher as the rate rises. But, when the rate is not higher than 30%, the charge is little affected by a rise in the rate. 5 refs., 10 figs., 1 tab.

  3. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  4. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  5. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  6. Development of two-stage compression heat pump for hot water supply in commercial use. Establishment of design method for water and air heat source system; Gyomuyo nidan asshukushiki kyuto heat pump no kaihatsu. Suinetguen oyobi kuki netsugen sytem no sekkei hoho no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Hashimoto, K; Saikawa, M; Iwatsubo, T; Mimaki, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-07-01

    The two-stage compression cascade heating heat pump cycle was devised for hot water supply in business use such as hotel and store use which allows hot water supply less in primary energy consumption than gas boilers, and higher in temperature than conventional heat pumps. This cycle heats water in cascade manner by two-stage compression using two compressors in both low- and high-stage refrigerant circuits, and two condensers different in condensation temperature (intermediate heat exchanger and condenser) to achieve higher hot water temperature and higher COP. For cost reduction, the new system design method was established which is possible to cope with conventional compressors such as screw and scroll ones with different theoretical suction volume for every one. System design parameters such as thermal output and COP of hot water supply were largely affected by theoretical suction volume ratio of low- and high-stage compressors dependent on combination of the compressors, and refrigerant condensing temperature in an intermediate heat exchanger as proper parameter. 4 refs., 17 figs., 13 tabs.

  7. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  8. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  9. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  10. Avoidance of damage in hot water heating systems. Part 2. Corrosion and water, a status report; Vermeidung von Schaeden in Warmwasserheizungen. Teil 2. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, H.; Hannemann, M. [Deutsche Erfinderverband fuer Muenchen und Oberbayern (Germany); Deutsche Gewerbeverband fuer Markt Schwaben und die Region (Germany)

    2003-02-01

    Water is used in nearly every heating system, so it is important to know about the characteristics of this important heat carrier, its interactions with heating system materials, and other aspects. The contribution presents the main characteristics of common waters, their effects on heating systems, and common water treatement methods. [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  11. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for new residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of devices for solar energy systems for air conditioning and hot water supply, in order to commercialize innovative systems for economic air conditioning and hot water supply for new residential buildings. The research items are (1) development of materials for the devices (e.g., heat collectors and absorption refrigerators), (2) operation of the systems in the test building, and measurement (methods for measurement and evaluation of the systems in the test building, instrumentation systems and operation thereof, and analysis of the measured data), and (3) system analysis (system simulation, comparison of the simulated results with the observed results, and system variations). The item (1) studies economic efficiency, durability and stability of the vacuum glass tube type collectors. The item (2) studies a dripping type generator, refrigerant recycling type generator and generator with a built-in auxiliary heat source for the absorption refrigerators. These types have their own advantages and disadvantages, and it is necessary to establish how these results are to be included in the products. The item (3) changes the collector arrangement, based on the observed data, and improves heat-collecting pump starting/stopping conditions, refrigerator operating conditions and insulation around the primary heat-storage tank. It is necessary to analyze the improved systems. (NEDO)

  12. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  13. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-30

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for large buildings. Although the small experimental single/double effect absorption refrigerator system didn't satisfy the initial design specifications, if the large system is used, it probably satisfies them. Its wide operation range was confirmed by adding LiCl to water-LiBr system coolant. Concentration by reverse osmosis and electrodialysis for recycling absorbent resulted in failure. The storage tank volume of coolant and absorbent necessary for a heat storage refrigerator reached 4 times as large as refrigerator unit one. The primary basic plan of a single/double effect refrigerator system with plane collectors was prepared for Oita University. For system simulation, more practical characteristic equations are showed by reconsidering equations for single effect systems. The characteristic equations for double effect and single/double effect systems were obtained on the basis of the 1976 research result. The control method of hot water and absorbent effective for refrigerators was clarified. Absorbent circulation of 3.5-4% in concentration difference was optimum. (NEDO)

  14. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-30

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for large buildings. Although the small experimental single/double effect absorption refrigerator system didn't satisfy the initial design specifications, if the large system is used, it probably satisfies them. Its wide operation range was confirmed by adding LiCl to water-LiBr system coolant. Concentration by reverse osmosis and electrodialysis for recycling absorbent resulted in failure. The storage tank volume of coolant and absorbent necessary for a heat storage refrigerator reached 4 times as large as refrigerator unit one. The primary basic plan of a single/double effect refrigerator system with plane collectors was prepared for Oita University. For system simulation, more practical characteristic equations are showed by reconsidering equations for single effect systems. The characteristic equations for double effect and single/double effect systems were obtained on the basis of the 1976 research result. The control method of hot water and absorbent effective for refrigerators was clarified. Absorbent circulation of 3.5-4% in concentration difference was optimum. (NEDO)

  15. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    Science.gov (United States)

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  16. Laboratory stand for examination of the operational thermal parameters of polyvalent system for heating, cooling and domestic hot water supply using renewable energy sources

    International Nuclear Information System (INIS)

    Zlateva, Merima

    2014-01-01

    The report presents the structure of an universal laboratory stand for determine the operating parameters of a polyvalent system for utilization of renewable energy sources. The system is a combination of three modules using different technologies for renewable sources – solar energy, atmospheric air and biomass, incorporated in a common heat accumulator. The structural scheme permits the possibility to use the stand in different operating modes, to demonstrate the feasibility of using any one of the renewable energy sources both individually and in various combinations. The author express gratitude to the partners of the companies Robert Bosch Bulgaria Ltd, Ahi Carrier Bulgaria and Eratermtotal, with whose generous support is build the stand. Key words: Renewable energy sources (RES), Heating with RES, Biomass, Air to Water Heat pumps

  17. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  18. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  19. Legionella contamination in hot water of Italian hotels.

    Science.gov (United States)

    Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania

    2005-10-01

    A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of > or =10(3) CFU liter(-1), and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.

  20. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for large-sized building); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Equipment was developed constituting a solar cooling/heating and hot-water supply system, as was the system using such equipment as well as being safe and easy to carry out inspection and maintenance, with the purpose of putting into practice an innovative system capable of cooling/heating and hot-water supply for a large-sized building economically by means of solar energy. An analysis was conducted on the test result in an experimental system having a practical size, with the effect confirmed of the improvement work of fiscal 1978. An inspection was made for the cause of piping corrosion, as were the examination and proposal for anti-corrosion measures. Heat and weather resistance tests were carried out on selective absorption films and a convection preventive structure. A selective absorption film processing was performed on a heat collecting plate for a large heat-collecting device, with a durability test conducted for the device by assembling the film in it. A test equipment was designed and manufactured for a latent heat type heat-collecting system of a practical size, performing various experiments and an automatically controlled operation. Displayed in the test by the practical size experiment system (in the Oita University laboratory) were the cooling/heating operation mode, summary of a whole day operation, daily fluctuation of electrical power and kerosene consumption, and a graph of accumulating totals. A long-term/short-term instrumentation analysis were also performed. (NEDO)

  1. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for condominiums); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    This project is aimed at technological development of economical solar energy systems for air conditioning and hot water supply for condominiums. The major items for the FY 1977 programs include (1) designs and fabrication of equipment for a test building, (2) development of the equipment materials, and (3) system analysis. The jobs for item (1) include management of the designs and construction, placing an order for the building, and fabrication of an air conditioner expander and heat pump; those for item (2) include simplification of a condensing type and plate type heat collector structures, weather-resistance of the plate type heat collector structure, and materials for selective absorbing membranes and reflectors; and those for item (3) include estimation of heat loads in a model building, first to third floors as the test building, and fourth to 14th floors as the conventional box-shaped building. The heat collector installation area is investigated for a multistory building, for which solar radiation intensity at the heat-receiving plane and the like are taken into account. It is found that the solar system can be installed, when an area of 50m{sup 2} can be allocated to the system in each story. There is a limit to story number for the solar system to economically work for air conditioning and hot water supply. Sufficient insulation of the system and reduction in pipe length by zoning are the necessary measures against heat losses. (NEDO)

  2. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  3. Fiscal 1976 Sunshine Project result report (Drawings). R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho zumenshu. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Working design was made on an apartment house for R and D on solar cooling/heating and hot water supply system, and its drawings were prepared. The design was made on the experimental medium-rise square pyramid apartment house (3- storied, 28 dwelling units, RC structure, 1,566.63m{sup 2} in building area, 2,309.05m{sup 2} in total floor area). The house was equipped with normal high-voltage receiving panel, indoor cubicle of 300kVA, common antenna TV, telephone piping, door chime, direct water supply system with individual meters, LPG gas piping with individual meters, central hot water supply system with individual meters, and central cooling/heating system with individual fan coil units. The exterior of the house was finished with asphalt-waterproofing normal concrete-finished roofs of 1/50 in gradient, epoxy system resin-coated exposed concrete exterior walls, Al sash slide pair-glass window and alumite-finished Al door openings, and foamed polystyrene insulation plates (60mm, 50mm and 50mm thick for roofs, floors and walls, respectively). (NEDO)

  4. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  5. Hot water glows directly to the consumer

    International Nuclear Information System (INIS)

    Decken; Fedders; Hohlein.

    1980-01-01

    The supply of industry and households with heat is a central problem of our economy. With the background of a crisis-affected oil supply the long term ensured heat supply with nuclear power plants is a discussible alternative. The long distance transfer of heat in the form of hot water, that is heated in nuclear power plants and led over a long-distance heating pipeline network to the consumers is limited by the inevitable heat losses. For the bridging of long distances between heat source and consumer and for the supply of heat at a high temperature level the long-distance transport by the Eva-Adam-principle has clear advantages. (orig.) [de

  6. The analysis of the hot water consumption and energy performance before and after renovation in multi-apartment buildings

    Science.gov (United States)

    Tumanova, K.; Borodinecs, A.; Geikins, A.

    2017-10-01

    The article presents the results of hot water supply system analysis. Taking into account that the current consumption of hot water differs from normative values, real measured data of hot water consumption in multi-apartment buildings from year 2013 until year 2015 have been analyzed. Also, the thermal energy consumption for hot water preparation has been analyzed. Based on aggregated data and taking into account the fact that renovated systems of hot water supply in existing multi-apartment buildings have same pipelines’ diameters, it was analyzed how these systems are economically and energy efficient. For the study, residential buildings in Riga, which have different architectural and engineering solutions for hot water supply systems, were selected. The study was based on thermal energy consumption measurements, which were taken at the individual heating system’s manifolds. This study was done in order to develop database on hot water consumption in civil buildings and define difference in key performance criteria in unclassified buildings. Obtained results allows to reach European Regional Development Fund project “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS” Nr. 1.1.1.116A048 main targets.

  7. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  8. Domestic hot water and solar energy in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Hand, F; Asare, B; Haslett, J

    1977-01-01

    Two systems are discussed which involve the use of solar energy to supply domestic hot-water requirements and their usefulness in Ireland is examined. The systems are evaluated for thermal performance and cost-effectiveness by the use of a computer simulation model of a system involving a typical commercially available solar panel. It is shown that such systems may be economically justified when compared with electricity, but only if the water supply is directly heated by solar panels and only if the installed cost of such panels is low. Further, it appears that the system performance is relatively insensitive to the panel orientation and consequently that retro-fit installations on existing houses are unlikely to cause difficulties.

  9. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  10. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  11. Application of waterproof breathable fabric in thermal protective clothing exposed to hot water and steam

    Science.gov (United States)

    Su, Y.; Li, R.; Song, G.; Li, J.

    2017-10-01

    A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and double-layer fabric system, while the difference between different configurations in steam hazard was greater than that in hot water hazard. The waterproof and breathable fabric as outer layer provided better protection than that as inner layer. Increasing thickness and moisture regain improved the thermal protective performance of fabric system. Additionally, the thermal energy absorbed by skin during the cooling phase was affected by configuration, thickness and moisture regain of fabric. The findings will provide technical data to improve performance of thermal protective clothing in hot water and steam hazards.

  12. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for large-sized building); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    In fiscal 1977, studies were carried out jointly with a research group assigned by the Government Research Institute using a solar cooling/heating and hot-water supply system for a large-sized building (i.e., various devices such as a heat collecting device, heat storing device, refrigerator, etc., and their attached equipment, hereinafter the 'test equipment'), a system installed in the building of the energy technology section, Department of engineering, Oita University. The studies were as follows. (1) Meteorological observation was conducted concerning meteorological items such as insolation, temperature, wind direction and wind velocity which were necessary for the operation and evaluation of the test equipment. (2) The test equipment was operated by the Oita University technical assistants in cooperation with the research group so that R and D was smoothly carried out for the practicability of an innovative system, in which cooling/heating and hot-water supply for a large-sized building were economically performed by the solar energy using the test equipment; and also, maintenance and management for the overall facilities were carried out within a pre-determined range. (3) Temperature, wind velocity, etc., around the heat collecting device were continuously measured in the winter time for preventive measures against freezing, with the data accumulated. The facilities consisted of 40 units of 2 m x 7.5 m large heat collecting device, 30USRT absorption refrigerating machine, and 45 m{sup 3} heat storage tank. (NEDO)

  13. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply system for apartment houses. In the system research, comparative study was made on facility costs and operation costs per heat load between previous and solar cooling/heating and hot water supply systems for apartment houses. In the working design for apartment houses, various calculation necessary for start of work, and preparation of detail drawings and specifications were made. In development of solar collector, the test loop and collector were prepared using full-scale collector elements for medium-scale performance tests. In development of heat accumulator, inorganic hydrate was selected as heat storage material using latent heat for the confirmation test of basic physical properties. In development of solar cooling/heating equipment, the confirmation test of Rankine engine's performance, controllability and durability was made under real load. In addition, the refrigerator of nearly 20 tons of refrigeration driven by Rankine engine was fabricated, (NEDO)

  14. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for new detached houses); 1994 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report describes the fiscal 1974 result on the solar cooling/heating and hot water supply system. The report includes the system analysis result (collection of existing technical data, analysis of weather conditions, profitability assessment, concept design of the primary experimental house), and the research result on equipment and materials (view and evaluation of existing technologies, selective transparent and absorption materials, the primary prototype solar heat collector model, refrigerator). As the study result, the spheroidal experimental house was adopted. The solar heat utilization system is a central air-conditioning equipment composed of heating by hot water obtained from the solar heat collector, and cooling by absorption refrigerator. Heat collection efficiencies were measured for (1) stainless steel substrate collector, (2) copper substrate collector, and (3) glass pipe collector prepared as prototype collectors. (2) was higher in heat collection efficiency than (1). The efficiency of (3) hardly increased by rise in heat collection temperature due to vacuum structure and selective absorption membrane. Further measurement of such characteristics is necessary at higher temperatures. (NEDO)

  15. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply systems for existing detached houses. The program for calculating heat collection rates was prepared by integrating peripheral conditions and every calculation step of heat collection rate, mean value, accumulated value and changes caused by disturbance. The cooling/heating load calculation program was also prepared for unsteady dynamic thermal analysis of houses. Another program was prepared for hot water supply load because of a large difference in life pattern. The profitability and energy conservation of 644 systems different in heat source, heat discharge, heat collection, heat storage, auxiliary heat source and equipment were evaluated by heat balance calculation program. Survey and study were also made on various heat engines such as heat pump, absorption refrigerator and Rankine cycle engine. Based on the survey result on existing technology for plane collectors, the optimum design method of collectors were established through various characteristic tests. Some kinds of suitable fusion latent heat type heat media were selected, and their operation stabilities were studied. (NEDO)

  16. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    Science.gov (United States)

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  17. Identification and assessment of environmental benefits from solar hot water production

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Spilanis, I.

    1997-01-01

    The environmental benefits associated with the utilization of solar energy for hot water production are estimated in this work. The case of a particular country, Greece, and its electricity production system is employed to show the direct consequences of substituting electricity with solar energy for hot water production. The amount of conventional fuel saved, i.e. lignite and oil, is estimated, and the reduction in air pollution is calculated. This allows the calculation of reduction emission factors for solar hot water production to be undertaken. Data, with respect to the materials and the amount of energy necessary for the construction of the solar heaters, are also presented. These can serve as inputs to an energy-environment policy framework in order to lead to reduction of air pollutants like SO 2 , NO X and particulates, and the release of the greenhouse gas CO 2 into the atmosphere. (Author)

  18. YACON INULIN LEACHING DURING HOT WATER BLANCHING

    Directory of Open Access Journals (Sweden)

    Caroline Fenner Scher

    2015-10-01

    Full Text Available ABSTRACTYacon roots contain inulin, which has prebiotic properties and it may be used as sucrose or fat substitutes. However, inulin is very soluble in water. The loss of this important nutrient during blanching is caused mainly by diffusion or leaching, which might be diminished if blanching temperature - time conditions are correctly employed. The aim of this study was to determine the leaching of the sugars inulin, glucose and fructose, present in yacon roots, during hot water blanching under different time/temperature conditions. The samples were cleaned and peeled and cut into geometric forms of 1.75 ± 0.35 mm thick disks. A complete factorial experimental design was used, and the treatments of the samples were compared using the Tukey test. The results indicated that the time and temperature were significant in the dissolution of the sugars. The lowest inulin losses occurred at temperatures and times lower than 60 ºC and 3 minutes. For all temperatures, the lowest glucose and fructose losses were obtained at time lower than 3 and 5 minutes, respectively.

  19. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  20. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  1. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on metal system materials); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kinzokukei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report describes the fiscal 1974 research result on metal system materials for solar cooling/heating and hot water supply systems. Study was made on cathodic protection of a roll bond heat collection board promising as Al plane collector. The protection is dependent on sacrificial anode materials. Al-Zn system alloy including minute amounts of In and Sn was effective in protection by transferring natural electrode potential to a base side largely, however, excess addition of In and Sn increased self-corrosion, remaining some issues to be solved. The prototype water flow corrosion test equipment was prepared for corrosion analysis of an Al roll bond collector natural circulation hot water supplier. Preliminary study was made to give selective absorption power (large short-wave absorption and small long-wave radiation from collector surfaces) to a collector. Deposition of Cu, Ni, Co and Sn oxides as black semiconductors into Al anodic oxidation film porous layers by secondary electrolysis was invalid as well as a painting method. Glossy Ni plating onto Al and black Cr and Ni plating onto the surface more elevated solar exposure surface temperature by more than 20% than black painting. (NEDO)

  2. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  3. Emission of Air Pollutants in the Hot Water Production

    Science.gov (United States)

    Krzysztof, Nowak; Maria, Bukowska; Danuta, Proszak-Miąsik; Sławomir, Rabczak

    2017-10-01

    The result of the deteriorating condition of the environment and climate change is to increase the efficient use of fuel and energy and the rational use of energy resources. Great potential for reducing consumption of fossil fuels are stuck in heating systems ranging from generation, transmission and distribution and ending with the recipients rationalize their consumption of heat. Efficient production of heat is obtained during optimal boiler load. The boiler type WR operates with the highest efficiency of 80-85%, the rate of fuel consumption is the lowest, and the process is close to complete combustion. In such conditions to the atmosphere are emitted mainly: SO2, CO2 and NOX. Pollutants such as CO, CH4, HF, HCl, NH3, etc., are the result of incomplete and imperfect combustion, that is, when the boiler is working inefficiently [1-3]. Measurements of pollutant concentrations were performed using an analyzer FTIR Gasmet DX4000. Fourier Transform Infrared Spectroscopy is a technique of measuring that allows a very precise identification of qualitative and quantitative range of compounds, including gaseous pollutants. Device used to measure the concentrations of gaseous pollutants allow determining the amount of carbon, sulphur and nitrogen compounds, which measurement is not defined any rules, including chlorine compounds, hydrogen, methane, ammonia and volatile organic compounds. In this publication presents part of the literature the use of heat for domestic hot water production in summer and heating demand in winter. Described the characteristics of the water boilers WR type used for heating. Presents the results study of the emissions in the production of hot water for the summer and winter seasons.

  4. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for existing private house); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-05-31

    The following technologies were developed for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for an existing private house economically by solar energy: (1) development of equipment constituting solar cooling/heating and hot-water supply system, and (2) development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. The results of the research were as follows. A latent heat type heat storage tank was developed in a small low-loss type in which ammonium alum was selected for a high temperature heat storage tank and in which NaCH{sub 3}COO(center dot)3H{sub 2}O were selected for a combination latent heat/cold water heat storage tank. A refrigerator was developed driven by a small Rankine cycle engine of a result coefficient of 0.47. A flat plate type heat collecting device was developed in a type having a BrNi selective absorbing film and materials of copper tube, aluminum plate and double glass. A vacuum heat collecting device was developed in a high efficient type with the outside dimension of {phi} (diameter) 70 x 1,270 mm, selective absorbing film BrNi, and a degree of vacuum of 10{sup -3}Torr. A heat receiving/releasing storm shutter was developed in a type using a latent heat storing material of paraffin wax. A heat absorbing/insulating outside wall panel was developed using FRP and aluminum as the materials. The system analysis also achieved success. (NEDO)

  5. Efficacy of brown sugar flotation and hot water methods for detecting Rhagoletis indifferens (Dipt., Tephritidae) larvae

    Science.gov (United States)

    The brown sugar flotation and hot water methods are accepted procedures for detecting larval western cherry fruit fly, Rhagoletis indifferens Curran, in sweet cherry [Prunus avium (L.) L.] and could be included in a systems approach for showing the absence of larvae in fruit. The methods require cr...

  6. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING NO.5006

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements

  7. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  8. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN

    2004-01-01

    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  9. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  10. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  11. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  12. Domestic Hot Water Usage in Hotels; Tappvarmvattenanvaendning paa hotell

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Stefan; Werner, Sven [FVB Sverige AB, Vaesteraas (Sweden); Sandberg, Martin; Wahlstroem, Aasa [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-06-01

    Historically, design curves for domestic hot water, have been well sized and therefore also the components oversized. The Swedish district heating companies have noticed this and some companies replace large valves with customer-required valves, which give several advantages. There are several reasons why valves and heat exchangers can be customer-required and still the customers demand for hot water comfort can be fulfilled. The domestic hot water flow is composed, the taps are often short, large simultaneous taps are not very likely. Also, the dimensioning flows occur in the winter period, while the components are dimensioned for the summer case. The water pipes level off temporary temperature drops and the user seldom notices these because water with 55 deg C is not used in the tap. For residential buildings there are dimensioning recommendations on domestic hot water flow, but not for hotels. The purpose of this project has been to evaluate the domestic hot water use in relation to size and number of occupied beds. If the patterns of the chosen hotels coincide regarding to the sizes, dimensioning curves for domestic hot water use can be suggested. They can be used when hotels, or buildings with the same use pattern, are being built or restored. Measurements on 3 hotels with different sizes have been made. The hotels have 36, 52 and 158 rooms. The hotels are situated in the cities of Boraas and Kinna in Sweden. A short period of measurements from another hotel in the city of Gaevle (199 rooms) has also been included in this project. The measurements show that large hot water taps in hotels are rare and short. For the hotels, relative, cumulative relative frequencies and likely extreme values have been estimated. For residential buildings, The Swedish District Heating Association have recommendations for dimensioned domestic hot water flows. Formerly, these recommendations have been levelled so a cumulative relative frequency of 1 %, is reached, i.e. 99 % of all

  13. Economic efficiency of solar hot water policy in New Zealand

    International Nuclear Information System (INIS)

    Gillingham, Kenneth

    2009-01-01

    New Zealand has recently followed the path of several other countries in promoting solar hot water (SHW) systems in the effort to reduce greenhouse gas emissions, yet the economic efficiency of large-scale policies to encourage SHW remains a pressing question for policymakers. This paper develops an economic framework to examine policies to promote SHW in New Zealand, including the current information, training, and subsidy policy. The economic framework points to environmental, energy security, and average-cost electricity retail pricing market failures as motivation for SHW policy, with the global climate change externality the most important of these. The results indicate that domestic SHW systems are close to being financially attractive from a consumer perspective, but a more substantial subsidy policy would be necessary for SHW to appeal to a wider audience. Such a policy is far more likely to have positive net benefits than a policy of mandating SHW on all homes or all new homes in New Zealand, and could be justified on economic efficiency grounds under reasonable assumptions. However, this result reverses under an economy-wide carbon trading system that internalizes the environmental externality.

  14. Fiscal 1981 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1981 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This report summarizes the fiscal 1981 research result on the behavior and flow mechanism of underground reinjected hot water, and the effect of reinjected hot water on the ground. In the tracer survey in Takinoue area, Iwate prefecture, the re-upwelling rate and mixing rate of reinjected hot water were lower than those in previous surveys, showing the smaller effect of hot water on productivity. In Nigori-Gawa area, Hokkaido, natural conditions prior to industrial production and reinjection were observed by tracer survey. In the simulation research, it was confirmed that the hydraulic structural model and analysis technique established by previous researches are effective for new production and reinjection systems different from previous ones enough. On observation of minute earthquakes, study was made on the effect of reinjected hot water on the ground in Takinoue area. In Nigori-Gawa area, the data were collected under natural conditions prior to industrial production and reinjection through minute earthquake observations. (NEDO)

  15. Estudio sobre la efectividad para la prevención de la legionelosis del sistema de calentamiento instantáneo, instalado en la red de agua sanitaria de un hospital Effectiveness study of a pasteurization system in controlling contamination with Legionella installed in a hospital's hot water system

    Directory of Open Access Journals (Sweden)

    Laura Gavaldà Mestre

    2006-12-01

    Full Text Available Se ha estudiado la efectividad de un sistema de pasteurización en el control de la contaminación por Legionella en la red de agua caliente de un hospital.El hospital había optado por este sistema debido a que los acumuladores convencionales originales presentaban importantes problemas en la capacidad de producción y en el mantenimiento de las temperaturas de distribución.El estudio fue iniciado después de haberse instalado los pasteurizadores y ha consistido en la realización de controles mensuales de Legionella y temperatura durante un período de 11 meses. De los resultados, se puede valorar que el sistema de pasteurización se considera efectivo, siempre y cuando las condiciones de la red (circulación, material, diseño, etc sean las adecuadas. El sistema no se considera efectivo en redes antiguas y con ramales sin circulación como se ha podido constatar en este estudio en el edificio de servicios, donde las conducciones presentaban un estado de conservación deficiente. En esta zona de servicios los controles de Legionella han mostrado una mejora únicamente después de que se iniciara un programa de purgas junto con la paulatina sustitución de los tramos en mal estado.The effectiveness of a pasteurization system in controlling contamination with Legionella has been evaluated in a hospital’s hot water system.The hospital acquired these equipments because the original system -conventional hot water tanks– had problems in producing and maintaining the distribution temperatures in the hot water circuit.The study started 11 months after the pasteurizers had been installed. The study consisted on Legionella and temperature controls which were conducted monthly during an 11-month period. Results have proved that a pasteurization system method to be an effective system of instantaneous warming provided that there are adequate conditions (circulation, materials, design, etc.. This system has no effectiveness in old nets or nets with

  16. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for large buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of (1) devices for solar energy systems for air conditioning and hot water supply, and (2) low-cost, safe systems incorporating the above devices, which are easily inspected and maintained, in which optimum buildings for effective utilization of solar energy are also investigated. Precision of the system analysis is improved by feeding back the results obtained by the basic studies conducted so far into the simulation. The technical supports for commercialization of heat collectors, refrigerators, heat-storage tanks and radiation type ceilings are also obtained. These results are combined for the designs of a real-size test building. In this year, works to install the facilities in the Oita University's test building are completed. These facilities include 40 units of large-size heat collectors (each approximately 2 m by 7.5 m in size); an absorption refrigerator of 30 uSRT in which single- and double-effect systems are combined; 2 piston-flow type heat-storage tanks, each 45 m{sup 3} in capacity; and others including analyzer, associated piping, duct, instrumentation and electrical systems. The test runs are conducted for the control systems, and long- and short-term instrumentation systems to draw the test schedules for optimizing the full-scale runs to be conducted in the next year. The operating and instrumentation manuals, and operating schedules are also drawn. (NEDO)

  17. A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater

    Science.gov (United States)

    Panaras, G.; Mathioulakis, E.; Belessiotis, V.

    2018-04-01

    The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.

  18. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for existing detached houses. In system analysis, various evaluation items of the primary experimental house to be constructed and the titled thermal system were determined, and its measurement/control online program was developed. In the R and D on equipment and materials, the performance of the vacuum collector prepared in last fiscal year was tested, and based on its result and study on optimum structure, the new prototype vacuum collector was fabricated. In the study on heat transfer and heat storage system equipment, the medium-scale latent heat type heat storage tank (1 x 10{sup 4}kcal in thermal capacity, 8 x 10{sup 3}kcal/h in thermal output) using ammonium alum was prepared. For a preventive mechanism against supercooling, reconsideration of structure of a crystal nucleus formation plate was necessary. In the study on refrigerator driven by Rankine cycle engine, the prototype compressor more than 3,000kcal/h in refrigeration capacity was fabricated. Construction of the experimental house and trial operation of the cooling/heating system were promoted. (NEDO)

  19. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for newly built private housing); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This report is for the results of fiscal 1979 on a solar cooling/heating and hot-water supply system for newly-built private housing. The research reports for fiscal 1974 to 1978 are as reported so far; for example, the research on energy-saving construction including thermal insulation method was used in an experimental housing completed in fiscal 1976. The solar heat collecting device was built in the experimental housing by increasing the scale of and utilizing the heat collecting device of a vacuum glass tube type on which research was done before fiscal 1975. The absorption refrigerating machine incorporated in the housing was of a forced circulation type which was high in temperature stability using the result of the research carried out until then. In fiscal 1979, as in fiscal 1978, one year residential experiment was conducted in which a family of a couple and two children lived in a house under an improved system as a result of a system variation and the like, and made an evaluation on the performance. Simultaneously, a control management system was developed in which a micro-computer was introduced for the purpose of improving the system performance, with the operation carried out under the micro-computer control. In addition, a fundamental experiment was also completed concerning a long-term heat accumulation by underground heat reserve. (NEDO)

  20. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  1. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  2. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This report describes the fiscal 1974 R and D result on solar cooling/heating and hot water supply systems for apartment houses. In system analysis, the system plan was selected through basic data survey, modeling by combining some kinds of such systems and energy flow calculation. On solar heat collector, theoretical analysis was made on a stationary plane collector, and study was made on cover glass material and absorption surface performances. On Rankine's engine, studies on advanced selective absorption film, transmissive film, prevention of heat radiation and converging collector were necessary. As solar heat driving refrigerators, absorptive one and Rankine's one were promising. As heat media for refrigerators, R-11 and 113, and R-114 and 11 were suitable for turbo one and displacement one, respectively. Since a displacement compressor is featured by high-efficiency lower-speed operation than that of turbo one without any constraint, its direct connection with a motor or generator is possible. Screw compressor belonging to displacement one was promising. Rotary displacement one was also promising in a small-capacity range within 20-50RT. (NEDO)

  3. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  4. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    Large buildings such as government office building, private office building and gymnasium are consuming a huge amount of fossil fuel as energy for cooling/heating and hot water supply. The final target of this project is a use of solar heat as energy for such systems in place of fossil fuel. The fiscal 1974 target of this project is as follows. The main part of the computation program was developed for system analysis on the whole thermal system composed of building structure, thermal load, and cooling and heating equipment. The small experimental thermal equipment and artificial light source were prepared to clarify the mechanism of solar heat collectors experimentally. As the first step of innovative refrigerator development, the small trial experimental equipment was prepared to clarify heat transfer characteristics for coolant recycling, and to develop an ideal structure heat exchanger possible to reduce the temperature difference between heating medium and heated liquid. Prior to development of a heat storage equipment, basic study was made on heat storage materials, heat insulation methods and characteristics of heat storage tanks. (NEDO)

  5. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for existing residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-05-31

    As part of the research and development of the solar energy systems for air conditioning and hot water supply for existing residential buildings, the following efforts are made: (1) system analysis, (2) studies on devices and materials, and (3) installation and operation of the facilities in test buildings, and collection of the data. For the item (1), the sensible heat type heat-accumulating tank is replaced by the latent heat type to reduce heat losses and auxiliary power requirements by improving heat-accumulating tank efficiency and revising the control procedure. For the item (2), the devices installed in the test buildings are tested to improve their performance and reliability, in which, e.g., results of operation, under commercial conditions, of the Rankine cycle refrigerator installed in the test building are taken into consideration. The empirical correlation {eta} 0.66 - 1.7{delta}T/I is obtained for instantaneous heat-collecting efficiency of a vacuum collector, made on a trial basis. Its heat loss is sufficiently small, which is in agreement with the results of the nighttime heat release tests. For the latent heat type heat-accumulating tank, stability of the materials therefor are investigated. For the Rankine cycle refrigerator, development of its parts is continued. For the item (3), the facilities are tested for around 7 months, and problems involved in each device are clarified. (NEDO)

  6. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  7. Influence of the user behaviour on the design and the power requirement of systems for heating, ventilation and hot-water in low-energy buildings; Einfluss des Nutzerverhaltens auf die Auslegung und den Energiebedarf von Anlagen zur Heizung und Warmwasserbereitung im Niedrigenergiehaus

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Schmitz, G.

    2000-07-01

    The low-energy standard of new buildings (energy savings regulation 2000) causes a clear shift of the energy consumption of modern houses toward the heat requirement for the ventilation of buildings and for the hot-water supply, which in each case depends strongly on the habits of the user and his requirements for comfort. With the help of the dynamic simulation the interactions between users, building and the equipment technology for heating, ventilation and hot-water supply were analyzed. The main cause variables were detected and resultant conclusions for planning and design of building services systems in low-energy buildings are drawn. (orig.) [German] Die Energiesparverordnung (ESVO) wird die Waermeschutzverordnung und die Heizungsanlagen-Verordnung zusammenfassen und soll zu einer weiteren Absenkung des Energiebedarfes von Neubauten um 30% gegenueber dem aktuell gueltigen Standard fuehren. Mit der ESVO soll insbesondere die installierte Haustechnik in eine gesamtheitliche energetische Bewertung der Gebaeude miteinbezogen werden. In einem Forschungsprojekt der TU Hamburg-Harburg wurden daher Planungshinweise fuer Heizungs-, Lueftungs- und Warmwasseranlagen in Niedrigenergiehaeusern (NEH) erarbeitet. Dabei wurde insbesondere der Einfluss des Nutzerverhaltens in die Betrachtung miteinbezogen. (orig.)

  8. Effects of sulphuric acid and hot water treatments on seed ...

    African Journals Online (AJOL)

    A study was carried out to investigate the effects of sulphuric acid and hot water treatments on the germination of Tamarind (Tamarindus indica L). Seeds were placed on moistened filter papers in 28 cm diameter Petri dishes under laboratory condition for germination. 330 seeds of T. indica (10 seeds per Petri dish) with ...

  9. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  10. Investigations on stratification devices for hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Hampel, Matthias

    2008-01-01

    The significance of the thermal stratification for the energy efficiency of small solar-thermal hot water heat stores is pointed out. Exemplary the thermal stratification build-up with devices already marketed as well as with devices still in development has been investigated experimentally...

  11. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  12. Investigation on Kombiterm GE Domestic Hot Water Tank

    DEFF Research Database (Denmark)

    Heller, Alfred; Heuer, Andreas Walter

    1996-01-01

    Investigation of a hot water tank with a high heat exchanger spiral with a small pipe diameter in the upper part of the heat exchanger spiral and a large pipe diameter in the lower part of the heat exchanger spiral in cooperation with Kãhler&Breum Beholder- og Maskinfabrik K/S. First preprint of ...

  13. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  14. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  15. Metagenomic analysis of bacterial diversity of Siloam hot water ...

    African Journals Online (AJOL)

    The bacterial diversity of Siloam hot water spring was determined using 454 pyrosequencing of two 16S rRNA variable regions V1-3 and V4-7. Analysis of the community DNA revealed that the phyla Proteobacteria, Cyanobacteria, Bacteriodetes, Planctomycetes, Firmicutes, Chloroflexi and Verrucomicrobia were the most ...

  16. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  17. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on synthetic resin system materials); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Gosei jushikei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on synthetic resin system materials for solar cooling/heating and hot water supply systems. In fiscal 1976, study was made on evaluation of the practical performance of photo-selective transmissive films, photo-selective absorptive films, reflective films and collector materials. In the study on photo-selective transmissive films, study was mainly promoted on indium oxide film, and a solar radiation transmissivity of 78% and an IR reflectance of 78% were obtained at 4000(angstrom)/min in deposition rate by reactive sputtering under the existence of oxygen gas mixture. In the study on photo-selective absorptive films, study was made on conditions for the basic prescription of paints for semiconductor dispersing coated films. The exposure test result of CuO and CuO-MnO{sub 2} system materials showed excellent heat resistances with less change in optical property after 720h at 140 degreesC and 350h at 180 degreesC. In the study on reflective films, evaluation was made on the durability of reflective films obtained by vacuum deposition of Ag and Al onto synthetic resin films through outdoor exposure. (NEDO)

  18. Elution behavior into the high pressured hot water and the organizational change of granite and andesite

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Isao; Miyazaki, Akira; Yamaguchi, Tsutomu; kuriyakawa, Michio

    1988-04-01

    In the development of a high temperature rock system, the interaction between the rock and hot water which occurs in a reservoir provides big effects. The decline of the strength and the increase of the permeability are caused by the elusion of the rock on the surface of the hydraulic fracture and the redeposition of the eluded material also causes to narrow or close the channel. However, studies concerning the organizational change of the rock by the hot water or the material change associated with the organizational change are small in number. In this research, Inaba granite and Honkomatsu andesite were treated in heat with an autoclave in order to investigate the organizational changes of the rocks and at the same time, the elusion behavior of the rocks into the hot water was investigated by examining chemical components which were eluded into the fluid and the components remaining on the rock surface. The decreased amount per specific surface area due to the autoclave treatment is the order of 10/sup -3/(gcm/sup -2/) for both rocks and changeable depending upon the heating temperature and the kind of rock. As a result of the analysis of the fluids in the autoclave after the heat treatment, the Si concentration of Honkomatsu andesite was higher in the same temperature and the heating time. (2 figs, 3 tabs, 6 refs)

  19. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  20. Study on Operating Performance of a Combined Hot Water Supplying System with Solar Energy and Heat Pump Based on TRNSYS%基于TRNSYS的太阳能-热泵联合供热水系统运行性能研究

    Institute of Scientific and Technical Information of China (English)

    杨敏

    2017-01-01

    Established a combined hot water supplying system model with solar energy and air source heat pump based on TRNSYS and simulated the water temperature variation and operating energy consumption characteristics in the water tank of a student dormitory in different seasons in Changsha.The results show that the water from the time-temperature control scheme of the system each month can basically meet the needs of users.By concmparing the solar energy absorption,heat pump energy consumption and energy consumption of each part at each month,coluded that the heat pump has the least energy consumption,the solar energy utilization rate is the highest and the system save energy most in summer.The research results provide reference value for mastering theperformance of hot water supplying system with solar energy and improving the design and control of the whole system.%基于TRNSYS软件建立了太阳能与空气源热泵联合供水系统模型,模拟了长沙地区某学生宿舍不同季节水箱内的水温变化及运行能耗特点.结果表明,所选取的时间-温差控制方案下该系统各个月的水温基本上可以满足用户需求.通过比较各供热水系统各月吸收太阳热量、热泵能耗、各个部件能耗,得出夏季热泵能耗最少,太阳能利用率最高,该系统节约能源最多.研究结果对掌握太阳能供热水系统性能及改善整个系统的设计与控制具有参考价值.

  1. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on metal system materials); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kinzokukei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on high-efficiency high-durability inexpensive metallic collectors, equipment and materials for solar cooling/heating and hot water supply systems. In the study on metal materials for heat collector plates, corrosion-proofing experiment was made on Al-Zn, Al-Zn-In and Al-Zn-Fe-In alloys treated by bainite under 7 kinds of environmental conditions, resulting in no formation of any through hole. Study was also made on water flow corrosion test of A1100 material, and water- corrosion retardant for Al. In the study on selective absorption films, study was made on secondary electrochemically coated film and vacuum deposition film. Fabrication, test operation and preliminary experiment were made on the large secondary electrolysis facility for full- scale solar panels. The selective absorptivity of secondary electrochemically coated films was a maximum of 0.95 in absorptivity and 0.10 in emissivity, showing the favorable selective absorptivity of both Ni and Co. The durability test result showed favorable heat resistance, light resistance and moisture resistance. (NEDO)

  2. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  3. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  4. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers.

    Science.gov (United States)

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu

    2018-04-30

    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during CON trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last HOT session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P HOT: -16%, P HOT: -60%, P < 0.05) of archers, compared with untreated CON trial. No group differences were found in motor unit recruitment (root mean square electromyography, RMS EMG) of arm muscles during aiming, autonomic nervous activity (sympathetic and vagal powers of heart rate variability, HRV), and plasma cortisol levels after treatments. Our data suggest that physiological adaptation against heat exposure takes away the sources needed for normal training adaptation specific to shooting performance in archers.

  5. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  6. Surprisingly low natural gas consumption for hot water in the Netherlands in 1996

    International Nuclear Information System (INIS)

    Geerse, C.

    1997-01-01

    The Dutch use hot water more efficient than previously expected. This conclusion is drawn from a recent study of hot water consumption in Dutch households and the corresponding natural gas consumption. Based on that (once-only) hot water use survey the hot water use models, as applied in the annual Basic Survey of Natural Gas Consumption of Small-scale Consumers in the Netherlands (BAK), will be modified. 6 tabs

  7. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...... °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario....

  8. Hot water supply in ''Smart Home''. Decentralized supply, decentralized control; Warmwasserversorgung im 'Smart Home'. Dezentral versorgen, dezentral steuern

    Energy Technology Data Exchange (ETDEWEB)

    Wiechers, Olaf

    2013-10-01

    The separation of the heating system and domestic hot water is already established in commercial and residential construction. The decentralized hot water supply offers environmental and economic benefits. In this paper it is shown that one can also do this in a detached house. [German] Die Trennung von Heizsystem und Warmwasserbereitung ist im Gewerbe- und Wohnungsbau bereits etabliert. Die dezentrale Warmwasserversorgung bietet oekologische und oekonomische Vorteile. In diesem Beitrag wird gezeigt, dass man dies auch bei einem Einfamilienhaus durchfuehren kann.

  9. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  10. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  11. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  12. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  13. Measurements of cold and hot water in ten dwellings; Maetning av kall- och varmvatten i tio hushaall

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Aasa; Nordman, Roger; Pettersson, Ulrik (Swedish National Testing and Research Inst., Boraas (Sweden))

    2008-07-01

    Reducing tap water consumption has considerable potential for reducing overall environmental impact. It not only saves fresh water, but also gives significant savings of energy that would otherwise have been needed to heat hot water. However, in order to improve the energy efficiency of building services systems and to help occupants act more energy-efficiently, more knowledge is needed on how water is used in our homes. Today, we actually know very little about usage patterns from one tapping point to another, or the division between cold and hot water use, and this study aims to help provide appropriate information. The aim of this project is to increase the knowledge of how tap water is used in Swedish households. The main purpose is to gain knowledge of how to decrease the energy use and for that reason the description of the use of hot water is essential. Measurement has been made of hot and cold water use at each tapping point in ten dwellings: four apartments in apartment buildings, and six single-family buildings. The households were of the following categories; single, young couple, middle-aged couple and families with children. The number of households is too low to represent the water use at national level, but can still contribute with important knowledge of how we use water in our homes. The results show the following division of tap water use: - wash basin: 19% (11 % hot water and 8 % cold water); - kitchen sink 41% (23 % hot water and 18 % cold water); - shower/bathtub 40% (27 % hot water and 13 % cold water). About 61% of the total water quantity is hot water (note that cold water for toilet flushing and for laundry is not included in the total water use). The proportions between tapping points are very similar for the dwellings in the apartment buildings and single-family houses, and the use of water in the shower/bathtub is essentially the same as the use in the kitchens. In the single-family buildings the water use in laundry rooms was measured

  14. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  15. Sustainable and reliable hot water in utility buildings; Duurzaam en verantwoord warmtapwater in utiliteitsgebouwen

    Energy Technology Data Exchange (ETDEWEB)

    Lansbergen, A. [Itho, Schiedam (Netherlands)

    2008-02-15

    Non-residential buildings that have a high demand for hot water were formerly equipped with large, conventional central hot water systems. A growing awareness of the risk of legionella infection and the thermal strategy needed to prevent the growth of these bacteria have generally resulted in higher water temperatures. The water circulation rate in such systems has also been raised. An unexpected side effect of these measures has been an increase in transmission loss from the hot water pipe network. This loss often results in the heating of water in adjacent cold water pipes to a higher temperature than desired or permitted. There is no longer any advantage in designing large centralized systems with a high thermal output. The answer is to split a large system into a number of smaller ones, and thereby reduce the pipe lengths required to serve the draw-off points. [Dutch] In utiliteitsgebouwen met veel warmwatertappunten is in het verleden vaak een grote traditionele centrale warmtapwaterinstallaties geplaatst. Door de groeiende bekendheid over de gevaren van de legionellabacterie en het thermisch beheer van de warmtapwaterinstallatie om legionellagroei te voorkomen, is de warmtapwatertemperatuur in de regel nu hoger ingesteld dan voorheen. Ook is de circulatie in de warmtapwaterinstallaties opgevoerd. Het bijkomend nadelig effect van deze maatregelen is dat het transmissieverlies van het warmtapwaternet groter is geworden, waardoor in veel gevallen de naastgelegen koudwaterleidingen onbedoeld warmer worden dan gewenst en toegestaan. Het heeft dus geen voordeel meer een grote centrale installatie met relatief veel warmteafgifte te ontwerpen. Het antwoord: splits de grote installatie in meerdere kleine installaties en beperk daardoor de noodzakelijke leidinglengtes naar de tappunten.

  16. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on metallic materials ); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kinzokukei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    The following technologies were developed for the purpose of materializing various methods of a solar cooling/heating and hot-water supply system using aluminum and other metallic materials: (1) research on improving corrosion resistance of metallic materials for a heat collector plate and (2) research on a selective absorbing film. The results in fiscal 1979 were as follows. (1) A practicality running test for a solar panel, which started in fiscal 1977, was continuously carried out at eight places in the nation. After approximately two years and a half passed, each panel was cut open and analyzed. As a result, despite a difference in the degree of corrosion by the regions, an Al-Zn-Fe-In alloy had a larger corrosion area than two other alloys, but the corrosion depth was shallower, with the corrosion remained only in the clad layer, which seemed to eliminate the fear that it might grow to be a through-hole for the time being. This research was completed. (2) Research for the selective absorbing film was carried out in fiscal 1979 on a chrome black membrane by a high frequency excited ion plating method and on a carbide and nitride membranes. In addition, a durability test and an Auger analysis were performed for a titanium nitride selective absorbing film that was obtained by a DC bipolar reactive ion plating method. (NEDO)

  17. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  18. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  19. Application of an intermediate LWR for electricity production and hot-water district heating

    International Nuclear Information System (INIS)

    1983-05-01

    The objective of the study is to evaluate the technical and economic feasibility of a 400 MWe Consolidated Nuclear Steam System (CNSS) for supplying district heat to the Minneapolis/St. Paul area. A total of three CNSS reactor sites, located various distances from the Minneapolis-St. Paul area load center, are evaluated. The distance from the load center is determined by the credited safety features of the plant design. Each site is also evaluated for three different hot water supply/return temperatures providing a total of nine CNSS study cases. The cost of district heat delivered to the load center is determined for each case

  20. Assessing the economic aspects of solar hot water production in Greece

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Kovras, H.

    1997-01-01

    The long-term performance of various systems was determined and the economic aspects of solar hot water production were investigated in this work. The effect of the collector inclination angle, collector area and storage volume was examined for all systems, and various climatic conditions and their payback period was calculated. It was found that the collector inclination angle does not have a significant effect on system performance. Large collector areas have a diminishing effect on the system's overall efficiency. The increase in storage volume has a detrimental effect for small daily load volumes, but a beneficial one when there is a large daily consumption. Solar energy was found to be truly competitive when the conventional fuel being substituted is electricity, and it should not replace diesel oil on pure economic grounds. Large daily load volumes and large collector areas are in general associated with shorter payback periods. Overall, the systems are oversized and are economically suitable for large daily hot water load volumes. (Author)

  1. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey.

    Science.gov (United States)

    Totaro, Michele; Valentini, Paola; Costa, Anna Laura; Frendo, Lorenzo; Cappello, Alessia; Casini, Beatrice; Miccoli, Mario; Privitera, Gaetano; Baggiani, Angelo

    2017-10-26

    Although the European reports highlight an increase in community-acquired Legionnaires' disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2-16, and non- pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control.

  2. Effects of hot water treatments on dormant grapevine propagation materials used for grafted vine production

    Directory of Open Access Journals (Sweden)

    Soltekin Oguzhan

    2017-01-01

    Full Text Available Agrobacterium vitis is responsible for the crown gall disease of grapevine which breaks the grapevine trunk vascular system. Nutrient flow is prevented by crown gall and it leads to weak growth and death of the plants. It can be destructive disease often encountered in vineyards and it can be spread in cuttings for propagation. Thermotherapy treatment is an alternative method for eradicating A. vitis from grapevine cuttings but effects of thermotherapy treatments on dormant vine tissue, bud vitality, rooting and shooting of the propagation materials are not yet fully understood. In this research, it is aimed to determine the effects of thermotherapy treatment (Hot water treatment on callus formation (at the basal part and grafting point, grafted vine quality (shoot length, shoot width, root number, shooting and rooting development, fresh and dry weight of shoots and roots and final take in the grafted vine production. Experiment was conducted in the nursery of Manisa Viticultural Research Institute. Rootstocks (Kober 5BB, Couderc 1613 and 41B and scions (Sultan 7 and Manisa sultanı were hot-water treated at 50°C for 30 minutes which is the most common technique against Agrobacterium vitis. After thermotherapy treatment, all rootstocks were grafted with Sultan 7 and Manisa sultanıvarieties. They were kept for 22 days in callusing room for callus development and then they were planted in polyethlyene bags for rooting. At the end of the study, significant treatment x rootstock interaction were observed for the final take of Sultan 7 variety. Thermotherapy treated of 1613C/Sultan 7 combinations had more final take than the control (untreated group. For instance, hot water treated cuttings of 1613C/Sultan 7 combinations had 75% final take while the control group had the 70%. Also there were not observed any adverse effects of HWT on bud and tissue vitality.

  3. Mechanism of Corrosion of Activated Aluminum Particles by Hot Water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2014-01-01

    Mechanism of corrosion in aluminum particles by hot water treatment for hydrogen generation is evaluated. The aluminum powder was activated by ball milling for different durations, which modified size and microstructure of the particles. Open circuit potential test was carried out to elucidate different stages of the reaction. Tafel test was used to explain the effect of ball milling and growth of hydroxide layer on corrosion of the particles. Surface, cross section and thickness of the grown hydroxide on the aluminum particles were studied in a scanning electron microscope. The corrosion potential of the aluminum powders depends on microstructure of the aluminum particles, growth of the hydroxide layer and a change in pH because of cathodic reactions. The hydrogen production test showed that a deformed microstructure and smaller particle size accelerates the corrosion rate of aluminum by hot water, the effect of the deformed microstructure being more significant at the beginning of the reaction. Effect of growth of the hydroxide layer on corrosion mechanism is discussed

  4. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2012-12-01

    Full Text Available The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project Contract No. TREN/FP7EN/239497/”ECOLIFE”.Article in Lithuanian

  5. Methods of accounting the hot water consumption modes at the solar installations design

    Directory of Open Access Journals (Sweden)

    Vyacheslav O. Dubkovsky

    2015-06-01

    Full Text Available Peculiarities of the high-powered solar systems for hot water heating are considered. The purpose of work consists in development of methods for accounting the 24-hourly hot water consumption mode, determining the solar systems dynamic descriptions. The basic solar system schemes are analyzed with their shortages from the user satisfaction view point due to sun energy. For the dynamic parameters improvement the use of operative expense tank is examined such receptacle bearing built-in worm-pipe, through which all heat carrier from solar collectors passes before entering the fast heat exchanger which heats a tank-accumulator. The scientific novelty refers to the proof that this tank principal parameter is a not the volume, but the built-in exchanger capacity, determined by the solar collectors field total thermal power. As an ecological constituent of operating costs it is suggested to take into account cost paid for the emission of combustion products. As this method practical application example considered is the solar collectors capacity optimization for a communal enterprise.

  6. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  7. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of glass-based materials); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Glass kei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-05-01

    This project is aimed at development of the following collector techniques for various types of solar energy systems for air conditioning and hot water supply: (1) selective transmission glass, (2) reflection-preventive glass, (3) glass-based selective absorption film, and (4) high-performance collector. For the item (1), the STG coated with a reflection-preventive film of In{sub 2}O{sub 3} and that with MgF{sub 2} attain the target performance, and high-speed sputtering is investigated for development of the mass production techniques and promising results are produced. For the item (2), formation of a uniform reflection-preventive film on the glass's front surface and improvement of the reproducibility are investigated, and promising results are produced. For the item (3), a selective absorption plane having a solar radiation absorptivity of 0.90 or more and infrared emissivity of 0.30 or less is produced by baking a SnO{sub 2} film on a soft steel plate undercoated with a black glaze as the glass-based film. For the item (4), a total of 4 types of collectors are fabricated on a trial basis and tested for their heat-collecting performance; a honeycomb type with the selective absorption film, modified laminated type with changed pipe arrangement, one using a large-size reflection-preventive glass, and another one with changed method for supporting the heat-collecting plate. Attainable performance level of the flat plate type collector for commercial purposes is estimated, and the specifications of the commercial collector as the research target are determined. (NEDO)

  8. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on synthetic resin materials); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Gosei jushikei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Research has been carried out on various collector members using synthetic resins for a solar cooling/heating and hot-water supply system. In the research on a light selective transmitting film, a technology was established in which an In{sub 2}O{sub 3}/SnO{sub 2} film was processed on a polyester film at a spatter speed of 4,000 (angstrom)/min by using a conventional spattering device and a method of running the film while it was cooled. In the research on transparent heat insulating materials, a plastic heat insulator molding test device was used, molding and evaluating the straight groove type bent molded product of various plastic films, with the best results obtained using a polyester film. The selective absorbing film proved that the synthesizing time of Co{sub 3}O{sub 3} was reduced by about 30% and that no performance was lowered by the mixture of inexpensive metallic oxides, which enabled a prospect of the cost reduction. The base material for the heat collecting body was produced using a three-layer film containing a metallic foil and a water channel of a molded sheet structure by a heat joining method, but no improvement was seen in the pressure resistance. In the general evaluation of the practicality of a high performance collector, the selective transmitting film was found insufficient in the contributing effect to the improvement of heat collecting efficiency. The transparent heat insulating material contributed to the efficiency increase through the improvement of the light transmissivity. (NEDO)

  9. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  10. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Dehghan, A.A.; Barzegar, A.

    2011-01-01

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  11. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  12. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50-55 °C/25 °C) systems in,preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low......-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies....... Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...

  13. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  14. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  15. Immune changes during whole body hot water immersion: the role of growth hormone.

    Science.gov (United States)

    Kappel, M; Poulsen, T D; Hansen, M B; Galbo, H; Pedersen, B K

    1997-07-01

    Studies examined the role of growth hormone, catecholamines, and beta-endorphins in changes in natural killer cell activity, subtypes of blood mononuclear cells, and leukocyte concentration in response to hot water immersion in humans. The response of leukocytes and neutrophils to 2 hours of hot water immersion and simultaneous administration of propranolol, somatostatin, naloxone, or isotonic saline are reported.

  16. Rotating shell eggs immersed in hot water for the purpose of pasteurization

    Science.gov (United States)

    Pasteurization of shell eggs for inactivation of Salmonella using hot water immersion can be used to improve their safety. The rotation of a shell egg immersed in hot water has previously been simulated by computational fluid dynamics (CFD); however, experimental data to verify the results do not ex...

  17. Report on achievements in fiscal 1974 in Sunshine Project. Study on hot water systems in geothermal areas; 1974 nendo chinetsu chiiki no netsusuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This study has begun in fiscal 1973 under a five year plan with an objective to elucidate origin and maintenance of reservoirs of geothermal fluids. To achieve the objective, estimation was made on the systems of infiltration, storage and gushing of the fluids, particularly on infiltration areas. In the hydraulic flow rate study, observation was carried out in the Onikubi area on amount of rainfall, air pressures, temperatures, electric conductivity, and pH, and in ten fluid sources on flow rates, temperatures and pH. Flow rate observation was started at three rivers. In the Kuju area, flow rate observation was started on four fluid sources. Observations were started on temperatures, electric conductivity, flow rates, amount of rainfall by using the Takenoyu geothermal steal wells, and on amount of rainfall in the Teraono and Hacchobara areas. In the study of isotopic geology, site analyses and water collection were carried out in the Kuju area for underground water in six locations, hot spring water in seven locations, and 17 test samples from two geothermal wells. As a study on reservoirs, observation was started in the southern Hachimantai area on measurement of ground fluctuation in association with steam collection. In parallel, fracture survey and gravity measurement were carried out. In order to investigate transformed geology, analytic samples were collected from 12 survey wells in the Onikubi area. A spinner flow mater was tested in that area. (NEDO)

  18. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  19. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  20. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  1. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  2. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  3. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    Science.gov (United States)

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  4. The influence of mass transfer, velocity and mechanical stress on the growth of coating in hot water

    International Nuclear Information System (INIS)

    Heimsch, R.; Hegele, E.; Frau, B.

    1977-01-01

    Within the scope of the research programme of the special research range 157 'Thermal Power Plant' at the university of Stuttgart, the formation, the growth and the characteristics of the magnetite layer (Fe 3 O 4 ) in steam generator pipes, in the hot water phase will be analysed. In the Grosskraftwerk Mannheim AG a test plant was installed for that purpose, which operates at present in circulating operation at p = 250 bars and t = 340 0 C. For the Fe 3 O 4 formation important parameters, temperature, pH-value, Fe-, O 2 -, H 2 -content, electrical conductivity and redox potential will be controlled. By hot water oxidation - this is the range on which our research is concentrated at present, a double layer epitactical and topotactical of Fe 3 O 4 is formed. One of the undesired layer types is the so-called 'Ripple-rafflers' of the epitactical layer, which results in an extensive increase of pressure loss in the evaporator, and which requires cleaning of the evaporator. Referred to the entire system, the pressure loss increase can be up to 30%. During the report period, the influece of speed, mass flux and mechanical stress on the layer growth in hot water, especially on the morphology of the protective layers have been researched. The achieved results will be described in this lecture. (orig.) [de

  5. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    Science.gov (United States)

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  6. Possibility of Heat Pump Use in Hot Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Tatyana Babak

    2016-09-01

    The results of this work may be used for in Total Site methodology development allowing heat recovery for district heating needs of both new designs and as retrofits to existing sites to ensure fast, widespread and cost-efficient industrial deployment. It leads to carbon footprint reduction and energy efficiency improvement of regions with heating and cooling demands during winter and summer seasons.

  7. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  8. Generalizable occupant-driven optimization model for domestic hot water production in NZEB

    International Nuclear Information System (INIS)

    Kazmi, H.; D’Oca, S.; Delmastro, C.; Lodeweyckx, S.; Corgnati, S.P.

    2016-01-01

    Highlights: • Smart meter data for domestic hot water consumption is collected for 46 NZEB. • Reinforcement learning optimizes energy consumed while constrained on user comfort. • Online optimization models learn occupant behaviour and system thermodynamics. • Offline generalizable models calibrate dynamically the storage vessel operation. • Real world application of the active controls resulted in energy savings of 27%. - Abstract: The primary objective of this paper is to demonstrate improved energy efficiency for domestic hot water (DHW) production in residential buildings. This is done by deriving data-driven optimal heating schedules (used interchangeably with policies) automatically. The optimization leverages actively learnt occupant behaviour and models for thermodynamics of the storage vessel to operate the heating mechanism – an air-source heat pump (ASHP) in this case – at the highest possible efficiency. The proposed algorithm, while tested on an ASHP, is essentially decoupled from the heating mechanism making it sufficiently robust to generalize to other types of heating mechanisms as well. Simulation results for this optimization based on data from 46 Net-Zero Energy Buildings (NZEB) in the Netherlands are presented. These show a reduction of energy consumption for DHW by 20% using a computationally inexpensive heuristic approach, and 27% when using a more intensive hybrid ant colony optimization based method. The energy savings are strongly dependent on occupant comfort level. This is demonstrated in real-world settings for a low-consumption house where active control was performed using heuristics for 3.5 months and resulted in energy savings of 27% (61 kW h). It is straightforward to extend the same models to perform automatic demand side management (ADSM) by treating the DHW vessel as a flexibility bearing device.

  9. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers (modifies HG-400.2). 53.05-2 Section 53.05-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... requirements for hot water boilers (modifies HG-400.2). (a) The relief valve requirements for hot water boilers...

  10. Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2016-01-01

    The development of DH (District Heating) is an environmentally friendly and energy-efficient strategy in China. Currently, the vast majority of DH systems are SH (Space Heating) only and do not provide DHW (Domestic Hot Water). DHW is mainly produced by individual water heaters due to the cost......-effective issues of the centralized DHW systems. From the perspective of long-term development, DHW produced via DH systems would be more sustainable because DH is an important precondition for an environmental safe use of domestic waste fuels. This paper presents an approach that uses flat stations meanwhile...

  11. ''Terek-3'' a well flowmeter for hot water

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, A; Bar-sliva, V

    1979-01-01

    For studying ther applicability of an injection well with injection of hot water (with temperature to 150-200/sup 0/C) it is necessary to have well flowmeters which have high sensitivity and performance capacity at this temperature. In developing the well remote flowmeter ''Terek-3'' the All-Union Scientific research and Planning-Design Institute for comprehensive automation of oil and gas industry made a decision to use a drive-less packer developed by the authors of the article for the well flowmeter ''Terek-1'' designed to study high-output wells. Because of the use of the drive-less packer, the sensitivity of the flowmeter was considerably improved and the lower limit of measurements were decreased to 60 m/sup 3//day. In order to reduce friction in the supports of the turbines, agate step bearings and cores were used made of steel 40KKhNM. The upper step bearing was installed in the instrument housing, and the lower in the body of the turbines. This reduces the possibility of its contamination in the measurement process. One should also bear in mind that with an increase in temperature, the viscosity of water diminshes (roughly 5-fold with temperature of 150/sup 0/C). Therefore, with a decrease in the influence of viscosity on the readings of the flowmeter in the instrument, a turbine was used suggested by V. I. Bar-Sliva. In this turbine the blades are separated from the step which guarantees not only the obtaining of the maximum moving momentum but also reduces the influence of the change in viscosity on the operation of the turbine. The impulse output signal obtained with rotation of the turbine with magnet is transmitted on a single-strand cable to a surface apparatus consisting of a condensator frequency meter and universal logging recorder N-381 which guarantees recording of the changed consumption on a diagram tape as a function of depth or time. Experimental samples of the well flowmeter ''Terek-3'' passed state inspection tests.

  12. Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Risk of Burns from Eruptions of Hot Water Overheated ... coffee or sugar are added before heating, the risk is greatly reduced. If superheating has occurred, a ...

  13. Effects of Hot Water Immersion on Storage Quality of Fresh Broccoli Heads

    Directory of Open Access Journals (Sweden)

    Huaqiang Dong

    2004-01-01

    Full Text Available Freshly harvested broccoli heads were immersed for 0, 1, 4 or 8 min into hot water at 45 °C, and then were hydrocooled rapidly for 10 min at 10 °C. Following these treatments, the broccoli were air-dried for 30 min, then packed in commercial polymeric film bags, and, finally, stored for 16 days at –1, 1, and 12 °C. The samples treated with hot water maintained high contents of chlorophyll concentrations, their yellowing rate was delayed, and fungal infection and chilling or freezing injury were inhibited markedly. Compared to non-heat-treated broccoli, a lower level of peroxidase activity with a relatively higher chlorophyll concentration was observed when broccoli were treated with hot water. Among these heat treatments, immersion in hot water for 4 min at 45 °C was the most effective for maintaining the quality of harvested broccoli heads.

  14. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  15. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  16. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  17. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  18. Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant; Kombineret brugsvands- og rumvarmepumpe med CO{sub 2} som koelemiddel

    Energy Technology Data Exchange (ETDEWEB)

    Schoen Poulsen, C. [Teknologisk Institut (Denmark)

    2006-05-19

    This project report describes the implementation of the Danish project called 'Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant'. In the course of the project, a combined heat pump has been developed for heating sanitary hot water and producing domestic space heating. The project shows that CO2 has excellent properties in systems where a high temperature is desired on the gas cooler side and that it is possible to combine the production of sanitary hot water with the production of domestic space heating. During the project, a number of system solutions have been analysed and at the end of the project a prototype was built. It was tested in the laboratory according to a current Dutch standard for heat pumps for sanitary hot water. The prototype was constructed without the space heat part which solely has been analysed according to calculations. The reason is that there currently are no applicable European standards for the testing of combined systems and as the total efficiency of the system mainly depends on the temperature out of the gas cooler it was decided not to spend resources on the construction of the combined system in the prototype version of the unit. Instead, a number of proposals have been submitted to how the system with a space heat section could be constructed. The main components used in the prototype (compressor, exchangers, valve, control and tank) are all partly commercially available and therefore focus has been on the system construction. During the project, a number of CFD calculations have been carried out on the gas cooler in the hot water tank and the results show how important it is that the gas cooler is designed and placed correctly. The laboratory tests carried out on the unit show that the COP of the heat pump plant in connection with sanitary hot water tapping (according to Dutch standard) is 1.4 1.5 which is not immediately satisfactory. But when it is considered that the unit is a

  19. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.

    Science.gov (United States)

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2017-06-20

    Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H 2 ) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H 2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.

  20. Effect of hot water and gamma radiation on postharvest decay of grapefruit

    International Nuclear Information System (INIS)

    Spalding, D.H.; Reeder, W.F.

    1986-01-01

    'Marsh' seedless white Florida grapefruit (Citrus paradisi Macf.) were inoculated after harvest with a spore suspension of green mold (Penicillium digitatum Sacc.) and treated by immersion in hot water (50°C for 5 min) or irradiation with gamma rays (250 Gy) from a Cobalt-60 source or a combination of the two treatments. Fruit were wrapped individually with shrink film after hot water treatment and before irradiation and were stored with wrapped control fruit at 24°C for 9 days. Fruit treated with hot water developed less green mold rot than untreated fruit, even when treatment was delayed for 72 hr after inoculation. Fruit irradiated after a delay of 2 hr, but not 24-72 hr, after inoculation developed less rot than untreated fruit. Development of green mold rot was not significantly different in fruit treated with both hot water and irradiation than with hot water alone. No visible injury or off-flavors were detected in any of the fruit. (author)

  1. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  2. Effect of Insulation Thickness on Thermal Stratification in Hot Water Tanks

    Directory of Open Access Journals (Sweden)

    Burak KURŞUN

    2018-03-01

    Full Text Available One of the important factors to be considered in increasing the efficiency of hot water storage tanks used for thermal energy storage is thermal stratification. Reducing the temperature of the water at the base of the tank provides more utilization of the energy of the heat source during the heating of the water and improves the efficiency of the system. In this study, the effect of the insulation thickness on the outer surface of the tank and the ratio of the tank diameter to the height (D/H on the thermal stratification was investigated numerically. Numerical analyzes were carried out for the condition that the insulation thickness was constant and variable in the range of D/H=0,3-1. Water was used as the heat storage fluid and the analysis results were obtained for eight hours cooling period. Numerical results showed that the temperature difference between the bottom and top surfaces of the tank increased between 7-9 ° C for the range of D / H = 0,3-1 with changing the insulation thickness.

  3. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  4. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  5. Targeted removal of ant colonies in ecological experiments, using hot water.

    Science.gov (United States)

    Tschinkel, Walter R; King, Joshua R

    2007-01-01

    Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P ants.

  6. Saved СО 2 emissions by using renewable sources for hot water yield in Bulgarian dairy farms

    Directory of Open Access Journals (Sweden)

    R. Georgiev

    2017-12-01

    Full Text Available Abstract. In 2014 – 2015 installations for hot water yield from renewable energy sources were built and tested in three dairy farms in Bulgaria. These replace the traditionally used electricity on farms with the aim of decarbonising the energy production. The newly built installations contain three modules for heat yield – from recuperation of the heat from the milked milk, from the solar energy and from wood pellets. In the course of one year the energy obtained from the renewable sources has been measured and assessed. The present article assesses the ecological benefits of the separate renewable sources which are used to reduce СО2 emissions, the main greenhouse gas. For this purpose, the method of environmental life cycle analysis (LCA and assessment of heat/hot water generating systems was used. Coefficients for calculating the primary energy of the saved or replaced energy, as well as their respective carbon ratios, specific for Bulgaria, were used. The results obtained are related to identifying the specific quantities of saved CO2 emissions from the renewable sources used on the experimental farms. It has been found that about 52-57% of CO2 savings are due to the pellets used, 34-42% to the solar heat collectors and about 9% to the recuperated heat from the produced milk.

  7. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Highlights: • Provided domestic hot water configurations for low-temperature district heating. • Various building typologies and district heating supply temperatures were included. • Different scenarios were evaluated from the energy, economy and exergy aspects. • The benefits of lower return temperature to district heating were investigated. - Abstract: District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50–55 °C/25 °C) systems in preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies. Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating and to reduce the return temperature to district heating. The benefits of lower return temperatures were also analysed compared with the current district heating situation. The evaluation results show that the decentralized substation system with instantaneous heat exchanger unit performed better under the 65 °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario.

  8. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  9. Sulfuric acid and hot water treatments enhance ex vitro and in vitro ...

    African Journals Online (AJOL)

    Seeds of Hibiscus dasycalyx S. F. Blake and Shiller, a federally listed candidate endangered species and native to North America and two variants of Hibiscus acetosella Welw. ex. Hiern were scarified using sulfuric acid and hot water. The effects of the scarification methods on in vitro and ex vitro germination in both ...

  10. [Severe burns of lower limb due to association of hot water and citrullus colocynthis].

    Science.gov (United States)

    Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

    2011-06-30

    The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given.

  11. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic...

  12. Controlling Aphelenchoides subtenuis nematodes with a hot water treatment in Crocus and Allium

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2011-01-01

    Several bulbous crops like Crocus, Allium and some species of Tulipa and Narcissus can be infected with the nematode Aphelenchoides subtenuis. The nematodes cause retarded growth, poor or no flowering and eventually death of the bulbs and corms. A hot water treatment after lifting the bulbs has

  13. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  14. Pressurized hot water extraction of proteins from Sambucus nigra L. branches

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Hohnová, Barbora

    2017-01-01

    Roč. 108, DEC (2017), s. 312-315 ISSN 0926-6690 Grant - others:GA AV ČR(CZ) R200311521 Institutional support: RVO:68081715 Keywords : elderberry * pressurized hot water extraction * proteins Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.181, year: 2016

  15. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  16. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  17. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  18. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Science.gov (United States)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  19. Controlling tulip stem nematodes in tulip bulbs by a hot water treatment

    NARCIS (Netherlands)

    Dam, van M.F.N.

    2013-01-01

    A hot water treatment (HWT) protocol is needed to control tulip stem nematode (TSN) in tulip bulbs. A HWT above approximately 45°C in tulips is assumed to be harmful to the bulbs. Experience with HWT to destroy stem nematodes in daffodils shows that the required temperature for this is 4 hours at

  20. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  1. Generation of Domestic Hot Water, Space Heating and Driving Pattern Profiles for Integration Analysis of Active Loads in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Pigazo, Alberto; Bak-Jensen, Birgitte

    2013-01-01

    at household level. Despite of the well-known flexible service that this kind of loads can provide, their flexibility is highly dependent of the domestic hot water and space heating demand and the driving habits of each user. This paper presents two methodologies employed to randomly generate thermal power......The changes in the Danish energy sector, consequence of political agreements, are expected to have direct impact in the actual power distribution systems. Large number of electric boiler, heat pumps and electric vehicles are planned and will cope large percentage of the future power consumption...... demand and electric vehicle driving profiles, to be used for power grid calculations. The generated thermal profiles relied on a statistical analysis made from real domestic hot water and space heating data from 25 households of a typical Danish residential area. The driving profiles instead were formed...

  2. Radiation hygienic assessment of centralized heat and hot water supply of Bilibino village from Bilibin central nuclear heating- and power plant

    International Nuclear Information System (INIS)

    Eremin, V.A.; Marej, A.N.; Nechiporenko, N.I.; Rasskazov, A.P.; Sayapin, N.P.; Soldatov, G.E.; Shcherbinin, A.S.

    1983-01-01

    The experience in using an atomic power plant for heat and hot water supply of the village of Bilibino is outlined. Particular attention is given to the population radiation safety. It has been demonstrated that radiation safety of the system is ensured by maintaining fixed pressure levels in the heating media and by the hermetic state of heat exchanges. Water in the heat and hot water supply network meets the requirements for drinking water. Radioactive corrosion products were not detected in the test water. Gamma-radiation dose rate from the surface of heating devices and pipe-lines in the test premises did not exceed the natural background, that is, U.U1-0.025 mrad

  3. Thermal performance assessment and improvement of a solar domestic hot water tank with PCM in the mantle

    DEFF Research Database (Denmark)

    Deng, Jie; Furbo, Simon; Kong, Weiqiang

    2018-01-01

    To develop an appropriate solar DHW (Domestic Hot Water) tank for residential dwellings and put it into the European solar thermal market for promotion, thermal performance tests of PCM (Phase Change Material) hot water storage tanks of both a prototype and an improved version with a water volume...

  4. Changes in antioxidant and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage

    Science.gov (United States)

    The effects of hot water treatment on antioxidant phytochemicals and fruit quality were investigated in banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) by immersing fruits in hot water (50 'C) for 10 min, before storage at 25 'C for 10 days or 14 'C for 8 da...

  5. Experimental and computational analysis of the hot water layer for the radiological protection in swimming pool reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio.

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and rare simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. An experimental apparatus was constructed to study the hot water layer stability. Thermocouples were used to measure the temperature field. A numerical analysis was conducted simultaneously. Regarding experimental results, representative temperature contour lines of the hot water layer were plotted. The temperature field was determined in the numerical analysis and temperature contour lines corresponding to those of the experimental results were plotted. The hot water layer kept stable for experimental and numerical results. Good agreement between the results for the hot water layer position and thickness has been obtained. (author). 21 refs., 40 figs., 15 tabs

  6. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  7. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.

    Science.gov (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans

    2017-10-01

    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  9. Hot water epilepsy: Phenotype and single photon emission computed tomography observations

    Directory of Open Access Journals (Sweden)

    Mehul Patel

    2014-01-01

    Full Text Available We studied the anatomical correlates of reflex hot water epilepsy (HWE using multimodality investigations viz. magnetic resonance imaging (MRI, electroencephalography (EEG, and single photon emission computed tomography (SPECT. Five men (mean age: 27.0 ΁ 5.8 years with HWE were subjected to MRI of brain, video-EEG studies, and SPECT scan. These were correlated with phenotypic presentations. Seizures could be precipitated in three patients with pouring of hot water over the head and semiology of seizures was suggestive of temporal lobe epilepsy. Ictal SPECT showed hyperperfusion in: left medial temporal - one, left lateral temporal - one, and right parietal - one. Interictal SPECT was normal in all five patients and did not help in localization. MRI and interictal EEG was normal in all the patients. The clinical and SPECT studies suggested temporal lobe as the seizure onset zone in some of the patients with HWE.

  10. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation.

    Science.gov (United States)

    Vergara-Salinas, José R; Bulnes, Pedro; Zúñiga, María Carolina; Pérez-Jiménez, Jara; Torres, Josep Lluís; Mateos-Martín, María Luisa; Agosin, Eduardo; Pérez-Correa, José R

    2013-07-17

    Grape pomace was extracted with pressurized hot water at laboratory scale before and after fermentation to explore the effects of fermentation and extraction temperature (50-200 °C) and time (5 and 30 min) on total extracted antioxidant levels and activity and to determine the content and recovery efficiency of main grape polyphenols, anthocyanins, and tannins. Fermented pomace yielded more total antioxidants (TAs), antioxidant activity, and tannins, than unfermented pomace but fewer anthocyanins. Elevating the extraction temperature increased TA extraction and antioxidant activity. Maximum anthocyanin extraction yields were achieved at 100 °C and at 150 °C for tannins and tannin-anthocyanin adducts. Using higher temperatures and longer extraction times resulted in a sharp decrease of polyphenol extraction yield. Relevant proanthocyanidin amounts were extracted only at 50 and 100 °C. Finally, TA recovery and activity were not directly related to the main polyphenol content when performing pressurized hot water grape pomace extraction.

  11. Hot water immersion as a treatment for stonefish sting: A case report

    Directory of Open Access Journals (Sweden)

    Darlene F. Ongkili

    2013-05-01

    Full Text Available The North Borneo state of Sabah is known worldwide for its beautiful islands and dive sites. Local hospitals deal with a number of marine-related injuries, including marine fauna envenomation by Scorpaenidae and Synanceiidae families of fish. We report a case of a tourist who presented with excruciating pain on her right foot after stepping on a stonefish. Despite being given parenteral analgesia and regional anaesthesia, the pain persisted. Her pain improved after she soaked her foot in hot water for about 30 minutes. No further treatment was required. We reviewed the literature comparing this inexpensive mode of treatment with other conventional treatments. We also explored the possibility of using hot water immersion for treatment of envenomation by other types of marine animals.

  12. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  13. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is developed by two devices. An electric fan can increase the air to fuel ratio in order to increase the system’s efficiency and to decrease the air pollution by providing....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  14. Optimization of hot water transport and distribution networks by analytical method: OPTAL program

    International Nuclear Information System (INIS)

    Barreau, Alain; Caizergues, Robert; Moret-Bailly, Jean

    1977-06-01

    This report presents optimization studies of hot water transport and distribution network by minimizing operating cost. Analytical optimization is used: Lagrange's method of undetermined multipliers. Optimum diameter of each pipe is calculated for minimum network operating cost. The characteristics of the computer program used for calculations, OPTAL, are given in this report. An example of network is calculated and described: 52 branches and 27 customers. Results are discussed [fr

  15. Effects of hot water pre-extraction on surface properties of bagasse soda pulp.

    Science.gov (United States)

    Cordeiro, Nereida; Ashori, Alireza; Hamzeh, Yahya; Faria, Marisa

    2013-03-01

    In this work, the effects of hot water pre-extraction of depithed bagasse on the soda pulping and surface properties were studied. The conditions of hot water pre-extraction were: maximum temperature 170 °C, heat-up time 90 min, time at maximum temperature 10 min, and solid to liquor ratio (S:L) 1:8. Consequently, the pre-extracted and un-extracted bagasse chips were subjected to soda pulping at 160 °C for 1h with 11, 14 and 17% active alkali charge and an S:L of 1:5. The results showed that the hot water pre-extraction increased bagasse surface texture porosity by hemicellulose degradation. Therefore, the delignification was faster for pulping of pre-extracted samples. At a certain charge of alkali, pre-extracted samples showed higher screened yield and lower Kappa number. For instance, at 17% alkali charge, pre-extracted bagasse gave 11.3% higher pulp yield compared with the un-extracted ones. Inverse gas chromatography (IGC) results showed that the hot water pre-extraction changed the active sites on the bagasse surface, decreasing the dispersive energy and the basicity character, and affected the particle morphology. The pulping process decreased the hydrophobicity and the basicity of the bagasse surface. The surfaces of un-extracted and pre-extracted bagasse pulps had similar properties but different morphology. The pulps present higher surface area and permeability with more reactive capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  17. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    FUJII, Terushige; OHTA, Jun-ichi; AKAGAWA, Koji; NAKAMURA, Toshi; ASANO, Hitoshi

    1992-01-01

    From the viewpoint of energy conservation and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. Among energy conversion device,there is a radial outflow reaction turbine,i.e.,Hero's turbine. Performance characteristics of Hero's turbine are analytically and experimentally clarified for flashing expansion of initially subcooled hot water. It is found that: (a)there is an optimum number of revolutions at which maximum tubine e...

  18. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  19. The Performance Evaluation of a Hot Water Layer using a Numerical Simulation

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, Hee Taek; Kim, Heon Il; Jun, Byung Jin; Park, Cheol

    2009-01-01

    Most of all research reactors are immerged in the deep water pool to be a ultimate heat sink. At the neighbor of the reactor, some radio-active matters, such as Na-24, Ar-41, Mg-27, Al-28 and etc, may be generated by the neutron irradiation. Those radio-active isotopes may rise up to the pool water surface through the natural convection flow, which can make the radioactivity in the reactor hall rise high enough to concern about the health of people working in the reactor hall. When the irradiation test facilities are loaded or unloaded during a normal operation, the highly radio-activated primary coolant may flow out through the irradiation test holes on the top of the reactor. This also may be a main hazard source to make the working environment of the reactor hall bad. Making a hot water layer 1.5 ∼ 2.0 m thick at the top of reactor pool would be a good measure to resolve that problem. The hot water layer is formed by a thermal stratification of pool water, which can effectively suppress the ascending of the radio-active matters and primary coolant flowing out from the IR holes. In this study a performance evaluation of the hot water layer is conducted by a computational fluid dynamics technique. According to the results of the prediction the hot water layer is formed well about 1.5 m thick, and can suppress the flows containing radioactive matters ascending from the neighbor of the reactor

  20. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for new detached houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    R and D was made on solar systems for new detached houses, and design and construction of the experimental house were carried out. In system analysis, assessment of solar cooling/heating systems, improvement of a simulation model based on measured data, and improvement of cooling/heating systems by simulation were conducted. In development of equipment and materials for the experimental house, R and D was made on component materials, connection method and installation method on houses for vacuum glass tube type solar collectors, and a solar collector was fabricated. R and D was also made on combination of absorbent and coolant, drop type coolant generator and performance experiment for absorption refrigerators, and a refrigerator was fabricated. The experimental house is 2-stored RC wall construction of 79.94m{sup 2} in building area, and 133.26m{sup 2} in total floor area. From the viewpoint of energy saving, outside insulation, double window, and insulating rain shutter door were adopted. The newly developed vacuum glass tube type solar collector is applicable to existing houses because of its higher flexibility. (NEDO)

  1. Discussion on problems of terrestrial heat and moderate-hot water at an uranium deposit in Jiangxi province

    International Nuclear Information System (INIS)

    Liu Xiangguo

    2003-01-01

    According to scientific research and technical summing up reports, based on the field investigation, the possible problems of terrestrial heat and moderate-hot water during the exploitation of an uranium deposit in Jiangxi Province are discussed. The preliminary analysis and discussion on the distribution, distribution regularity, causes of formation and correlation of terrestrial heat and moderate-hot water at the uranium deposit are carried out

  2. Study of the effect of injecting cold or hot water on the operation of an oil field

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, M A; Kolosovskaya, A K; Lebedev, V V; Chicherov, L G

    1968-11-01

    Several Soviet reservoirs contain either highly paraffinic or viscous crude oils, where recovery by an ordinary waterflood is poor. Under such circumstances, hot water injection appears to be advantageous. Hot water injection is advisable when: (1) the reservoir is heterogeneous and contains low-permeability sections; (2) the oil is saturated with paraffin at reservoir temperature; and (3) reservoir pressure is only slightly higher than static pressure. In Uzen field, hot water injection should recover 1.5 times more oil than would be recovered with cold water. Various problems involved with hot water injection such as equipment and methods of heating the water, transportation of the water of the wellhead, heat losses in transport of hot water, and well equipment for handling hot water are discussed. Calculations indicate that it should be possible to transport 100/sup 0/C water through a 5 km pipeline with a 4/sup 0/ to 6/sup 0/C temperature drop; then deliver to the well bottom at a temperature of 90/sup 0/ to 92/sup 0/C.

  3. Fiscal 1980 Sunshine Project research report. R and D on preventive technology of scale deposition derived from hot water; 1980 nendo chinetsu nessui kara no scale fuchaku wo boshisuru gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-31

    This report summarizes the fiscal 1980 research result on preventive technology of scale deposition derived from hot water. Hot water of Nigori-Gawa, Hokkaido forms CaCO{sub 3} scale just after releasing into ambient air, and scale composed of amorphous silica and calcite at 60 degrees C or less, reaching a peak around pH 8. Deposition increases with a decrease in flow velocity and temperature. Polymerized silica removal experiment was made using Otake hot water and a floatation separator of 1 T/H. No cation and kerosene, and additional 6A-1 (coconut amine) and NS-18 (amine T) were effective for floatation separation. Continuous operation of the floatation separator of 50 T/H and a sludge recycling equipment was carried out as test for practical use. It was confirmed that addition of amine system floatation agent to hot water of 80 degrees C and pH 5 with polymerized silica of 20ppm is effective for reduction of polymerized silica in treatment water to 5ppm or less. The treated water was reinjected into Otake No.6 reinjection well. The sludge recycling equipment was tested for recycling floatation sludge separated, resulting in achievement of an expected target. (NEDO)

  4. Inactivation of Salmonella in Shell Eggs by Hot Water Immersion and Its Effect on Quality.

    Science.gov (United States)

    Geveke, David J; Gurtler, Joshua B; Jones, Deana R; Bigley, Andrew B W

    2016-03-01

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE) strains PT8 C405, 2 (FSIS #OB030832), and 6 (FSIS #OB040159). Eggs were immersed in a circulating hot water bath for various times and temperatures. Come-up time of the coldest location within the egg was 21 min. SE was reduced by 4.5 log at both hot water immersion treatments of 56.7 C for 60 min and 55.6 °C for 100 min. Decimal reduction times (D-values) at 54.4, 55.6, and 56.7 °C were 51.8, 14.6, and 9.33 min, respectively. The z-value was 3.07 °C. Following treatments that resulted in a 4.5 log reduction (56.7 °C/60 min and 55.6 °C/100 min), the surviving population of SE remained static during 4 wk of refrigerated storage. After processing under conditions resulting in 4.5 log reductions, the Haugh unit and albumen height significantly increased (P eggs by 4.5 log, but also significantly affected several egg quality characteristics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. To built a solar hot water heater to work the sustainability problem

    Directory of Open Access Journals (Sweden)

    Carretero Gómez, María Begoña

    2012-01-01

    Full Text Available We are commemorating the Education Decade for Sustainable Development. If we want to create positive towards our environment and its sustainable development we have to begin working at school. It is necessary to show our students what problems of the environment are and which solutions can be adopted. That is the reason we have planned this activity in our secondary school. We do think that by doing daily activities we have a good opportunity to fulfil this goal. An example of such experiences is the fabrication of a solar hot water heater to make them and their families more environment conscience.

  6. Decay and acceptability of mangos treated with combinations of hot water, imazalil, and gamma radiation

    International Nuclear Information System (INIS)

    Spalding, D.H.; Reeder, W.F.

    1986-01-01

    Combination treatments with radiation at 200 or 750 Gy and hot water (53 C) or hot 0.1% a.i. imazalil (53 C) for 3 min were more effective than single treatments for control of anthracnose and stem-end rot of Tommy Atkins mangos caused by Colletotrichum gloeosporioides and Diplodia natalensis or Phomopsis citri, respectively. Irradiation at 750 Gy inhibited development of ripe skin color and caused some browning and pitting of the skin. Effects of radiation on skin color and injury were partially offset when heat treatment preceded irradiation. Individual wrapping of mangos in shrink film resulted in increased decay and breakdown. (author)

  7. Decay and acceptability of mangos treated with combinations of hot water, imazalil, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, D. H.; Reeder, W. F.

    1986-12-15

    Combination treatments with radiation at 200 or 750 Gy and hot water (53 C) or hot 0.1% a.i. imazalil (53 C) for 3 min were more effective than single treatments for control of anthracnose and stem-end rot of Tommy Atkins mangos caused by Colletotrichum gloeosporioides and Diplodia natalensis or Phomopsis citri, respectively. Irradiation at 750 Gy inhibited development of ripe skin color and caused some browning and pitting of the skin. Effects of radiation on skin color and injury were partially offset when heat treatment preceded irradiation. Individual wrapping of mangos in shrink film resulted in increased decay and breakdown. (author)

  8. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  9. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  10. Nuclear combined heat and power - analyses of hot water pipeline breaks in a service tunnel with Apros simulation software

    International Nuclear Information System (INIS)

    Henttonen, T.; Paananen, M.

    2010-01-01

    This paper presents a computer model and simulation results for a long-distance heat transport system. The system can be used e.g. to transport heat from a nuclear power plant with combined heat and power (CHP) production. CHP production is considered for new build NPP projects in Finland. Emphasis is on the environmental conditions during a hot water pipeline break in a service tunnel. The modelled pipeline system is designed to transport 1000 MW of heat over a distance of 77 km for district heating purposes. The hot water pipeline is assumed to be 1200 mm diameter with a water temperature of 120 deg. C. Cooled water returns with a temperature of 55 - 60 deg. C in a similar 1200 mm diameter pipe. Both pipelines are installed to a service tunnel which is excavated into bedrock and divided into 2 kilometres long compartments. Both the 77 km long pipeline and the tunnel are modelled with Apros simulation software. A leak is modelled from the pipeline to the tunnel and the results are analyzed. This paper includes three different leak sizes (1 %, 10 % and 100 % of the pipeline's cross-sectional area). The leaks are calculated with water temperatures of 95 deg. C and 120 deg. C in the pipeline. Apros calculates dynamically the phenomena inside the pipeline with two-phase 6-equation calculation model. The tunnel conditions are calculated with a lumped parameter model. The size of the leak has a substantial effect on the leak's consequences in the tunnel. Also the water temperature in the pipeline influences the results strongly. If the water temperature is over 100 deg. C, a considerable amount of the water boils as it leaks to the tunnel. The boiling of water makes the conditions in the tunnel much more severe than they would otherwise be. If there is a substantial flow out of the tunnel, the air in the tunnel can be replaced by hot steam. Obviously, this can mean hazardous conditions in the tunnel. (authors)

  11. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on glass system materials); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Glass kei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-26

    This report describes the fiscal 1974 research result on glass system materials of plane collectors for solar cooling/heating. A barrel lens type collector was poorer in efficiency than conventional ones. A one-directional Fresnel lens type one was promising for improvement of solar radiation collection. The prototype In{sub 2}O{sub 3} selective transmission cover glass was prepared by vacuum deposition. Although selective characteristics including a solar transmissivity of 74% and an IR reflectance of 75-80% were obtained, further improvement of more than 10% is necessary. The evaluation results of some collectors are as follows. A vacuum type is poor because of its low efficiency and necessary vacuum sealing. A multi-layer type shows unsatisfactory performance at some temperatures. A glass honeycomb type is most likely because of its uppermost collection efficiency, however, development of production technology of heat-resistant honeycombs and its profitability remain to be solved. A deformed multi-layer type is practical because of its high efficiency, simple structure and low cost. Further improvement of the transmissivity and IR reflectance of cover glass by more than 10% is necessary. (NEDO)

  12. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on glass system materials); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Glass kei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on solar heat collectors using glass system materials. In fiscal 1976, study was made on improvement of selective transmission films by vacuum deposition and large prototype films, prototype coated glass by chemical treatment and its quality stability, prototype full-scale honeycomb collector, practical heat collection property, and evaluation of some problems. As the study result, characteristics of this selective transmission glass were equivalent to those of the other selective transmission films with a transmissivity of 0.90 and a reflectivity of 0.10. As the study result of production cost by vacuum deposition and resistance heating, the film treatment cost was estimated to be 2,300yen/m{sup 2}. 40 prototype coated glass plates of 1,000 x 1,000 x 3mm, and 300 prototype coated glass pipes of 16mm diameter, 870mm long and 0.6mm thick were prepared for prototype collectors. Two kinds of full-scale collectors prepared by using these selective absorption heat collection plates and coated glass showed favorable performance in heat collection experiment. (NEDO)

  13. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls.

    Science.gov (United States)

    Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Cotter, James D

    2017-03-01

    Passive heat induces beneficial perfusion profiles, provides substantive cardiovascular strain, and reduces blood pressure, thereby holding potential for healthy and cardiovascular disease populations. The aim of this study was to assess acute responses to passive heat via lower-limb, hot-water immersion in patients with peripheral arterial disease (PAD) and healthy, elderly controls. Eleven patients with PAD (age 71 ± 6 yr, 7 male, 4 female) and 10 controls (age 72 ± 7 yr, 8 male, 2 female) underwent hot-water immersion (30-min waist-level immersion in 42.1 ± 0.6°C water). Before, during, and following immersion, brachial and popliteal artery diameter, blood flow, and shear stress were assessed using duplex ultrasound. Lower-limb perfusion was measured also using venous occlusion plethysmography and near-infrared spectroscopy. During immersion, shear rate increased ( P Lower-limb blood flow increased significantly in both groups, as measured from duplex ultrasound (>200%), plethysmography (>100%), and spectroscopy, while central and peripheral pulse-wave velocity decreased in both groups. Mean arterial blood pressure was reduced by 22 ± 9 mmHg (main effect P lower 3 h afterward. In PAD, popliteal shear profiles and claudication both compared favorably with those measured immediately following symptom-limited walking. A 30-min hot-water immersion is a practical means of delivering heat therapy to PAD patients and healthy, elderly individuals to induce appreciable systemic (chronotropic and blood pressure lowering) and hemodynamic (upper and lower-limb perfusion and shear rate increases) responses. Copyright © 2017 the American Physiological Society.

  14. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    International Nuclear Information System (INIS)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-01-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test. - Highlights: • Microencapsulated ammonium polyphosphate is prepared by successive sol-gel process. • The higher irradiation dose induces the better dimensional stability for EVA system. • The higher irradiation, the more MCAPP immobilized in EVA crosslinked structure. • The higher irradiation dose enhances the flame retardancy of EVA composites. • The microencapsulated composites demonstrate stable flame retardancy in ageing test.

  15. Antioxidant Capacity, Phenolic Constituents and Toxicity of Hot Water Extract from Red Maple Buds.

    Science.gov (United States)

    Meda, Naamwin R; Poubelle, Patrice E; Stevanovic, Tatjana

    2017-06-01

    The present study reports, for the first time, the results of the antioxidant capacity and the phenolic composition of a hot water extract from red maple buds (RMB), as well as its safety. In this regard and comparatively to antioxidant standards, this extract exhibits a significant antiradical capacity when tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) and anion superoxide trapping assays. High-resolution mass spectrometric and nuclear magnetic resonance analyses permitted to determine for the first time, in red maple species, cyanidin-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-arabinoside, and quercetin. Also, the quantification of individual phenolics by high-performance liquid chromatography method revealed that ginnalin A at 117.0 mg/g is the major compound of RMB hot water extract. Finally, using flow cytometry evaluation, the extract of RMB was determined to have no toxicity neither to cause significant modification of apoptosis process, up to concentration of 100 μg/ml, on human peripheral blood neutrophils. These results allow anticipating various fields of application of RMB water extract. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Spectroscopic analysis of hot-water- and dilute-acid-extracted hardwood and softwood chips

    Science.gov (United States)

    Lehto, Joni; Louhelainen, Jarmo; Huttunen, Marko; Alén, Raimo

    2017-09-01

    Hot-water and dilute sulfuric acid pretreatments were performed prior to chemical pulping for silver/white birch (Betula pendula/B. pubescens) and Scots pine (Pinus sylvestris) chips to determine if varying pretreatment conditions on the original wood material were detectable via attenuated total reflectance (ATR) infrared spectroscopy. Pretreatment conditions varied with respect to temperature (130 °C and 150 °C) and treatment time (from 30 min to 120 min). The effects of the pretreatments on the composition of wood chips were determined by ATR infrared spectroscopy. The spectral data were compared to those determined by common wood chemistry analyses to evaluate the suitability of ATR spectroscopy method for rapid detection of changes in the wood chemical composition caused by different pretreatment conditions. In addition to determining wood species-dependent differences in the wood chemical composition, analytical results indicated that most essential lignin- and carbohydrates-related phenomena taking place during hot-water and acidic pretreatments could be described by applying this simple spectral method requiring only a small sample amount and sample preparation. Such information included, for example, the cleavage of essential lignin bonds (i.e., mainly β-O-4 linkages in guaiacyl and syringyl lignin) and formation of newly condensed lignin structures under different pretreatment conditions. Carbohydrate analyses indicated significant removal of hemicelluloses (especially hardwood xylan) and hemicelluloses-derived acetyl groups during the pretreatments, but they also confirmed the highly resistant nature of cellulose towards mild pretreatments.

  17. Hydraulic modelling for analysis of the hot water layer stability in research reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio; Yanagihara, Jurandir Itizo

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and are simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. This work presents similitude criteria derived by dimensional analysis and by non dimensioning the basic equations to analyze this layer's stability in a reduced scale model. The flow in the reactor is complex. It is impossible to consider all the phenomena with a single similitude criterion. The best would be to construct several models considering all the similitude criteria and then combine the results. Economical reasons and available time in the majority of the cases are a restrain to this procedure. Then, the most important criteria to the considered phenomenon must be chosen in order to give the best results. This work identifies three similitude criteria that were considered important to analyze the pool reactor's hot water layer stability. (author)

  18. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  19. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    Science.gov (United States)

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits

  20. Improvements in Thermal Performance of Mango Hot-water Treatment Equipments: Data Analysis, Mathematical Modelling and Numerical-computational Simulation

    Directory of Open Access Journals (Sweden)

    Elder M. Mendoza Orbegoso

    2017-06-01

    Full Text Available Mango is one of the most popular and best paid tropical fruits in worldwide markets, its exportation is regulated within a phytosanitary quality control for killing the “fruit fly”. Thus, mangoes must be subject to hot-water treatment process that involves their immersion in hot water over a period of time. In this work, field measurements, analytical and simulation studies are developed on available hot-water treatment equipment called “Original” that only complies with United States phytosanitary protocols. These approaches are made to characterize the fluid-dynamic and thermal behaviours that occur during the mangoes’ hot-water treatment process. Then, analytical model and Computational fluid dynamics simulations are developed for designing new hot-water treatment equipment called “Hybrid” that simultaneously meets with both United States and Japan phytosanitary certifications. Comparisons of analytical results with data field measurements demonstrate that “Hybrid” equipment offers a better fluid-dynamic and thermal performance than “Original” ones.

  1. Effect of UV-C radiation and hot water on the calcium content and postharvest quality of apples

    International Nuclear Information System (INIS)

    Hemmaty, S.; Moallemi, N.; Naseri, L.

    2007-01-01

    To increase the storage shelf life of 'Red Delicious' and 'Golden Delicious' apples they were treated with UV-C irradiation at doses of 0, 5 and 15 min irradiation at 1.435 x 10 -4 W/square cm - and with hot water containing 4% CaCl 2 at four levels (control, dipping at 25 deg C for 10 min, dipping at 38 deg C for 5 min and dipping in 54 deg C for 1 min) in a factorial design with 4 replicates. The results showed that UV-C irradiation and dipping of fruit in hot water increased the storage life and improved fruit quality factors in 'Red Delicious' and 'Golden Delicious' apples at the end of cold storage. Both UV-C and hot water treatments decreased pH and total soluble solids/titratable acids ratio and increased fruit titratable acids and firmness. UV-C and hot water treatment increased fruit Ca content during storage. The results showed that UV-C and hot water treatment can retard fruit ripening and maintain fruit quality in cold storage. These treatments can also increase Ca concentration of fruit flesh and thus increase the nutritional value of the apples. (author) [es

  2. Economical utilization of hot water - an important precondition for an efficient utilization of waste heat in milk cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E; Pflug, C

    1985-01-01

    Indispensable both in the field of hydroecological and energy policies is the economical utilization of hot water. Hydroecological process analyses in specialized dairy cattle plants have shown that the specific mean annual abstraction of hot water (50/sup 0/C) may be reduced to 14 l per cow and per day. The proportionate contribution of different operational sectors and methods to arrive at the standards are pointed out. Economizing dairy cattly plants reducing hot water consumption as indicated and reaching average milking outputs of >= 1 l per cow and per day may thus bridge the summer season by heat recovery processes producing a sufficient quantity of hot water and allowing a shutdown of all heating units. At present the majority of dairy cattle plants cannot yet dispense with supplementary water during the remaining months. The hot water consumption rate is highest at the end of shifts. In double-shifted dairy cattle plants the estimated maximum hourly consumption amounts to 12 per cent of the average daily consumption. (orig.).

  3. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Development of binary cycle power plant - development of system to detect well bottom information during geothermal well drilling); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (Chinetsusei kussakuji koutei joho kenchi system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D has been performed on a system to detect well bottom information during geothermal well drilling (MWD) to identify items of well bottom information during drilling on a real time basis. This paper summarizes the achievements in fiscal 2000. This device measures and transmits to the ground surface the following items during geothermal well drilling at good accuracy under the mud water temperature of 200 degrees C: azimuth, inclination, tool face, bit load, bit torque, temperatures in the device, downhole temperature, and downhole pressure. The current fiscal year has performed improvement of the sonde, including decrease of the sonde length, electric power conservation, enhancement of anti-noise performance, and enhancement of operability. For the sonde performance evaluation, high-temperature test, long distance loop test, and vibration test were carried out. In addition, the experiment analyzing program (for noise processing) was improved. With regard to the well trajectory control aiding system and the well evaluation aiding system, an operation manual was prepared, entitled the 'MWD analyzing system'. Unification was attempted on the hardware of the ground surface detection device system and the analyzing system. (NEDO)

  4. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  5. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  6. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications

    International Nuclear Information System (INIS)

    Moreno-Rodríguez, A.; González-Gil, A.; Izquierdo, M.; Garcia-Hernando, N.

    2012-01-01

    This paper has shown the development of a theoretical model to determine the operating parameters and consumption of a domestic hot water (DHW) installation, which uses a direct-expansion solar assisted heat pump (DXSAHP) with refrigerant R-134a, a compressor with a rated capacity of 1.1 kW and collectors with a total area of 5.6 m 2 . The model results have been compared and validated the experimental results obtained with the equipment installed at the University Carlos III, South of Madrid. The analysis was conducted over the course of a year, and the results have been represented depending on the meteorological and process variables of several representative days. Taking into account the thermal losses of the installation and the dependency on the operating conditions, the acquired experimental coefficient of performance is between 1.7 and 2.9, while the DHW tank temperature over the course of the study is 51 °C. -- Highlights: ► The study aims to present a new theoretical model and an experimental validation. ► The experimental COP vary between 1.7 and 2.9 (max. condensation temperature 57 °C). ► The operating parameters respond to the solar radiation. The COP may increase up to 50%. ► The useful surface area varies between 50% and 85% of the total surface. ► The system stops if conditions exceed the maximum value of the absorbed heat.

  7. Conception, implementation and effect of the consumption-dependent billing of heating and hot-water costs

    International Nuclear Information System (INIS)

    Rieder, S.; Schwenkel, Ch.

    2008-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the experience gained from the operation of the consumption-dependent billing of heating and hot-water costs (Verbrauchsabhaengigen Heiz- und Warmwasserkostenabrechnung, VHKA), a system introduced in Switzerland as one of the first energy-policy measures in the nineteen-eighties. The study examines the strategic possibilities of the VHKA within the framework of future efficiency strategies. Also, as an operative goal, the study takes a look at the acceptance of the VHKA and its effectiveness. In this way, an indication on how the instrument can be optimised can be obtained. The report consists of five chapters that look at the concept and implementation of the VHKA, its effect on the lessees of apartments and real estate owners and, finally, presents a cost-benefit analysis of the VHKA. The methods used in the study include the analysis of documents, personal and telephone interviews and the evaluation of billing data and other data collected.

  8. Comparative Analysis of Milled Wood Lignins (MWLs Isolated from Sugar Maple (SM and Hot-Water Extracted Sugar Maple (ESM

    Directory of Open Access Journals (Sweden)

    Mangesh J. Goundalkar

    2014-03-01

    Full Text Available To further elucidate the advantageous effects of hot-water extraction (HWE on delignification, milled wood lignin (MWL was isolated from sugar maple (SM and from hot-water extracted sugar maple (ESM. Ball-milled wood was analyzed for particle size distribution (PSD before and after dioxane:water (DW extraction. The MWL samples were analyzed by analytical and spectral methods. The results indicated that the MWL isolated from SM and ESM was mainly released from the middle lamella (ML and the secondary wall (SW, respectively. The cleavage of dibenzodioxocin (DB and spirodienone (SD lignin substructures during HWE is suggested. The removal of lignin during acetone:water (AW extraction of hot-water extracted wood indicates that including an additional operation in a hardwood HWE-based biorefinery would be beneficial for processing of wood.

  9. How to reduce risk of climate change: Domestic hot water production methanization and programmed timing of heaters

    International Nuclear Information System (INIS)

    Silvestrini, G.

    1992-01-01

    This paper first identifies a significant and deleterious trend, in terms of poor energy efficiency and high carbon dioxide emissions, towards the increased use of electric water heaters for sanitary hot water production in single family units. It then points out how the use of wall mounted methane fired boilers can result in overall energy savings (overall electric power consumption for domestic hot water production is estimated to represent one- quarter of Italy's total domestic power demand), as well as air pollution abatement. The feasibility of other methods of energy conservation and pollution abatement in domestic water heating are also examined. These include the use of solar hot water heaters, computerized timers which allow users to program the operation of their heating plants, and the adoption by residential communities of methane fuelled district heating plants

  10. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. International cooperation projects (Collection of information on IEA photovoltaic air conditioning and hot water supply program); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyo reidanbo kyuto program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports activities of collecting items of information by dispatching experts mainly composed of members of the IEA photovoltaic air conditioning, and solar heating and cooling program (SHCP) committee to the SHCP Executive Committee and the Task expert conferences. This treaty is intended to assist creating the environmentally sustainable future by utilizing solar designs and technologies. It also aims at developing solar technologies including cost reduction as a result of the joint researches with business entities, structuring international markets, providing items of information, quantifying the effectiveness to the environment, performing the international standardization, and promoting utilization of solar technologies in developing countries. The tasks now in action include architectural lighting, methods for analyzing solar architectural energies, optimization of solar energy utilization in large buildings, procurement of active solar systems, air conditioning systems in buildings using the solar energy, solar heat composite systems, expansion of exterior component materials for solar buildings, sustainable buildings, agricultural solar drying, solar cities, a hybrid heat/PV solar system. (NEDO)

  11. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Technological development of hot rock power generation system - development of elementary technologies); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Koon gantai hatsuden system no gijutsu kaihatsu (yoso gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to identify the possibility of a hot rock power generation system, technological R and D has been performed on structuring of a man-made hydrothermal system, fracture mapping, downhole measurement and a circulating extraction system. This paper summarizes the achievements in fiscal 2000. With regard to the long-term circulating extraction test, a circulating heat extraction and test device was installed at the hot rock experimental field in the Hijiori area in Yamagata Prefecture, where geochemical data collection and tests including analyses thereon have begun. In reservoir bed analysis, a well module was incorporated into a reservoir bed simulator to improve the module so that comparison with the data of actual production on the ground can be performed. For the fracture mapping, AE having been observed during the long-term circulation test was analyzed, whereas it was estimated that the seismic source would not move or expanded during this period. A PTS logging has been performed during the long-term circulation test to investigate characteristics of the flow-out zone of the injection well and the production zone of the production well. In making the fracture model, an initial model was fabricated to estimate heat extraction behavior in the long-term circulation test. (NEDO)

  12. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic......This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 degrees C and around 40 degrees C at the substations. To avoid the proliferation...... performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated...

  13. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    Science.gov (United States)

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Danielle Julie Carrier

    2016-08-01

    Full Text Available Perennial grasses that would be used for bioenergy and bioproducts production will need to be stored for various periods of time to ensure a continual feedstock supply to a bioprocessing facility. The effects of storage practices on grass composition and the response of grasses to subsequent bioprocesses such as pretreatment and enzymatic hydrolysis needs to be understood to develop the most efficient storage protocols. This study examined the effect of outdoor storage of round switchgrass bales on composition before and after liquid hot water pretreatment (LHW and enzymatic hydrolysis. This study also examined the effect of washing LHW pretreated biomass prior to enzymatic hydrolysis. It was determined that switchgrass composition after baling was stable. As expected, glucan and lignin contents increased after LHW due to decreases in xylan and galactan. Washing biomass prior to enzymatic hydrolysis reduced saccharification, especially in samples from the interior of the bale, by at least 5%.

  15. An experimental investigation with artificial sunlight of a solar hot-water heater

    Science.gov (United States)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  16. Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Erik V.; Liu Jiayin; Sjoeberg, Per J.R.; Danielsson, Rolf [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden); Turner, Charlotta, E-mail: Charlotta.Turner@kemi.uu.se [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden)

    2010-03-17

    Pressurized Hot Water Extraction (PHWE) is a quick, efficient and environmentally friendly technique for extractions. However, when using PHWE to extract thermally unstable analytes, extraction and degradation effects occur at the same time, and thereby compete. At first, the extraction effect dominates, but degradation effects soon take over. In this paper, extraction and degradation rates of anthocyanins from red onion were studied with experiments in a static batch reactor at 110 deg. C. A total extraction curve was calculated with data from the actual extraction and degradation curves, showing that more anthocyanins, 21-36% depending on the species, could be extracted if no degradation occurred, but then longer extraction times would be required than those needed to reach the peak level in the apparent extraction curves. The results give information about the different kinetic processes competing during an extraction procedure.

  17. Evaluation of free jet and jet impingement tests with hot water and steam

    International Nuclear Information System (INIS)

    Marklund, J.E.

    1985-01-01

    Large scale free jet and jet impingement tests with hot water and steam were performed at the Marviken test facility, Sweden in the JIT project 1980-1981. Similar tests, but with smaller scale equipment, were performed in Canada, Italy and Japan. Results from these tests were made available to the JIT project as in-kind contributions. The present report summarizes an evaluation effort over these large and small scale tests, as well as some additional small scale tests. A preliminary assessment of some computer code models and other theoretical models or correlations is also included. The work was financially supported by the Swedish Nuclear Power Inspectorate, and in phase 1 also by the Electric Power Research Institute (EPRI), USA. Part 1 of the report contains text and tables, while the figures are contained in a separate cover, Part 2. (author)

  18. On the effect of hot water vapor on MX-80 clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant

  19. On the effect of hot water vapor on MX-80 clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant.

  20. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  1. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  2. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  3. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  4. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  5. Numerical simulation of MH growth/dissociation by hot water injection on the Lab. experiment

    Science.gov (United States)

    Temma, N.; Sakamoto, Y.; Komai, T.; Yamaguchi, T.; Pawar, R.; Zyvoloski, G.

    2005-12-01

    Methane Hydrate (MH) is considered to be one of the new-generation energy resources. Aiming to develop the method of extraction of methane gas from MH, laboratory experiments have been performed in order to grasp the MH property in the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba in Japan. In this paper, we present the results of the numerical simulation of experiment using by the hot water injection. In this calculation, FEHM (Finite Element Heat and Mass transfer) code is used. This code is developed at Los Alamos National Laboratory. In this experiment, temperature, pressure and cumulative gas production were measured. From these data, we suppose that MH growth/dissociation occurred by the flow of the hot water. And we make the model of the growth/dissociation. As this model consist of many parameters, it is difficult to determine parameters. Thus, we use PEST (Parameter ESTimation ) in order to determine parameters for the model of the MH growth/ dissociation. We use temperature data of experiment, as observed data. We make two observed data sets at the beginning and later term of experiment. At the results of PEST, we obtain two sets of parameters to get good match the observed data. We think that these sets indicate both the maximum and the minimum values of the MH growth/dissociation model. And, on this range, we continue to calculate until we get the good match. Finally, we obtain the numerical model of the experiment. Also, we conducted the sensitive analysis for the MH growth/ dissociation using this model.

  6. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  7. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  8. Cancer mortality and other causes of death in users of geothermal hot water.

    Science.gov (United States)

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2015-01-01

    Residents of geothermal areas have increased incidence of non-Hodgkin's lymphoma, breast, prostate, and kidney cancers. The aim was to study whether this is also reflected in cancer mortality among the population using geothermal hot water for space heating, washing, and showering. The follow-up was from 1981 to 2009. Personal identifier of those 5-64 years of age was used in record linkage with nationwide death registry. Thus, vital and emigration status was ascertained. The exposed population was defined as inhabitants of communities with district heating generated from geothermal wells since 1972. Reference populations were inhabitants of other areas with different degrees of volcanic/geothermal activity. Hazard ratio (HR) and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking habits. Among those using geothermal water, the HR for all causes of death was 0.98 (95% CI 0.91-1.05) as compared with cold reference area. The HR for breast cancer was 1.53 (1.04-2.24), prostate cancer 1.74 (1.21-2.52), kidney cancer 1.78 (1.03-3.07), and for non-Hodgkin's lymphoma 2.01 (1.05-3.38). HR for influenza was 3.36 (1.32-8.58) and for suicide 1.49 (1.03-2.17). The significant excess mortality risk of breast and prostate cancers, and non-Hodgkin's lymphoma confirmed the results of similarly designed studies in Iceland on cancer incidence among populations from high-temperature geothermal areas and users of geothermal hot water. The risk is not confined to cancers with good prognosis, but also concerns fatal cancers. Further studies are needed on the chemical and physical content of the water and the environment emissions in geothermal areas.

  9. The immunostimulatory effects of hot-water extract of Gelidium amansii via immersion, injection and dietary administrations on white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus.

    Science.gov (United States)

    Fu, Yu-Win; Hou, Wen-Ying; Yeh, Su-Tuen; Li, Chiu-Hsia; Chen, Jiann-Chu

    2007-06-01

    The total haemocyte count (THC), phenoloxidase activity, and respiratory burst were examined when white shrimp Litopenaeus vannamei were immersed in seawater (34 per thousand) containing hot-water extract of red alga Gelidium amansii at 200, 400 and 600 mg l(-1), injected with hot-water extract at 4 and 6 microg g(-1) shrimp, and fed diets containing hot-water extract at 0, 0.5, 1.0 and 2.0 g kg(-1). These parameters increased significantly when shrimp were immersed in seawater containing hot-water extract at 400 and 600 mg l(-1) after 1h, when shrimp were injected with hot-water extract at 6 microg g(-1) shrimp after one day, and when shrimp were fed diets containing hot-water extract at 1.0 and 2.0 g kg(-1) after 14 days. Phagocytic activity and clearance efficiency were significantly higher for the shrimp that were fed diets containing hot-water extract at 1.0 and 2.0 g kg(-1) than those of shrimp that were fed diets containing hot-water extract at 0 and 0.5 g kg(-1) after 14 and 28 days. In a separate experiment, L. vannamei which had received hot-water extract via injection, or fed diets containing hot-water extract, were challenged after 3h or 28 days with V. alginolyticus at 2 x 10(6) cfu shrimp(-1) and 1 x 10(6) cfu shrimp(-1), respectively, and then placed in seawater. The survival of shrimp that were injected with hot-water extract at 6 microg g(-1) was significantly higher than that of control shrimp after 1 day, and the survival of shrimp fed diets containing hot-water extract at 0.5, 1.0 and 2.0 g kg(-1) increased significantly after 3 days as well as at the end of the experiment (6 days after the challenge), respectively. It was concluded that L. vannamei that were immersed in hot-water extract at 400 mg l(-1), injected with hot-water extract at 6 microg g(-1) shrimp, and fed hot-water extract of G. amansii at 2.0 g kg(-1) or less showed increased immune ability as well as resistance to V. alginolyticus infection.

  10. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  11. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu

    2010-01-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  12. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  13. Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell

    2015-01-01

    The objective of this research was to investigate the effects of the conditions of hot water extraction (HWE) on abundance, properties, and structure of lignin depolymerization products. HWE of extracted softwood (ponderosa pine) was conducted using temperatures from 140 to 320°C for 90 min. HWE materials were then subjected to a soxhlet...

  14. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  15. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    Science.gov (United States)

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  16. A Direct Heat Exchanger Unit used for Domestic Hot Water Supply in a Single-family House Supplied by Low Energy District Heating

    DEFF Research Database (Denmark)

    Brand, Marek; Thorsen, Jan Eric; Svendsen, Svend

    2010-01-01

    The increasing number of new and renovated buildings with reduced heating requirements will soon make traditional District Heating (DH) systems uneconomic. To keep DH competitive in the future, the heat loss in DH networks needs to be reduced. One option is to reduce the supply temperature of DH...... as much as possible. This requires a review of the behaviour of the whole domestic hot water (DHW) supply system with focus on the user comfort and overall costs. This paper describes some practical approaches to the implementation of this Low Energy District Heating (LEDH) concept. It reports...... on the testing of the dynamic behaviour of an Instantaneous Heat Exchanger Unit(IHEU) designed for DHW heating and space heating in detached family houses supplied by LEDH ensuring an entry-to-substation temperature of 51 °C. We measured the time it takes for the IHEU to produce DHW with a temperature of 42 °C...

  17. Chemical Composition of Apricot Pit Shells and Effect of Hot-Water Extraction

    Directory of Open Access Journals (Sweden)

    Derek B. Corbett

    2015-09-01

    Full Text Available Agricultural residues, such as corn stover, wheat straw, and nut shells show promise as feedstocks for lignocellulosic biorefinery due to their relatively high polysaccharide content and low or no nutritional value for human consumption. Apricot pit shells (APS were studied in this work to assess their potential for use in a biorefinery. Hot water extraction (HWE; 160 °C, 2 h, proposed to remove easily accessible hemicelluloses, was performed to evaluate the susceptibility of APS to this mild pretreatment process. The chemical composition of APS before and after HWE (EAPS was analyzed by standard methods and 1H-NMR. A low yield of the remaining HW-extracted APS (~59% indicated that APS are highly susceptible to this pretreatment method. 1H-NMR analysis of EAPS revealed that ~77% of xylan present in raw APS was removed along with ~24% of lignin. The energy of combustion of APS was measured before and after HWE showing a slight increase due to HWE (1.61% increase. Near infrared radiation spectroscopy (NIRS, proposed as a quick non-invasive method of biomass analysis, was performed. NIRS corroborated results of traditional analysis and 1H-NMR. Determination of antioxidizing activity (AOA of APS extracts was also undertaken. AOA of organic APS extracts were shown to be more than 20 times higher than that of a synthetic antioxidizing agent.

  18. Time course of cortisol loss in hair segments under immersion in hot water.

    Science.gov (United States)

    Li, Jifeng; Xie, Qiaozhen; Gao, Wei; Xu, Youyun; Wang, Shuang; Deng, Huihua; Lu, Zuhong

    2012-02-18

    Hair cortisol is supposed to be a good biomarker of chronic stress. Major loss of hair cortisol in long-term exposure to environmental factors affected strongly its proper assessment of chronic stress in human. However, there was no research on time course of hair cortisol loss during the long-term exposure. Hair samples with longer than 1cm in the posterior vertex region were cut as close as possible to the scalp. The 1-cm hair samples were treated by ultraviolet irradiation or immersion in shampoo solution or water immersion at 40, 65 and 80°C. Hair cortisol content was determined with high performance liquid chromatography tandem mass spectrometry. Ultraviolet irradiation and immersion in shampoo solution and hot water gave rise to the significant cortisol loss in hair. Hair cortisol content was sharply decreased with water immersion duration during initial stage and slowly decreased in the following stage. The 2-stage loss process with water immersion duration modeled to some extent time course of hair cortisol loss in long-term exposure to external environments. Cortisol from hair samples closest to the scalp in the posterior vertex could represent more accurately central hypothalamo-pituitary-adrenal activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  20. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  1. Oral administration of hot water extracts of Chlorella vulgaris increases physical stamina in mice.

    Science.gov (United States)

    An, Hyo-Jin; Choi, Hyun-Myung; Park, Hyeung-Suk; Han, Jae-Gab; Lee, Eun-Hee; Park, Young-Sig; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2006-01-01

    A unicellular algae, Chlorella vulgaris, was used as a biological response modifier. Although hot water extracts of C. vulgaris (CVE) are thought to augment immune responses, the effect of CVE on fatigue and physical stamina has not been studied. In the present study, we investigated the effect of CVE on forced swimming test and blood biochemical parameters related to fatigue, blood urea nitrogen (BUN), creatine kinase (CK), lactic dehydrogenase (LDH), glucose (Glc), and total protein (TP). CVE (0.05-0.15 g/kg/day) was orally administered to mice. After 7 days, the immobility time was decreased in the 0.1- and 0.15-g/kg CVE-treated groups (179 +/- 8.3 and 175 +/- 2.1 s) in comparison with the control group (223 +/- 5.4 s). In addition, the contents of BUN, CK, and LDH in the blood serum were decreased in the CVE-fed group. However, they had no effect on the elevation of Glc and TP level. The results predict a potential benefit of CVE for enhancing immune function and improving physical stamina. Copyright 2006 S. Karger AG, Basel.

  2. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  3. Influence of hot water dip and gamma irradiation on postharvest fungal decay of Galia melons

    International Nuclear Information System (INIS)

    Barkai-Golan, R.; Padova, R.; Ross, I.; Lapidot, M.; Copel, A.; Davidson, H.

    1993-01-01

    Dipping Galia melons in hot water at 52 deg C for 5 min or at 55 deg for 2 min resulted in 12-15% decay (caused by Alternaria alternata, Fusarium spp. and Trichothecium roseum) during prolonged storage (12 d at 6 deg plus 3 d at 18 deg ) compared with 75% decay in untreated fruit or 60% decay in cold-water-dipped fruit. Irradiation at 0.5 or 1 kGy had no significant effect on decay development. However, combination of heat treatment with a 0.5 kGy dose prevented fungal growth, resulting in 5% decay during storage. Combinations of heating with 1 kGy irradiation gave no improvement in anti-fungal effect over treatment with 0.5 kGy and sometimes resulted in a decreased suppressive effect. Reducing the duration of dipping at 55 deg from 2 to 0.5 min, applied alone or in combination with irradiation, considerably reduced the anti-fungal effect of the treatment. The effective combined treatment resulted in 12-15% of slight peel damage, but all the fruits were regarded as marketable. No differences in fruit firmness were recorded among the treatments

  4. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  5. Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available During liquid hot water (LHW pretreatment, lignin is mostly retained in the pretreated biomass, and the changes in the chemical and structural characteristics of lignin should probably refer to re-/depolymerization, solubilization, or glass transition. The residual lignin could influence the effective enzymatic hydrolysis of cellulose. The pure lignin was used to evaluate the effect of LHW process on its structural and chemical features. The surface morphology of LHW-treated lignin observed with the scanning electron microscopy (SEM was more porous and irregular than that of untreated lignin. Compared to the untreated lignin, the surface area, total pore volume, and average pore size of LHW-treated lignin tested with the Brunner-Emmet-Teller (BET measurement were increased. FTIR analysis showed that the chemical structure of lignin was broken down in the LHW process. Additionally, the impact of untreated and treated lignin on the enzymatic hydrolysis of cellulose was also explored. The LHW-treated lignin had little impact on the cellulase adsorption and enzyme activities and somehow could improve the enzymatic hydrolysis of cellulose.

  6. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance

    Science.gov (United States)

    Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2017-01-01

    Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

  7. Contribution of modulated DSc to study the thermal behaviour of PET films drawn in hot water

    International Nuclear Information System (INIS)

    Zumalian, Abubaker

    2003-01-01

    PET films uni-axially drawn in hot water are studied by means of conventional DSc and modulated DSc. The glass transition is studied by modulated DSc which allows access to the values of the glass transition temperature T g and the variations of δ C p = C p 1-C p g (difference between thermal capacity in the liquid-like and glassy states at T = T g ). Variations of T g with the water content (which act as plasticizer) and with the drawing (which rigidifies the amorphous phase) are discussed in regard to the structure engaged in these materials. The variations of δ C p are also interpreted with the help of a three phase model and a strong-fragile glass former liquid concept. We show that the fragility of the medium increases by the conjugated effects of deformation and water as soon as a strain induced crystalline phase is obtained, and it decreases drastically when the rigid amorphous phase occurs. (author)

  8. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  9. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    International Nuclear Information System (INIS)

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  10. Corrosion control by limestone immersion into the hot water heat-storage tank. Case history of air-conditioning systems of Sapporo city subway stations; Sekkaiseki shinsekiho ni yoru chikunetsu onsui keito no boshoku koka. Sapporoshi chikatetsu kakueki no kucho setsubi no jirei

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, M. [Sapporo City Transportation Bureau, Sapporo (Japan); Okumura, J. [Hokkaido Nikken Sekkei Ltd., Sapporo (Japan); Sakai, Y.; Shiiya, O. [Takasago Thermal Engineering Co. Ltd., Tokyo (Japan)

    1995-06-05

    Limestone immersion into heat-storage water tanks is a method for improving the water quality so as to encrust inner surface of piping by corrosion-preventive calcium carbonate film. For air-conditioning of Support city subway stations, heat-storing heat-pump systems with heat recovery from exhaust air have been introduced and developed for energy saving along with expansion of the subway routes. Inner surfaces of the heat-storage water tanks of all stations are coated with FRP-lining, therefore, some corrosion-preventive chemicals had been dosed from the starting up. However, the storage waters of all stations turned to red because of continuity of the piping corrosion. Instead of dosing chemicals, the limestone immersion method station. Thanks to His method, excellent results were obtained in a short period contributing control of the piping corrosion together with the red water fading. 14 figs., 1 tab.

  11. Gamma irradiation, hot water and imazalil treatments on decay organisms and physical quality of stored netted muskmelon fruit

    International Nuclear Information System (INIS)

    Lester, G.

    1989-01-01

    Nonchemical treatments of gamma irradiation (2 Kilograys) and hot water (57°C) and the fungicide imazalil (1000 ppm) were compared with and without shrink-film wrap for effects on decay and physical quality of netted muskmelon fruit stored at 4°C for 0 through 60 days. Gamma irradiation was ineffective in controlling decay and surface molds, and injurious to physical quality by decreasing firmness, increasing fresh weight loss, membrane leakage and vein track browning. Hot water treatment coupled with shrink-film wrap was effective in controlling decay activity and maintaining physical quality up to 20 days storage. Imazalil coupled with shrink-film wrap controlled the incidence and severity of decay and maintained fruit firmness, moisture loss, membrane permeability and vein track browning for almost 60 days storage. (author)

  12. Enzymatic saccharification of liquid hot water and dilute sulfuric acid pretreated oil palm empty fruit bunch and sugarcane bagasse

    Science.gov (United States)

    Risanto, L.; Fitria; Fajriutami, T.; Hermiati, E.

    2018-03-01

    Oil palm empty fruit bunch (OPEFB) and sugarcane bagasse (SB) are potential feedstocks for the production of bioethanol. In this study OPEFB and SB were pretreated by liquid hot water and dilute sulfuric acid (3% H2SO4), and continued with enzymatic saccharification. Heating treatment for both methods was conducted in an autoclave at 121 °C for 1 hr. The saccharification was performed up to 72 hours with cellulase enzyme loading of 10, 20, and 30 FPU per g biomass. Results showed that OPEFB and SB pretreated with H2SO4 produced higher reducing sugars than those pretreated by liquid hot water. Higher enzyme loading also resulted in higher reducing sugars. Reducing sugars obtained from enzymatic saccharification of OPEFB were higher than those obtained from SB. The highest total reducing sugars (50.48 g/100 g biomass) was obtained from OPEFB pretreated with 3% H2SO4 at enzyme loading of 30 FPU per g biomass.

  13. Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.

    Science.gov (United States)

    Anderson, Lucy G; Dunn, Alison M; Rosewarne, Paula J; Stebbing, Paul D

    Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government's Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could 'clean' their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ 2  = 117.24, p  clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns.

  14. Smart SDHW systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2000-01-01

    The aim of the project is to develop smart solar domestic hot water (SDHW) systems. A smart SDHW is a system in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top an...

  15. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  16. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun

    2017-01-01

    A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T  = CPCC 204147 T ).

  17. Investigation of transient behaviour of combi boiler type appliances for domestic hot water

    International Nuclear Information System (INIS)

    Atmaca, Ayşe Uğurcan; Erek, Aytunç; Altay, Hürrem Murat

    2015-01-01

    Combi boiler type appliances heating both space and water demanded for use and consuming natural gas as the energy source are one of the most common branches of the household goods. This study touches mainly on two types of combi boiler concepts to investigate only domestic hot water (DHW) heating function since highly efficient condensing appliances have been manufactured in terms of space heating. First concept has the normal working configuration of the heat exchangers of a standard combi boiler; whereas, the second has the opposite operation order of the heat exchangers. 1D transient energy equations have been constructed with the help of the laws of thermodynamics in order to model the heat exchangers in a standard combi boiler. After obtaining a general mathematical model for the standard combi boiler, the energy equations have been discretised with finite difference scheme, and solved numerically in Matlab ® . Subsequently, numerical results are validated experimentally in different working modes of a standard appliance. As the last step, similar results are obtained for the second proposed concept using the related equations of the standard combi model to compare both concepts on a numerical basis. - Highlights: • 1D theoretical model of a combi boiler was constructed and verified experimentally. • Preliminary estimations will be obtained from the model about the laboratory tests. • Number of the laboratory tests will be decreased thanks to the theoretical model. • The model was used to compare the transient behaviour of two kinds of combi boilers. • The second combi boiler alternative to standard one has a higher comfort potential

  18. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    Russly Abdul Rahman

    1996-01-01

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  19. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    , electric boiler, compact heat exchanger, water filter, chlorine dioxide, Monochloramine, UV sterilization, copper and silver electrodes. The implementary conditions, effect, limits as well as economic performance of them are demonstrated. For buildings with complicated networks and large volume, chemical...

  20. Monitoring of Danish marketed solar heating systems

    International Nuclear Information System (INIS)

    Ellehauge, K.

    1993-01-01

    The paper describes the monitoring of manufactured solar heating systems for domestic hot water combined with space heating and systems for domestic hot water only. Results from the monitoring of 5 marketed combined systems for domestic hot water and space heating are presented. The systems situated at one family houses at different sites in Denmark have been monitored from January/February 1992. For the detailed monitoring of manufactured systems only for domestic hot water a test facility for simultaneous monitoring of 5 solar heating systems has been established at the Thermal Insulation Laboratory. (au)

  1. Fractionation of organic substances from the South African Eucalyptus grandis biomass by a combination of hot water and mild alkaline treatments

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2015-09-01

    Full Text Available An alternative way of fractionating lignocellulose biomass into its individual components, hemicelluloses, lignin and cellulose, was investigated. South African Eucalyptus grandis wood chips were fractionated using a combination of hot water...

  2. Prospects for jointly using solar and wind energy for heat supply and hot water supply to private houses under the conditions of Baku

    International Nuclear Information System (INIS)

    Salamov, O. M.; Aliev, F. F.

    2013-01-01

    This paper analyzes the discovery of the potential for jointly using solar and wind energy for heat supply (HS) and hot water supply (HWS) to a one-family private house located in the Apsheron Peninsula. (authors)

  3. Project subsidized by the Sunshine Project in fiscal 1982. Report on achievements in the project commissioned from NEDO - research and development on return of low-temperature hot water (simulated return test and a demonstration return test); 1982 nendo teion nessui kangen ni kansuru kenkyu kaihatsu seika hokokusho. Kangen mogi shiken kangen jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Tests and researches were performed with an objective to elucidate a decaying mechanism of return wells when low-temperature hot water utilized for geothermal binary power generation is returned underground. This paper reports the achievements in fiscal 1982. For the simulated return testing equipment, the hot water supply line was changed, a supply line was newly installed for a water flowing test on hot water in the Hacchobara area, flow rate measuring lines for each system were newly installed, and the pressure detecting locations were changed. In the fundamental tests on the simulated return test, experimental researches were carried out on the following items: production of silica scale from geothermal water, solubility of silica acid, effect of pH on polymerization of silica acid, induction time in the polymerization process of silica acid, sizes of poly-silica acid particles in geothermal water, production of poly-silica acid due to temperature drop, oversaturation degree of mono-silica acid, and scale deposition. In the simulated return test, temperature of a simulated column reproducing the return ground bed, particle sizes, and hot water properties were used as the parameters for the test conducted. As a result, the decay in return wells was estimated to be governed predominantly by chemical deposition of the scales. (NEDO)

  4. Improvement of the including sink material for around steel pot hot water department; Yokoka yuataribuyo nagashikomizai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Hakiwara, R.

    1999-02-01

    As for life of steel pot, there are many rates which a place hit part occupies even in some copies. How to construct the castable which was different from other parts was examined, and it worked for high durability performance only around the hot water hit city for that. It worked for the life extension by this report to prevent spool for which to be a main damage factor thunder big fault grains were increased it was added .20% of the durability improvement could be confirmed so far more than goods as that result by adding big fault grain 40%. (translated by NEDO)

  5. Interactions between wall rocks around magma and hot water. Magma shuhen no hekigan/nessui sogo sayo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.

    1992-12-01

    This paper describes interactions between wall rocks around magma and hot water. The paper discusses effects of hydrothermal environments on dynamic properties of rock minerals with respect to hydrolytic weakening (decrease in dynamic strength of a mineral under presence of water) and reaction enhanced deformation (deformation accelerated by chemical change occurring in a mineral itself). It also explains chemical reactivity of minerals under hydrothermal enviroments with respect to four types of chemical changes in minerals, factors governing mineral dissolution rates, and importance of equilibrium and non-equilibrium in main components in reactions between minerals and waters. These statements quote mainly results of indoor experiments. The paper indicates the following matters as problems to be discussed on interactions between wall rocks around intrusive rocks and hot waters: Deviation from chemical equilibrium in reactions between rocks and waters; change in permeability as a result of reactions between rocks and waters; and possibilities of hydrolytic weakening in rocks around intrusive rock bodies. 52 refs., 6 figs.

  6. Susceptibility of quagga mussels (Dreissena rostriformis bugensis) to hot-water sprays as a means of watercraft decontamination.

    Science.gov (United States)

    Comeau, Sean; Rainville, Scott; Baldwin, Wen; Austin, Emily; Gerstenberger, Shawn; Cross, Chad; Wong, Wai Hing

    2011-03-01

    The recent spread of dreissenid mussels to various bodies of water in the western US has sparked interest by many state and federal agencies to develop protocols to stop further expansion. Quagga mussels (Dreissena rostriformis bugensis) are of particular importance as they are currently the most widespread dreissenid species in the region. This project examined the susceptibility of quagga mussels to hot-water sprays at different temperatures and durations of spray contact at Lake Mead (Nevada-Arizona, USA). Emersed adult quagga mussels were exposed to hot-water sprays at 20, 40, 50, 54, 60, 70, and 80°C for 1, 2, 5, 10, 20, 40, 80, and 160 s. Sprays at ≥60°C for 5 s were shown to be 100% lethal. Sprays of 54°C for 10 s, 50°C for 20 s, and 40°C for 40 s also resulted in 100% mortality. A spray temperature of 60°C for 5 s is recommended for mitigating fouling by quagga mussels.

  7. Evaluation of treatments with hot water, chemicals and ventilated containers to reduce microbial spoilage in irradiated potatoes

    International Nuclear Information System (INIS)

    Shirsat, S.G.; Thomas, P.; Nair, P.M.

    1991-01-01

    Potatoes irradiated to control sprouting were dipped in: hot water (56°C, 5 min; 52°C, 10, 15 and 20 min); cold (25°C, 5 min) or hot (56°C, 5 min) salicylic acid (1000 and 2000 ppm); or sodium hypochlorite (0.1 and 0.2%, 5 min); or dusted with salicylic acid (1 and 2%), to try to reduce the incidence of bacterial soft rot (Erwinia sp.) during controlled temperature (10°C, 15°C) and ambient temperature (20–34°C) storage. All treatments, particularly hot water and hot salicylic acid dip, increased microbial spoilage, possibly as a result of handling damage during the treatments combined with the inhibition of wound periderm formation as a result of irradiation. Storing irradiated tubers in well ventilated containers reduced soft rot compared to storing them in sacks and after 6 months storage at 10, 15 and 20–34°C, 95, 90 and 77% respectively were healthy and marketable. (author)

  8. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    Science.gov (United States)

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of UV-C radiation and hot water on the calcium content and postharvest quality of apples

    Energy Technology Data Exchange (ETDEWEB)

    Hemmaty, S.; Moallemi, N.; Naseri, L.

    2007-12-15

    To increase the storage shelf life of 'Red Delicious' and 'Golden Delicious' apples they were treated with UV-C irradiation at doses of 0, 5 and 15 min irradiation at 1.435 x 10{sup -4} W/square cm{sup -} and with hot water containing 4% CaCl{sub 2} at four levels (control, dipping at 25 deg C for 10 min, dipping at 38 deg C for 5 min and dipping in 54 deg C for 1 min) in a factorial design with 4 replicates. The results showed that UV-C irradiation and dipping of fruit in hot water increased the storage life and improved fruit quality factors in 'Red Delicious' and 'Golden Delicious' apples at the end of cold storage. Both UV-C and hot water treatments decreased pH and total soluble solids/titratable acids ratio and increased fruit titratable acids and firmness. UV-C and hot water treatment increased fruit Ca content during storage. The results showed that UV-C and hot water treatment can retard fruit ripening and maintain fruit quality in cold storage. These treatments can also increase Ca concentration of fruit flesh and thus increase the nutritional value of the apples. (author) [Spanish] Con el fin de prolongar el periodo de vida útil durante la conservación frigorífica de manzanas ‘Red Delicious’ y ‘Golden Delicious’, éstas se trataron con radiación UV-C en tres dosis (0, 5 y 15 min de irradiación a 1,435 × 10{sup -4} W cm{sup -2}) y agua caliente con CaCl{sub 2} al 4% en cuatro niveles (control 0, inmersión a 25°C 10 min, 38°C 5 min ó 54°C 1 min), en un diseño factorial con 4 repeticiones por tratamiento. La irradiación con UV-C y la inmersión de los frutos en agua caliente permitió alargar el periodo de conservación y mejoró la calidad de manzanas ‘Red Delicious’ y ‘Golden Delicious’ tras el almacenamiento en frío. Ambos tratamientos aumentaron la acidez titulable y la firmeza de los frutos, también disminuyeron el pH y la relación sólidos solubles/acidez. El tratamiento con UV-C y agua caliente incrementó el contenido

  10. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  11. THE IMPORTANCE OF PRESERVATION OF AMBIENT CONNECTED TO THE TOURISM PHENOMENON GENERATED BY THE EXPLORATION OF HOT WATERS: THE CASE OF THE CIA THERMAS OF THE RIO QUENTE

    Directory of Open Access Journals (Sweden)

    Caroline Tristão de Alencar Magalhães

    2005-05-01

    Full Text Available The tourist complex Pousada do Rio Quente located at Mountain range of Caldas atRio Quente city at 17º 46’30’’ south latitude e 48º 44’52’’ west Greenwich, is composed ofhydrothermal park called Hot Park and a net of hotels with hot water swimming pools knownas: Tourist Hotel (1, Pousada Hotel (2, Pousada do Rio Quente Chalés (4, Recanto dasÁguas quentes (6, Rio Quente Suite & Flats(5and Hot Park (3.The thermal water sources that appear in the neighborhoods of the region of RioQuente had been discovered in 1722 by Bartolomeu Bueno da Silva who initially explored theregion searching for gold precious rocks. In 1916 Dr. Ciro Palmerston Guimarães resident inthen the city of Caldas Novas acquires 49 alqueires of land where was the riverbed or RioQuente in Caldas Velha located at 27 kilometers of Caldas Novas. In 1994 the Pousada doRio Quente Resorts acquires eighteen habitations units and a room of the CondominiumPousada do Rio Quente, organized under the form of Apart-Hotel. In 1996 due to demand oftourists the airport of Caldas Novas is created. In 1997 an aquatic park with 8.500m2 wasinaugurated being 4000 m2 composed of swimming pools with natural hot water and the LazyRiver. In 1999 the Largo da Ponte is inaugurated which offers new attractions for the touristsas old-time photos, cafeteria, ecological diving, kiosk for credits selling, consisting yet adivision for the Parque das Fontes, whose access is allowed only for them houses of thetourist complex, and the Hot Park that is opened the public in general. In January of 2000 theprocedures for implantation of the System of Ambient Management based on NBR ISO14001 are determined, in this same time the dependences of the Hot Park are extended and inJuly of the same year the First Week of the Environment in the Pousada do Rio quente withthe participation of about 3000 people was promoted. In July is inaugurated the Rio QuenteSuíte and Flat, organized in the format of Apart

  12. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  13. The Effect of Temperature on Pressurised Hot Water Extraction of Pharmacologically Important Metabolites as Analysed by UPLC-qTOF-MS and PCA

    Directory of Open Access Journals (Sweden)

    B. S. Khoza

    2014-01-01

    Full Text Available Metabolite extraction methods have been shown to be a critical consideration for pharmacometabolomics studies and, as such, optimization and development of new extraction methods are crucial. In the current study, an organic solvent-free method, namely, pressurised hot water extraction (PHWE, was used to extract pharmacologically important metabolites from dried Moringa oleifera leaves. Here, the temperature of the extraction solvent (pure water was altered while keeping other factors constant using a homemade PHWE system. Samples extracted at different temperatures (50, 100, and 150°C were assayed for antioxidant activities and the effect of the temperature on the extraction process was evaluated. The samples were further analysed by mass spectrometry to elucidate their metabolite compositions. Principal component analysis (PCA evaluation of the UPLC-MS data showed distinctive differential metabolite patterns. Here, temperature changes during PHWE were shown to affect the levels of metabolites with known pharmacological activities, such as chlorogenic acids and flavonoids. Our overall findings suggest that, if not well optimised, the extraction temperature could compromise the “pharmacological potency” of the extracts. The use of MS in combination with PCA was furthermore shown to be an excellent approach to evaluate the quality and content of pharmacologically important extracts.

  14. Characteristics of Corn Stover Pretreated with Liquid Hot Water and Fed-Batch Semi-Simultaneous Saccharification and Fermentation for Bioethanol Production

    Science.gov (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192

  15. Anaerobic bioconversion of organic waste into biogas by hot water treatment at near-critical conditions: application in bioregenerative life support.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Lasseur, Christophe

    2003-01-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a HRT (hydraulic retention time) of 20 d was obtained. Biogas yields further increased with 10-15% at HRT > 20 d, indicating the hydrolysis of lignocellulose to be the rate-limiting conversion step. The solids present in the CSTR-effluent were subsequently treated by hot water treatment (T approximately 310-350 degrees C, p approximately 240 bar), resulting in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete hygienisation of the residue. Subsequent anaerobic digestion of the hydrolysate allowed further conversion of 48-60% on COD (chemical oxygen demand) basis. Thus, the total process yielded biogas corresponding with a COD conversion up to 90% of the original organic matter. It appears that mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete, non-toxic and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  16. Conception, implementation and effect of the consumption-dependent billing of heating and hot-water costs; Konzept, Vollzug und Wirkung der verbrauchsabhaengigen Heiz- und Warmwasserkostenabrechnung (VHKA)

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Schwenkel, Ch.

    2008-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the experience gained from the operation of the consumption-dependent billing of heating and hot-water costs (Verbrauchsabhaengigen Heiz- und Warmwasserkostenabrechnung, VHKA), a system introduced in Switzerland as one of the first energy-policy measures in the nineteen-eighties. The study examines the strategic possibilities of the VHKA within the framework of future efficiency strategies. Also, as an operative goal, the study takes a look at the acceptance of the VHKA and its effectiveness. In this way, an indication on how the instrument can be optimised can be obtained. The report consists of five chapters that look at the concept and implementation of the VHKA, its effect on the lessees of apartments and real estate owners and, finally, presents a cost-benefit analysis of the VHKA. The methods used in the study include the analysis of documents, personal and telephone interviews and the evaluation of billing data and other data collected.

  17. Effect of gamma irradiation combined with hot water treatment on the texture, pulp color and sensory quality of ''Nahng Glahng Wahn'' mangoes

    International Nuclear Information System (INIS)

    Lacroix, M.; Jobin, M.; Beliveau, M.; Gagnon, M.

    1992-01-01

    Mangoes (Mangifera indica L.) from Thailand of the 'Nahng Glahng Wahn' variety were irradiated with a 60 Co source at a dose of 0.63 kGy and a dose rate of 9.23 kGy/hr, with or without a hot water treatment prior to irradiation. The irradiation treatment had little effect on the texture and preserved the yellow color in the pulp. Test of sensory evaluation revealed that irradiated mango pulp was preferred for overall appearance, taste, texture and palatability. The appearance of whole irradiated mangoes was also preferred over that of the control mangoes. However, no significant differences were observed between irradiated and hot water dipped irradiated mangoes for all characteristics studied in mangoes pulp. The results showed that these treatments (hot water dip plus irradiation or irradiation alone) are useful and non-destructive methods to preserve consumer acceptability

  18. Installation package - SIMS prototype system 1A

    Science.gov (United States)

    1976-01-01

    This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.

  19. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Tanaka

    Full Text Available Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young's modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young's modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank's solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.

  20. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    Science.gov (United States)

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  1. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    Science.gov (United States)

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  2. Reconstruction actions carried out in order to achieve nominal design heat capacity of hot water boilers type VKSM 40; A product of TPK-Zagreb

    International Nuclear Information System (INIS)

    Ninevski, Gjorgji; Sekovanikj, Ivica

    2000-01-01

    Hot water boilers with a steep turbines membranous produced by TPK-Zagreb in 1979 are projected for nominal capacity of 46.52 MW. But it was demonstrated in practice, according the performed measurements, that during the exploitation they do not give declared thermal power. In this article the chronological review of all successful performed reconstructive operations by engineering staff from Toplifikacija Joint-Stock Co. for district heating -Skopje (Macedonia) on the hot water boilers type VKSM40 with nominal capacity of 46.52 MW is given. (Authors)

  3. Penggunaan Hot Water Treatment dan CaCl2 untuk Mencegah Kerusakan Fisiologis Buah Belimbing (Averrhoa carambola L.

    Directory of Open Access Journals (Sweden)

    Siti Trinurasih

    2013-04-01

    Full Text Available Demand and productivity of starfruit have been increased every year. With that potency, starfruit could determined as national fruit commodityto be exported. One of the obstacle that encountered by fruit export from Indonesia was the high attack of pest or fruit fly which caused many fruit do not qualify in the quarantine process. Moreover, the problem of postharvest handling should be more focused because the starfruit was perishable commodity. In this research, postharvest handling was combination of hot water treatment and soaking in CaCl2 solution. This research used starfruit variety of Dewi with ripeness index of level 4. Samples treated with hot water treatment (HWT with three levels (35oC for 60’; 45oC for 40’ and 55oC for 15’. After HWT, samples treated with soaking in CaCl2 solution at three level treatments (60’; 40’; dan 20’. The results showed that HWT was very significantly affected on overall starfruit quality during storage, whereas treatment of soaking in CaCl2 solution wasn’t significantly affected on starfruit quality. Meanwhile, combination of HWT and CaCl2 were significantly affected to respiration rate, weight shrinkage, brightness level, yellow-blue pulp level, and panelists acceptance toward flavor and aroma. Treatment of HWT 55ºC for 15 minutes, softening of fruit pulp cannot be avoided because of the heat injury. Combination of HWT 45ºC for 40 minutes and 4% CaCl2 for 60 minutes can maintain quality till 24th day panelist acceptance test.

  4. Comparison of brown sugar, hot water, and salt methods for detecting western cherry fruit fly (Diptera: Tephritidae) larvae in sweet cherry

    Science.gov (United States)

    Brown sugar or hot water methods have been developed to detect larvae of tephritid fruit flies in post-harvest fruit in order to maintain quarantine security. It would be useful to determine if variations of these methods can yield better results and if less expensive alternatives exist. This stud...

  5. The effect of radiation-induced crosslinking on loss of Chimassorb 944 from (polyethylene-ethylene vinylacetate) blend in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2006-01-01

    Loss of a high molecular weight hindered amine light stabilizer (HALS) from irradiated low density polyethylene-ethylene vinyl acetate blends (LD/EVA) in hot water has been investigated. The effect of Chimassorb 944 and two trifunctional monomers, triallyloxy-1, 3,5-triazine and 2-ethyl-2-(hydroxymethyl)-1,3-propandiol-trimethacrylate on LD/EVA properties after irradiation and their effect on the stabilizer migration from the polymer base during thermal aging in hot water has been studied. The samples in both pure form and mixed with additives were exposed to electron beam radiation at doses between 100 and 150 kGy, at room temperature, in air. In order to study the thermal aging property, irradiated samples were placed in hot water bath at 95 deg C for 1000 hours and in an oven at 140 deg C for several hours. Irradiated samples showed noticeable changes in mechanical properties. Long term heat stability of polymer blend was improved significantly by using polyfunctional monomers. From the results of the thermal aging procedures, the HALS showed a convenient influence on the increase of the polymer blend thermal stability at 95 deg C. However under the accelerated conditions, the value of OIT decreased as a result of HALS depletion from the polymer base during immersion in hot water. (author)

  6. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    Science.gov (United States)

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Fiscal 1980 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1980 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the fiscal 1980 research result on reinjection mechanism of hot water. In the research in Takinoue area, except one well with drop of nearly 2m, no change in underground water level was observed, and no change in water temperature except seasonal change, no change in river water and no leakage of reinjected hot water were also observed. Quantitative simulation was made on hot water supply from the outside strata to storage strata, features of hydraulic structure, pressure fluctuation and water balance, using tracer test data. In Nigori-Gawa area, no clear change in water level and water temperature was found. Various basic parameter data related to water flow in rocks composing storage strata were obtained by tracer test. In the research on the effect of reinjected hot water on the ground, in Takinoue area, fine earthquake was observed on fault planes, however, the spectral analysis result showed no change in ground condition. The precise survey result showed specific fluctuation during last year. In Nigori-Gawa area, fine earthquake was equivalent to that before development. Vertical and horizontal fluctuations were also observed by precise survey. (NEDO)

  8. Butanol production from sweet sorghum bagasse (SSB) with high solids content: part I – comparison of liquid hot water pretreatment with dilute sulfuric acid

    Science.gov (United States)

    In these studies we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g·L-1) at 190 deg C for zero min (as soon as temperature reached 190 deg C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and ...

  9. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor

    CSIR Research Space (South Africa)

    Reddy, P

    2015-05-01

    Full Text Available Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron...

  10. Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production

    Science.gov (United States)

    Manuel R. Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Rui Zhu; Karl Englund

    2016-01-01

    Hot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to...

  11. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    Science.gov (United States)

    2014-05-01

    the cogeneration system displaces more energy (the impact is not 4-5X because the GHG intensity factors for offsetting electricity generation and...visibility to Army energy managers. Additional benefits of Cogenra’s solar cogeneration system are the engineering and design jobs at Cogenra’s...certification. Solar cogeneration can help earn LEED points in three areas: Optimizing Energy Efficiency Performance, On-Site Renewable Energy , and

  12. Development of hot water utilizing power plant in fiscal 1999. Development of binary cycle power plant (Development of 10-MW class plant); 1999 nendo nessui riyo hatsuden plant to kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to utilize effectively middle to high temperature hot water type geothermal resources, R and D has been performed on a downhole pump-applied binary cycle power plant which exchanges heat energy with a secondary media in a heat exchanger, and generates electric power. This paper summarizes the achievements in fiscal 1999. This fiscal year has installed an operation control device and made partial modification therein for the hot water system testing device installed in the previous fiscal year, which was followed by test operation. Having been performed in addition were the installation of cooling water collection pumps, improvement of water storage tanks, modification of piping for injection of downhole pump cooling water, inspection of high-temperature cooling device and low-temperature cooling device, and discussions on deposits onto the downhole pumps. Furthermore, an environmental impact survey has performed measurements of precipitation, river flow rates, thermal spring, spring water, noise, and groundwater fluctuation. A survey was also carried out on transplantation of precious plants. In the single and overall test operation of the hot water system testing device, normal operation was identified. However, the operation had to be suspended because of a trouble in the downhole pump. (NEDO)

  13. Influence of Sampling Season and Sampling Protocol on Detection of Legionella Pneumophila Contamination in Hot Water / Paraugu Ņemšanas Sezonalitātes Un Paraugu Ņemšanas Metodes Ietekme Uz Legionella Pneumophila Kontaminācijas Noteikšanu Karstajš Ūdenī

    Directory of Open Access Journals (Sweden)

    Pūle Daina

    2016-08-01

    Full Text Available Legionella pneumophila is an environmental pathogen of engineered water systems that can cause different forms of legionellosis - from mild fever to potentially lethal pneumonia. Low concentrations of legionellae in natural habitats can increase markedly in engineered hot water systems where water temperatures are below 55 °C. In the current study, we aimed to investigate the influence of sampling season, hot water temperature and sampling protocol on occurrence of L. pneumophila. A total of 120 hot water samples from 20 apartment buildings were collected in two sampling periods - winter 2014 (n = 60 and summer 2015 (n = 60. Significantly higher occurrence of L. pneumophila was observed in summer 2015. Significant differences in temperature for negative and positive samples were not observed, which can be explained by low water temperatures at the point of water consumption. Temperature above 55 °C was observed only once, for all other sampling events it ranged from 14 °C to 53 °C.

  14. Review of biomass fired space heating/domestic hot water boilers' application, operation and design parameters

    International Nuclear Information System (INIS)

    1997-01-01

    Monitoring exercises have been carried out for ETSU, by a number of contractors, on a number of wood fired heating schemes; feasibility studies on proposed schemes have also been carried out. Monitoring reports and feasibility studies have been reviewed to try and establish the suitability and economic viability of the various types of plant used (or proposed) and their application. Of the sixteen schemes reviewed just over 30% showed a reasonable return on the incremental capital cost of plant compared to gas oil fired plant. These schemes had one or more of the following attributes: - Low wood fuel cost -Long operating hours -Relatively low incremental capital cost of wood plant over gas oil plant. Small systems with low operating hours (e.g. short weekday occupancy premises, like schools) and relatively high incremental operating and maintenance costs and capital costs exhibited no advantage over equivalent fossil fuel fired plant. The unit fuel cost advantage to wood, in these cases, was insufficient to outweigh the increased O and M and capital costs, because of the comparatively low annual fuel consumption. Most of the plants reviewed had low thermal efficiencies due to the simplicity of the fuel to air control systems and the wide range of heating demand over which they had to operate. The former can be increased by improved combustion control systems and the latter by correct sizing of boilers and/or the installation of hybrid systems. (Author)

  15. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    Science.gov (United States)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  16. The role of knowledge about user behaviour in demand response management of domestic hot water usage

    NARCIS (Netherlands)

    Tabatabaei, Seyed Amin; Klein, Michel

    2018-01-01

    Load balancing is an important topic in smart grid systems. Dynamic pricing is a common approach to achieve a better balance between renewable energy production and energy usage. This assumes that individual households adapt their energy usage patterns based on energy prices. However, the actual

  17. Hot water preparation using heat-pumps and loading control on the secondary side. Measurements made on an installation in Uttwil, Switzerland - Final report; Warmwasserbereitung mit Waermepumpe und sekundaerseitiger Laderegelung. Messungen an einer Anlage in Uttwil - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hans Mayer, M. [Mayer Ingenieur GmbH, Diessenhofen (Switzerland); Gabathuler, H. R. [Gabathuler Beratung GmbH, Diessenhofen, (Switzerland); Baumgartner, T. [Baumgartner und Partner AG, Rapperswil-Jona (Switzerland)

    2009-06-15

    The object of the project is to prepare basic documentation enabling domestic hot water heating systems to be designed for detached houses, apartment houses, school buildings, swimming pools, hotels, etc. - i.e. installations of any size - using regular commercial heat pumps, heat exchangers and storage tanks, having optimum energy performance and remaining fault-free both in winter and in summer operation. Studies performed in 2007 demonstrated that domestic hot-water temperatures of 54 to 57 {sup o}C could be achieved without auxiliary electrical heating using an external heat exchanger and with step charging, whereby seasonal performance factors of 3.15 to 3.33 were achieved. In the present project, the advantages of anti-legionella circuits with storage control in the secondary circuit are investigated on a test installation in Uttwil (Canton of Thurgau) on the basis of measurement. The measurements were performed using a ground source heat pump with scroll compressor and intermediate steam injection, enabling a maximum condenser exit temperature of 65 {sup o}C to be achieved. The following conclusions were reached in the studies: (i) For installations with normal domestic hot-water consumption (e.g. in residential buildings), cold water strata appear in the lower part of the storage tank. In this case, therefore, step charging in normal operation up to a temperature of about 57 {sup o}C is more advantageous. With this, seasonal performance factors of around 3.33 can be achieved (see 2007 studies). (ii) For installations with only low domestic hot-water consumption, in which the temperature reduction in the storage tank is mainly due to the recirculation system (typical for office buildings), stratified charging is preferable. For a domestic hot-water temperature of 57 {sup o}C, a seasonal performance factor of around 2.6 and for domestic hot-water temperatures above 60 {sup o}C, a seasonal performance factor of 2.5 is more realistic. (iii) The first

  18. Solar energy system performance evaluation: Seasonal report for IBM System 1B, Carlsbad, New Mexico

    Science.gov (United States)

    1980-01-01

    A hot solar heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. The space heating and hot water loads were near expected values for the year. Solar energy provided 43 percent of the space heating and 53 percent of the hot water energy. The system did not meet the total system solar fraction design value of 69 percent because of a combination of higher estimated space heating load than was actually encountered and the apportioning of solar energy between the space heating and the domestic hot water loads. System losses and high building temperatures also contributed to this deviation. Total net savings were 23.072 million BTUs. Most of the energy savings came during the winter months, but hot water savings were sufficient to justify running the system during the summer months.

  19. Artificial neural networks for the performance prediction of heat pump hot water heaters

    Science.gov (United States)

    Mathioulakis, E.; Panaras, G.; Belessiotis, V.

    2018-02-01

    The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.

  20. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...