WorldWideScience

Sample records for hot-gas cleanup systems

  1. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  2. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  3. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  4. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, July 1--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; hot Gas Cleanup Units to mate to all gas streams; and Combustion Gas Turbine. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  5. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  6. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  7. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  8. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  9. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  10. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  11. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  12. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  13. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  14. Dynamic simulation for hot gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Zeppi, C.; Berg, H.; Vitolo, S.; Tartarelli, R.; Tonini, D.; Zaccagnini, M. (ENEL CRTN, Pisa (Italy))

    1993-01-01

    Removal of sulfur compounds from hot coal gas is a necessary step during power generation operations. Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials. A mathematical model capable of describing the sulfidation phase in fixed-, moving- and fluidized-bed reactors has been developed. Equations selected are sufficiently simple and numerical solutions can be obtained in a reasonable time using available computer equipment. At the same time the equations produce satisfactory agreement with experimental results. This paper presents kinetic models of spherical sorbent-particles applicable to all reactor configurations and a mathematical model limited to the moving-bed reactor. 10 refs., 5 figs.

  15. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  16. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  17. Development of teleoperated cleanup system

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, J. J.; Yang, M. S.; Kwon, H. J.

    2005-01-01

    This report describes the development of a teleoperated cleanup system for use in a highly radioactive environment of DFDF(DUPIC Fuel Demonstration Facility) at KAERI where direct human access to the in-cell is strictly limited. The teleoperated cleanup system was designed to remotely remove contaminants placed or fixed on the floor surface of the hot-cell by mopping them with wet cloth. This cleanup system consists of a mopping slave, a mopping master and a control console. The mopping slave located at the in-cell comprises a mopping tool with a mopping cloth and a mobile platform, which were constructed in modules to facilitate maintenance. The mopping master that is an input device to control the mopping slave has kinematic dissimilarity with the mopping slave. The control console provides a means of bilateral control flows and communications between the mopping master and the mopping slave. In operation, the human operator from the out-of-cell performs a series of decontamination tasks remotely by manipulating the mopping slave located in-cell via a mopping master, having a sense of real mopping. The environmental and mechanical design considerations, and control systems of the developed teleoperated cleanup system are also described

  18. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  19. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  20. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  1. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  2. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  3. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  4. EBR-II Cover Gas Cleanup System (CGCS) upgrade graphical interface design

    International Nuclear Information System (INIS)

    Staffon, J.D.; Peters, G.G.

    1992-01-01

    Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high performance digital computers and color graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The Cover Gas Cleanup System (CGCS) at EBR-II is the first system to be upgraded with high performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software

  5. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  6. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  7. Fuel cleanup system for the tritium systems test assembly: design and experiments

    International Nuclear Information System (INIS)

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse

  8. Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin

    Science.gov (United States)

    Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

    2000-12-01

    Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

  9. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  10. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  11. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  12. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  13. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  14. They all like it hot: faster cleanup of contaminated soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, R., LLNL

    1998-03-01

    Clean up a greasy kitchen spill with cold water and the going is slow. Us hot water instead and progress improves markedly. So it makes sense that cleanup of greasy underground contaminants such as gasoline might go faster if hot water or steam were somehow added to the process. The Environmental Protection Agency named hundreds of sites to the Superfund list - sites that have been contaminated with petroleum products or petroleum products or solvents. Elsewhere across the country, thousands of properties not identified on federal cleanup lists are contaminated as well. Given that under current regulations, underground accumulations of solvent and hydrocarbon contaminants (the most serious cause of groundwater pollution) must be cleaned up, finding a rapid and effective method of removing them is imperative. In the early 1990`s, in collaboration with the School of Engineering at the University of California at Berkeley, Lawrence Livermore developed dynamic underground stripping. This method for treating underground contaminants with heat is much faster and more effective than traditional treatment methods.

  15. Power Systems Development Facility. Quarterly report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a fimction of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and hot gas cleanup units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is nearing completion. Nearly all equipment are set in its place and the FW equipment and the PCDs are being set in the structure.

  16. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  17. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  18. High-level waste vitrification off-gas cleanup technology

    International Nuclear Information System (INIS)

    Hanson, M.S.

    1980-01-01

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  20. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  1. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  2. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  3. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  4. Improved method for removing metal vapor from gas streams

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Im, K.H.

    1994-01-01

    This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy

  5. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  6. Coolant cleanup system for a nuclear reactor

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Usui, Naoshi; Yamamoto, Michiyoshi; Osumi, Katsumi.

    1983-01-01

    Purpose: To maintain the electric conductivity of reactor water lower and to minimize the heat loss in the cleanup system by providing a low temperature cleanup system and a high temperature cleanup system together. Constitution: A low temperature cleanup system using ion exchange resins as filter aids and a high temperature cleanup system using inorganic ion exchange materials as filter aids are provided in combination. A part of the reactor water in a reactor pressure vessel is passed through a conductivity meter, one portion of which flows into the high temperature cleanup system having no heat exchanger and filled with inorganic ion exchange materials by way of a first flow rate control valve and the other portion of which flows into the low temperature cleanup system having heat exchangers and filled with the ion exchange materials by way of a second control valve. The first control valve is adjusted so as to flow, for example, about more than 15% of the feedwater flow rate to the high temperature cleanup system and the second control valve is adjusted with its valve opening degree depending on the indication of the conductivity meter so as to flow about 2 - 7 % of the feedwater flow rate into the low temperature cleanup system, to thereby control the electric conductivity to between 0.055 - 0.3 μS/cm. (Moriyama, K.)

  7. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  8. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  9. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  10. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  11. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  12. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  13. Two-branch Gas Experiments for Hot Gas Mixing of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Yangping; Hao Pengefei; He Heng; Li Fu; Shi Lei

    2014-01-01

    A model experiment is proposed to investigate the hot gas mixing efficiency of HTR-PM reactor outlet. The test facility is introduced which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main body of test facility, hot gas duct, exhaust pipe system and I&C system. Two-branch gas experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis result shows the mixing efficiency is higher than the requirement of thermal mixing by steam generator even with conservative assumption which indicates that the design of hog gas mixing structure of HTR-PM fulfills the requirement for thermal mixing at two-branch working conditions. (author)

  14. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  15. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  16. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  17. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    Energy Technology Data Exchange (ETDEWEB)

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  18. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  20. Development of tritium cleanup system for LHD

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Kawano, Takao; Shibuya, Mamoru; Kabutomori, Toshiki

    2000-01-01

    Energy is vital for humans and we have been consuming a large amount of fossil fuel especially from the beginning of the industrial revolution. Nowadays its huge consumption has however come to threaten our life and we have to prepare nonfossil fuels, for instance solar energy, biomass energy, nuclear energy and so on. Fusion energy is an unlimited resource and one of the strongest candidates of the future energy source. At the National Institute for Fusion Science (referred to as 'NIFS' hereafter), we have constructed a new fusion experimental device called large helical device (referred to as 'LHD' hereafter) in 1998. The device will generate a small amount of tritium, as a fusion product. In order to remove it from the exhaust gas, we have designed a tritium cleanup system based on a new concept. This system is mainly composed of a palladium permeater, a decomposer and hydrogen absorbing alloys. It may perfectly recover the tritium from exhaust gas without oxidizing it. This system is applicable for the future needs at fusion power plants. In order to remove tritium discharged from fusion experimental facilities, it is usual to employ a system by which tritiated constituents, in various chemical forms, are entirely converted to a form of water vapor by catalytic oxidation. The water vapor containing tritiated form is then absorbed by molecular sieve (referred to as 'wet system' hereafter). However, in the case of LHD, it is not rational to deliberately convert the discharged tritium into the water vapor, because the tritium discharged from LHD is almost in a form of hydrogen molecules. Moreover, the tritium in the form of water vapor affects the human body 18000 times stronger than that of hydrogen molecules. In accordance with these view points, we have developed another type of tritium cleanup system based on a new concept, in which hydrogen molecules including tritiated ones (HT, DT and T 2 ) found in the exhaust gas of LHD are directly fixed to hydrogen

  1. Control apparatus for hot gas engine

    Science.gov (United States)

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  2. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  3. Production of activated char from Illinois coal for flue gas cleanup

    Science.gov (United States)

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  4. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  5. Design and operational experience with a portable tritium cleanup system

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Wilson, S.W.; Garcia, F.

    1991-06-01

    We built a portable tritium cleanup system to scavenge tritium from contaminated gases in any tritium-containing system in the LLNL Tritium Facility. The cleanup system uses standard catalytic oxidation of tritium to water followed by water removal with a molecular sieve dryer. The cleanup unit, complete with instrumentation, is contained in a portable cart that is rolled into place and connected to the apparatus to be cleaned. The cleanup systems is effective, low-tech, simple, and reliable. The nominal flow rate of the system is 30 liters/minute, and the decontamination factor is > 1000. In this paper we will show design information on our portable cleanup system, and will discuss our operational experience with it over the past several years

  6. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  7. The hot gas cleaning with multifunctional sorbent technique at 1-20 bar pressure; Kaasujen kuumapuhdistus multifunktionaalisella sorbenttitekniikalla 1-20 bar:n paineessa

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K.; Orjala, M.; Paakkinen, K.; Rantanen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    The aim of the research was to study the simultaneous hot gas cleanup of alkali metals and selected heavy metals under pressure of 1-20 bar using multifunctional sorbent technology, to investigate effects of it on sulfur and nitrogen emissions and to improve the total efficiency of the hot gas cleanup method by reducing the concentrations of harmful components to the level required by the gas turbines. The research has started in the year 1993. The optimization of the test facility at 900 deg C and 20 bar has been accomplished, as targeted. The main topics have been the alkali metals. The main targets of the year 1994 was to concentrate on the research of sorbent effectiveness to remove the impurities like alkalies etc. from the flue gas. Furthermore researches on kinetics and mechanisms were started. The results showed that the developed multifunctional sorbent are highly effective to remove alkalies from the flue gas. Also a mechanism for alkali and lead sorption was proposed. The main topics for 1995 were scheduled to be the completion of the kinetic and mechanical studies and the modelling and the estimation of the data for the pilot scale unit. The kinetic data for one sorbent has been completed and a model for that has also been developed. The measured and calculated results are indicating that the developed multifunctional sorption process is highly effective to remove alkalies and heavy metals such as lead and cadmium from high-temperature combustion gases. The tests are carried out mainly using the pressurized entrained flow reactor of VTT Energy, located in Jyvaeskylae, and in the university of Arizona, where the tests are conducted under atmospheric pressure. Some comparisons of the results might be made with those of Aabo Akademi during the future modelling. 3. The results are applied to purification of the hot gases in boilers, power and process industry. (Abstract Truncated)

  8. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  9. Legal aspects of the clean-up and reclamation of the manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Joldzic, V. [Belgrade University, Belgrade (Yugoslavia). Inst. for Criminology and Sociological Research

    1995-12-31

    The laws associated with the cleanup of manufactured gas plants in Yugoslavia is described. These comprise the Environmental Protection Act; the Law about Space Planning and Organizing; Building Law; and Agricultural Land Use Law. Joint remedial action in the Danube Basin is discussed. 13 refs.

  10. Effect of gas release in hot molding on flexural strength of composite friction brake

    Science.gov (United States)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  11. Hot gas path component having near wall cooling features

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2017-11-28

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  12. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  13. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  14. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  15. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  16. New arrangement for the air cleanup system to recover tritium

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Takahashi, Kohsaku; Munakata, Kenzo; Fukada, Satoshi; Kotoh, Kenji; Takeishi, Toshiharu

    1997-01-01

    At present, the standard arrangement of the air cleanup system responsible for emergency tritium recovery from room air is a catalytic oxidation bed with a heater followed by an adsorption bed with a cooler. One disadvantage of this arrangement is that trouble with the heater or the cooler could result in a loss of capacity to recover tritium. Another disadvantage of the catalyst-adsorption-bed arrangement is that tritiated water must be recovered with a high decontamination factor after dilution with a large amount of water vapor in the working atmosphere. The performance of a new arrangement for the air cleanup system, which consists of a precious metal catalyst bed preceded by an adsorption bed without heating equipment, is discussed. According to calculations, most of the tritium released to the room air is recovered in the catalyst bed through oxidation, adsorption, and isotope exchange reaction when the new arrangement is applied. The adsorption bed placed before the catalyst bed dehumidifies the process gas to such a degree that the oxidation reaction of tritium in the catalyst bed is not hindered by water vapor. 15 refs., 6 figs., 6 tabs

  17. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  18. Thermal performance test of the hot gas ducts of HENDEL

    International Nuclear Information System (INIS)

    Hishida, M.; Kunitomi, K.; Ioka, I.; Umenishi, K.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A hot gas duct provided with internal thermal insulation is to be used for high-temperature gas-cooled reactors (HTGR). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of a hot gas duct have been conducted. The present report deals with the results of the thermal performance of the single tube type hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL). Uniform temperature and heat flux distribution at the surface of the duct were observed, the experimental correlations being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of the co-axial hot gas duct was evaluated and no hot spot was detected. These results would be very valuable for the design and development of HTGR. (orig.)

  19. The co-existence of hot and cold gas in debris discs

    Science.gov (United States)

    Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.

    2018-06-01

    Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest

  20. Hot gas path component cooling system having a particle collection chamber

    Science.gov (United States)

    Miranda, Carlos Miguel; Lacy, Benjamin Paul

    2018-02-20

    A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.

  1. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  2. Fast reactor primary cover gas system proposals for CDFR

    International Nuclear Information System (INIS)

    Harrison, L.M.T.

    1987-01-01

    A primary sodium gas cover has been designed for CDFR, it comprises plant to maintain and control; cover gas pressure for all reactor operating at fault conditions, cover gas purity by both blowdown and by a special clean-up facility and the clean argon supply for the failed fuel detection system and the primary pump seal purge. The design philosophy is to devise a cover gas system that can be specified for any LMFBR where only features like vessel and pipework size need to be altered to suit different design and operating conditions. The choice of full power and shutdown operating pressures is derived and the method chosen to control these values is described. A part active/part passive system is proposed for this duty, a surge volume of 250 m 3 gives passive control between full power and hot shutdown. Pressure control operation criteria is presented for various reactor operating conditions. A design for a sodium aerosol filter, based on that used on PFR is presented, it is specifically designed so that it can be fitted with an etched disc type particulate filter and maintenance is minimised. Two methods that maintain cover gas purity are described. The first, used during normal reactor operation with a small impurities ingress, utilises the continuous blowdown associated with the inevitable clean argon purge through the various reactor component seals. The second method physically removes the impurities xenon and krypton from the cover gas by their adsorption, at cryogenic temperature, onto a bed of activated carbon. The equipment required for these two duties and their mode of operation is described with the aid of a system flow diagram. The primary pump seals requires a gas purge to suppress aerosol migration. A system where the argon used for this task is recirculated and partially purified is described. (author)

  3. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  4. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  5. Assessment, Cleanup and Redevelopment Exchange System (ACRES)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Assessment, Cleanup and Redevelopment Exchange System (ACRES) is an online database for Brownfields Grantees to electronically submit data directly to EPA.

  6. Evolution of Hot Gas in Elliptical Galaxies

    Science.gov (United States)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  7. Architecture synthesis basis for the Hanford Cleanup system: First issue

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1994-06-01

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need

  8. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  9. Rheinbraun`s experience in hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Renzenbrink, W.; Wischnewski, R. [Rheinbraun AG, Koeln (Germany)

    1998-11-01

    For the introduction of modern types of power stations like IGCC, PCFBC, etc. the application of a functional hot gas filter is of essential importance. A hot gas filter with two tiers for dry and complete dedusting of the entire raw gas flow of 53,000 m{sup 3}(STP)/h was started up in 1993 in the High Temperature Winkler (HTW) coal gasification demonstration plant in Hurth/Berrenrath near Cologne, Germany. The operational data of the filter are a pressure of 10 bar and a temperature of 270{degree}C. The filter was supplied by the `LLB` company and is characterised by the principle of upright arrangement of the ceramic filter elements. During nearly 8,000 h of plant operation up to September 1995 the filter showed stable and safe operation, a separation efficiency of {gt}99.98%, a 21% reduction in filtration surface, reduction in cleaning gas requirement by factor 10, reduction in cleaning gas pressure to 16 bar and a significant reduction in maintenance and operating costs. The resultant clean gas dust content was {lt} 3 mg/m{sup 3}(STP) compared to the design value of 5 mg/m{sup 3}(STP). In a test to the limit of operation one failure occurred when 20 candles broke. In order to yield larger filtering surfaces in very large filter units, e.g. for IGCCs, without using more than one filter the multistage design is the only sensible solution. Prior to industrial-scale application such a system has to be tested. Therefore the two-tier filter was converted into a three-tier type with separate filter modules at the end of 1995. After another 5,400 h of plant operation this three-tier filter shows safe and stable operation with a clean gas dust content of {lt} 2 mg/m{sup 3}(STP). 3 refs., 5 figs., 1 tab.

  10. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    Science.gov (United States)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  11. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  12. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  13. Biological effects of three different shoreline cleanup methods

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, J.; Lethinen, C.; Linden, O.

    1981-06-01

    In order to simulate a real oil spill the shore of a small island in the Baltic proper was treated with a weathered crude oil. The aim of the study was to investigate and compare environmental impact of some shoreline cleanup techniques as well as the effectiveness of these methods. Hot water was the quickest cleanup method, whereas cleaning with a solvent took twice as much time and mechanical recovery three and a half time as much. The hot water treatment resulted in the smallest amounts of oil left in the soil compared to the two other methods, where two to three times as much was left. The oil content in sedimenting material and in mussels was highest outside the area cleaned with hot water. The oil content in mussel tissues increased 75 times after cleaning and the sediment contained about twice as much oil as outside the other areas. The vegetation on all four oiled areas was considerably reduced and the soil fauna was completely eliminated. Since no animals were found on the four oiled areas, not even on the untreated area, it appeared to be the oil itself that caused this effect. The number of animals caught with pitfall traps decreased after oiling and cleanup to between 10-40 % of the original amount. The results from the investigation of the fauna in the Cladophora-belt do not indicate any effects so far.

  14. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  15. Dynamic analysis of the CRBRP clean-up system (three stage aqueous scrubber)

    International Nuclear Information System (INIS)

    Kyi, R.; Bijlani, C.; Fazekas, P.; Dajani, A.

    1981-01-01

    The CRBRP containment clean-up system design required the determination of the thermal-hydraulic performance of the system during its projected operating cycle. The reduced scale component tests at HEDL provided valuable information about the generic performance of the components; however, due to the limitations of the test facility the exact simulation of the actual CRBRP conditions was not feasible. A computer program was developed to permit dynamic system analysis of the full size air cleaning system. The dynamic system analysis considered the mass and energy balances across each component. In addition to the major filtration system components, the system modeling included the supporting fluid system components such as pumps, tanks and heat exchangers. Variable gas flow, temperature, chemical concentrations, and other system parameters were also modeled. Fission product heat, chemical reaction heat and heat of solution were considered. The analysis results provided sodium hydroxide solution concentrations and temperatures, gas temperatures and other variables at the various components within the air cleaning system for each calculated time interval. The accuracy of the computer modeling was verified by comparing the calculated results with HEDL test data. The comparison indicated a better than +-10% agreement with the test data. The analysis results provided the basis for the selection of the system components

  16. Mechanical design and testing of a hot-gas turbine on a test facility

    International Nuclear Information System (INIS)

    Staude, R.

    1981-01-01

    Advanced calculation methods and specific solutions for any particular problem are basic requirements for the mechanical design of hot-gas components for gas turbines. The mechanical design contributes a great deal to the smooth running and operational reliability and thus to the quality of the machine. By reference to an expander, the present paper discusses the strength of hot components, such as the casing and the rotor, for both stationary and transient temperature distribution. Mechanical testing under hot-gas conditions fully confirmed the reliability of the rating and design of the hot-gas turbines supplied by M:A.N.-GHH STERKRADE. (orig.) [de

  17. Rapid and simple clean-up and derivatizaton procedure for the gas chromatographic determination of acidic drugs in plasma

    NARCIS (Netherlands)

    Roseboom, H.; Hulshoff, A.

    1979-01-01

    A rapid and simple clean-up and derivatization procedure that can be generally applied to the gas chromatographie (GC) determination of acidic drugs of various chemical and therapeutic classes is described. The drugs are extracted from acidified plasma with chloroform containing 5% of isopropanol,

  18. Dynamics of a hot (T∼107 K) gas cloud with volume energy losses

    International Nuclear Information System (INIS)

    Suchkov, A.A.; Berman, V.G.; Mishurov, Yu.N.

    1987-01-01

    The dynamics of a hot (T=10 6 -5x10 7 K) gas cloud with volume energy losses is investigated by numerical integration of gas dynamics equations. The dynamics is governed by a spherically symmetric gravitational field of the cloud and additional ''hidden'' mass. The cloud mass is taken in the range M 0 =10 10 -10 12 M sun , its radius R 0 =50-200 kpc, the ''hidden'' mass M ν =10 11 -3x10 13 M sun . The results show that in such sytems a structure can develop in the form of a dense compact nucleus with a radius R s 0 , and an extended rarefied hot envelope with a radius R X ∼ R 0 . Among the models involved are those where the gas cloud is either entirely blown up or entirely collapses; in some models, after the phase of initial expansion, part of the gas mass returns back into the system to form a nucleus and an envelope, and the other part leaves the system. The results are discussed in connection with the formation and early evolution of galaxies, the history of star formation and chemical evolution of galaxies, the origin of hot gas in galaxies and clusters of galaxies. It is suggested that in the real history of galaxies, formation of the nucleus and envelope corresponds to formation of galactic stellar component and X-ray halo

  19. Investigation and feasibility study of a former manufactured gas plant site in Tuttlingen (Germany), based on individually determined clean-up criteria

    Energy Technology Data Exchange (ETDEWEB)

    Heinecker, C.; Pickel, H.-J.; Duffek, J. [HPC Harress Pickel Consult GmbH, Fuldatal (Germany)

    1995-12-31

    At the request of the former plant operator, a manufactured gas plant site in Tuttlingen, Germany, was investigated from 1988 through 1992 for subsurface soil contamination resulting from former activities. In 1991, the contents of the former tar pits and parts of the adjacent soil contaminations were removed in the course of clean-up activities by means of excavation and disposed at a special waste site. Following an initial risk assessment, a remedial investigation was carried out in order to further delineate the contaminated areas as well as to create a reliable database for a feasibility study of remedial alternatives. The feasibility study followed applicable Baden-Wurttemberg state guidelines, including the following elements: Determination of the clean-up goals for soils; pre-selection of the clean-up procedure; cost estimate; cost-effectiveness study; Non-monetary evaluation; and total evaluation/clean-up proposal. The following general alternatives were available for the definition of clean-up goals: background values (`H-values`); general guidelines values (`SZ-values`); and clean-up goals based on contaminant fate and transport as well as site use (`SZA-values`).

  20. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  1. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  2. Thermal performance test of hot gas ducts of helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Hishida, Makoto; Kunitomi, Kazuhiko; Ioka, Ikuo; Umenishi, Koji; Kondo, Yasuo; Tanaka, Toshiyuki; Shimomura, Hiroaki

    1984-01-01

    A hot gas duct provided with internal thermal insulation is supposed to be used for an experimental very high-temperature gas-cooled reactor (VHTR) which has been developed by the Japan Atomic Energy Research Institute (JAERI). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of hot gas duct have been conducted. The present test was to investigate the thermal performance of the hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL) of JAERI. Uniform temperature and heat flux distributions at the surface of the duct were observed, the experimental correlation being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of VHTR hot gas duct was evaluated, and no hot spot was detected. These results would be very valuable for the design and development of VHTR. (author)

  3. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  4. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  5. Gas purification by use of hot metal getter beds

    International Nuclear Information System (INIS)

    Albrecht, H.

    1992-11-01

    An experimental program is described which was performed in the frame of a tritium technology task for the NET/ITER fusion fuel cycle. The aim was to investigate commercial gas purifiers containing metallic getters for the purification of gas streams such as the plasma exhaust gas. Five purifiers with up to 3000g of getter material were tested in the PEGASUS facility mainly with respect to the removal of methane, which is known to be much more difficult to remove than other impurities like O 2 , N 2 , or CO. A proposal for a fuel cleanup method based on a combination of getter beds and Pd/Ag diffusors is presented as the main conclusion of the test program. The discussion of this method includes the aspects of flow rates, tritium inventory, and consumption of getter material. (orig.) [de

  6. Surprisingly low natural gas consumption for hot water in the Netherlands in 1996

    International Nuclear Information System (INIS)

    Geerse, C.

    1997-01-01

    The Dutch use hot water more efficient than previously expected. This conclusion is drawn from a recent study of hot water consumption in Dutch households and the corresponding natural gas consumption. Based on that (once-only) hot water use survey the hot water use models, as applied in the annual Basic Survey of Natural Gas Consumption of Small-scale Consumers in the Netherlands (BAK), will be modified. 6 tabs

  7. Evaluation of beach cleanup effects using linear system analysis.

    Science.gov (United States)

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    International Nuclear Information System (INIS)

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-01-01

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.

  9. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  10. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  11. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    International Nuclear Information System (INIS)

    Chambon, Frederic; CIZEL, Jean-Pierre; Blanchard, Samuel

    2013-01-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  12. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)

    2013-07-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  13. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  14. Study of the Milky Way's hot coronal gas with its dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2016-08-01

    A large amount (5 × 1010 M⊙) of hot gas is thought to exist in an extended (~ 200 kpc) hot diffuse halo around the Milky Way. We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of this gravitationally bound systems in this external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh- Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment, useful in observational applications as well as theoretical interpretations of numerical results. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system, thus investigating the detectability limits and relevance of these different effects for future observational projects. The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich star cluster of stars orbiting within its host galaxy.

  15. Louisiana's statewide beach cleanup

    Science.gov (United States)

    Lindstedt, Dianne M.; Holmes, Joseph C.

    1989-01-01

    Litter along Lousiana's beaches has become a well-recognized problem. In September 1987, Louisiana's first statewide beach cleanup attracted about 3300 volunteers who filled 16,000 bags with trash collected along 15 beaches. An estimated 800,173 items were gathered. Forty percent of the items were made of plastic and 11% were of polystyrene. Of all the litter collected, 37% was beverage-related. Litter from the oil and gas, commercial fishing, and maritime shipping industries was found, as well as that left by recreational users. Although beach cleanups temporarily rid Louisiana beaches of litter, the real value of the effort is in public participation and education. Civic groups, school children, and individuals have benefited by increasing their awareness of the problems of trash disposal.

  16. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  17. Recent developments in NRC guidelines for atmosphere cleanup systems

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1976-01-01

    The Nuclear Regulatory Commission (NRC) maintains the policy of updating when necessary, its published guidance for the design of engineered safety feature (ESF) and normal ventilation systems. The guidance is disseminated by means of issuing new, or revisions to, existing Regulatory Guides, Standard Review Plans, Branch Technical Positions and Technical Specifications. A revised Regulatory Guide, new Technical Specifications and new Standard Review Plans with Branch Technical Positions for atmosphere cleanup systems are discussed. Regulatory Guide 1.52, ''Design, Testing and Maintenance Criteria for Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants,'' was issued in July 1973. The major comments received from the nuclear industry since the guide was issued, NRC's experience in implementing the guide in recent license applications, status of operating plants in meeting the guidelines and NRC's continuing assessment of operating data and laboratory tests to assure that the guide reflects the latest technology are discussed

  18. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  19. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  20. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  1. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  2. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  3. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  4. Effects of secondary containment air cleanup system leakage on the accident offsite dose as determined during preop tests of the Sequoyah Nuclear Plant

    International Nuclear Information System (INIS)

    Klaes, L.J.; Nass, S.A.; Proctor, L.D.

    1981-01-01

    The Sequoyah Nuclear Plant has two secondary containments. One is the annular region between the primary containment and the shield building surrounding the primary containment. The second is the auxiliary building secondary containment enclosure which is potentially subject to direct airborne radioactivity. Two air cleanup systems are provided to serve these areas. The emergency gas treatment system (EGTS) serves the annulus between the primary containment and the shield building, and the auxiliary building gas treatment system (ABGTS) serves the area inside of the auxiliary building secondary containment enclosure. The major function served by these air cleanup systems is that of controlling and processing airborne contamination released in these areas during any accident up to a design basis accident. This is accomplished by (1) creating a negative pressure in the areas served to ensure that no unprocessed air is released to the atmosphere, (2) providing filtration units to process all air exhausted from the secondary containment spaces, and (3) providing a low-leakage enclosure to limit exhaust flows. Offsite dose effects due to secondary containment release rates, bypass leakage, and duct and damper leakages are presented and parameter variations are considered. For the EGTS, a recirculation system, the most important parameter is the total inleakage of the system which causes an increase in both whole body (gamma) and thyroid (iodine) doses. For the ABGTS, a once-through system, the most important paramter is the inleakage which bypasses the filters resulting in an increase in the thyroid dose only. Actual preoperational test data are utilized. Problems encountered during the preop test are summarized. Solutions incorporated to bring the EGTS and ABGTS air cleanup systems within the test acceptance criteria required to meet offsite dose limitations are discussed and the resultant calculated offsite dose is presented

  5. System design package for SIMS prototype system 3, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using liquid flat plat collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system. The SIMS Prototype Heating and Hot Water System, Model Number 3 has been installed in a residence at Glendo State Park, Glendo, Wyoming.

  6. Cosmic X-ray background from hot gas

    International Nuclear Information System (INIS)

    Rogers, R.D.; Field, G.B.

    1991-01-01

    This paper considers constraints on models of the cosmic X-ray background (XRB) in which the XRB is produced by optically thin thermal bremsstrahlung from hot gas. It is shown that models in which the gas is gravitationally confined in a spherical configuration and is heated only once are contradicted by the observed number of gravitationally lensed quasars together with the lower limit on the number of XRB sources required by limits on fluctuations in the XRB and the cosmic microwave background. In addition, it is shown that, for models in which the gas is not gravitationally confined, the expansion time of the gas is much shorter than the radiative cooling time, so that such models cannot explain the XRB. It is concluded that thermal bremsstrahlung models cannot account for the XRB if the emitting gas is heated only once. 31 refs

  7. Numerical investigation on hydraulic fracture cleanup and its impact on the productivity of a gas well with a non-Newtonian fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)

    2006-07-01

    There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.

  8. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  9. Shoreline oil cleanup, recovery and treatment evaluation system (SOCRATES)

    International Nuclear Information System (INIS)

    Rusin, J.; Lunel, T.; Sommerville, M.; Tyler, A.; Marshall, I.

    1996-01-01

    A beach cleanup computer system was developed to mitigate the impact of shoreline oiling. The program, entitled SOCRATES, was meant to determine the most suitable cleanup methodologies for a range of different spill scenarios. The development, operation and capabilities of SOCRATES was described, with recent examples of successful use during the Sea Empress spill. The factors which influenced decision making and which were central to the numerical solution were: (1) the volumetric removal rate of oil, (2) area removal rate of oil, (3) length of oil slick removed per hour, (4) volumetric removal rate of oily waste, (5) area of the oil slick, (6) length of the oil slick, (7) volume of liquid emulsion, and (8) length of beach. 14 figs

  10. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  11. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  12. Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Kurt A.; Rainbolt, James E.; Li, Xiaohong S.; Braunberger, Beau; Li, Liyu; King, David L.; Dagle, Robert A.

    2017-02-15

    Warm cleanup of coal- or biomass-derived syngas requires sorbent and catalytic beds to protect downstream processes and catalysts from fouling. Sulfur is particularly harmful because even parts-per-million amounts are sufficient to poison downstream synthesis catalysts. Zinc oxide (ZnO) is a conventional sorbent for sulfur removal; however, its operational performance using real gasifier-derived syngas and in an integrated warm cleanup process is not well reported. In this paper, we report the optimal temperature for bulk desulfurization to be 450oC, while removal of sulfur to parts-per-billion levels requires a lower temperature of approximately 350oC. Under these conditions, we found that sulfur in the form of both hydrogen sulfide and carbonyl sulfide could be absorbed equally well using ZnO. For long-term operation, sorbent regeneration is desirable to minimize process costs. Over the course of five sulfidation and regeneration cycles, a ZnO bed lost about a third of its initial sulfur capacity, however sorbent capacity stabilized. Here, we also demonstrate, at the bench-scale, a process and materials used for warm cleanup of coal-derived syngas using five operations: 1) Na2CO3 for HCl removal, 2) regenerable ZnO beds for bulk sulfur removal, 3) a second ZnO bed for trace sulfur removal, 4) a Ni-Cu/C sorbent for multi-contaminant inorganic removal, and 5) a Ir-Ni/MgAl2O4 catalyst employed for ammonia decomposition and tar and light hydrocarbon steam reforming. Syngas cleanup was demonstrated through successful long-term performance of a poison-sensitive, Cu-based, water-gas-shift catalyst placed downstream of the cleanup process train. The tar reformer is an important and necessary operation with this particular gasification system; its inclusion was the difference between deactivating the water-gas catalyst with carbon deposition and successful 100-hour testing using 1 LPM of coal-derived syngas.

  13. Assessment of HAPs emissions from advanced power systems

    International Nuclear Information System (INIS)

    Erickson, T.A.; Brekke, D.W.

    1996-01-01

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the U. S. Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. Eleven trace elements are included in the CAAA list of HAPS, as shown in Table 1. The EPA will define those sources that require regulation and limit their emissions according to regulatory directives. This project focused on evaluating and manipulating the advanced power systems HAPs data currently available for presentation to the U.S. Department of Energy (DOE). Trace components included in the 189 HAPs of the 1990 CAAA are: antimony compounds; arsenic compounds; beryllium compounds; cadmium compounds; chromium compounds; cobalt compounds; lead compounds; manganese compounds; mercury compounds; nickel compounds; and selenium compounds. The review of trace element emissions from advanced power systems and hot-gas cleanup systems included data from Tidd Station, General Electric hot-gas cleanup, Louisiana Gasification Technology Incorporated, and the Cool Water plant. Very few other sources of information were located, and those that were contained significantly flawed information that was not of value to this project. To offset the shortage of information, thermochemical equilibrium predictions were used in evaluating advanced control systems. An outline of the systems reviewed is given in Table 2. In addition to the four demonstration and 1 full-scale systems reviewed, nine conventional systems were also reviewed for comparison with the advanced systems

  14. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  15. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  16. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations

  17. Hot gas filtration: Investigations to remove gaseous pollutant components out of flue gas during hot gas filtration. Final report; HGR: Untersuchung zur Minimierung von gasfoermigen Schadstoffen aus Rauchgasen bei der Heissgasfiltration. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Christ, A; Gross, R; Renz, U

    1998-07-01

    Power plants with gas and steam turbines in pressurized fluidized bed or pressurized gasification processes enable power generation of coal with high efficiency and little emissions. To run these plants the cleaning of the flue gas is necessary before entering the turbines under the conditions of high temperature and pressure. Ceramic filter elements are the most probable method for hot gas cleaning. A simultaneous reduction of gaseous pollutant components under these conditions could help to make the whole process more efficient. The aim of the project is to integrate the catalytic reduction of carbon monoxide, hydrocarbons and nitric oxides into the hot gas filtration with ceramic filter elements as a one step mecanism. The project is focused on: - the catalytic behaviour of ferruginous ashes of brown coal, - the effectiveness of calcinated aluminates as a catalyst to remove uncombusted hydrocarbons in a hot gas filtration unit, - numerical simulation of the combined removal of particles and gaseous pollutant components out of the flue gas. (orig.) [Deutsch] Gas- und Dampfturbinen-Kraftwerke mit Druckwirbelschicht- oder mit Druckvergasungsverfahren ermoeglichen die Verstromung von Kohle mit hohem Wirkungsgrad und niedrigen Emissionen. Eine Voraussetzung fuer den Betrieb dieser Anlagen ist die Entstaubung der Rauchgase bei hohen Temperaturen und Druecken. Abreinigungsfilter mit keramischen Elementen werden dazu eingesetzt. Eine Reduzierung gasfoermiger Schadstoffe unter den gleichen Bedingungen koennte die Rauchgaswaesche ersetzen. Ziel des Gesamtvorhabens ist es, die Integration von Heissgasfiltration und katalytischem Abbau der Schadstoffe Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in einem Verfahrensschritt zu untersuchen. Die Arbeitsschwerpunkte dieses Teilvorhabens betreffen - die katalytische Wirkung eisenhaltiger Braunkohlenaschen, - die Wirksamkeit des Calciumaluminats als Katalysator des Abbaus unverbrannter Kohlenwasserstoffe im Heissgasfilter

  18. Fabrication of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Jr., Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    A small sorbent-based capture system was designed that could be placed in the off-gas line from the fuel dissolver in the ATALANTE hot cells with minimal modifications to the ATALANTE dissolver off-gas system. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system have been specified, procured, and received on site at Oak Ridge National Laboratory (ORNL), meeting the April 30, 2015, milestone for completing the fabrication of the ATALANTE dissolver off-gas capture system. This system will be tested at ORNL to verify operation and to ensure that all design requirements for ATALANTE are met. Modifications to the system will be made, as indicated by the testing, before the system is shipped to ATALANTE for installation in the hot cell facility.

  19. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    Energy Technology Data Exchange (ETDEWEB)

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  20. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  1. Modelling of hot surface ignition within gas turbines subject to flammable gas in the intake

    DEFF Research Database (Denmark)

    Pedersen, Lea Duedahl; Nielsen, Kenny Krogh; Yin, Chungen

    2017-01-01

    Controlling risks associated with fires and explosions from leaks of flammable fluids at oil and gas facilities is paramount to ensuring safe operations. The gas turbine is a significant potential source of ignition; however, the residual risk is still not adequately understood. A model has been...... but decreases with increase in initial mixture temperature and pressure. The model shows a great potential in reliable prediction of the risk of hot surface ignition within gas turbines in the oil and gas industry. In the future, a dedicated experimental study will be performed not only to improve...

  2. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  3. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  4. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  5. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    Kruschik, J.; Hiltgen, H.

    1984-01-01

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  6. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  7. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  8. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  9. The role of the Milky Way hot coronal gas on its dwarf galaxies stellar population

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    A large amount (˜5 ×1010 Msun) of hot gas is thought to exist in an extended (˜200 kpc) hot diffuse halo around the Milky Way (MW). We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in this external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich cluster of stars orbiting within its host galaxy.

  10. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  11. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  12. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  13. Optimized cleanup method for the determination of short chain polychlorinated n-alkanes in sediments by high resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry

    International Nuclear Information System (INIS)

    Gao Yuan; Zhang Haijun; Chen Jiping; Zhang Qing; Tian Yuzeng; Qi Peipei; Yu Zhengkun

    2011-01-01

    Graphical abstract: The sediment sample could be purified by the optimized cleanup method, and satisfying cleanup efficiency was obtained. Highlights: → The elution characters of sPCAs and interfering substances were evaluated on three adsorbents. → An optimized cleanup method was developed for sPCAs with satisfying cleanup efficiency. → The cleanup method combined with HRGC/ECNI-LRMS was applied for sPCAs analysis. → The sPCAs levels range from 53.6 ng g -1 to 289.3 ng g -1 in tested sediment samples. - Abstract: The performances of three adsorbents, i.e. silica gel, neutral and basic alumina, in the separation of short chain polychlorinated n-alkanes (sPCAs) from potential interfering substances such as polychlorinated biphenyls (PCBs) and organochlorine pesticides were evaluated. To increase the cleanup efficiency, a two-step cleanup method using silica gel column and subsequent basic alumina column was developed. All the PCB and organochlorine pesticides could be removed by this cleanup method. The very satisfying cleanup efficiency of sPCAs has been achieved and the recovery in the cleanup method reached 92.7%. The method detection limit (MDL) for sPCAs in sediments was determined to be 14 ng g -1 . Relative standard deviation (R.S.D.) of 5.3% was obtained for the mass fraction of sPCAs by analyzing four replicates of a spiked sediment sample. High resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry (HRGC/ECNI-LRMS) was used for sPCAs quantification by monitoring [M-HCl]· - ions. When applied to the sediment samples from the mouth of the Daliao River, the optimized cleanup method in conjunction with HRGC/ECNI-LRMS allowed for highly selective identifications for sPCAs. The sPCAs levels in sediment samples are reported to range from 53.6 ng g -1 to 289.3 ng g -1 . C 10 - and C 11 -PCAs are the dominant residue in most of investigated sediment samples.

  14. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  15. Accelerating cleanup: Paths to closure

    International Nuclear Information System (INIS)

    1998-06-01

    This report describes the status of Environmental Management's (EM's) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE's 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM's accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document

  16. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  17. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  18. Development of a hot heat exchanger and a cleaning system for a 35 kW hermetic four cylinder Stirling engine for solid biomass fuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Marinitsch, Gerald; Schöch, Martin

    2005-01-01

    been operated for more than 9,000 hours. Operating experiences gained from these plants formed the basis for the further development of this technology. The experiences showed that the efficiency of the Stirling hot gas heat exchanger and of the hot gas heat exchanger cleaning system have to be further...... optimised. Within the scope of a RD&D project, a new hot gas heat exchanger and a new cleaning system have been developed and optimised in cooperation of the AUSTRIAN BIOENERGY CENTRE GmbH, the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GmbH, Austria, and BIOS BIOENERGIESYSTEME Gmb......H, Austria. The new design of the Stirling hot gas heat exchanger has been developed in order to optimise the performance of the engine and simplify the geometry. In this respect, an equal distribution of the heat transfer across each tube in the hot gas heat exchanger, the reduction of the internal Helium...

  19. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Science.gov (United States)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  20. Application of expert system to evaluating reactor water cleanup system performance

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nakamura, Masahiro; Nagasawa, Katsumi; Fushiki, Sumiyuki.

    1991-01-01

    Expert systems employing artificial intelligence (AI) have been developed for finding and elucidating causes of anomalies and malfunctions, presenting pertinent recommendation for countermeasures and for making precautionary diagnosis. On the other hand, further improvements in reliabilities for chemical control are required to promote BWR plant reliability and advancement. Especially, it is necessary to maintain the reactor water purity in high quality to minimize stress corrosion cracking (SCC) in primary cooling system, fuel performance degradation and radiation buildup. The reactor water quality is controlled by the reactor water cleanup (RWCU) system. So, it is very important to maintain the RWCU performance, in order to keep good reactor water quality. This paper describes an expert system used for evaluating RWCU system performance in BWR plants. (author)

  1. N2 gas station and gas distribution system for TLD personnel monitoring gas based semi-automatic badge readers

    International Nuclear Information System (INIS)

    Chourasiya, G.; Pradhan, S.M.; Kher, R.K.; Bhatt, B.C

    2003-01-01

    Full text: New improvised hot gas based Auto TLD badge reader has several advantages over the earlier contact heating based manual badge reader. It requires constant supply of N 2 gas for its operation; The gas supplied using replaceable individual gas cylinders may have some safety hazards in their handling. It was therefore considered worthwhile to setup a N 2 gas assembly/ station outside the lab area and to bring regulated gas supply through network of tubes with proper regulation to the individual readers. The paper presents detailed description of the gas station and distribution system. The system is quite useful and offers several practical advantages for readout of TLD badges on the semiautomatic badge readers based on gas heating. Important advantage from dosimetric point of view is avoidance of gas flow rate fluctuations and corresponding variations in TL readouts

  2. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  3. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  4. The Approach to Cleanup at West Cumbria's Nuclear Sites

    International Nuclear Information System (INIS)

    Price, T.

    2006-01-01

    The cleanup of West Cumbria's nuclear sites is one of the most important and demanding managerial, technical and environmental challenges facing the UK over the next century. Considerable progress has already been made in cleaning up the Sellafield, Calder Hall, and Low-level Waste Repository (LLWR) sites but there remains significant challenge ahead. There are more than 200 nuclear facilities at the sites including redundant fuel storage ponds, redundant chemical plants and silos of solid waste and sludge. These legacy buildings exist alongside commercially operating reprocessing and fuel fabrication facilities. They are all linked together by a complex network of services including gas supplies, water supplies, waste disposal routes, and chemical supply routes. Many of the buildings requiring cleanup are very old and date back to the early years of the British nuclear industry. They were not designed with decommissioning in mind, and some require substantial improvement to provide a safe foundation from which to retrieve waste and decommission. The cleanup of these legacy facilities must be carefully balanced with the ongoing operations that provide services to commercial customers. Cleanup must be carried out safely and efficiently, without impacting upon commercial operations whose revenue is vital to funding the Cleanup organizations scope of work. This paper will introduce the cleanup approach at West Cumbria's Sellafield nuclear site. It will provide an overview of what is being done in preparation to meet the formidable but rewarding challenge ahead. (authors)

  5. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  6. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  7. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  8. Systems engineering functions and requirements for the Hanford cleanup mission. First issue, Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.J.

    1994-01-01

    This addendum provides the technical detail of a systems engineering functional analysis for the Hanford cleanup mission. Details of the mission analysis including mission statement, scope, problem statement, initial state definition, and final state definition are provided in the parent document. The functional analysis consists of Input Computer Automated Manufacturing Definition (IDEFO) diagrams an definitions, which will be understood by systems engineers, but which may be difficult for others to comprehend. For a more complete explanation of this work, refer to the parent document. The analysis covers the total Hanford cleanup mission including the decomposition levels at which the various Hanford programs or integrated activities are encountered.

  9. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  10. Comparative study on cleanup procedures for the determination of organophosphorus pesticides in vegetables

    International Nuclear Information System (INIS)

    Alvin, Chai Lian Kuet; Lau, Seng

    2008-01-01

    A study was carried out to compare the cleanup procedures for the determination of organophosphorus pesticides in vegetables. Eleven organophosphorus pesticides were extracted with acetone and methylene chloride. Extracts were cleanup by solid-phase extraction (SPE) mixed-mode column using quaternary amine and aminopropyl (SAX/ NH 2 ) or octadecyl (C 18 ) sorbents. The pesticides were determined by gas chromatography with flame photometric detector. The recovery results obtained from the SPE SAX/ NH 2 and C 18 cleanups in carrot, cucumber and green mustard samples were in the range of 71.0 % to 115 %. Lower recoveries were obtained for polar pesticides, methamidophos and dimethoate. These results were compared to the method currently used in the laboratory which does not include any cleanup. (author)

  11. Volume overload cleanup: An approach for on-line SPE-GC, GPC-GC, and GPC-SPE-GC

    NARCIS (Netherlands)

    Kerkdijk, H.; Mol, H.G.J.; Nagel, B. van der

    2007-01-01

    A new concept for cleanup, based on volume overloading of the cleanup column, has been developed for on-line coupling of gel permeation chromatography (GPC), solid-phase extraction (SPE), or both, to gas chromatography (GC). The principle is outlined and the applicability demonstrated by the

  12. Radioactive contamination monitoring device for off-gas in ventilation system

    International Nuclear Information System (INIS)

    Osaki, Masahiko; Watabe, Atsushi; Kaneko, Itaru; Kubokoya, Takashi.

    1990-01-01

    In a conventional method of detecting leakage for primary coolants, radioactive iodine in off-gases was detected while going up the off-gas system. As an event resulting in abnormality to radioactive rare gas level, leakage of water, leakage in cleanup system-recycling system, leakage in main steams and leakage from wastes processing system are considered. An off-gas system to be measured is selectively sampled by a sample changer in order to measure radioactive rare gases in the off-gases, and sample gases are introduced to detect radioactivity. Detection signals are received for analysis and quantitative determination, the result of the analysis is diagnosed and the presence or absence of abnormality in an object to be measured is determined. Subsequently, an abnormality alarm and the result of the analysis are outputted. Since the radioactive rare gases are chemically inactive, they are neither combined with other materials nor deposited to wall surfaces. Abnormality can be easily detected by always monitoring a composition pattern and a radioactivity level. (N.H.)

  13. Statistical aspects of the cleanup of Enewetak Atoll

    International Nuclear Information System (INIS)

    Giacomini, J.J.; Miller, F.L. Jr.

    1981-01-01

    The Desert Research Institute participated in the Enewetak Atoll Radiological Cleanup by providing data-base management and statistical analysis support for the Department of Energy team. The data-base management responsibilities included both design and implementation of a system for recording (in machine-retrievable form) all radiological measurements made during the cleanup, excluding personnel dosimetry. Statistical analyses were performed throughout the cleanup and were used to guide excavation activities

  14. Structural Pre-sizing of a Coaxial Double-tube Type Hot Gas Duct

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, Y-W [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The nuclear hydrogen system being researched at KAERI is planning to produce hydrogen in the order of 950 .deg. C by using nuclear energy and a thermo-chemical process, and helium gas is tentatively considered as the choice for the coolant. A hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the nuclear hydrogen system. The HGD is a unique component exclusively found in an HTR-module concept where a nuclear core and IHX are placed separately into two pressure vessels, which require a connecting duct between them. A coaxial double-tube type cross vessel is considered for the HGD structure of the nuclear hydrogen system because of its successive extensive experience. In this study, a structural pre-sizing for the primary HGD was carried out. These activities include a predecision on the geometric dimensions, a pre-evaluation on the strength, and a pre-selection on the material of the coaxial double-tube type cross vessel components. A predecision on the geometric dimensions was undertaken based on various engineering concepts, such as a constant flow velocity (CFV) model, a constant flow rate (CFR) model, a constant hydraulic head (CHH) model, and finally a heat balanced (HB) model. For the CFV model, CFR model, and CHH model, the HGD structure might be insensitive to a flow induced vibration (FIV) in the case where there are no pressure differences between the hot and cold helium regions. Also we compared the geometric dimensions from the various models.

  15. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  16. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  17. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  18. Eye pathologies of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Eglite, A.; Ozola, G.; Curbakova, E.

    1998-01-01

    Diseases of the nervous system and sense organs have become the most significant pathologies of Chernobyl clean-up workers during the last four years. The aim of this work was to evaluate the incidence of eye disorders among Chernobyl clean-up workers to provide more information for health specialists. During the last 10 years, the most common eye pathology has been angiopathia retinae, followed by myopia and cataracta. Statistical analyses showed that the clean-up workers have higher risk to develop angiopathia retinae than the control group. (author)

  19. Removal of H/sub 2/S from hot gas in the presence of Cu-containing sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, T.; Kawashima, H.; Tomita, A.; Palmer, A.; Furimsky, E.

    1989-01-01

    Three solids containing Cu oxides were tested as sorbents for H/sub 2/S removal from hot gas at 600 degrees C. The formation of a surface layer of sulphides on pellet exterior affected Cu utilization for the sorbent prepared from Cu oxides alone. This improved for the sorbent prepared by impregnation of zeolite with Cu oxides, although complete utilization of Cu was not achieved. The combination of Cu oxides with SiO/sub 2/ gave the most efficient sorbent. Oxidation of H/sub 2/S to SO/sub 2/ on admission of hot gas to the fixed bed was a common observation for all sorbents. The addition of steam to hot gas suppressed the SO/sub 2/ formation. 9 refs., 6 figs., 4 tabs.

  20. Test of the scroll pump in the JAERI Fuel Cleanup System in the Tritium Systems Test Assembly. JFCU scroll pump test and result, JFCU stand alone tritium test 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takumi; Konishi, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohira, Shigeru [and others

    1993-03-01

    In the JAERI Fuel Cleanup System (JFCU), major subsystem of the TSTA simulated fusion fuel loop, a Normetex Scroll pump is used to pump out hydrogen isotope gases from the palladium diffuser. The characteristics of the pump was measured with hydrogen isotopes and helium, in a closed loop. Compression ratio and ultimate pressure were strongly affected by the delivery pressure and the species of the gas. Particularly with H{sub 2} and D{sub 2}, additional metal bellows pump was proved to be needed to satisfy the process requirement. For hydrogen isotopes, pumping characteristics improves with the mass of the gas and similar pumping capability was obtained with pure T{sub 2} and helium. (author).

  1. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; Van Gorkom, J. H.; Lee, Duane; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Roberts, Timothy P.

    2012-01-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (∼1.4 R vir ) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 10 39 erg s –1 and 2 × 10 8 M ☉ , respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  2. U Plant Geographic Zone Cleanup Prototype

    International Nuclear Information System (INIS)

    Romine, L.D.; Leary, K.D.; Lackey, M.B.; Robertson, J.R.

    2006-01-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as 'cleanup items') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) [1] was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  3. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  4. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau

    International Nuclear Information System (INIS)

    Zhou, Xiaocheng; Liu, Lei; Chen, Zhi; Cui, Yueju; Du, Jianguo

    2017-01-01

    The southeast Tibetan Plateau is a region with high level seismic activity and strong hydrothermal activity. Several large (7.5 > M > 7) historical earthquakes have occurred in the Litang fault zone (LFZ), eastern Tibetan Plateau since 1700. Litang Ms 5.1 earthquake occurred On Sept 23, 2016, indicating the reactivation of the LFZ. This study was undertaken to elucidate spatial-temporal variations of the hot spring gas geochemistry along the LFZ from Jun 2010 to April 2016. The chemical components, He, Ne and C isotropic ratios of bubbling gas samples taken from 18 hot springs along LFZ were investigated. Helium isotope ratios ( 3 He/ 4 He) measured in hot springs varied from 0.06 to 0.93 Ra (Ra = air 3 He/ 4 He = 1.39 × 10 −6 ), with mantle-derivd He up to 11.1% in the LFZ (assuming R/Ra = 8 for mantle) indicated the fault was a crustal-scale feature that acts as a conduit for deep fluid from the mantle. CO 2 concentrations of the majority of hot spring gas samples were ≥80 vol%, CO 2 / 3 He ratios varied from 1.4 to 929.5 × 10 10 , and δ 13 C CO2 values varied from −19.2‰ to −2.3‰ (vs. PDB). The proportions of mantle-derived CO 2 varied from 0 to 1.8%. Crustal marine limestone was the major contributor (>75%) to the carbon inventory of the majority of hot spring gas samples. Before Litang Ms 5.1 earthquake, the 3 He/ 4 He ratios obviously increased in the Heni spring from May 2013 to Apr 2016. The geographical distribution of the mantle-derivd He decreased from east to west along 30°N in the southeast Tibetan Plateau relative to a corresponding increase in the radiogenic component. The gas geochemical data suggested that the upwelling mantle fluids into the crust play an important role in seismic activity in the strike-slip faults along 30°N in the southeast Tibetan Plateau. - Highlights: • Gas geochemistry of hot springs along Litang fault, Southeast Tibetan Plateau were surveyed. • Mantle-derived He decreased from east to

  5. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  6. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni G.

    2010-01-01

    In IGCC power plants, hot gas desulfurization (HGD) represents an attractive solution to simplify syngas treatments and to improve the efficiency, potentially reducing the final cost of electricity. In the present study, the various consequences of the introduction of a HGD station in the power plant are discussed and evaluated, in comparison with conventional near-ambient temperature clean-up. Attention is paid to the potential improvements of the overall energy balance of the complete power station, along with the requirements of the sorbent regeneration process, to the influence of the desulfurization temperature and to the different solutions needed to control the NO x emissions (altered by the presence of HGD). The net performance of complete IGCC power plants (with HGD or with conventional desulfurization) were predicted, with reference to status-of-the-art solutions based on an entrained flow, dry-feed, oxygen-blown gasifier and on an advanced, FB-class combined cycle. The net efficiency experiences about 2.5% point improvement with HGD, even if a small reduction in the power output was predicted, when using the same combustion turbine. An exhaustive sensitivity analysis was carried out to evaluate the effects of different working conditions at the HGD station, e.g. desulfurization temperature and oxygen content in the gaseous stream for sorbent regeneration. According to the obtained results, these parameters have a weak influence on the efficiency. In particular, a very elevated desulfurization temperature (above 400-500 o C) does not provide decisive thermodynamic advantages. Therefore, the HGD unit optimization can be driven by technical and economical aspects and by emission abatement requirements. For instance, utilization of nitrogen for HGD sorbent regeneration (rather than for syngas dilution) and higher fuel temperature may improve the NO formation. Hence, different strategies to achieve acceptable NO x emissions (e.g. steam dilution) and their

  7. Detection of hot gas in clusters of galaxies by observation of the microwave background radiation

    International Nuclear Information System (INIS)

    Gull, S.F.; Northover, K.J.E.

    1976-01-01

    It is stated that satellite observations have indicated that many rich clusters are powerful sources of x-rays. This has been interpreted as due to either thermal bremsstrahlung from very hot gas filling the clusters or as inverse Compton scattering of photons by relativistic electrons. Spectral evidence appears to favour a thermal origin for the radiation, implying the existence of large amounts of hot gas. This gas may be a major constituent of the Universe, and independent confirmation of its existence is very important. Observations are here reported of small diminutions in the cosmic microwave background radiation in the direction of several rich clusters of galaxies. This is considered to confirm the existence of large amounts of very hot gas in these clusters and to indicate that the x-radiation is thermal bremsstrahlung and not inverse Compton emission. The observations were made in 1975/1976 using the 25m. telescope at the SRC Appleton Laboratory at a frequency of 10.6 GH2, and details are given of the technique employed. (U.K.)

  8. New pre-heating system for natural gas pressure regulating stations

    International Nuclear Information System (INIS)

    Zullo, G.; Vertuani, C.; Borghesani, O.; Vignoli, F.

    1999-01-01

    Costs for running natural gas pressure regulating stations are mainly due to operation and maintenance of a natural gas preheating system, usually equipment with a hot water boiler or an armour-plated electric resistance immersed in a fluid. The article describe a system, considering a natural circulation boiler which uses steam/condensate (at 100 degrees C and 0,5 bar) as a thermal conductor, in thermodynamic balance and in absence of un condensable. This new boiler, already operating with satisfactory results in heating system for industrial buildings, does not require testing, notifications, periodical inspections by the competent authorities, constant monitoring by trained or patented staff. Besides, it allows easier installations procedures and running cost savings. The system, to be considered as static because it has no moving parts, is a good alternative to conventional forced hot water circulation or electric heating system [it

  9. A Search for Hot, Diffuse Gas in Superclusters

    Science.gov (United States)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  10. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Science.gov (United States)

    2010-07-01

    ... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  11. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jesper [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bai, Xue-Ning [Department of Astrophysical Sciences, Peyton Hall, Princeton University, NJ 08544 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van Gorkom, J. H.; Lee, Duane [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States); Jeltema, Tesla E. [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilcots, Eric [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Martini, Paul [Department of Astronomy, 4055 McPherson Laboratory, Ohio State University, 140 West 18th Avenue, Columbus, OH (United States); Roberts, Timothy P., E-mail: jr@dark-cosmology.dk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc ({approx}1.4 R{sub vir}) of the group center, down to a limiting X-ray luminosity and H I mass of 3 Multiplication-Sign 10{sup 39} erg s{sup -1} and 2 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  12. Evaluation of concepts for a NET plasma exhaust clean-up system

    International Nuclear Information System (INIS)

    Glugla, M.; Penzhorn, R.D.; Rodriguez, R.; Herbrechter, D.; Dinner, P.; Murdoch, D.

    1990-07-01

    The process steps for the off-gas clean-up and direct recovery of the unburned fuel gases deuterium and tritium are, together with the isotope separation and the fuel preparation, the major subsystems within the fuel cycle of a fusion reactor. A comparison between process concepts largely based on experimental work at KfK and other process alternatives discussed in the literature is carried out and the various options are evaluated on the basis of the process requirements for NET I. The recovery of most of the unburned hydrogen with a palladium/silver permeator is selected as a first step, common to all seven concepts. The remaining impurity stream is processed either catalytically, with the help of getters, or by oxidation followed by reduction of the produced water. The physicochemical basis of each process alternative is discussed and the corresponding chemical flow sheets (flow diagrams and material flow tables) are presented. Concepts employing getters are unattractive because the produce untolerably high amounts of solid waste. Main drawbacks of process options involving an oxidation step are the non-discriminative oxidation of hydrogen and impurities as well as the non-trivial reduction of the produced highly tritiated water at the required elevated throughput. Advantages of the catalytic process are the production of little solid waste, the low steady state inventory and the comparatively easy scale-up. The catalytic process is therefore considered the most promising option for the development of a fuel clean-up process. (orig./HK) [de

  13. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  14. Renewable Natural Gas Clean-up Challenges and Applications

    Science.gov (United States)

    2011-01-13

    produced from digesters ─ Animal manure (dairy cows, swine ) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...LNG) for vehicle fuel ─Ft. Lewis — Anaerobic digestion of waste water for production of hydrogen as a fuel cell vehicle fuel ─SCRA * – Landfill gas...BE CLEANED- UP AND PLACED IN THE NATURAL GAS PIPELINE SYSTEM 6 GTI RNG Project Examples >Example GTI Projects: ─Gills Onions— Anaerobic

  15. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    Science.gov (United States)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  16. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  17. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  18. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  19. First operational tests of an oxycoal hot gas cleaning facility; Erste Betriebstests einer Oxycoal-Heissgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, A.; Habermehl, M.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    An oxyfuel power plant process using a ceramic high temperature membrane for oxygen supply is investigated within the scope of the OXYCOAL-AC project at RWTH Aachen Uni-versity. Implementing the membrane requires a clean gas at a temperature of 850 C. There-fore a hot gas cleaning facility based on porous ceramic candle filters is used, which is state-of-the-art for the gas cleaning of synthesis gas or for flue gas cleaning in pressurised fluid-ised bed furnaces. However, these applications operate at lower temperatures and in a sig-nificantly different atmosphere. Thus, experiences for dust removal at high temperatures in oxyfuel atmoshere are not available. Experiments with a hot gas cleaning facility were con-ducted at the experimental combustion plant of the Institute of Heat and Mass Transfer, us-ing different candle filter materials. The flue gas was provided by a coal fired 100 kW{sub th} oxy-fuel furnace. The operational behaviour of the filtration facility, the adhesion and dedusting properties of the filter cake were investigated. (orig.)

  20. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  1. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  2. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  3. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  4. Fernald incident underscores DOE cleanup woes

    International Nuclear Information System (INIS)

    Lobsenz, G.

    1994-01-01

    Miscalculations and poor safety planning led to a large release of deadly gas during an error-plagued effort to plug a leaking uranium hexafluoride canister discovered lying in a scrap heap at the Energy Department's Fernald plant last year, according to a DOE investigative report. Investigators with DOE's Office of Environment, Safety and Health said serious injury was avoided only because the wind happened to blow the toxic cloud of hydrogen fluoride gas away from inadequately protected Fernald workers watching the July 1993 canister-plugging operation at the Ohio plant. The investigators said the 25-minute canister repair effort - captured on videotape - was marked by poor planning by the Fernald Environmental Restoration Management Corp. (FERMCO), a Fluor Daniel subsidiary hired by DOE for its cleanup expertise

  5. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  6. Pion-pair formation and the pion dispersion relation in a hot pion gas

    Energy Technology Data Exchange (ETDEWEB)

    Chanfay, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Alm, T. [Rostock Univ. (Germany); Schuck, P. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Welke, G. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy

    1996-09-01

    The possibility of pion-pair formation in a hot pion gas, based on the bosonic gap equation, is pointed out and discussed in detail. The critical temperature for condensation of pion pairs (Evans-Rashind transition) is determined as a function of the pion density. As for fermions, this phase transition is signaled by the appearance of a pole in the two-particle propagator. In Bose systems there exists a second, lower critical temperature, associated with the appearance of the single-particle condensate. Between the two critical temperatures the pion dispersion relation changes from the usual quasiparticle dispersion to a Bogoliubov-like dispersion relation at low momenta. This generalizes the non-relativistic results for an attractive Bose gas by Evans et al. Possible consequences for the inclusive pion spectra measured in heavy-ion collisions at ultra-relativistic energies are discussed. 21 refs.

  7. Evaluation of advanced coal gasification combined-cycle systems under uncertainty

    International Nuclear Information System (INIS)

    Frey, H.C.; Rubin, E.S.

    1992-01-01

    Advanced integrated gasification combined cycle (IGCC) systems have not been commercially demonstrated, and uncertainties remain regarding their commercial-scale performance and cost. Therefore, a probabilistic evaluation method has been developed and applied to explicitly consider these uncertainties. The insights afforded by this method are illustrated for an IGCC design featuring a fixed-bed gasifier and a hot gas cleanup system. Detailed case studies are conducted to characterize uncertainties in key measures of process performance and cost, evaluate design trade-offs under uncertainty, identify research priorities, evaluate the potential benefits of additional research, compare results for different uncertainty assumptions, and compare the advanced IGCC system to a conventional system under uncertainty. The implications of probabilistic results for research planning and technology selection are discussed in this paper

  8. Comparison study for the CCME reference method for determination of PHC in soil by using internal and external standard methods and by using silica gel column cleanup and in-situ silica gel cleanup methods

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Sigouin, L.; Yang, C.; Hollebone, B.

    2003-01-01

    The assessment, cleanup, and remediation of hydrocarbon contaminated sites is covered in the Reference Method for Canada-Wide Standard for Petroleum Hydrocarbons-Tier 1 Method. It replaces several analytical methods used in the past by some laboratories and jurisdictions in Canada. The authors conducted two comparative evaluations to validate the Tier 1 Analytical Method. The first compared the Internal and External Standard Methods, and the second compared the Silica Gel Column Cleanup Method with the In-situ Silica Gel Cleanup Method. The Canadian Council of Ministers of the Environment (CCME) Tier 1 Method recommends and requires the External Standard Method to determine petroleum hydrocarbons (PHC) in soil samples. The Internal Method is widely used to quantify various organic and inorganic pollutants in environmental samples. The Tier 1 Method offers two options for the same extract cleanup. They are: Option A - In-situ Silica Gel Cleanup, and Option B - Silica Gel Column Cleanup. Linearity, precision, and PHC quantification results were the parameters considered for diesel and motor oil solutions, for diesel spiked soil samples, and for motor oil spiked soil samples. It was concluded that both the External and Internal Standard Methods for gas chromatograph (GC) determination of PHC in soil possess their own advantages. The PHC results obtained using the In-Situ Silica Gel Cleanup Method were lower than those obtained with the Silica Gel Column Cleanup Methods. The more efficient and effective sample cleanup method proved to be the Silica Gel Column Method. 13 refs., 7 tabs., 7 figs

  9. Absorption signatures of warm-hot gas at low redshift : Ne VIII

    NARCIS (Netherlands)

    Tepper-García, T

    2013-01-01

    At z {lt} 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10$^{5}$-10$^{6}$ K). Absorption by the 770.41, 780.32 å doublet of Ne VIII in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have

  10. X(3872 production and absorption in a hot hadron gas

    Directory of Open Access Journals (Sweden)

    L.M. Abreu

    2016-10-01

    Full Text Available We calculate the time evolution of the X(3872 abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872. In this evaluation we include diagrams involving the anomalous couplings πD⁎D¯⁎ and XD¯⁎D⁎ and also the couplings of the X(3872 with charged D and D⁎ mesons. With these new terms the X(3872 interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  11. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  12. Hot gas in clusters of galaxies, cosmic microwave background radiation and cosmology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Presence of the hot (kTe ~ 3 - 10 KeV) rarefied gas in the clusters of galaxies (most massive gravitationally bound objects in the Universe) leads to the appearance of  "shadows"  in the angular distribution of the Cosmic Microwave Background (CMB) Radiation and permits to measure the peculiar velocities of these clusters relative to the unique coordinate frame where CMB is isotropic. I plan to describe the physics leading to these observational effects. Planck spacecraft, ground based South Pole and Atacama Cosmology Telescopes discovered recently more than two thousand of unknown before Clusters of Galaxies at high redshifts detecting these "shadows" and traces of kinematic effect, demonstrating the correlation of the hot gas velocities with mass concentrations on large scales. Giant ALMA interferometer in Atacama desert resolved recently strong shocks between merging clusters of galaxies. Newly discovered clusters of galaxies permit to study the rate of growth of the large scale structur...

  13. Increase of hot initial plasma energy content in the end system of AMBAL-M during hydrogen puffing

    International Nuclear Information System (INIS)

    Akhmetov, Timour; Bekher, Sergei; Davydenko, Vladimir; Krivenko, Aleksander; Muraviev, Maksim; Reva, Vladimir; Sokolov, Vladimir

    2001-01-01

    At the end system of the completely axisymmetric mirror trap AMBAL-M the experiments on creation and study of a hot initial plasma have been performed. In the experiments a gas-box was used for hydrogen supply into the hot startup plasma in the mirror trap to increase the plasma density. The hot initial plasma in the trap was produced by the trapping of a plasma stream with developed electrostatic turbulence generated by a gas-discharge source located outside the entrance throat. It was found that in addition to the increase in the plasma density by a factor of 2-3, hydrogen puffing resulted in an unexpected nearly twofold diamagnetism increase. The gas puffing did not reduce the electron temperature in the trap. Essential for explanation of the observed effect is the fact that with the gas puffing the measured plasma potential in the trap increased. The increase in the plasma potential enhanced the trapping of the ion flow entering the trap and increased the average energy of the electron flow entering the trap. It was found that with the increasing hydrogen puffing rate plasma parameters in the trap were saturated. (author)

  14. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  15. Development of a risk-based approach to Hanford Site cleanup

    International Nuclear Information System (INIS)

    Hesser, W.A.; Daling, P.M.; Baynes, P.A.

    1995-06-01

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a conceptual set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within an expected annual funding profile of 1.05 billion dollars. These strategies were developed because (1) the US Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the US Congress and the US Department of Energy are increasingly focusing on risk and riskreduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars annually. The risk-based strategies described herein were developed through a systems analysis approach that (1) analyzed the cleanup mission; (2) identified cleanup objectives, including risk reduction, land use, and mortgage reduction; (3) analyzed the existing baseline cleanup strategy from a cost and risk perspective; (4) developed alternatives for accomplishing the cleanup mission; (5) compared those alternatives against cleanup objectives; and (6) produced conclusions and recommendations regarding the current strategy and potential risk-based strategies

  16. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  17. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  18. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  19. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  20. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  1. Innovative technologies for soil cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for soil cleanup. In this context, soil cleanup technologies include site remediation methods that deal primarily with the vadose zone and with relatively shallow, near-surface contamination of soil or rock materials. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in soil cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the sits-specific technical challenges presented by each sold contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After cataloging a representative selection of these technologies, one of the new technologies, Dynamic Underground Stripping, is discussed in more detail to highlight a promising soil cleanup technology that is now being field tested

  2. A purification process for an inert gas system

    International Nuclear Information System (INIS)

    Raj, S.S.; Samanta, S.K.; Jain, N.G.; Deshingkar, D.S.; Ramaswamy, M.

    1984-01-01

    Special inert atmosphere is desired inside hot cells used for handling radioactive materials. In this report, details of experiments conducted to generate data required for the design of a system for maintaining very low levels of organic and acid vapours, oxygen and moisture in a nitrogen gas inert atmosphere, are described. Several grades of activated charcoals impregnated with 1% KOH were studied for the adsorption of acidic and organic vapours. A Pd/Al 2 O 3 catalyst was developed to remove oxygen with greater than 90% efficiency. For the removal of moisture, a regenerable molecular sieve 4A dual-bed was provided. Based on the performance data thus generated, an integrated purification system for nitrogen gas is proposed. (author)

  3. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  4. Acute Health Effects Among Military Personnel Participating in the Cleanup of the Hebei Spirit Oil Spill, 2007, in Taean County, Korea

    Science.gov (United States)

    Gwack, Jin; Lee, Ju Hyung; Kang, Young Ah; Chang, Kyu-jin; Lee, Moo Sik; Hong, Jee Young

    2012-01-01

    Objectives This study was conducted to investigate acute health effects and its related factors among military personnel participating in the cleanup of the 2007 Hebei Spirit oil spill accident in Taean county, Korea. Methods We collected data on acute symptoms during the cleanup and their predictors using a self-administered questionnaire to 2624 military personnel. Selfreported symptoms included six neurologic symptoms, five respiratory symptoms, two dermatologic symptoms, three ophthalmic symptoms, and three general symptoms. Independent variables were demographic factors (gender, age, education level, and rank), health behavioral factors (smoking history and usage of the personal protective equipment such as masks and gloves), and occupational history such as where and for how long individuals participated in cleanup. Results The duration of work days was significantly associated with 17 acute symptoms except for itchiness and red skin.Working in Taean county also increased the risk of most acute symptoms except headache and back pain. In regard to personal protective equipment, wearing masks was mainly related to the development of respiratory symptoms such as sore throat and wearing other protective equipment was related to the development of sore throat, back pain, headache, and cough. Military personnel younger than 25 years reported 4.66 times more hot flushing and 5.39 times more itchiness than those older than 25 years. Conclusion It should be emphasized that for early-stage cleanup the number of workers should be minimized, sufficient personal protective equipment with approved quality for blocking noxious gas should be supplied, and systematic health care for the workers should be provided. Health effects could be diminished by providing adequate education regarding the appropriate use of protective equipment, especially to nonprofessionals such as residents and volunteers. To make disaster response expeditious, a national and regional preparedness

  5. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  6. Feasibility analysis of domestic hot water systems using TRNSYS

    International Nuclear Information System (INIS)

    Gill, G.S.; Fung, A.S.

    2008-01-01

    A study was conducted in which 17 conventional and solar-based domestic hot water (DHW) systems were simulated using the TRYNSYS simulation model, and their results were compared. According to Natural Resources Canada, DHW heating currently accounts for 25 per cent of Canadian residential energy consumption and 25 per cent of Canadian residential greenhouse gas (GHG) emissions. The objective of this simulation study was to investigate the fuel consumption of DHW systems, their GHG emissions and 30-year life cycle costs. Another aspect of the study was to model and analyze the effect of time of use (TOU) electricity pricing which was developed by the Ontario Energy Board (OEB) to provide stable and predictable electricity pricing. TOU electricity pricing also promotes energy conservation. In addition, the TOU electricity price charged per kilowatt-hour changes throughout the day to reflect the changes in cost to produce electricity at different times of the day. The Ontario government plans to equip all homes and businesses with smart meters using TOU pricing by 2010. Therefore, this study also investigated the effects of the TOU feature by optimizing its use in the effort to reduce overall energy costs and greenhouse gas (GHG) emissions. The results revealed that a DHW system with solar pre-heat and electrical back-up is the best system for energy conservation and GHG reduction. The best system in terms of 30-year life cycle cost is a high efficiency DHW system with an on demand modulating gas combo boiler with gray water heat recovery. 23 refs., 7 tabs., 8 figs

  7. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  8. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  9. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  10. Test results for fuel cell operation on anaerobic digester gas

    Science.gov (United States)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  11. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  12. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  13. Cleanup of contaminated areas

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  14. By-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1979-01-01

    A mathematical model has been developed to calculate by-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone rings. The equations of conservation of mass and momentum are solved for a piping system to obtain axial and radial by-pass velocities. The energy equation is solved next by a marching method to obtain the radial temperature distribution along the duct. The results, although qualitative due to simplifications in the model, are useful to study the effects of duct geometry on its performance. (Author) [pt

  15. A review of fusion device fuel cleanup systems

    International Nuclear Information System (INIS)

    Dombra, A.H.; Carney, M.

    1985-01-01

    Design options for a small fusion fuel purification system are assessed by comparing six conceptual system designs based on one of the following: a Zr/Al getter pump for in vacuo applications, a cryogenic molecular sieve adsorber at 77K, a palladium-alloy membrane diffuser, a U-bed reactor at 1170K, a two-compartment cryogenic freezer at 27-50K and 50-300K, a U-bed and non-regenerative Zr/Al gas purifier. The latter system introduces a new concept of fuel purification based on well-established techniques: recovery of purified D 2 -DT-T 2 from a helium carrier gas with the U-bed, followed by the removal of impurities from the carrier gas with the non-regenerative Zr/Al gas purifier. The main advantages of this system are simplicity, safety and relatively small quantity of tritiated waste produced by the process. The tritium in the waste is immobilized as a stable tritide of Zr/Al

  16. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  17. Cleanup of radioactivity contamination in environment

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    1994-01-01

    Environmental radioactivity cleanup is needed under a large scale accident in a reactor or in an RI irradiation facility which associates big disperse of radioactivities. Here, the fundamental concept including a radiation protection target, a period classification, planning, an information data base, etc. Then, the methods and measuring instruments on radioactivity contamination and the cleanup procedure are explained. Finally, the real site examples of accidental cleanup are presented for a future discussion. (author)

  18. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  19. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  20. Method and system to facilitate sealing in gas turbines

    Science.gov (United States)

    Morgan, Victor John; Foster, Gregory Thomas; Sarawate, Neelesh Nandkumar

    2017-09-12

    A method and system for sealing between components within a gas turbine is provided. A first recess defined in a first component receives a seal member. A second recess defined in a second component adjacent the first component also receives the seal member. The first and second recesses are located proximate a hot gas path defined through the gas turbine, and define circumferential paths about the turbine axis. The seal member includes a sealing face that extends in a direction substantially parallel to the turbine axis. The seal member also includes a plurality of seal layers, wherein at least one of the seal layers includes at least one stress relief region for facilitating flexing of the first seal member.

  1. HERSCHEL* FAR-INFRARED SPECTROSCOPY OF THE GALACTIC CENTER. HOT MOLECULAR GAS: SHOCKS VERSUS RADIATION NEAR Sgr A

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, Javier R.; Etxaluze, M.; Cernicharo, J.; Bell, T. A. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Carretera de Ajalvir, Km 4, Torrejon de Ardoz, E-28850 Madrid (Spain); Gerin, M.; De Luca, M.; Encrenaz, P. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure (France); Neufeld, D. A.; Indriolo, N. [Johns Hopkins University, Baltimore, MD 21218 (United States); Contursi, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Lis, D. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Polehampton, E. T. [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sonnentrucker, P., E-mail: jr.goicoechea@cab.inta-csic.es [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-05-20

    We present a {approx}52-671 {mu}m spectral scan toward Sgr A* taken with the PACS and SPIRE spectrometers on board Herschel. The achieved angular resolution allows us to separate, for the first time at far-IR wavelengths, the emission toward the central cavity (gas in the inner central parsec of the galaxy) from that of the surrounding circumnuclear disk. The spectrum toward Sgr A* is dominated by strong [O III], [O I], [C II], [N III], [N II], and [C I] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by UV photons from the central stellar cluster. In addition, rotationally excited lines of {sup 12}CO (from J = 4-3 to 24-23), {sup 13}CO, H{sub 2}O, OH, H{sub 3}O{sup +}, HCO{sup +}, and HCN, as well as ground-state absorption lines of OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, CH{sup +}, H{sub 2}O, OH, HF, CH, and NH are detected. The excitation of the {sup 12}CO ladder is consistent with a hot isothermal component at T{sub k} {approx_equal} 10{sup 3.1} K and n(H{sub 2}) {approx}< 10{sup 4} cm{sup -3}. It is also consistent with a distribution of temperature components at higher density with most CO at T{sub k} {approx}< 300 K. The detected molecular features suggest that, at present, neither very enhanced X-ray nor cosmic-ray fluxes play a dominant role in the heating of the hot molecular gas. The hot CO component (either the bulk of the CO column or just a small fraction depending on the above scenario) results from a combination of UV- and shock-driven heating. If irradiated dense clumps/clouds do not exist, shocks likely dominate the heating of the hot molecular gas. This is consistent with the high-velocity gas detected toward Sgr A*.

  2. Regeneration of iron oxide containing pellets used for hot gas clean up

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Heeney, P.; Furimsky, E. (CANMET, Ottawa, Ontario (Canada). Energy Research Laboratories)

    1989-09-01

    Four iron-containing pelletized solids used for H{sub 2}S removal from hot gas were oxidized in a Cahn electrobalance and in a fixed bed reactor. The main reactions included the sequence in which FeS was oxidized to iron sulphate which then decomposed rapidly yielding SO{sub 2} and iron oxides. The oxidation occurred predominantly on the outer surface of the pellets. 12 refs., 5 figs., 5 tabs.

  3. NOx emission control for gas turbines: A 1991 update on regulations and technology (Part II)

    International Nuclear Information System (INIS)

    Schorr, M.M.

    1991-01-01

    The technologies that are available for the control of NO x emissions from gas turbines utilize the factors that impact the formation of NO x described in the previous section and include (1) diluent injection (i.e., water or steam) into the combustion zone, which is a front-end control technology that lowers the combustor flame temperature, (2) selective catalytic reduction (SCR), which is a back-end exhaust gas cleanup system, (3) dry low NO x combustors (DLN), which use staged combustion and very lean fuel-air mixtures (they are currently being introduced), and (4) catalytic combustion systems that hold the promise of achieving extremely low emission levels without resorting to exhaust gas cleanup. This last option is being developed to burn very lean fuel-air mixtures, but will require significant technological breakthroughs; it is still several years away from becoming commercially available

  4. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  5. Analysis of polycyclic aromatic hydrocarbons in vegetable oils combining gel permeation chromatography with solid-phase extraction clean-up

    DEFF Research Database (Denmark)

    Fromberg, Arvid; Højgård, A.; Duedahl-Olesen, Lene

    2007-01-01

    system equipped with a GPC column (S-X3) and pre-packed silica SPE columns for the subsequent clean-up and finally gas chromatography-mass spectrometry (GC-MS) determination. The method was validated for the determination of PAHs in vegetable oils and it can meet the criteria for the official control...... of benzo[a]pyrene levels in foods laid down by the Commission of the European Communities. A survey of 69 vegetable oils sampled from the Danish market included olive oil as well as other vegetable oils such as rapeseed oil, sunflower oil, grape seed oil and sesame oil. Levels of benzo[a]pyrene in all......A semi-automatic method for the determination of polycyclic aromatic hydrocarbons (PAHs) in edible oils using a combined gel permeation chromatography/solid-phase extraction (GPC/SPE) clean-up is presented. The method takes advantage of automatic injections using a Gilson ASPEC XL sample handling...

  6. Effectiveness of cleanup criteria relative to an accidental nuclear release

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    In the event of an accidental nuclear release, the associated long-term radiological risks would result primarily from ground contamination pathways. Cleanup of the contaminated ground surfaces is a necessary step toward reducing the radiological risk to the general population. Ideally, the radiological risk decreases as the level of cleanup effort increases; however, as the cleanup criterion (i.e., the required contaminant concentration after cleanup) becomes more stringent, the cleanup effort may become prohibitively costly. This study examines several factors that are important in determining the effectiveness of the cleanup criteria for selected radionuclides: (a) annual individual dose commitment (mrem/yr), (b) total population environmental dose commitment (person-rem), and (c) total area (km 2 ) requiring cleanup following an accident. To effectively protect the general population, the benefits of cleanup should be weighed against the potentially large increase in cleanup area (and the associated costs) as the cleanup criterion becomes more stringent. The effectiveness of cleanup will vary, depending largely on site-specific parameters such as population density and agricultural productivity as well as on the amount and type of radionuclide released. Determination of an optimum cleanup criterion should account for all factors, including a comprehensive cost/benefit analysis

  7. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected by the Department of Energy (DOE) to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s and will achieve an overall decontamination factor of 10 6 per tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to opertional status within 24 h without a significant release of tritium to the environment

  8. Hot gas cleaning in power stations by using electron beam technology. Influence on PAH emissions

    International Nuclear Information System (INIS)

    Callen, M.S.; de la Cruz, M.T.; Mastral, A.M.; Murillo, R.; Marinov, S.; Stefanova, M.

    2007-01-01

    The Electron Beam Technology (EBT), proven treatment for SO 2 and NO x removal, is applied to different power stations as a hot gas cleaning system. In this paper, an assessment of this technique installed in a Bulgarian power station on organic emissions is analyzed. The Polycyclic Aromatic Hydrocarbons (PAH) content, not only emitted in the gas phase but also trapped in the solid phase, has been carried out before and after the irradiation. The main aim has been to know whether the EBT affects organic emissions, like PAH, as it happens with inorganic pollutants, like SO 2 and NO x , studying EBT effects from an organic environmental point of view. The PAH quantification was performed by using a very sensitive analytical technique, gas chromatography with mass spectrometry mass spectrometry detection (GC-MS-MS). Results showed that PAH are influenced by the EBT showing a reduction of the most volatile PAH in the gas phase. With regard to the solid by-products obtained after the irradiation, fertilizers, similar PAH concentration to the fly ashes produced when no irradiation is applied were found. These fertilizers were considered like unpolluted soils being adequate for agriculture applications with PAH concentrations below the target value set up by the Dutch government. (author)

  9. Application of EnviroTRADE information system for the cleanup of the former Soviet Union (FSU) site at Komarom Base, Hungary

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Harrington, M.W.; Harlan, C.P.; Kuperberg, J.M.; Biczo, I.L.

    1994-01-01

    During a NATO Advanced Research Workshop (ARW) held in Visegrad, Hungary, June 21-23, 1994, portions of contamination data from the Former Soviet Union (FSU) site at Komarom, Hungary were used to demonstrate the international EnviroTRADE Information System as a tool to assist with the identification of alternative cleanup measures for contaminated sites. The NATO ARW was organized and conducted by the joint Florida State University and the Technical University of Budapest, Center for Hungarian-American Environmental Research, Studies, and Exchanges (CHAERSE). The purpose of the workshop was to develop a strategy for the identification and selection of appropriate low-cost and innovative site remediation technologies and approaches for a typical abandoned FSU site. The EnviroTRADE information system is a graphical, photographical, and textual environmental management tool under development by the U.S. Department of Energy (USDOE) at Sandia National Laboratories (SNL) as a part of the cleanup program of the nuclear weapons complex. EnviroTRADE provides a single, powerful, multi-purpose, multi-user, multi-media, and interactive computer information system for worldwide environmental restoration and waste management (ER/WM). Graphical, photographic, and textual data from the Komarom FSU site were entered into EnviroTRADE. These data were used to make comparative evaluations of site characterization and remediation technologies that might be used to clean up primarily hydrocarbon contamination in the groundwater and soil. Available Hydrogeological and geological features, contaminated soil profiles, and topographical maps were included in the information profiles. Although EnviroTRADE is currently only partially populated (approximately 350 technologies for cleanup are included in the database), the utility of the information system to evaluate possible options for cleanup of the Komarom site has been demonstrated

  10. A charge regulating system for turbo-generator gas-cooled high-temperature reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    The invention relates to a regulating system for gas-cooled high-temperature reactors power stations (helium coolant), equipped with several steam-boilers, each of which deriving heat from a corresponding cooling-gas flow circulating in the reactor, so as to feed superheated steam into a main common steam-manifold and re-superheated steam into a re-superheated hot common manifold [fr

  11. Experimental Tritium Cleanup System availability analysis from 1984 to 1992

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Taylor, G.L.

    1993-05-01

    This report gives the availability percentage of the Experimental Tritium Cleanup System (ETC) at the Tritium Systems Test Assembly (TSTA), which is a fusion research and technology facility at the Los Alamos National Laboratory. The component failure reports, the numbers of components, and operating times or demands are all given in this report. Sample calculations of the failure rates obtained from these data are given in the appendices. While future fusion experiments might use different or more advanced means to detritiate room air, the analysis of this system gives a data point for an actual detritiation system. Such a data point can be extrapolated for comparison with fault tree results on system designs, or can be used in a Bayesian failure rate analysis for estimating reliability of a new type of system. The nine years of testing operations on TSTA's ETC result in a reasonable average availability value of 92% for the maximal tritium release event. The failure rates for new systems are expected to be lower than for the TSTA ETC, since improvements will be made in the design of the room air detritiation system based on the TSTA system experiences. Nonetheless, these TSTA data should be useful for future fusion reactor design work and safety assessment tasks

  12. Credibility and trust in federal facility cleanups

    International Nuclear Information System (INIS)

    Raynes, D.B.

    1995-01-01

    The most important indicator of a well-managed site cleanup effort may no longer be funding or scientific expertise. While support for federal facility cleanup has included appropriations of more than $10 billion annually, these expenditures alone are unlikely to assure progress toward environmental remediation. open-quotes Trustclose quotes is now overwhelmingly mentioned as a prerequisite for progress with site cleanup in DOE's weapons complex. In part, federal budget deficits are forcing participants to focus on factors that build consensus and lead to cost-effective cleanup actions. In some cases, the stakeholders at cleanup sites are making efforts to work cooperatively with federal agencies. A report by 40 representatives of federal agencies, tribal and state governments, associations, and others developed recommendations to create a open-quotes new era of trust and consensus-building that allows all parties to get on with the job of cleaning up federal facilities in a manner that reflects the priorities and concerns of all stakeholders.close quotes Changes are underway affecting how federal agencies work with federal and state regulators reflecting this concept of shared responsibility for conducting cleanup. This paper addresses these changes and provides examples of the successes and failures underway

  13. Fast-Track Cleanup at Closing DoD Installations

    Science.gov (United States)

    The Fast-Track Cleanup program strives to make parcels available for reuse as quickly as possible by the transfer of uncontaminated or remediated parcels, the lease of contaminated parcels where cleanup is underway, or the 'early transfer' of contaminated property undergoing cleanup.

  14. Evaluation of a flue gas driven open absorption system for heat and water recovery from fossil fuel boilers

    International Nuclear Information System (INIS)

    Wang, Zhenying; Zhang, Xiaoyue; Li, Zhen

    2016-01-01

    Highlights: • Flue gas driven open absorption system that efficiently recovers total heat. • Efficient heat and water recovery for various kinds of fossil fuel boilers. • Heat and water recovery efficiencies increase with moisture content of flue gas. • Temperature requirements for district heat supply and domestic hot water were met. • Experimental system surpasses conventional condensing system in total heat recovery. - Abstract: This paper presents an open absorption system for total heat recovery from fossil fuel boilers using the high temperature flue gas as the regeneration heat source. In this system, liquid desiccant serves as the recycling medium, which absorbs waste heat and moisture contained in the low temperature flue gas in the packed tower and then regenerates in the regenerator by the high temperature flue gas. Water vapor generated in the regenerator gets condensed after releasing heat to the heating water system and the condensing water also gets recycled. The return water collects heat from the solution water heat exchanger, the flue gas water heat exchanger and the condenser respectively and is then used for district heating. Driven by the vapor pressure difference between high humidity flue gas and the liquid desiccant, the heat recovery efficiency of the system is not limited by the dew point of the flue gas, enabling a warmer water to be heated up than the conventional condensing boiler. The performance of this system was analyzed theoretically and experimentally and the results showed that the system operated well for both district heat supply and domestic hot water supply. The system efficiency increased with the moisture content of flue gas and the total heat recovery was about 8.5%, 17.2%, 21.2%, and 9.2% higher than the conventional condensing system in the case of coal fired boiler, fuel oil boiler, natural gas boiler, and coke oven gas boiler, respectively.

  15. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  16. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    Science.gov (United States)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  17. Cool infalling gas and its interaction with the hot ISM of elliptical galaxies

    Science.gov (United States)

    Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors describe work leading to the suggestion that interaction between infalling cool gas and ambient hot, coronal plasma in elliptical galaxies is responsible for emission filaments, and might remove the need for large mass depositions in cooling flows. A test of the hypothesis is undertaken - the run of surface brightness with radius for the emission lines - and the prediction agrees well with the data.

  18. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  19. 14 CFR 29.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  20. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    Science.gov (United States)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  1. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  2. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  3. Buying time: Franchising hazardous and nuclear waste cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hale, D.R. [Dept. of Energy, Washington, DC (United States)

    1997-05-01

    This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government. In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.

  4. Data summary report for M.W. Kellogg Z-sorb sorbent tests. CRADA 92-008 Final report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. This report presents results pertaining to Phillips Petroleum`s Z-Sorb III sorbent.

  5. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    International Nuclear Information System (INIS)

    Zhu, Ming; Moorer, Richard

    2013-01-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated

  6. Continuous distillation of bituminous shale. [hot gas in chamber and chamber heated externally

    Energy Technology Data Exchange (ETDEWEB)

    1921-04-27

    A process of continuous distillation of bituminous shale is given in which the heat necessary is produced not only on the exterior but also in the interior of the distillation apparatus in the form of hot gas directly bathing the shale. The residual carbon in the shale after distillation, or maybe with other fuel added to it, can be utilized; the fuel may be utilized not only for the heat it furnishes but also for the gas it gives and which adds itself to the incondensable gas from the distillation. The temperature of the zone of distillation of the shale is regulated by the quantity of gas, the temperature of this gas (which can be lowered voluntarily by injecting into the air a certain quantity of water vapor), the length of the zone comprised between the zone of gasification and distillation; the injection of water vapor permits the recovery of part of the nitrogen of the shale in the form of ammonia; the materials are withdrawn continuously in a mechanical way.

  7. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    Raman, P.; Ram, N.K.; Gupta, Ruchi

    2013-01-01

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm −3 .Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm −3 . • In clean gas the tar content is 35 mg Nm −3 and the dust content is nil. • The specific gasification rate is 2.8 Nm 3 kg −1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm −3 , SFC: 1.1 kg kWh −1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  8. Conversion of hot coke oven gas into light fuel gas over Ni/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.Y.; Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan). Dept. of Biology & Chemical Engineering

    2006-04-15

    Conversion of hot coke oven gas (COG, containing tarry material) into light fuel gas over a Ni/Al{sub 2}O{sub 3} catalyst was studied. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. The nickel catalyst promoted the hydropyrolysis reaction of tarry materials. High yields of total product gas and methane were obtained at high hydrogen concentrations. If the hydrogen supply was adequate for hydropyrolysis of the tarry material, conversion of coal volatiles was high, at more than 95% on carbon balance, even with a gas residence time as short as 0.15 s in the catalyst bed. The product gas yield depended on catalytic temperature. At 923 K, the maximum conversion of coal volatiles into the light gas was achieved at 95.0% on carbon balance, with methane 86.7 vol% of the carbonaceous gas product. Although carbon deposits deactivated the catalyst after a long period of use, the catalyst could be regenerated by treatment with oxygen at 800 K, providing high activity in subsequent decomposition of tarry material. The influence of sulphide on the tarry material decomposition reaction was small even in a 2000 ppm H{sub 2}S atmosphere.

  9. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  10. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  11. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  12. In-situ solidification cleans up old gas plant site

    International Nuclear Information System (INIS)

    Hatfield, A.D.; Dennis, N.D.

    1995-01-01

    A manufactured gas plant site in Columbus, Georgia, was the location of an environmental cleanup in 1992. Manufactured gas was produced at this site from 1854 to 1931 with the availability of natural gas from a transmission pipeline causing its demise. However, waste products, primarily coal tar from the earlier years of plant operation, remained with the site. In-situ solidification was chosen as the cleanup method. Post monitoring activities show that the project was successful and the site is now a park and a leading part of river front development

  13. Cleanup criteria for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Parrott, J.D.

    1999-01-01

    The US Nuclear Regulatory Commission (NRC) is prescribing decontamination and decommissioning (cleanup) criteria for the West Valley Demonstration Project and the West Valley, New York, site. The site is contaminated with various forms of residual radioactive contamination and contains a wide variety of radioactive waste. The NRC is planning to issue cleanup criteria for public comment in Fall 1999. Due to the complexity of the site, and the newness of NRC's cleanup criteria policy, applying NRC's cleanup criteria to this site will be an original regulatory undertaking. (author)

  14. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Science.gov (United States)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  15. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  16. Assessment and cleanup of the Taxi Strip waste storage area at LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Buerer, A.

    1983-01-01

    In September 1982 the Hazards Control Department of the Lawrence Livermore National Laboratory (LLNL) began a final radiological survey of a former low-level radioactive waste storage area called the Taxi Strip so that the area could be released for construction of an office building. Collection of soil samples at the location of a proposed sewer line led to the discovery of an old disposal pit containing soil contaminated with low-level radioactive waste and organic solvents. The Taxi Strip area was excavated leading to the discovery of three additional small pits. The clean-up of Pit No. 1 is considered to be complete for radioactive contamination. The results from the chlorinated solvent analysis of the borehole samples and the limited number of samples analyzed by gas chromatography/mass spectrometry indicate that solvent clean-up at this pit is complete. This is being verified by gas chromatography/mass spectrometry analysis of a few additional soil samples from the bottom sides and ends of the pit. As a precaution, samples are also being analyzed for metals to determine if further excavation is necessary. Clean-up of Pits No. 2 and No. 3 is considered to be complete for radioactive and solvent contamination. Results of analysis for metals will determine if excavation is complete. Excavation of Pit No. 4 which resulted from surface leakage of radioactive contamination from an evaporation tray is complete

  17. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  18. Pinon Pine IGCC project status

    International Nuclear Information System (INIS)

    Higginbotham, E.B.; Lamarre, L.J.; Glazer, M.

    1993-01-01

    Sierra Pacific Power Company (SPPCo) intends to build the Pinon Pine Power Project, an integrated coal gasification combined cycle (IGCC) plant at its Tracy Power Station near Reno, Nevada. The plant will burn approximately 800 tons of coal per day to generate electricity in a base load application. The Pinon Project was selected by the U.S. Department of Energy (DOE) for funding under Round IV of the Clean Coal Technology Program. The project will demonstrate the use of the KRW agglomerating fluidized bed gasifer operating in the air blown mode. Hot gas cleanup consisting of particulate and sulfur removal will also be demonstrated. The Cooperative Agreement between SPPCo and the DOE was executed in August 1992. Foster Wheeler USA Corporation (FWUSA) will provide engineering and construction management services. The M.W. Kellogg Company (MWK) will provide engineering of the gasifer and hot gas cleanup systems. A discussion of project progress since the 1992 Clean Coal Technology Conference, design and economic considerations, and current project status is presented

  19. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  20. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  1. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  2. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  3. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  4. Solid adsorbents for removal of hydrogen sulphide from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, Motoo

    1986-04-01

    A wide range of solids have been tested as potential adsorbents for H/sub 2/S removal from hot gas. These solids can be divided into two main groups, i.e., the adsorbents containing alkaline earth metals and those containing transition metals. Among the former, calcium oxide and naturally occurring materials such as limestone, dolomite and calcium silicate have attracted a great deal of attention. The adsorbents of the second group include iron oxide alone or in combination with some supports, zinc oxide, zinc ferrite and manganese oxide. The materials containing both the alkaline earth metals and transition metals, e.g., manganese nodules, fly ash and the reject from the aluminium industry (red mud) have been evaluated as well.

  5. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  6. Test of the palladium diffuser in the JAERI Fuel Cleanup System in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; O-hira, Shigeru

    1993-03-01

    The JAERI Fuel Cleanup System (JFCU) is a major subsystem of the TSTA simulated fusion fuel loop. The palladium diffuser, that accepts simulated plasma exhaust and purifies the hydrogen isotopes mixture for the feed to the Isotope Separation System, was tested with deuterium to investigate the characteristics of the components. Permeation flow rate is a linear function of the difference of the square root of the pressure across the palladium alloy membrane. However at the low pressure region, an impediment on the permeation was observed. It was suspected to be caused by the impurity adsorbed on the surface of the permeated side of the membrane and was reduced by oxidation treatment. (author)

  7. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  8. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  9. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    International Nuclear Information System (INIS)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-01-01

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist

  10. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Zheng, H. [Cyclotron Institute, Texas A& M University, College Station, TX-77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Boisjoli, M. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Laboratoire de Physique Nucléaire, Université Laval, Québec, G1V 0A6 (Canada); Verde, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); INFN – Sezione di Catania, via Santa Sofia, 64, 95123 Catania (Italy); Chbihi, A. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Napolitani, P.; Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Augey, L. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); Bhattacharya, C. [Variable Energy Cyclotron Center, Kolkata (India); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Bougault, R. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); and others

    2016-05-10

    We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.

  11. Process simulation and experimental validation of Hot Metal Gas Forming with new press hardening steels

    Science.gov (United States)

    Paul, A.; Reuther, F.; Neumann, S.; Albert, A.; Landgrebe, D.

    2017-09-01

    One field in the work of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz is industry applied research in Hot Metal Gas Forming, combined with press hardening in one process step. In this paper the results of investigations on new press hardening steels from SSAB AB (Docol®1800 Bor and Docol®2000 Bor) are presented. Hot tensile tests recorded by the project partner (University of West Bohemia, Faculty of Mechanical Engineering) were used to create a material model for thermo-mechanical forming simulations. For this purpose the provided raw data were converted into flow curve approximations of the real stress-real strain-curves for both materials and afterwards integrated in a LS-DYNA simulation model of Hot Metal Gas Forming with all relevant boundary conditions and sub-stages. Preliminary experimental tests were carried out using a tool at room temperature to permit evaluation of the forming behaviour of Docol 1800 Bor and Docol 2000 Bor tubes as well as validation of the simulation model. Using this demonstrator geometry (outer diameter 57 mm, tube length 300 mm, wall thickness 1.5 mm), the intention was to perform a series of tests with different furnace temperatures (from 870 °C to 1035 °C), maximum internal pressures (up to 67 MPa) and pressure build-up rates (up to 40 MPa/s) to evaluate the formability of Docol 1800 Bor and Docol 2000 Bor. Selected demonstrator parts produced in that way were subsequently analysed by wall thickness and hardness measurements. The tests were carried out using the completely modernized Dunkes/AP&T HS3-1500 hydroforming press at the Fraunhofer IWU. In summary, creating a consistent simulation model with all relevant sub-stages was successfully established in LS-DYNA. The computation results show a high correlation with the experimental data regarding the thinning behaviour. The Hot Metal Gas Forming of the demonstrator geometry was successfully established as well. Different hardness values

  12. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ming; Moorer, Richard [U.S. Department of Energy, Washington, DC 20585 (United States)

    2013-07-01

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in

  13. Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan

    2008-01-01

    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)

  14. Exergetic comparison of two KRW-based IGCC power plants

    International Nuclear Information System (INIS)

    Tsatsaronis, G.; Tawfik, T.; Lin, L.; Gallaspy, D.T.

    1991-01-01

    In studies supported by the U.S. Department of Energy and the Electric Power Research Institute, several design configurations of Kellogg-Rust-Westinghouse (KRW)-based Integrated Gasification-Combined-Cycle (IGCC) power plants were developed. Two of these configurations are compared in this paper, from the exergetic viewpoint. The exergetic comparison identifies the causes of performance differences between the two cases: differences in the exergy destruction of the gasification system, the gas turbine system, and the gas cooling process, as well as differences in the exergy loss accompanying the solids to disposal stream. The potential for using oxygen-blown versus air-blown KRW gasifiers, and hot gas versus cold gas cleanup processes is evaluated

  15. Buffer gas cooling and mixture analysis

    Science.gov (United States)

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  16. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  17. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  18. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  19. Cleanups In My Community (CIMC) - Recovery Act Funded Cleanups, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Recovery Act Funded Cleanup sites as part of the CIMC web service. The American Recovery and Reinvestment Act was signed into law...

  20. Hot gas path component having cast-in features for near wall cooling

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2018-04-10

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.

  1. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  2. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  3. DOE pursuing accelerated cleanup at Fernald

    International Nuclear Information System (INIS)

    Borgman, T.

    1996-01-01

    The timing is right, and officials at Fernald are ready to initiate final cleanup actions-at an accelerated pace. open-quotes We have a viable, aggressive plan in place that will reduce the risks associated with the site by accelerating the cleanup schedule, and save a lot of time and money in the process,close quotes said Don Ofte, president of the Fernald Environmental Restoration management Corporation (FERMCO). Ofte is referring to the accelerated cleanup plan that the U.S. Department of Energy has approved to complete the remediation of Fernald in approximately 10 years-instead of 25-30 years-at a cost savings to taxpayers of almost $3 billion. This article describes the scenario at Fernald and politically which has lead to this decision

  4. NRC plan for cleanup operations at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Lo, R.; Snyder, B.

    1982-02-01

    This NRC Plan, which defines NRC's functional role in cleanup operations at Three Mile Island Unit 2 and outlines NRC's regulatory responsibilities in fulfilling this role, is the first revision to the initial plan issued in July 1980 (NUREG-0698). Since 1980, a number of policy developments have occurred which will have an impact on the course of cleanup operations. This revision reflects these developments in the area of NRC's review and approval process with regard to cleanup operations as well as NRC's interface with the Department of Energy's involvement in the cleanup and waste disposal. This revision is also intended to update the cleanup schedule by presenting the cleanup progress that has taken place and NRC's role in ongoing and future cleanup activities

  5. HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

    2003-02-27

    The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

  6. Three Mile Island Cleanup: experiences, waste disposal, and environmental impact

    International Nuclear Information System (INIS)

    King, L.J.; Opelka, J.H.

    1982-01-01

    These papers were presented in a two-session symposium during the American Institute of Chemical Engineers 1981 Summer National meeting in Detroit, Michigan, August 16-19, 1981. The cleanup activities described included the venting of the gases, mostly krypton-85, from the reactor containment building and several entries of personnel into the containment building to determine the physical conditions and the levels of radiation and radioactive contamination. Results of the latest process development tests of the flowsheet for the submerged Demineralizer Water Treatment System for decontaminating the water in the containment building were presented. The status of existing knowledge of radiation effects on ion exchange materials used in radioactive waste management were reviewed. A program to demonstrate incorporation of the loaded zeolite into a glass as a final waste form was also described. The generation, classification, treatment, and disposal of solid waste forms resulting from the cleanup were discussed with special consideration of the ion exchange media used for cleanup of liquids with relatively high radionuclide concentrations. The radiological, socioeconomic, and psychological impacts of the cleanup were evaluated. This work formed the basis for the recent issuance by the NRC of a programmatic environmental impact statement relative to decontamination and disposal of the radioactive wastes resulting from the accidents

  7. Reliability of reactor plant water cleanup pumps

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1979-01-01

    Carolina Power and Light Company's Brunswick 2 nuclear plant experienced a high reactor water cleanup pump-failure rate until inlet temperature and flow were reduced and mechanical modifications were implemented. Failures have been zero for about one year, and water cleanup efficiency has increased

  8. Approaching Environmental Cleanup Costs Liability Through Insurance Principles

    National Research Council Canada - National Science Library

    Corbin, Michael A

    1994-01-01

    .... Applying insurance industry principles to environmental cleanup costs liability will provide a firm foundation to reduce the risk of loss to the taxpayer, reduce cleanup costs, and stimulate private...

  9. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R ampersand D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined

  10. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    -passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation......Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi...... layer. Performed screening of methane and carbon dioxide concentration at the surface of the biocover showed homogenous distributions indicating an even gas distribution. This was supported by result from a performed tracer test where the compound HFC-134a was added to the gas inlet over a 12 day period...

  11. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  12. Long Life Moving-Bed Zinc Titanate Sorbent

    International Nuclear Information System (INIS)

    Copeland, Robert J.; Cesario, Mike; Feinberg, Daniel A.; Sibold, Jack; Windecker, Brian; Yang, Jing

    1997-01-01

    The objective of this work was to develop and test long-life sorbents for hot gas cleanup. Specifically, we measured the sulfur loading at space velocities typically used for absorption of H 2 S and regenerated the sorbent with diluted air for multiple cycles. Based on the experimental results, we prepared a conceptual design of the sorbent-fabrication system, and estimated the cost of sorbent production and of sulfur removal

  13. Bioavailability: implications for science/cleanup policy

    Energy Technology Data Exchange (ETDEWEB)

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  14. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  15. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  16. Characteristic of the immunological state of Chernobyl accident clean-up workers in a late period after the accident

    International Nuclear Information System (INIS)

    Kurjane, N.; Zvagule, T.; Curbakova, E.; Bruvere, R.; Romanova, T.; Sitova, O; Hagina, E.; Socnevs, A.

    2001-01-01

    No differences in the number of immunologically competent cells and other immunological variables were found among the clean-up workers, depending on the time they were in Chernobyl. However, a statistically significant reduction in the number of CD3+, CD4+, CD16+ and CD19+, decrease in the levels of IgG and suppression of APH and the phagocytic activity of neutrophils with a simultaneous increase in the levels of IgA and C3d was found in all clean-up workers when compared to controls. In a small group of clean-up workers, the levels of some plasma cytokines were detected. A statistically significant increase in IL-6 levels was found in the clean-up workers when compared to controls. The irradiation received by the Chernobyl accident clean-up workers was large enough to cause disturbances in the function of cells and organ systems through immune system disorders with a resultant weakening of the body response and adaptation mechanisms. (authors)

  17. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  18. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  19. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  20. Oil spills and their cleanup

    International Nuclear Information System (INIS)

    Fingas, M.

    1995-01-01

    Oil spills are an unfortunately common occurrence in the world's seas and can have extensive damaging environmental consequences. This article examines various methods of cleaning up oil spills, evaluates their effectiveness in various situations, and identifies areas where, current methods being inadequate, further research is needed. Containment, mechanical removal, shoreline cleanup, chemical treating agents, in situ burning, natural recovery and enhanced bioremediation are all assessed. The cleanup method must be selected to match environmental conditions. Results are good in quiet, sheltered waters, but need extensive development in open waters and high seas. (UK)

  1. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  2. On-line Automated Sample Preparation-Capillary Gas Chromatography for the Analysis of Plasma Samples.

    NARCIS (Netherlands)

    Louter, A.J.H.; van der Wagt, R.A.C.A.; Brinkman, U.A.T.

    1995-01-01

    An automated sample preparation module, (the automated sample preparation with extraction columns, ASPEC), was interfaced with a capillary gas chromatograph (GC) by means of an on-column interface. The system was optimised for the determination of the antidepressant trazodone in plasma. The clean-up

  3. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  4. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  5. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  6. Houdini: Site and locomotion analysis-driven design of an in-tank mobile cleanup robot

    International Nuclear Information System (INIS)

    Schempf, H.

    1995-10-01

    This paper describes design and locomotion analysis efforts to develop a new reconfigurable and collapsible working machine, dubbed Houdini, to remotely clean up hazardous-waste and petroleum storage tanks. The tethered robot system is designed to allow remote entry through man-way openings as small as 0.61 m in diameter, after which it expands its locomotors and opens up its collapsible backhoe/manipulator and plow to subsequently perform waste or material handling operations. The design is optimized to meet stringent site and safety requirements, and represents a viable alternative to (1) the long-reach manipulation systems proposed for hazardous storage tank cleanup, and (2) confined-entry manual cleanup approaches. The system development has been funded to provide waste mobilization and removal solutions for the hazardous waste storage tanks in the Department of Energy (DoE) Fernald and Oak Ridge complexes. Other potential applications areas are the cleanup of heavy-crude petroleum storage tanks. The author has developed a fully operational prototype which is currently undergoing testing

  7. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  8. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  9. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  10. JAERI Fuel Cleanup System (J-FCU) stand-alone tritium test at the TSTA

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; Inoue, Masahiko

    1993-03-01

    JAERI designed, fabricated, and installed the JAERI Fuel Cleanup System (J-FCU) as a subsystem of simulated fusion fuel loop at the TSTA. The main function of the J-FCU is to purify and to recover hydrogen isotopes from simulated plasma exhaust while exhausting tritium free impurities. After a lot of deuterium tests, a first tritium test of the J-FCU was performed with one gram of tritium at the TSTA on June 1991. Main purpose of this test was to evaluate the total integrity and function of the J-FCU system with a DT mixture. Through this test, the J-FCU was operated well and its function with tritium was demonstrated. This report describes the detail test results of the J-FCU first tritium test and discuss its functions by stand-alone mode. Residual tritium inventory of the J-FCU system was also discussed. (author)

  11. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, L M [Washington Closure Hanford, LLC, 3070 George Washington Way, Richland, WA 99354 (United States)

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generation to disposal. (authors)

  12. Pungency Quantitation of Hot Pepper Sauces Using HPLC

    Science.gov (United States)

    Betts, Thomas A.

    1999-02-01

    A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.

  13. A tritium vessel cleanup experiment in TFTR

    International Nuclear Information System (INIS)

    Caorlin, M.; Kamperschroer, J.; Owens, D.K.; Voorhees, D.; Mueller, D.; Ramsey, A.T.; La Marche, P.H.; Loughlin, M.J.

    1995-03-01

    A simple tritium cleanup experiment was carried out in TFTR following the initial high power deuterium-tritium discharges in December 1993. A series of 34 ohmic and deuterium neutral beam fueled shots was used to study the removal of tritium implanted into the wall and limiters. A very large plasma was created in each discharge to ''scrub'' an area as large as possible. Beam-fueled shots at 2.5 to 7.5 MW of injected power were used to monitor tritium concentration levels in the plasma by detection of DT-neutrons. The neutron signal decreased by a factor of 4 during the experiment, remaining well above the expected T-burnup level. The amount of tritium recovered at the end of the cleanup was about 8% of the amount previously injected with high power DT discharges. The experience gained suggests that measurements of tritium inventory in the torus are very difficult to execute and require dedicated systems with overall accuracy of 1%

  14. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Progress report, June 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1977-02-01

    The low temperature isostatic pressurization system has been completed, operated successfully and calibrated. The new high temperature TD tungsten vessel and MoSi 2 element furnace system has also been designed and is presently under construction. Porous CoO single crystals have been grown using a ''skull melting'' process. Automated quantitative microscopy techniques are being developed using the KONTRON system to examine porosity evaluation during hot-pressing and sintering. Initial sintering experiments under variable isostatic pressures from 100 μm Hg to 2000 psi reveal no significant effect of ambient pressure. Nor were differences observed in sintering kinetics when either Helium or Argon were used as the pressurizing gas. Swelling experiments, conducted by reducing the ambient pressure after pore closure, revealed dramatic changes in density. The densification rates also appeared to depend on history, suggesting that mechanical deformation may play a dominant role in hot-pressing, at least during transients

  15. Cleanups in My Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cleanups in My Community (CIMC) is a public web application that enables integrated access through maps, lists and search filtering to site-specific information EPA...

  16. Diabetes mellitus morbidity in Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Tolstaya, E.V.; Ermakova, D.P.; Glinskaya, T.N.

    2016-01-01

    Acute and total diabetes mellitus morbidity in Chernobyl clean-up workers was examined during 1995-2014 period. During all the period of investigations levels of acute and total morbidity were higher in clean-up workers, than in total Belarusian population. (authors)

  17. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  18. Field study of completion fluids to enhance gas production in the Barnett Shale

    Energy Technology Data Exchange (ETDEWEB)

    Penny, G.S.; Pursley, J.T. [CESI Chemical, Houston, TX (United States); Clawson, T.D. [Antero Resources Corp., Denver, CO (United States)

    2006-07-01

    In the mid 1990s, the initial Barnett shale wells were completed with massive hydraulic fracturing treatments. Light sand fracturing in slick water consisting of water and friction reducer was used in order to reduce stimulation costs without reducing production. Field and lab data were presented for commonly used fluids pumped in the Barnett Shale. An evaluation of these surfactants as well as a microemulsion system was also conducted. An illustration of how the microemulsion system speeds up the cleanup of injected fluids in tight gas cores was presented, Overall, the study treated and analysed over 200 wells and made side by side comparisons of treatment variations. Laboratory studies that were presented included leakoff control, capillary end effect control, relative permeability and fracture cleanup. The field studies in the Barnett Shale provided the following information: a geological overview, a description of the Barnett Shale fracturing/refracturing program, and evaluation of production data. It was concluded that water saturation decreased and relative permeability to gas improved as evidenced through the core data. The study also showed that including the microemulsion in low permeability gas cores would cut the capillary pressure by half. 12 refs., 16 figs., 3 tabs.

  19. Washing Habits and Machine with Intake of hot and cold Water

    DEFF Research Database (Denmark)

    Christensen, Bente Lis; Nørgaard, Jørgen

    1997-01-01

    with slightly adapted washing habits, or 17% of normal today. If the heat is supplied from combined heat and power production as in the actual experiment, CO2-emission is reduced by 81%. With hot water from oil or gas heaters the reduction will be slightly lower, while with solar hot water it will be larger.......Domestic washing machines typically spend around 80% of the electricity on heating water. Most of this can be replaced by more appropriate heat sources like district heat from combined heat and power production, or gas heating system. In recent years some washing machine manufacturers have marketed...... machines which can take in both hot and cold water and mix it to the temperature wanted. Such one machine has been tested in daily household use over 5 months, with habits of very few hot water washes. The result is an electricity consumption corresponding to 67 kWh per year for an average household...

  20. Design report: An off gas trapping system for a voloxidizer in INL of US

    International Nuclear Information System (INIS)

    Jung, I. H.; Shin, J. M.; Park, J. J.; Park, G. I.; Lee, H. H.

    2006-09-01

    This reports on the 'Development of Voloxidation Process for Treatment of LWR Spent Fuel', and it is the second year since it has started from June 2004 as a tripartite cooperation project among KAERI(Korea Atomic Energy Research Institute), INL(Idaho National Laboratory) and ORNL(Oak Ridge National Laboratory). This report is described mainly for the Task B2 accomplished during the second project year. The Task B2 in proposal contains two sub-tasks. The first one is design of an off-gas treatment system for a voloxidizer to be used in HFEF of INL. For this, KAERI team developed the design of INL OTS (Off-gas Treatment System) for hot experiment in the HFEF. INL team modified and completed the design of the INL OTS. The second task is manufacturing and test operation of the INL OTS for a voloxidizer in the INL. Manufacturing of the OTS is accomplished by INL team with co-work of KAERI. KAERI provided four sets of trapping filters needed for conducting hot experiment in the INL HFEF

  1. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    the inlet water temperature for the Dh preheating gas cooler unit. The lower the inlet temperature, the higher the Cop. The CO{sub 2} system will therefore achieve the highest COP at low city water temperatures, and when there is negligible mixing and minimum conductive heat transfer between the hot and cold water in the DHW tank during the tapping and charging periods. (5) The COP for the integrated CO{sub 2} heat pump is generally more sensitive to variations in the compressor efficiency than that of conventional brine/water-to-water heat pump systems. It is therefore of particular importance to apply a high-efficiency compressor. (6) At each operating mode and temperature programme, there will be an optimum gas cooler (high-side) pressure that leads to a maximum COP for the integrated CO{sub 2} heat pump. However, at moderate DHW temperatures, the heat pump can be operated at constant high-side pressure in all heating modes with only a minor reduction in the COP. This is favourable, since it simplifies the operation of the system and reduces the first cost. (7) During operation in the combined heating mode, the COP for the integrated CO{sub 2} heat pump may be higher than in the DHW heating mode due to similar temperature approaches at the cold outlet of the gas coolers and lower optimum high-side pressure. The higher the DHW temperature, the larger the COP difference for the operating modes. (8) The integrated CO{sub 2} heat pump system will be more complex than the state-of-the art residential heat pump systems due to the requirement for a tripartite gas cooler, extra valves and tubing for by-pass of fluids, an inverter controlled pump in the DHW circuit as well as an especially designed DHW storage tank. The application of optimum high-side pressure control will further increase the technical and operational complexity of the system. (9) Conductive heat transfer between the DHW and the cold city water in the storage tank during the tapping and charging periods

  2. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  3. MAPPING CO GAS IN THE GG TAURI A TRIPLE SYSTEM WITH 50 au SPATIAL RESOLUTION

    International Nuclear Information System (INIS)

    Tang, Ya-Wen; Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel; Huré, Jean-Marc; Pierens, Arnaud; Chapillon, Edwige; Pietu, Vincent; Gueth, Fréderic; Bary, Jeff; Beck, Tracy; Beust, Hervé; Boehler, Yann; Simon, Michal

    2016-01-01

    We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of 12 CO and 13 CO 3–2 and 0.9 mm continuum emission with 0.″35 resolution. The 12 CO 3–2 emission, found within the cavity of the circumternary dust ring (at radius <180 au) where no 13 CO emission is detected, confirms the presence of CO gas near the circumstellar disk of GG Tau Aa. The outer disk and the recently detected hot spot lying at the outer edge of the dust ring are mapped both in 12 CO and 13 CO. The gas emission in the outer disk can be radially decomposed as a series of slightly overlapping Gaussian rings, suggesting the presence of unresolved gaps or dips. The dip closest to the disk center lies at a radius very close to the hot spot location at ∼250–260 au. The CO excitation conditions indicate that the outer disk remains in the shadow of the ring. The hot spot probably results from local heating processes. The two latter points reinforce the hypothesis that the hot spot is created by an embedded proto-planet shepherding the outer disk

  4. Cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites including representative costs of cleanup and treatment of contaminated areas

    International Nuclear Information System (INIS)

    Talmage, S.S.; Chilton, B.D.

    1987-09-01

    This review summarizes available information on cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites. Radionuclide distribution and inventory, size of the contaminated areas, equipment, and cleanup procedures and results are included. Information about the cost of cleanup and treatment for contaminated land is presented. Selected measures that could be useful in estimating the costs of cleaning up radioactively contaminated areas are described. 76 refs., 16 tabs

  5. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  6. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  7. Development of international criteria for the cleanup of contaminated areas

    International Nuclear Information System (INIS)

    Hedemann-Jensen, P.; Barraclough, I.; Meck, R.; Gnugnoli, G.; Stegnar, P.

    1999-01-01

    IAEA TECDOC-987, Application of radiation protection principles to the cleanup of contaminated areas, provides a coherent framework and consistent guidance needed for approaches to cleanup that encompass the entire range of contamination situations. A major goal of cleanup is usually to re-establish that the environment can acceptably support habitation and use. Difficult situations include chronic exposures due to radioactivity associated with the discovery of contamination from a previously discontinued practice and post-accident situations. and post-accident situations. The concepts of justification, optimization, and limitation can be applied to cleanup from 'trivial' to 'intolerable' situations by taking into account not only radiological risk, but the entire range of social values including the ability of the society to feed and shelter itself and to sustain a productive economy. TECDOC-987 proposes six ranges, or bands, of doses that correspond to trivial, acceptable, tolerable - clean-up unlikely (unless constrained), tolerable - clean-up likely, unacceptable, and intolerable risks. Remedial actions may vary from 'none' to elaborate decontamination or restricted or prohibited use. (author)

  8. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  9. A decision-making process on cleanup of contaminated surface soil

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    1996-01-01

    This study presents principles for determining derived intervention levels (DILs) for surface soil cleanup. The people concerned were divided into major three groups: residents, responsible parties, and cleanup workers; it was considered that each group has different interests. The DILs for soil cleanup were determined from the viewpoints of these three groups: safety of residence, advantages of the countermeasures, and safety of cleanup activities, respectively. An example process for determination of the DILs in accordance with the principles was also presented for a site contaminated by 137 Cs. This decision-making frame is expected to be applicable to other contaminants. (author)

  10. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    Science.gov (United States)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  11. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  12. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  13. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  14. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Hot water supply system; 1999 nendo gakujutsu koenkai gaiyo. Kyuto

    Energy Technology Data Exchange (ETDEWEB)

    Oze, H. [Toyo University, Tokyo (Japan)

    1999-12-05

    G-5 and 6 measure and investigate actual state of use of hot water supply systems in dormitories used by persons living alone without their families and by unmarried persons to collect fundamental data. G-5 considers how hot water is used, by making a questionnaire survey on the subject houses, and identifies the consumption trend of heat, water and hot water in the hot water supply systems as a whole. G-6 selected eleven houses from among the houses discussed in the previous report to identify the trend of use of hot water by each house. Also, quantity of hot water used in every day of the week is estimated. G-7 discusses methods for estimating water temperatures at faucets of water pipes from the water sources. This is intended to raise the accuracy of tap water temperature conversion coefficient by districts used for calculating estimated heat quantity as a parameter 'hot water supply energy consumption coefficient' to evaluate energy saving performance of a hot water supply facility. G-8 performs numerical simulations changing different parameters in the hot water supply piping system by using a heat loss calculation model for the existing household hot water supply piping. It executes evaluation on energy conservation performance of each model. G-9 estimates efficiency of instantaneous household gas hot water supply devices, not only on thermal efficiency of devices during steady state combustion, but also on non-steady state such as start-up, and discusses methods to derive actual efficiency by using calculations. (translated by NEDO)

  15. HOT SPOT RELIEF WITH EMBEDDED BEAM FOR CDMA SYSTEMS IN HAPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.

  16. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Beittel, R. [DB Riley, Inc., Worcester, MA (United States); Ruth, L.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (copper oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.

  17. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  18. Gas engine driven freon-free heat supply system complying with multiple fuels (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Sumio; Maekawa, Koich; Sugawara, Koich; Hayashida, Masaru; Fujishima, Ichiro; Fukuyama, Yuji; Morikawa, Tomoyuki; Yamato, Tadao; Obata, Norio [Advanced Technology Lab., Kubota Corp., Amagasaki, Hyogo (Japan)

    1999-07-01

    This paper describes recent results at Kubota to develop a gas engine driven freon-free heat supply system. Utilizing a gas mixture which consists of CO and H{sub 2} supplied from a broad area energy utilization network, the system produces four heat sources (263 K, 280 K, 318 K, and 353 K) for air-conditioning, hot water supply, and refrigeration in a single system. It also conforms to fuel systems that utilize methane and hydrogen. This multi-functional heat supply system is composed of an efficient gas engine (methanol gas engine) and a freon-free heat pump (heat-assisted Stirling heat pump). The heat-assisted Stirling heat pump is mainly driven by engine shaft power and is partially assisted by thermal power provided by engine exhaust heat. By proportioning the two energy sources to match the characteristics of the driving engine, the heat pump is supplied with the maximum share of the original energy fueling the engine. Developing the system will establish freon-free thermal utilization system technology that satisfies both wide heat demands and various fuel systems. (orig.)

  19. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  20. Shared technologies in the development of the Titan 250 gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Knodle, M.S.; Novaresi, M.A. [Solar Turbines Inc., San Diego, CA (United States). Titan Gas Turbine Systems Division

    2009-07-01

    Development of the Titan 250 industrial gas turbine system began in 2005 in response to demands from the petroleum industry and electricity producers for higher performance industrial gas turbine products in the 15-30 MW (25,000-45,000 hp) power range. The Titan 250 is Solar Turbine's most powerful package and its evolutionary hybrid-type design approach was based on shared aerodynamic, thermal, mechanical, and combustion technologies borrowed from the Taurus 65TM, Titan 130TM, and Mercury 50TM gas turbine systems. It produces 50 per cent more power than the Titan 130, while providing 40 per cent shaft efficiency with significantly fewer emissions. Thorough combustion system testing, use of proven materials, and hot section cooling provided a solid design basis. The engine is a two-shaft design that includes a 16-stage axial-flow compressor, a dry low emissions combustor for low NOx and CO output, a two-stage gas producer turbine operating at a turbine rotor inlet temperature of 1204 degrees C, and a three-stage, all-shrouded blade power turbine for maximum efficiency. The design also minimizes maintenance intervals to increase equipment availability. The gas turbine and gas compressor have been tested in component, subsystem, and full-scale development, and will be starting field operation in late 2009 to verify performance and mechanical integrity under all operating conditions. 3 refs., 1 tab., 26 figs.

  1. Evaluation of contaminated groundwater cleanup objectives

    International Nuclear Information System (INIS)

    Arquiett, C.; Gerke, M.; Datskou, I.

    1996-01-01

    The US Department of Energy's (DOE's) Environmental Restoration Program will be responsible for remediating the approximately 230 contaminated groundwater sites across the DOE Complex. A major concern for remediation is choosing the appropriate cleanup objective. The cleanup objective chosen will influence the risk to the nearby public during and after remediation; risk to remedial and non-involved workers during remediation; and the cost of remediation. This paper discusses the trends shown in analyses currently being performed at Oak Ridge National Laboratories' (ORNL's) Center for Risk Management (CRM). To evaluate these trends, CRM is developing a database of contaminated sites. This paper examines several contaminated groundwater sites selected for assessment from CRM's data base. The sites in this sample represent potential types of contaminated groundwater sites commonly found at an installation within DOE. The baseline risk from these sites to various receptors is presented. Residual risk and risk during remediation is reported for different cleanup objectives. The cost associated with remediating to each of these objectives is also estimated for each of the representative sites. Finally, the general trends of impacts as a function of cleanup objective will be summarized. The sites examined include the Savannah River site, where there was substantial ground pollution from radionuclides, oil, coal stockpiles, and other forms of groundwater contamination. The effects of various types of groundwater contamination on various types of future user is described. 4 refs., 3 figs., 2 tabs

  2. A program optimization system for the cleanup of DOE hazardous waste sites an application to FY 1990 funding decisions

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Jenni, K.E.; Cotton, T.A.; Lehr, J.C.; Longo, T.P.

    1989-01-01

    This paper describes a formal system used by the Department of Energy (DOE) as an aid for allocating funds for cleaning up hazardous waste sites. The system, called the Program Optimization System (POS), is based on multiattribute utility analysis and was developed for DOE's Hazardous Waste and Remedial Actions Division (HWRAD). HWRAD has responsibility for recommending environmental restoration (ER) activities to the Assistant Secretary of Energy. Recently, the POS was used to analyze and recommend funding levels for FY 1990 cleanup activities at DOE defense program facilities

  3. Modelling and simulation of wood chip combustion in a hot air generator system.

    Science.gov (United States)

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  4. Expression of Cyclin D1 protein and CCN DI with PNKP genes in peripheral blood mononuclear cells in clean-up worker of Chernobyl accident with different state of immune system

    International Nuclear Information System (INIS)

    Bazika, D.A.; Kubashko, A.V.; Yil'jenko, Yi.M.; Belyajev, O.A.; Pleskach, O.Ya.

    2015-01-01

    The investigate of Cyclin D1+cells levels changes, associated CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers of Chornobyl accident with different state of immune system in depends on the dose irradiation. Analyzed data of the nuclear controller of cell cycle- Cyclin D1 protein expression changes and related CCND1 and PNKP genes in peripheral blood mononuclear cells in cleanup workers Chornobyl accident with different status of immune system in remote period after exposure is represented. Reveled changes in expression of Cyclin D1+cells and regulation of related genes may point on possible radiation-associated firm molecular disturbances occurred during elimination of consequences of Chornobyl accident, that could be a potential basis for cell and humoral communicative links breach in immune system result ing in elevation of stochastic effects like oncopathology in cleanup workers of Chornobyl accident in remote peri od after exposure

  5. Consolidating federal facility cleanup: Some pros and cons

    International Nuclear Information System (INIS)

    Raynes, D.B.; Boss, G.R.

    1993-01-01

    It has been suggested that Congress establish a permanent, full-time, independent national commission for radioactive waste management activities at DOE's Nuclear Weapons Complex. DOE regulates certain aspects of its treatment, storage, and disposal of radioactive waste by orders that are not promulgated by ''notice and comment'' or other procedures in the Administration Procedures Act. Because many agencies are not legally and technologically structured to handle their own cleanup problems, these activities might be conducted by one entity that can share information and staff among these agencies. There are rational arguments for both sides of this issue. Some of the advantages of such an organization include: focusing Congress's attention on an integrated federal facility cleanup instead of a fragmented, agency by agency approach, and an ability to prioritize cleanup decisions among agencies. Some significant obstacles include: reluctance by Congress and the executive branch to create any new bureaucracy at a time of budget deficits, and a loss of momentum from the progress already being made by the agencies. Given that more than $9 billion was proposed for FY 93 alone for federal facilities' cleanup programs and that decades will pass before all problems are addressed, it is appropriate to consider new approaches to environmental cleanup. This paper begins the dialogue about new ways to improve decision-making and government spending

  6. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  7. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, T.; Kawamura, Y.; Iwai, Y.

    2001-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  8. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Kawamura, Y.; Iwai, Y.

    1999-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  9. Characterization of plutonium contamination at Maralinga: Dosimetry and cleanup criteria

    International Nuclear Information System (INIS)

    Cooper, M.B.; Martin, L.J.; Williams, G.A.; Harries, J.R.

    2000-01-01

    An area of South Australia remained contaminated following British atomic tests at Maralinga during 1955-1963. Of importance is the long lived 239 Pu of which some 24 kg was explosively dispersed in several 'minor trials'. The extent, quantities and physical characteristics of the plutonium have been assessed and estimates of dose, dominated by the inhalation pathway in the critical group of Aborigines living a semi-traditional lifestyle, have been made for potential occupants. Dosimetry, together with social and economic factors, underpins the setting of cleanup criteria in terms of activity concentrations averaged over large areas and permissible concentrations of contaminated particles. The possibility of intentional behaviour such as fragment scavenging has also influenced limits on particulate contamination. Rehabilitation of the most contaminated areas is underway, with scraping of surface soil and burial on site completed. Vehicular-mounted radiation detector systems for wide area and particle monitoring have been developed, and procedures established for determining cleanup boundaries and for the verification monitoring to ensure that the cleanup process has met the specified criteria. Data are being obtained for a final dose and health risk assessment of the cleaned up site. (author)

  10. Investigation of geothermal development and promotion for fiscal 1997. Fluid geochemical investigation (hot-spring gas) report (No. B-5 Musadake area); 1997 nendo chinetsu kaihatus sokushin chosa. Ryutai chikagaku chosa (onsen gas) hokokusho (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This investigation elucidated the possible existence of geothermal reservoir layer in the subject area by studying and analyzing the hot-spring gasses of Musadake. The Musadake area is the one extending over Shibetu-cho and Nakashibetu-cho, Shibetu district, Hokkaido. The sampling of the hot-spring gasses was carried out at three natural gusher sites and one hot spring well site. The gasses in the Kawakita hot spring is most affected by volcanic gasses. The origin of the volcanic gasses is a magmatic gas of andesite nature the {sup 3}He/{sup 4}He ratio of which is 8X10{sup -6} or about. As a result of the analysis, the hot-spring water is Na-Cl type, high salt concentrated, and 200 degrees C in temperature; from the result of a gas geochemical thermometer, it is estimated to be not less than 250 degrees C. In the tectonic viewpoint, the depth hot water is derived from the meteorite water that flows in through a bent zone incident to the Musadake-Shitabanupuri mountain fault and from the fossil sea water that exists in the underground depth; the depth hot water is formed by conduction heat from a magma reservoir that formed Musadake and by volcanic ejecta. This depth hot water rises along Kawakita south, Urappu River fault, etc., mixing with the meteorite water and forming the shallow reservoir layer. (NEDO)

  11. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. US nuclear cleanup shows signs of progress

    International Nuclear Information System (INIS)

    Renner, R.

    1997-01-01

    The U.S. Department of Energy's program for dealing with the radioactive and hazardous wastes at its former nuclear weapons production sites and at the national laboratories has been criticized for its expense and slow pace of cleanup. The largest environmental restoration and waste management program in the world faces formidable technical and scientific problems and these, according to numerous investigative committees and commissions, have been compounded by poor management, misuse of technology, and failure to appreciate the need for new basic scientific knowledge to solve many of the cleanup problems. In the past three years, DOE's Office of Environmental Management (EM), often spurred by congressional action, has begun to trim costs and accomplish more. New measures have been introduced to improve contract efficiency, better utilize existing remediation technologies, renegotiate compliance agreements, and begin basic research. Environmental Management Assistant Undersecretary Alvin Alm, appointed in May 1996, is seeking to solidify these changes into an ambitious plan to clean up most of DOE's 130 sites by 2006. But there are widespread doubts that EM has the money, skill, and will to turn itself around. There are also concerns that, in the name of efficiency and economy, EM may be negotiating lower cleanup standards and postponing some difficult cleanup tasks. This article discusses these issues. 7 refs

  13. Development of new cleanup method of polychlorinated dibenzo-p-dioxins/dibenzofurans in fish by freezing-lipid filtration

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yun Gyong [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Seo, Jungju [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Shin, Jeoung Hwa [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Khim, Jeehyeong [Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Jongki [College of Pharmacy, Kyung Hee University, Hoegi-Dong, Dongdaemoon-Ku, Seoul 130-701 (Korea, Republic of)]. E-mail: jhong@khu.ac.kr

    2006-08-18

    Freezing-lipid filtration as a new method has been developed for the rapid determination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs) in biological samples. This method can effectively reduce the time of sample pretreatment, labor and amount of solvents compared with conventional methods. By freezing-lipid filtration procedure, about 90% of lipids in extract could be removed without any significant loss of PCDD/Fs. For further cleanup of extracts after freezing-lipid filtration, automatic parallel LC columns including silica gel, alumina and carbon columns were applied. During automatic parallel LC columns cleanup, most of co-extracted interferences such as residue lipids and fatty acids could be eliminated and dioxins could be separated from many other dioxin-like congeners such as polychlorinated biphenyls by this procedure. The extracts after cleanup were analyzed by high-resolution gas chromatography (HRGC)/high-resolution mass spectrometry (HRMS) using an isotope dilution method. The average recoveries and relative standard deviation (R.S.D.) of 17 native congeners in the spiked fish samples at 8-80 pg/g (n = 3) were ranged between 85.3 and 117.2% and 5.7-20.3%, respectively.

  14. Development of new cleanup method of polychlorinated dibenzo-p-dioxins/dibenzofurans in fish by freezing-lipid filtration

    International Nuclear Information System (INIS)

    Ahn, Yun Gyong; Seo, Jungju; Shin, Jeoung Hwa; Khim, Jeehyeong; Hong, Jongki

    2006-01-01

    Freezing-lipid filtration as a new method has been developed for the rapid determination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs) in biological samples. This method can effectively reduce the time of sample pretreatment, labor and amount of solvents compared with conventional methods. By freezing-lipid filtration procedure, about 90% of lipids in extract could be removed without any significant loss of PCDD/Fs. For further cleanup of extracts after freezing-lipid filtration, automatic parallel LC columns including silica gel, alumina and carbon columns were applied. During automatic parallel LC columns cleanup, most of co-extracted interferences such as residue lipids and fatty acids could be eliminated and dioxins could be separated from many other dioxin-like congeners such as polychlorinated biphenyls by this procedure. The extracts after cleanup were analyzed by high-resolution gas chromatography (HRGC)/high-resolution mass spectrometry (HRMS) using an isotope dilution method. The average recoveries and relative standard deviation (R.S.D.) of 17 native congeners in the spiked fish samples at 8-80 pg/g (n = 3) were ranged between 85.3 and 117.2% and 5.7-20.3%, respectively

  15. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  16. Planning for cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1991-01-01

    The cleanup of large areas of contaminated as a result of an accident at a nuclear facility could cost hundreds of millions of dollars and cause inconvenience to the public. Such a cleanup programme would be undertaken only if the detriment to health and social life resulting from cleanup activities would be less than that resulting from further exposures. All reasonable means should, however, be used to minimize the costs and detriment to humans of such a cleanup. For such a cleanup to be carried out safely, efficiently and as quickly as possible under adverse conditions requires: Good preliminary and final planning; A cleanup team having a well defined management structure and well trained personnel; and Suitable cleanup methods and equipment and cleanup criteria. 35 refs, 8 figs, 5 tabs

  17. Research and development of ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [National Aerospace Laboratory, Chofu-shi, Tokyo (Japan)

    1993-12-31

    The CO{sub 2} caused by the consumption of hydrocarbon fuel is one of the main gases which affect the global climate. In order to reduce the formation of CO{sub 2}, it is necessary to conserve energy as effectively as possible. Therefore the heat energy provided by the fuel should be utilized in multi-cascades. The energy at the high temperature should be used for the generation of electric power and the energy at low temperature could be used for making the steam and the hot water. The gas turbine is preferable for this purpose. The heat energy of exhaust gas can be reused more easily. The two systems are proposed by using the gas turbine as the high temperature stage. One is the cogeneration system and the other is the combined cycle. The former generates electric power by the gas turbine and make steam or hot water in the exhaust gas. The latter employs the gas turbine as the high temperature cycle and the steam turbine as the low temperature cycle.

  18. Adequate Measuring Technology and System of Fission Gas release Behavior from Voloxidation Process

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Yang, M. S.; Song, K. C.

    2006-09-01

    Based on the published literature and an understanding of available hot cell technologies, more accurate measuring methods for each volatile fission product released from voloxidation process were reviewed and selected. The conceptual design of an apparatus for measuring volatile and/or semi-volatile fission products released from spent fuel was prepared. It was identified that on-line measurement techniques can be applied for gamma-emitting fission products, and off-line measurement such as chemical/or neutron activation analysis can applied for analyzing beta-emitting fission gases. Collection methods using appropriate material or solutions were selected to measure the release fraction of beta-emitting gaseous fission products at IMEF M6 hot cell. Especially, the on-line gamma-ray counting system for monitoring of 85Kr and the off-line measuring system of 14C was established. On-line measuring system for obtaining removal ratios of the semi-volatile fission products, mainly gamma-emitting fission products such as Cs, Ru etc., was also developed at IMEF M6 hot cell which was based on by measuring fuel inventory before and after the voloxidation test through gamma measuring technique. The development of this measurement system may enable basic information to be obtained to support design of the off-gas treatment system for the voloxidation process at INL, USA

  19. The Development of an Automated Clean-up for Fat Extracts in the Routine Analysis of Organochlorine Compounds in Fish Meat

    Directory of Open Access Journals (Sweden)

    Ana Andreea CIOCA

    2017-05-01

    Full Text Available The present work describes the development of a new, automatic High Performance Liquid Chromatography (HPLC Clean-up step, in the methodology of sample preparation and multi-residue determination of organochlorine compounds (OCs in fish meat. 24 OCs were taken into study. In addition 7 Polychlorinated Biphenyls (PCBs, 7 chlorobenzene compounds and one 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD were investigated. The HPLC conditions were established in accordance with the validated traditional Clean-up step of the laboratory. The technique was applied on a dilution of analytes of interest in order to establish the period of time in which the compounds are eluted. Another set of experiments involved fish oil, in order to identify and separate the fat fraction from the analytes. To confirm the findings of the experiments mentioned above, extracts of fish samples obtained after Accelerated Solvent Extraction (ASE were examined. The samples were spiked with the analytes of interest before HPLC clean-up step and quantified through Gas Chromatography coupled with tandem Mass Spectrometry (GC-MS/MS. A HPLC clean-up technique lasting 38 minutes/sample was developed. The method is not suitable for OCs such as Endosulfansulfat and Endrine Ketone due to the very low recovery results.Â

  20. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    Science.gov (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  1. Options for improving hazardous waste cleanups using risk-based criteria

    International Nuclear Information System (INIS)

    Elcock, D.

    1995-01-01

    This paper explores how risk- and technology-based criteria are currently used in the RCRA and CERCLA cleanup programs. It identifies ways in which risk could be further incorporated into RCRA and CERCLA cleanup requirements and the implications of risk-based approaches. The more universal use of risk assessment as embodied in the risk communication and risk improvement bills before Congress is not addressed. Incorporating risk into the laws and regulations governing hazardous waste cleanup, will allow the use of the best scientific information available to further the goal of environmental protection in the United States while containing costs. and may help set an example for other countries that may be developing cleanup programs, thereby contributing to enhanced global environmental management

  2. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  3. Evaluation of containment failure and cleanup time for Pu shots on the Z machine.

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L.

    2010-02-01

    Between November 30 and December 11, 2009 an evaluation was performed of the probability of containment failure and the time for cleanup of contamination of the Z machine given failure, for plutonium (Pu) experiments on the Z machine at Sandia National Laboratories (SNL). Due to the unique nature of the problem, there is little quantitative information available for the likelihood of failure of containment components or for the time to cleanup. Information for the evaluation was obtained from Subject Matter Experts (SMEs) at the Z machine facility. The SMEs provided the State of Knowledge (SOK) for the evaluation. There is significant epistemic- or state of knowledge- uncertainty associated with the events that comprise both failure of containment and cleanup. To capture epistemic uncertainty and to allow the SMEs to reason at the fidelity of the SOK, we used the belief/plausibility measure of uncertainty for this evaluation. We quantified two variables: the probability that the Pu containment system fails given a shot on the Z machine, and the time to cleanup Pu contamination in the Z machine given failure of containment. We identified dominant contributors for both the time to cleanup and the probability of containment failure. These results will be used by SNL management to decide the course of action for conducting the Pu experiments on the Z machine.

  4. The growth of GaN films by alternate source gas supply hot-mesh CVD method

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Yasuaki; Saitou, Takeshi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Suemitsu, Maki; Ito, Takashi [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Endoh, Tetsuo [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Nakazawa, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan); Narita, Yuzuru [Faculty of Engineering, Yamagata University, Yonezawa 992-8510 (Japan); Takata, Masasuke; Akahane, Tadashi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Yasui, Kanji, E-mail: kyasui@vos.nagaokaut.ac.j [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2009-04-30

    Gallium nitride (GaN) films and Aluminium nitride (AlN) layers were deposited on SiC/Si (111) substrates by an alternating source gas supply or an intermittent supply of a source gas such as ammonia (NH{sub 3}), trimethylgallium (TMG) or trimethylaluminum (TMA) in a hot-mesh chemical vapor deposition (CVD) apparatus. The AlN layer was deposited as a buffer layer using NH{sub 3} and TMA on a SiC layer grown by carbonization on Si substrates using propane (C{sub 3}H{sub 8}). GaN films were grown on an AlN layer by a reaction between NH{sub x} radicals generated on a ruthenium (Ru) coated tungsten (W)-mesh and TMG molecules. An alternating source gas supply or an intermittent supply of one of the source gases during the film growth are expected to be effective for the suppression of gas phase reactions and for the enhancement of precursor migration on the substrate surface. By the intermittent supply of alkylmetal gas only during the growth of the AlN layer, the defect generation in the GaN films was reduced. GaN film growth by intermittent supply on an AlN buffer layer, however, did not lead to the improvement of the film quality.

  5. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  6. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  7. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  8. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  9. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene.

    Science.gov (United States)

    Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; da Conceição Alvim-Ferraz, Maria; Delerue-Matos, Cristina

    2013-10-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

  10. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    Science.gov (United States)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  11. NRC plan for cleanup operations at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Lo, R.; Snyder, B.J.

    1980-07-01

    The NRC plan defines the functional role of the NRC in cleanup operations at Three Mile Island Unit 2 to assure that agency regulatory responsibilities and objectives will be fulfilled. The plan outlines NRC functions in TMI-2 cleanup operations in the following areas: (1) the functional relationship of NRC to other government agencies, the public, and the licensee to coordinate activities, (2) the functional roles of these organizations in cleanup operations, (3) the NRC review and decision-making procedure for the licensee's proposed cleanup operation, (4) the NRC/licensee estimated schedule of major actions, and (5) NRC's functional role in overseeing implementation of approved licensee activities

  12. Utilizing the right mix of environmental cleanup technologies

    International Nuclear Information System (INIS)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-01-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  13. UTILIZING THE RIGHT MIX OF ENVIRONMENTAL CLEANUP TECHNOLOGIES

    International Nuclear Information System (INIS)

    Bergren, C; Wade Whitaker, W; Mary Flora, M

    2007-01-01

    The Savannah River Site (SRS) Figure 1 is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  14. Discussion of Carbon Emissions for Charging Hot Metal in EAF Steelmaking Process

    Science.gov (United States)

    Yang, Ling-zhi; Jiang, Tao; Li, Guang-hui; Guo, Yu-feng

    2017-07-01

    As the cost of hot metal is reduced for iron ore prices are falling in the international market, more and more electric arc furnace (EAF) steelmaking enterprises use partial hot metal instead of scrap as raw materials to reduce costs and the power consumption. In this paper, carbon emissions based on 1,000 kg molten steel by charging hot metal in EAF steelmaking is studied. Based on the analysis of material and energy balance calculation in EAF, the results show that 146.9, 142.2, 137.0, and 130.8 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 %, while 143.4, 98.5, 65.81, and 31.5 kg/t of carbon emissions are produced at a hot metal ratio of 0 %, 30 %, 50 %, and 70 % by using gas waste heat utilization (coal gas production) for EAF steelmaking unit process. However, carbon emissions are increased by charging hot metal for the whole blast furnace-electric arc furnace (BF-EAF) steelmaking process. In the condition that the hot metal produced by BF is surplus, as carbon monoxide in gas increased by charging hot metal, the way of coal gas production can be used for waste heat utilization, which reduces carbon emissions in EAF steelmaking unit process.

  15. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  16. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  17. Low temperature wetting and cleanup of alkali metal-advanced electrical machine systems

    International Nuclear Information System (INIS)

    Gass, W.R.; Witkowski, R.E.; Burrow, G.C.

    1980-01-01

    Advanced homopolar electrical machines employing high electrical current density, liquid metal sliprings for current transfer utilize NaK/sub 78/ (78 w/o potassium, 22 w/o sodium) for the conducting fluid. Experiments have been performed to improve alkali metal/oxide clean-up procedures. Studies have also confirmed chemical and materials compatibility between barium doped NaK/sub 78/ and typical machine structural materials. 4 refs

  18. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  19. Defining the framework for environmentally compliant cleanup: The Hanford site tri-party agreement

    International Nuclear Information System (INIS)

    Austin, B.A.; Wisness, S.H.

    1994-01-01

    The Hanford Federal Facility Agreement and Consent Order, commonly called the Tri-Party Agreement, was signed by the U.S. Environmental Protection Agency (EPA), the State of Washington Department of Ecology (Ecology), and the U.S. Department of Energy (DOE) in May of 1989. It was the first three-party agreement of its magnitude in the country and was touted as a landmark agreement. It was one of the most significant actions that has been taken to define the framework for environmentally compliant cleanup actions at the Hanford Site. Accomplishments thus far represent a lot of planning, permitting, and development activities either required by regulation or necessary to ensure an adequate infrastructure to support cleanup activities. Actual cleanup work and construction of new facilities are beginning to accelerate as the Hanford Site moves out of study and development phases into actual cleanup activities. Significant changes to the Hanford Tri-Party Agreement were negotiated between May 1993 and January 1994. These negotiations were precipitated by the completion of a 15-month rebaselining study of the Hanford Site's Tank Waste Remediation System. The revised agreement is based on comments and values the three agencies heard from people of the region during the negotiation process. The recent renegotiation reflected an ability of the agencies and the agreement to change commensurate with technical, economic, and political realities of today. Hanford has moved into a new era of public participation which will continue to watch and guide cleanup efforts in manners satisfactory to regional concerns and values

  20. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  1. Advanced separation technology for flue gas cleanup. Final report, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  2. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  3. Worldwide analysis of marine oil spill cleanup cost factors

    International Nuclear Information System (INIS)

    Etkin, D.S.

    2000-01-01

    The many factors that influence oil spill response costs were discussed with particular emphasis on how spill responses differ around the world because of differing cultural values, socio-economic factors and labor costs. This paper presented an analysis of marine oil spill cleanup costs based on the country, proximity to shoreline, spill size, oil type, degree of shoreline oiling and cleanup methodology. The objective was to determine how each factor impacts per-unit cleanup costs. Near-shore spills and in-port spills were found to be 4-5 times more expensive to clean than offshore spills. Responses to spills of heavy fuels also cost 10 times more than for lighter crudes and diesel. Spill responses for spills under 30 tonnes are 10 times more costly than on a per-unit basis, for spills of 300 tonnes. A newly developed modelling technique that can be used on different types of marine spills was described. It is based on updated cost data acquired from case studies of more than 300 spills in 40 countries. The model determines a per-unit cleanup cost estimation by taking into consideration oil type, location, spill size, cleanup methodology, and shoreline oiling. It was concluded that the actual spill costs are totally dependent on the actual circumstances of the spill. 13 refs., 10 tabs., 3 figs

  4. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  5. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  6. Sectored Clean-up Work Plan for Housekeeping Category Waste Sites

    International Nuclear Information System (INIS)

    Nacht, S. J.

    2000-01-01

    The Sectored Clean-up Work Plan (SCWP) replaces the Housekeeping Category Corrective Action Unit Work Plan and provides a strategy to be used for conducting housekeeping activities using a sectored clean-up approach. This work plan provides a process by which one or more existing housekeeping category Corrective Action Sites (CASS) from the Federal Facility Agreement and Consent Order and/or non-FFACO designated waste site(s) are grouped into a sector for simultaneous remediation and cleanup. This increases effectiveness and efficiencies in labor, materials, equipment, cost, and time. This plan is an effort by the U.S. Department of Energy to expedite work in a more organized and efficient approach. The objectives of this plan are to: Group housekeeping FFACO CASS and non-FFACO housekeeping sites into sectors and remediate during the same field visit; Provide consistent documentation on FFACO CAS and non-FFACO clean-up activities; Perform similar activities under one approved document; Remediate areas inside the Deactivation and Decommissioning facilities and compounds in a campaign-style remediation; and Increase efficiencies and cost-effectiveness, accelerate cleanups, reduce mobilization, demobilization, and remediation costs

  7. The state of immune system in children of participants of Chornobyl accident clean-up at the final state of sexual maturation

    International Nuclear Information System (INIS)

    Shlyakhova, N.V.

    2009-01-01

    The changes in the immune system involving all links of the immunity are three times more frequent in children whose fathers participated in Chornobyl accident clean-up. Disorders of humoral and phagocyte links are gender-dependent. Significant difference in the level of immunological parameters depending on the year of the father's stay in the zone was not revealed.

  8. Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Mao, Tianzhi; Sui, Jun; Jin, Hongguang

    2015-01-01

    Co-firing biomass and fossil energy is a cost-effective and reliable way to use renewable energy and offer advantages in flexibility, conversion efficiency and commercial possibility. This study proposes a co-fired CCHP (combined cooling, heating and power) system based on natural gas and biomass gasification gas that contains a down-draft gasifier, ICE (internal combustion engine), absorption chiller and heat exchangers. Thermodynamic models are constructed based on a modifying gasification thermochemical equilibrium model and co-fired ICE model for electricity and heat recovery. The performance analysis for the volumetric mixture ratio of natural gas and product gas indicates that the energy and exergy efficiencies are improved by 9.5% and 13.7%, respectively, for an increasing mixture ratio of 0–1.0. Furthermore, the costs of multi-products, including electricity, chilled water and hot water, based on exergoeconomic analysis are analyzed and discussed based on the influences of the mixture ratio of the two gas fuels, investment cost and biomass cost. - Highlights: • Propose a co-fired CCHP system by natural gas and biomass gasification gas. • Modify biomass gasification and co-fired ICE models. • Present the thermodynamic analysis of the volumetric mixture ratios of two gas fuels. • Energy and exergy efficiencies are improved 9.5% and 13.7%. • Discuss multi-products’ costs influenced by investment and fuel costs.

  9. Fluidized-bed calcination of LWR fuel-reprocessing HLLW: requirements and potential for off-gas cleanup

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1979-01-01

    Fluidized-bed solidification (calcination) was developed on a pilot scale for a variety of simulated LWR high-level liquid-waste (HLLW) and blended high-level and intermediate-level liquid-waste (ILLW) compositions. It has also been demonstrated with ICPP fuel-reprocessing waste since 1963 in the Waste Calcining Facility (WCF) at gross feed rates of 5 to 12 m 3 /day. A fluidized-bed calciner produces a relatively large volume of off-gas. A calciner solidifying 6 m 3 /day of liquid waste would generate about 13 standard m 3 /min of off-gas containing 10 to 20 g of entrained solids per standard m 3 of off-gas. Use of an off-gas system similar to that of the WCF could provide an overall process decontamination factor for particulates of about 2 x 10 10 . A potential advantage of fluidized-bed calcination over other solidification methods is the ability to control ruthenium volatilization from the calciner at less than 0.01% by calcining at 500 0 C or above. Use of an off-gas system similar to that of the WCF would provide an overall process decontamination factor for volatile ruthenium of greater than 1.6 x 10 7

  10. Natural gas production verification tests

    International Nuclear Information System (INIS)

    1992-02-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO 2 )/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO 2 /sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  11. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  12. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    Science.gov (United States)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  13. Development of a new chemical technology for cleanup of VVER steam generators

    International Nuclear Information System (INIS)

    Smykov, V.B.; Yermolaev, N.P.; Ivanov, V.N.

    2002-01-01

    As shows the maintenance experience of SG's, the long-time maintenance them without chemical cleanup on secondary-side results in accumulation of considerable amounts of depositions of oxides of iron with a high content of copper on outside of tubes. The deposit accumulation creates conditions for concentrating of salts which promote corrosion and, then, the loosing of inter-contour tightness. Therefore the experts do not have any doubts in necessity of chemical cleanups and the chemical cleanups were carried out at some NPP's with VVER during last years. However it is possible to say, that these cleanups were carried out not by the best mode - the same main reagents had been used in order to dissolve the copper and iron oxides. For example, all cleanups at Balakovo NPP in 1996-1997 years had the common deficiency - even during 5. final stage of process the copper prolongs to be washed. By our opinion, the reasons of it are the poor scientific and technical justification of this process. Therefore at various NPP's with VVER cleanups realize by various techniques. The process of chemical cleanup, close to offered in the present work, was repeated many times utilized at BN-600 Belojarsk NPP and at BN-350 Shevtchenko NPP. The purposes of the present work are: 1. Research the behaviours of physicochemical processes during dissolution of components of depositions and their mixtures with use of the various formulas; 2. Analysis of the carried out chemical cleanups of PGV-1000M at an example of Balakovo NPP; 3. Development of a new process of SG's cleanup on the base of experimental researches and analysis; 4. Check of this process on the samples of full-scale depositions from SG Balakovo NPP. (authors)

  14. Change On The S-Z Effect Induced By The Cooling Flow CF On The Hot Electronic Gas At The Center OF The Clusters Of Galaxies

    Directory of Open Access Journals (Sweden)

    Enkelejd Caca

    2015-06-01

    Full Text Available ABSTRACT Building more accurate profiles for temperature and density of hot electronic gas concentrated in the center of clusters of galaxies is a constant problem in survey of Sunyeav Zeldovich effect SZ. An effect that consists in the inverse Compton effect of the hot electronic gas interacting with Cosmic Microwave Back- ground CMB photons passing through Intra Cluster Medium ICM. So far the Isothermal model is used for temperature profiling in the calculation of the inverse Compton effect but based on the recent improved observations from satellites which showed that the hot electronic gas presents a feature called Cooling Flow CF. Temperatures in this model differs towards the edges of the Clusters of Galaxies leading to a change on the Compton parameter in comparison with Isothermal model. In this paper are processed data provided by X-ray satellite Chandra. The X-ray analysis is based on two models for the electron density and temperature profile. A sample of 12 clusters of galaxies are analyzed and by building the temperature profiles using CF model the differences on the Compton parameter are 10-100 in comparison with Isothermal model. Therefore to increase the accuracy of evaluation of the Compton parameter we should take into account the change of the electronic gas tempera- ture change that affect changes in both CMB spectrum and temperature from SZ effect.

  15. Aviation safely management, Valdez oil spill clean-up

    International Nuclear Information System (INIS)

    Friesenhahn, M.J.; McKeown, W.L.; Williams, R.G.

    1993-01-01

    The March 24, 1989 Exxon Valdez oil spill in Alaska's Prince William Sound (PWS) resulted in an unprecedented mobilization of personnel and oil spill clean-up equipment. This paper describes the comprehensive safety management system implemented for aviation operations supporting the clean-up response in PWS and the Gulf of Alaska (GOA). Aviation support operations quickly expanded to over 100 aircraft obtained from numerous sources. Beginning with early surveillance flights, aviation operations were subject to comprehensive safety management programs, including safety assessments, minimum flight weather criteria, operational standards and procedures, air carrier qualifications, equipment and procedure audits, and emergency response. Communication networks and flight following procedures were established, arctic survival training was conducted, and a full complement of survival equipment was required. These programs were largely responsible for safety performance of the spill response effort-during the 1989-92 response activities, over 56,000 flight hours, 159,000 equivalent passengers, and 20,000 tons of cargo were handled without an aviation related injury. The programs are applicable to offshore development and operational activities, particularly those located in more remote, severe environments

  16. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  17. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  18. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  19. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Science.gov (United States)

    2010-07-01

    ... cleanup liens. 312.25 Section 312.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS INNOCENT LANDOWNERS, STANDARDS FOR... cleanup liens. (a) All appropriate inquiries must include a search for the existence of environmental...

  20. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    Science.gov (United States)

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  1. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  2. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  3. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    Vandergaast, G.; Moffett, D.; Lawrence, B.E.

    1988-01-01

    42,500 m 3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  4. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  5. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  6. Environmental compliance and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed.

  7. Environmental compliance and cleanup

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the roles of the principal agencies, organizations, and public in environmental compliance and cleanup of the Hanford Site. Regulatory oversight, the Federal Facility Agreement and Consent Order, the role of Indian tribes, public participation, and CERCLA Natural Resource Damage Assessment Trustee Activities are all discussed

  8. In-place testing of off-gas iodine filters

    International Nuclear Information System (INIS)

    Duce, S.W.; Tkachyk, J.W.; Motes, B.G.

    1980-01-01

    At the Idaho National Engineering Laboratory, both charcoal and silver zeolite (AgX) filters are used for radioactive iodine off-gas cleanup of reactor systems. These filters are used in facilities which are conducting research in the areas of reactor fuel failure, reactor fuel inspection, and loss of fluids from reactor vessels. Iodine retention efficiency testing of these filters is dictated by prudent safety practices and regulatory guidelines. A procedure for determining iodine off-gas filter efficiency in-place has been developed and tested on both AgX and charcoal filters. The procedure involves establishing sample points upstream and downstream of the filter to be tested. A step-by-step approach for filter efficiency testing is presented

  9. Accelerating cleanup. Paths to closure Hanford Site

    International Nuclear Information System (INIS)

    Edwards, C.

    1998-01-01

    This document was previously referred to as the Draft 2006 Plan. As part of the DOE's national strategy, the Richland Operations Office's Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established

  10. Prioritization of environmental cleanup problems at Hanford

    International Nuclear Information System (INIS)

    Fassbender, L.L.

    1994-01-01

    New technologies and scientific research are needed to clean up the Hanford Site. However, there is insufficient funding to develop every technology that is identified or to undertake every scientific research project that is proposed. Thus, the Department of Energy (DOE) must focus its resources on science and technology (S ampersand T) that will have the most significant impacts on the overall cleanup effort. Hanford has recognized the importance of identifying and prioritizing its most critical problems and the most promising solutions to them. Hanford cleanup will require numerous decisions about technology development and implementation, which will be complicated because there are substantial uncertainties about the risks and the costs of new technologies. Further, the choice of a specific technology for a specific application must be evaluated with respect to multiple (and often conflicting) objectives (e.g., risk reduction, increasing effectiveness, cost reduction, increasing public acceptability, regulatory compliance). This paper provides an overview of the decision analysis methodology that was used to prioritize S ampersand T needs for Hanford cleanup

  11. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  12. An automated online turboflow cleanup LC/MS/MS method for the determination of 11 plasticizers in beverages and milk.

    Science.gov (United States)

    Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide

    2013-01-01

    An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.

  13. Providing support for day-to-day monitoring of shoreline cleanup operations

    International Nuclear Information System (INIS)

    Lamarche, A.; Tarpley, J.

    1997-01-01

    Experiences gained during the 'Cape Mohican' incident in October 1996, in San Francisco Bay, were recounted and proposed as a potential example of day-to-day monitoring, evaluation and reporting of shoreline cleanup effort. During this cleanup a set of communications procedures, progress reports and maps were developed which should be equally useful in other similar situations. The cartographic representations were specially highlighted as they focused on ways to provide a clear picture of the short term modifications in oiling conditions of the affected shoreline. The most important lesson learned from this oil spill was the importance of having personnel and equipment sufficiently matched to the task in order to evaluate oil conditions, produce cleanup recommendations, execute and communicate the status of the cleanup effort as fast, and as efficiently and effectively as possible. It was clearly demonstrated that unless the decision process is streamlined and supported with the best, most up-to-date information, the efforts of the cleanup team would be seriously undermined. 8 refs., 2 tabs., 6 figs

  14. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  15. Design of the JAERI Fuel Cleanup System for the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; Naruse, Yuji; Okuno, Kenji; Carlson, R.V.; Anderson, J.L.

    1993-03-01

    TSTA is operated under the US-Japan collaboration program for the study of fusion fuel cycle technology. A plasma exhaust processing subsystem, JAERI Fuel Cleanup (JFCU) was fabricated in Japan, and installed at the TSTA as a major subsystem of the TSTA loop under the agreement. This process is based on some Japanese developed components, and designed to meet TSTA requirements by both parties. This document describes all the technical and safety features in accordance with the LANL QA format. The process has a capability to process simulated plasma exhaust at the flow rate of 15 mol/h, that is 1/5 for ITER. (author)

  16. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  17. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  18. Cleanup of contaminated areas; La bonifica di aree contaminate

    Energy Technology Data Exchange (ETDEWEB)

    Beone, G; Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  19. Biomass Gas Cleanup Using a Therminator

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C; Kataria, Atish; Gupta, Rabhubir

    2012-03-06

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very

  20. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  1. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  2. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  3. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  4. Engineer, design construct, test, and evaluate a pressurized fluidized-bed pilot plant using high-sulfur coal for production of electric power: Phase I. Preliminary engineering; Phase II. Final design; Phase III. Construction. Annual report, March 1, 1979-February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The extended test program on the SGT/PFB Technology Unit, previously placed in operation, was completed. Total operating time is 3378 which includes 2681 h burning coal and 1205 h total turbine engine operation. Significant performance and operational milestones, completed during the past year, included: over 2000 h on candidate heat exchanger tube materials at design temperature during which durability of iron-base alloy for PFB heat exchanger tubes was demonstrated; generated electric power with gas turbine operating on PFB coal combustion gas for 1000 h with no appreciable erosion or corrosion of turbine rotor blades and stator vanes; evaluated and improved hot gas cleanup system during which mean particle size of 1.3 Microns and a loading of 0.054 grains/Scf was achieved; and durability of hot/ash solids lock hopper valves for over 1000 h without leakage and stellite coated butterfly gas valve operating successfully for over 900 h in a highly erosive environment was demonstrated. Details of materials evolutions and corrosion rates, component performances and gaseous emission levels are presented.

  5. Verification of capillary pressure functions and relative permeability equations for gas production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)

    2016-10-25

    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  6. Report on DOE labs takes aim at cleanup

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This article is a review of the Galvin report on the environmental restoration activities at DOE nuclear facilities. The report is highly critical of DOE efforts, calling for a management overhaul and partial privitization of some facilities. Urging that the facilities be more integrated into the environmental management program, the report asserts that the low quality of science and technology in field cleanup work is the most important reason for the limited pace of cleanup activities. Excessive administrative costs were also cited

  7. Hot news recommendation system from heterogeneous websites based on bayesian model.

    Science.gov (United States)

    Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang

    2014-01-01

    The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  8. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  9. The idea from the coldness - Field test confirms high utilisation grades. New gas heat pump system; Die Idee, die aus der Kaelte kam - Feldtest bestaetigt hohe Nutzungsgrade. Neues Gaswaermepumpen-System

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, W. [Ruhrgas AG, Essen (Germany)

    2002-07-01

    The new gas-fired diffusion absorption heat pump (DAHP) developed by Buderus Heiztechnik GmbH was field-tested in the Netherlands and in Germany. Testing in Germany involved a total of 15 regional gas suppliers and was coordinated by Ruhrgas. 24 DAHP systems were installed in (existing and newly built) single-family homes. The tests showed that the efficiency of heat pumps designed for permanent operation is 25 percentage points above that of gas-fired condensing boilers. Despite some differences in the price/performance ratio, all types of heat source proved suitable. The experience gained in these tests for DAHP system installation, heating, hot water production and system temperature control will be a major contribution to help optimise DAHP systems. (orig.)

  10. Gas stream clean-up filter and method for forming same

    International Nuclear Information System (INIS)

    Mei, J.S.; DeVault, J.; Halow, J.S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products

  11. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  12. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2018-01-01

    Full Text Available The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  13. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Science.gov (United States)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  14. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. Basically, these subsystems would consist of the deuterium-tritium fuel cycle and associated environmental control systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s (1385 ACFM) and will achieve an overall decontamination factor of 10 6 for tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to operational status within 24 h without a significant release of tritium to the environment. The basic process will include compression of the air to 0.35 MPa (3.5 atm) in a reciprocating compressor followed by oxidation of the tritium to T 2 O in a catalytic reactor. The air will be cooled to 275 K (350 0 F) to remove most of the moisture, including T 2 O, as a condensate. The remaining moisture will be removed by molecular sieve dryer beds that incorporate a water-swamping step between beds, allowing greater T 2 O removal. A portion of the detritiated air will be recirculated to the cell; the remainder will be exhausted to the building ventilation stack to maintain a slight negative pressure in the cell. The ETC will be designed for maximum flexibility so that studies can be performed that involve various aspects of room air detritiation

  15. H‑ Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b

    Science.gov (United States)

    Arcangeli, Jacob; Désert, Jean-Michel; Line, Michael R.; Bean, Jacob L.; Parmentier, Vivien; Stevenson, Kevin B.; Kreidberg, Laura; Fortney, Jonathan J.; Mansfield, Megan; Showman, Adam P.

    2018-03-01

    We present one of the most precise emission spectra of an exoplanet observed so far. We combine five secondary eclipses of the hot Jupiter WASP-18b (T day ∼ 2900 K) that we secured between 1.1 and 1.7 μm with the Wide Field Camera 3 instrument on board the Hubble Space Telescope. Our extracted spectrum (S/N = 50, R ∼ 40) does not exhibit clearly identifiable molecular features but is poorly matched by a blackbody spectrum. We complement this data with previously published Spitzer/Infrared Array Camera observations of this target and interpret the combined spectrum by computing a grid of self-consistent, 1D forward models, varying the composition and energy budget. At these high temperatures, we find there are important contributions to the overall opacity from H‑ ions, as well as the removal of major molecules by thermal dissociation (including water), and thermal ionization of metals. These effects were omitted in previous spectral retrievals for very hot gas giants, and we argue that they must be included to properly interpret the spectra of these objects. We infer a new metallicity and C/O ratio for WASP-18b, and find them well constrained to be solar ([M/H] = ‑0.01 ± 0.35, C/O < 0.85 at 3σ confidence level), unlike previous work but in line with expectations for giant planets. The best-fitting self-consistent temperature–pressure profiles are inverted, resulting in an emission feature at 4.5 μm seen in the Spitzer photometry. These results further strengthen the evidence that the family of very hot gas giant exoplanets commonly exhibit thermal inversions.

  16. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    International Nuclear Information System (INIS)

    Walker Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.; Bruffey, Stephanie H.

    2015-01-01

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ?100 L/h (1.67 L/min), (2) an external temperature of ?50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  17. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  18. Cleanup standards and pathways analysis methods

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1993-01-01

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. Release of a decontaminated site requires proof that the radiological data obtained from the site meet the regulatory criteria for such a release. Typically release criteria consist of a composite of acceptance limits that depend on the radionuclides, the media in which they are present, and federal and local regulations. In recent years, the US Department of Energy (DOE) has developed a pathways analysis model to determine site-specific soil activity concentration guidelines for radionuclides that do not have established generic acceptance limits. The DOE pathways analysis computer code (developed by Argonne National Laboratory for the DOE) is called RESRAD (Gilbert et al. 1989). Similar efforts have been initiated by the US Nuclear Regulatory Commission (NRC) to develop and use dose-related criteria based on genetic pathways analyses rather than simplistic numerical limits on residual radioactivity. The focus of this paper is radionuclide contaminated soil. Cleanup standards are reviewed, pathways analysis methods are described, and an example is presented in which RESRAD was used to derive cleanup guidelines

  19. Myelodysplastic syndromes in Chernobyl clean-up workers.

    Science.gov (United States)

    Gluzman, Daniil F; Sklyarenko, Lilia M; Koval, Stella V; Rodionova, Nataliia K; Zavelevich, Michael P; Ivanivskaya, Tetiana S; Poludnenko, Liudmyla Yu; Ukrainskaya, Nataliia I

    2015-10-01

    The studies of the recent decades posed the question of the association between radiation exposure and myelodysplastic syndromes (MDS). This association has been proved in secondary MDS originating upon exposure to chemotherapeutics and/or radiation therapy. The long-term study in Japanese atomic (A)-bomb survivors demonstrated the significant linear dose-response for MDS confirming the link between radiation exposure and this form of hematopoietic malignancies. All these findings provide the strong basis for studying MDS in the persons exposed to radiation following the Chernobyl disaster, especially those in the cohort of Chernobyl clean-up workers of 1986-1987. The data on MDS among Chernobyl clean-up workers (1986-1987) diagnosed in 1996-2012 at the reference laboratory of RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology are summarized. MDS cases were diagnosed in 23 persons (21 males and 2 females) having been exposed to radiation as clean-up workers of 1986-1987. Refractory anemia (RA) has been detected in 13, refractory anemia with ring sideroblasts (RARS)-in 2, and refractory anemia with excess blasts (RAEB)-in 8 patients. The median age of those MDS patients was 62.0 years. In addition, 5 cases of chronic myelomonocytic leukemia (CMML) were recorded in the group of Chernobyl clean-up workers with the median time of 14.8 years from 1986-1987 to diagnosis. The association between radiation exposure and MDS is discussed. The suggested life-long risk for myelodysplastic syndromes among A-bomb survivors in Japan highlights the importance of the continuing follow-up studies in the affected populations in the post-Chernobyl period.

  20. Radioactive waste spill and cleanup on storage tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boore, W.G.; McNatt, F.G.; Ryland, R.K.; Scaggs, R.A.; Strother, E.D.; Wilson, R.W.

    1986-03-01

    This report was prepared for historical purpose to document events associated with a radioactive spill and subsequent cleanup efforts at the Savannah River Plant. On December 29, 1983, approximately 100 gallons of liquid radioactive waste, containing an estimated 200-600 curies of cesium-137, leaked from a flushwater line onto the top of the Savannah River Plant's Tank 13 in H-area. The highest measured radiation rate was 100 R/hr at 12 inches from the evaporator feed pump riser. The leak was caused by a series of events involving inadequate heat tracing on a flushwater line, failure of a gasket in 7 0 F weather, failure of personnel to follow a procedure, and leakage across a gate valve seat. Some of the leaked solution migrated into storm water ditches during rain, and a total of 237 millicuries migrated to a nearby stream over several months. However, no significant increase in the cesium-137 concentration occurred in the Savannah River or in the groundwater under the impacted area. Cleanup, costing 3.7 million dollars, took place over the following eighteen months. Cleanup involved water flushing, chemical flushing and mechanical removal of a portion of the concrete tank-top surface, followed by excavation of 1383 cubic yards of soil surrounding the tank. Stringent and effective radiological controls, including development of remote decontamination methods, allowed the cleanup to be accomplished with a total radiation dose to personnel of 58 rems. New safeguards were built into the system to protect against spills and to provide greater assurance of spill containment. Lead sheeting and a 4- to 6-inch-thick concrete overpour were bonded over the remaining contaminated concrete to reduce the radiation levels to less than 20 mR/hr at 3 feet. The Tank 13 evaporator feed system resumed operation in June 1985. 3 refs., 42 figs., 2 tabs

  1. Experience with conventional inelastic analysis procedures in very high temperature applications

    International Nuclear Information System (INIS)

    Mallett, R.H.; Thompson, J.M.; Swindeman, R.W.

    1991-01-01

    Conventional incremental plasticity and creep analysis procedures for inelastic analysis are applied to hot flue gas cleanup system components. These flue gas systems operate at temperatures where plasticity and creep are very much intertwined while the two phenomena are treated separately in the conventional inelastic analysis procedure. Data for RA333 material are represented in forms appropriate for the conventional inelastic analysis procedures. Behavior is predicted for typical operating cycles. Creep-fatigue damage is estimated based upon usage fractions. Excessive creep damage is predicted; the major contributions occur during high stress short term intervals caused by rapid temperature changes. In this paper these results are presented for discussion of the results and their interpretation in terms of creep-fatigue damage for very high temperature applications

  2. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    Science.gov (United States)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  3. Retroactive insurance may fund TMI-2 cleanup

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Pennsylvania task force recommended that nuclear utilities insure their plants with a mandatory national property insurance program. The proposed Nuclear Powerplant Property Damage Insurance Act of 1981 will cover the cleanup costs of onsite damage in excess of $350 million for a single accident ($50 million when private insurance is added on) and a ceiling of two billion dollars. Participation in the insurance pool would be in conjunction with licensing and would permit no grandfathering. Total payout for Three Mile Island-2 would cover 75% of the cleanup costs, the remainder to be apportioned among other parties. The insurance pool will have a $750 million goal supported by utility premiums

  4. Identifying technology barriers in adapting a state-of-the-art gas turbine for IGCC applications and an experimental investigation of air extraction schemes for IGCC operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-06-01

    Under contracted work with Morgantown Energy Technology Center, Clemson University, the prime contractor, and General Electric (GE) and CRSS, the subcontractors, made a comprehensive study in the first phase of research to investigate the technology barriers of integrating a coal gasification process with a hot gas cleanup scheme and the state-of-the-art industrial gas turbine, the GE MS-7001F. This effort focused on (1) establishing analytical tools necessary for modeling combustion phenomenon and emissions in gas turbine combustors operating on multiple species coal gas, (2) estimates the overall performance of the GE MS-7001F combined cycle plant, (3) evaluating material issues in the hot gas path, (4) examining the flow and temperature fields when air extraction takes place at both the compressor exit and at the manhole adjacent to the combustor, and (5) examining the combustion/cooling limitations of such a gas turbine by using 3-D numerical simulation of a MS-7001F combustor operated with gasified coal. In the second phase of this contract, a 35% cool flow model was built similar to GE`s MS-7001F gas turbine for mapping the flow region between the compressor exit and the expander inlet. The model included sufficient details, such as the combustor`s transition pieces, the fuel nozzles, and the supporting struts. Four cases were studied: the first with a base line flow field of a GE 7001F without air extraction; the second with a GE 7001F with air extraction; and the third and fourth with a GE 7001F using a Griffith diffuser to replace the straight wall diffuser and operating without air extraction and with extraction, respectively.

  5. Simultaneous determination of multiresidual phenyl acetanilide pesticides in different food commodities by solid-phase cleanup and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Yongjun; Wang, Meiling; Yan, Hongfei; Fu, Shanliang; Dai, Hua

    2013-03-01

    An efficient and sensitive multiresidue method has been developed for quantification and confirmation of 25 phenyl acetanilide pesticides in a wide variety of food commodities including maize, spinach, mushroom, apple, soybean, chestnut, tea, beef, cattle liver, chicken, fish, and milk. Analytes were extracted with acetone-n-hexane (1:2, v/v) followed by cleanup using SPE. Several types of adsorbents were evaluated. Neutral aluminum and graphitized carbon black cartridge showed good cleanup efficiency. The extract was determined by GC-MS in the selected ion monitoring mode using one target and two qualitative ions for each analyte. The limits of detection were 0.01 mg/kg for all analytes. The average recoveries ranged from 66.9 to 110.6% (mean 88.8%) and RSDs were in the range 2.0-19% (mean 10.5%) across three fortification levels. The proposed method was successfully applied to real samples in routine analysis and a satisfactory result was obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  7. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    Science.gov (United States)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  8. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  9. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    Sekiguchi, N.; Rindo, H.; Akiyama, T.; Miyazawa, T.; Heki, H.

    1981-05-01

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  10. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    Science.gov (United States)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  11. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  12. The functional state of the cardiovascular system in adolescents aged 16-18 born from the parents who participated in Chornobyl accident clean-up

    International Nuclear Information System (INIS)

    Korenjev, M.M.; Kostenko, T.O.; Borisko, G.O.; Kalmikova, N.V.; Cherevatova, S. Kh.; Bondarenko, V.L.

    2010-01-01

    The state of the cardiovascular system of the adolescents aged 16-18 born from the parents who participated in Chornobyl accident clean-up was characterized by a high incidence of myocardium bioelectric activity disorders, presence of congenital small heart defects, widening of the left ventricle cavity, reduction of contractile function and myocardium tolerance to physical load.

  13. Proposed master-slave and automated remote handling system for high-temperature gas-cooled reactor fuel refabrication

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1974-01-01

    The Oak Ridge National Laboratory's Thorium-Uranium Recycle Facility (TURF) will be used to develop High-Temperature Gas-Cooled Reactor (HTGR) fuel recycle technology which can be applied to future HTGR commercial fuel recycling plants. To achieve recycle capabilities it is necessary to develop an effective material handling system to remotely transport equipment and materials and to perform maintenance tasks within a hot cell facility. The TURF facility includes hot cells which contain remote material handling equipment. To extend the capabilities of this equipment, the development of a master-slave manipulator and a 3D-TV system is necessary. Additional work entails the development of computer controls to provide: automatic execution of tasks, automatic traverse of material handling equipment, automatic 3D-TV camera sighting, and computer monitoring of in-cell equipment positions to prevent accidental collisions. A prototype system which will be used in the development of the above capabilities is presented. (U.S.)

  14. Design and safety evaluation of radioactive gas handling and storage in the FFTF

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Hale, J.P.; Halverson, T.G.

    1976-01-01

    During the operation of the Fast Flux Test Facility (FFTF), radioactive gases, primarily xenon and krypton, will be produced which will require processing and storing. Two systems have been installed in the FFTF for handling these gases: (1) one to handle, primarily, the reactor cover gas system, and (2) a second to handle the cells and cover gas systems, other than the reactor, whose atmosphere may become contaminated. The system that processes the reactor cover gas, which is argon, is called the Radioactive Argon Processing System (RAPS). The effluent argon from RAPS will normally be sufficiently decontaminated to allow its reuse as the reactor cover gas. If the radioactive level in the RAPS becomes too high, the exhaust stream will be diverted to the Cell Atmosphere Processing System (CAPS), a system which can function as a backup to RAPS. The design and operation of the RAPS and CAPS systems are described and certain safety aspects of the systems are discussed. It is shown that these systems adequately provide the cleanup services required and that they provide the safety margins necessary to assure adequate safety to the public

  15. Hot News Recommendation System from Heterogeneous Websites Based on Bayesian Model

    Directory of Open Access Journals (Sweden)

    Zhengyou Xia

    2014-01-01

    Full Text Available The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs. In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.

  16. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  17. Waste Cleanup: Status and Implications of Compliance Agreements Between DOE and Its Regulators

    International Nuclear Information System (INIS)

    Jones, G. L.; Swick, W. R.; Perry, T. C.; Kintner-Meyer, N.K.; Abraham, C. R.; Pollack, I. M.

    2003-01-01

    This paper discusses compliance agreements that affect the Department of Energy's (DOE) cleanup program. Compliance agreements are legally enforceable documents between DOE and its regulators, specifying cleanup activities and milestones that DOE has agreed to achieve. Over the years, these compliance agreements have been used to implement much of the cleanup activity at DOE sites, which is carried our primarily under two federal laws - the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA) and the Resource Conservation and Recovery Act of 0f 1976, as amended (RCRA). Our objectives were to determine the types of compliance agreements in effect at DOE cleanup sites, DOE's progress in achieving the milestones contained in the agreements, whether the agreements allowed DOE to prioritize work across sites according to relative risk, and possible implications the agreements have on DOE's efforts to improve the cleanup program

  18. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    International Nuclear Information System (INIS)

    Almanza, P.R.

    1995-01-01

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  19. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  20. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have......Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...... to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts....

  1. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  2. Construction of new tie-in in the Bolivia-Brazil Gas Pipeline (GASBOL) using hot tapping techniques; Derivacao do Gasoduto Bolivia-Brasil com a tecnica de hot-tapping

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Frota, Cristiane Souto; Leite Filho, Ismael Casono; Lobao Filho, Jesualdo Pereira; Saavedra, Marcelo Curto [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    To supply 2,4 MM m3/d of natural gas to Tres Lagoas thermo electric plant, it was necessary to install a new delivery point of 12'' in the 32'' trunk line of Bolivia-Brazil gas pipeline. The most efficient method for executing new delivery points and maintenance repairs in pipelines is using the 'hot-tapping' technique, because there is no need to stop flow and blow down lines. This paper shows the project, specifications, planning and a detailed job execution to support this new city-gate, using a T split sleeve welded in the pipeline, explaining all the activities. Complex and innovative aspects related to the welding and inspection processes, executed in a API 5L X70 pipe at 92 kgf/cm{sup 2}, are also reported. (author)

  3. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  4. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Final report, June 1, 1979-May 31, 1980

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1980-08-01

    The results of the study of the effects of internal and external gas pressures on ceramics are summarized. The new experimental systems for studying these phenomena are described. The study has shown that the rate of volume change in ZnO is linearly related to the total pressure driving force. Swelling and hot-pressing can be described on a consistent basis in terms of this driving force. For ZnO, Ni and UO 2 the rate of volume change is dependent on bulk diffusion. The porosity evolution during swelling is described and the resintering phenomenon is identified. Various models for pore growth and shrinkage are considered and related to the behavior of the different systems

  5. Mental disorders among Chernobyl cleanup workers from Estonia: A clinical assessment.

    Science.gov (United States)

    Laidra, Kaia; Rahu, Kaja; Kalaus, Katri-Evelin; Tekkel, Mare; Leinsalu, Mall

    2017-08-01

    To assess, at a clinical level, the mental health of former Chernobyl cleanup workers from Estonia by comparing them with same-age controls. The Mini International Neuropsychiatric Interview (MINI) was administered during 2011-2012 to 99 cleanup workers and 100 population-based controls previously screened for mental health symptoms. Logistic regression analysis showed that cleanup workers had higher odds of current depressive disorder (odds ratio [OR] = 3.07, 95% confidence interval [CI: 1.34, 7.01]), alcohol dependence (OR = 3.47, 95% CI [1.29, 9.34]), and suicide ideation (OR = 3.44, 95% CI [1.28, 9.21]) than did controls. Except for suicide ideation, associations with Chernobyl exposure became statistically nonsignificant when adjusted for education and ethnicity. A quarter of a century after the Chernobyl accident, Estonian cleanup workers were still at increased risk of mental disorders, which was partly attributable to sociodemographic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Post-accident cleanup and decommissioning of a reference pressurized-water reactor

    International Nuclear Information System (INIS)

    Murphy, E.S.; Holter, G.M.

    1982-10-01

    This paper summarizes the results of a conceptual study to evaluate the technical requirements, costs, and safety impacts of the cleanup and decommissioning of a large pressurized water reactor (PWR) involved in an accident. The costs and occupational doses for post-accident cleanup and dcommissioning are estimated to be substantially higher than those for decommissioning following the orderly shutdown of a reactor. A major factor in these cost and occupational dose increases is the high radiation environment that exists in the containment building following an accident which restricts worker access and increases the difficulty of performing certain tasks. Other factors which influence accident cleanup and decommissioning costs are requirements for the design and construction of special tools and equipment, increased requirements for regulatory approvals, and special waste management needs. Radiation doses to the public from routine accident cleanup and decommissioning operations are estimated to be below permissible radiation dose levels in unrestricted areas and within the range of annual doses from normal background

  7. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  8. Rocky Flats Cleanup Agreement implementation successes and challenges

    International Nuclear Information System (INIS)

    Shelton, D.C.

    1997-01-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations

  9. Research improvement in Zn-based sorbent for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    X. Bu; Y. Ying; C. Zhang; W. Peng [China Coal Research Institute (CCRI), Beijing (China). Beijing Research Institute of Coal Chemistry

    2005-07-01

    Two Zn-based sorbents, named as L-991 and L-992, used for hot gas desulfurization were developed. The L-992, which was prepared by changing the Zn/Ti ratio and adding a certain proportion of Cu and Mn metal oxide, acquired better performance than L-991. The suitable desulfurisation temperature was 600-700{sup o}C for the L-991 and 600-800{sup o}C for the L-992. The sulfur capacity was about 16 g/100 g and 19-21 g/100 g of L-991 and L-992 respectively. After 17 multi-cycles sulfidation/regeneration tests, the sulfur capacity of the L-991 decreased greatly, while that of the L-992 still remained at 17 g/100 g. Both the sorbents showed orderly crystalline orientation and the particle size did not change. Sulfidation and regeneration tests were done both on lab micro-fixed bed reactor and SMOVEN equipment. During the continuous tests, the H{sub 2}S concentration can be reduced from about 10 g/m{sup 3} to less than 20 mg/m{sup 3}, the H{sub 2}S removal efficiency being {gt} 99%. 14 refs., 9 figs., 2 tabs.

  10. A SYSTEMATIC SEARCH FOR X-RAY CAVITIES IN THE HOT GAS OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Dong Ruobing; Rasmussen, Jesper; Mulchaey, John S.

    2010-01-01

    We have performed a systematic search for X-ray cavities in the hot gas of 51 galaxy groups with Chandra archival data. The cavities are identified based on two methods: subtracting an elliptical β-model fitted to the X-ray surface brightness, and performing unsharp masking. Thirteen groups in the sample (∼25%) are identified as clearly containing cavities, with another 13 systems showing tentative evidence for such structures. We find tight correlations between the radial and tangential radii of the cavities, and between their size and projected distance from the group center, in quantitative agreement with the case for more massive clusters. This suggests that similar physical processes are responsible for cavity evolution and disruption in systems covering a large range in total mass. We see no clear association between the detection of cavities and the current 1.4 GHz radio luminosity of the central brightest group galaxy, but there is a clear tendency for systems with a cool core to be more likely to harbor detectable cavities. To test the efficiency of the adopted cavity detection procedures, we employ a set of mock images designed to mimic typical Chandra data of our sample, and find that the model-fitting approach is generally more reliable than unsharp masking for recovering cavity properties. Finally, we find that the detectability of cavities is strongly influenced by a few factors, particularly the signal-to-noise ratio of the data, and that the real fraction of X-ray groups with prominent cavities could be substantially larger than the 25%-50% suggested by our analysis.

  11. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  12. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  13. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  14. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  15. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed

  16. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  17. Hot spots in Ar and Ne gas puff Z-pinch

    International Nuclear Information System (INIS)

    Krejci, A.; Krousky, E.; Renner, O.

    1989-02-01

    The hot spots in Ar and Ne pinch plasma were investigated. Two pinhole cameras with entrance diameter 13 to 250 μm and flat crystal spectrographs with Si and KAP crystals were used for spatially and spectrally resolved soft X-ray diagnostics. The diameters of Ar (25 to 30 μm) and Ne (40 μm) hot spots were found. From X-ray spectrum of Ar spots the following plasma parameters were determined: T e =1.0 to 1.1 keV and n e =(1.8 to 4.0)x10 27 m -3 . The validity of the Bennett equilibrium for unstable hot spots is discussed. (author). 1 fig., 11 refs

  18. Data report of ROSA/LSTF experiment SB-HL-12. 1% hot leg break LOCA with SG depressurization and gas inflow

    International Nuclear Information System (INIS)

    Takeda, Takeshi

    2016-01-01

    An experiment SB-HL-12 was conducted on February 24, 1998 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-HL-12 simulated a 1% hot leg small-break loss-of-coolant accident in a pressurized water reactor under assumptions of total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). Steam generator (SG) secondary-side depressurization by fully opening the relief valves in both SGs as an accident management (AM) action was initiated immediately after maximum surface temperature of simulated fuel rod reached 600 K. Auxiliary feedwater injection into the secondary-side of both SGs was started immediately after the initiation of AM action. After the onset of AM action due to first core uncovery by core boil-off, the primary pressure decreased following the SG secondary-side pressure, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before loop seal clearing (LSC) induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after the LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after the ACC tanks started to discharge nitrogen gas, which resulted in no actuation of LPI system of ECCS during the experiment. Third core uncovery by core boil-off occurred during the reflux condensation in the SG U-tubes under nitrogen gas inflow. The core power was automatically decreased by the LSTF core protection system when the maximum fuel rod surface temperature exceeded 908 K. The obtained data would be useful to define the conditions for counterpart testing of other integral test facilities to address scaling problems through thermal

  19. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    Stiger, S.G.; Hargis, K.; Graham, M.; Rael, G.

    2009-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  20. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work