WorldWideScience

Sample records for hot-deformed ndfeb magnets

  1. Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: liu.jun@nims.go.jp; Hono, K. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hioki, K.; Hattori, A. [Daido Steel Co. Ltd., Nagoya 457-8545 (Japan)

    2014-05-07

    The microstructural evolution of hot-deformed Nd-Fe-B magnets in each stage of hot-deformation process was studied using transmission electron microscopy and three dimensional atom probe (3DAP). The anisotropic growth of initially isotropic grains in rapidly solidified alloy occurs by annealing without pressing. 3DAP analyses showed a higher concentration of rare-earth elements in the intergranular phase parallel to the flat surface of platelet shaped Nd{sub 2}Fe{sub 14}B grains compared to that in the intergranular phase at the side of platelets.

  2. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  3. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, T., E-mail: akiya.takahiro@nims.go.jp; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Liu, J.; Hono, K. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Hioki, K.; Hattori, A. [Daido Steel Co., LTD, Nagoya 457-8545 (Japan)

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  4. Inducing magnetic anisotropy and optimized microstructure in rapidly solidified Nd-Fe-B based magnets by thermal gradient, magnetic field and hot deformation

    Science.gov (United States)

    Zhao, L. Z.; Li, W.; Wu, X. H.; Hussain, M.; Liu, Z. W.; Zhang, G. Q.; Greneche, J. M.

    2016-10-01

    Direct preparation of Nd-Fe-B alloys by rapid solidification of copper mold casting is a very simple and low cost process for mini-magnets, but these magnets are generally magnetically isotropic. In this work, high coercivity Nd24Co20Fe41B11Al4 rods were produced by injection casting. To induce magnetic anisotropy, temperature gradient, assisted magnetic field, and hot deformation (HD) procedures were employed. As-cast samples showed non-uniform microstructure due to the melt convection. The thermal gradient during solidification led to the formation of radially distributed acicular hard magnetic grains, which gives the magnetic anisotropy. The growth of the oriented grains was confirmed by phase field simulation. A magnetic field up to 1 T applied along the casting direction could not induce significant magnetic anisotropy, but it improved the magnetic properties by reducing the non-uniformity and forming a uniform microstructure. The annealed alloys exhibited high intrinsic coercivity but disappeared anisotropy. HD was demonstrated to be a good approach for inducing magnetic anisotropy and enhanced coercivity by deforming and refining the grains. This work provides an alternative approach for preparing fully dense Nd-rich anisotropic bulk Nd-Fe-B magnets.

  5. Micromagnetic simulation for the magnetization reversal process of Nd-Fe-B hot-deformed nanocrystalline permanent magnets

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We numerically demonstrated the magnetization reversal process inside a hot-deformed nanocrystalline permanent magnet. We performed large-scale micromagnetics simulation based on the Landau–Lifshitz–Gilbert equation with 0.1 billion calculation cells. The simulation model for the hot-deformed nanocrystalline permanent magnet consists of 2622 tabular grains that interact with each other by inter-grain exchange and dipole interactions. When the strength of the external field approached a coercive force, nucleation cores were created at the grain surface. The magnetization reversal was propagated by the inter-grain and dipole interactions. When the grains had overlapping regions parallel to the external field, the magnetization reversal propagated quickly between the grains due to the dipole interaction. In contrast, the motion of the magnetic domain wall was inhibited at interfaces between the grains perpendicular to the external field. Reversal magnetic domains had a pillar-shaped structure that is parallel to the external field. In the perpendicular direction, the reversal magnetic domain expanded gradually because of the inhibition of the domain wall motion.

  6. Modelling of the material flow of Nd-Fe-B magnets under high temperature deformation via finite element simulation method.

    Science.gov (United States)

    Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min

    2017-01-01

    Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood.

  7. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    Science.gov (United States)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  8. Fabrication of Nd-Fe-B exchange-spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Mau Lam [Department of Physics, Pedagogic University of Hanoi No 2, Xuan Hoa, Phuc Yen, Vinh Phuc (Viet Nam); Nguyen Thi Thanh Huyen [University of Industry, Dong Trieu, Quang Ninh (Viet Nam); Do Hung Manh; Vu Hong Ky; Do Khanh Tung; Nguyen Huy Dan [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: dannh@ims.vast.ac.vn

    2009-09-01

    In this report we present our recent results on fabrication of Nd-Fe-B exchange-spring magnets using melt-spinning method. Additive elements were used to improve useful parameters of this kind of hard magnetic materials. Hot pressing technique was applied to increase mass density of the magnets. The compositions and technology routes for fabricating the Nd-Fe-B exchange-spring magnets with maximum energy product (BH){sub max} above 10 MGOe were shown.

  9. ASPECTS REGARDING MECHANICAL PROCESSING OF STEELS FOR MAGNETS, NDFEB BASED

    Directory of Open Access Journals (Sweden)

    MELANIA TĂMAŞ

    2015-05-01

    Full Text Available This paper presents experimental research concerning the behavior on cutting by turning of steels for magnets NdFeB based. In this context, cutting by rough turning of steels magnet neodymium and boron ferrite based were performed. Turning processing with the values of the cutting parameters recommended by European Union and Sandvik Coromant company rules, taking into account the chemical composition of the processed material and cutting tool were performed. The tables have been drawn up with different values of the cutting parameters. By comparing these data it can be concluded that steels for permanent magnets, NdFeB based have acceptable behavior, the process by rough turning. A full assessment of the optimization of the cutting by turning process of steels for permanent magnet, NdFeB base will result from subsequent experimental research that will take into account the wear of cutting tools and quality (roughness of processed surface.

  10. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  11. Metal Injection Molding (MIM of NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Hartwig T.

    2014-07-01

    Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  12. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    Directory of Open Access Journals (Sweden)

    Marek Przybylski

    2016-04-01

    Full Text Available Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  13. The Effect of Nano-TiC Addition on Sintered Nd-Fe-B Permanent Magnets

    DEFF Research Database (Denmark)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong

    2017-01-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets...

  14. Investigation Procedure of Magnetic Performances of NdFeB Permanent Magnets

    DEFF Research Database (Denmark)

    Calin, Marius-Daniel; Helerea, Elena; Ritchie, Ewen

    2011-01-01

    The permanent magnet applications based on carbon steel magnets, hard ferrites and AlNiCo magnets classes are renewed with new classes of advanced magnetic materials based on rare earth elements, the Sm-Co and NdFeB types. Performance increase of the hard magnetic materials and their use...

  15. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  16. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    OpenAIRE

    Saliba-Silva, Adonis Marcelo; Oliveira, Mara Cristina Lopes de; Costa, Isolda

    2005-01-01

    Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of the...

  17. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Frederick E., E-mail: frederick.e.pinkerton@gm.com [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Balogh, Michael P.; Ellison, Nicole [Chemical and Materials Systems Laboratory, General Motors Research and Development Center, Warren, MI 48092 (United States); Foto, Aldo [Element Materials Technology Wixom, Inc (United States); Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P. [Powertrain Materials/Fluids/AMPPD Engineering and Labs, GFL VE/PT Materials Engineering, General Motors LLC, Pontiac, MI 48340 (United States)

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity H{sub ci} of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H{sub 2} gas. Expansion of the NdFeB crystal lattice in both ATF and H{sub 2} identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets. - Highlights: • Injection molded NdFeB magnets age rapidly in automatic transmission fluid (ATF). • Coercivity loss is not due to direct chemical reaction between ATF and the powder. • Chemical reaction with the binder does not play a major role in aging. • Hydrogen dissociates from ATF and diffuses into Nd{sub 2}Fe{sub 14}B, reducing coercivity.

  18. Designing a Virtual laboratory for Simulating to Production of Nanocomposite NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Musa Faruk Çakir

    2014-02-01

    Full Text Available The talent figure for a permanent magnet is the multiplication of the maximum energy (BHmax. Less volume magnet is required for the production of magnet flux density if the BHmax value is higher. Mathematical functions are obtained from the data related to resiudal flux density, magnetic coercitivy, permanent magnet flux product capability, Curie temperature and density which were obtained as a result of the studies on different NdFeB alloys in the laboratory. Besides this, mathematical functions of NdFeB hard magnet’s resiudal flux density are obtained by adding elements. In this study, a virtual laboratory for producing nanocompositedNdFeB magnet has been designed. The virtual laboratory software has been used to simulate NdFeB hard magnets for industrial utilities.

  19. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  20. Obtaining, structural, magnetic and corrosive properties of Nd-Fe-B alloy thin films on glass

    Science.gov (United States)

    Neacsu, Elena Ionela; Constantin, Virgil; Yanushkevish, Kazimir; Galyas, Anatoly; Demidenko, Olga; Calderon-Moreno, Jose; Popescu, Ana-Maria

    2014-09-01

    By "flash" method at the installation of vacuum evaporation the thin Nd-Fe-B layers of 100 nm ≤ d ≤ 1000 nm were obtained on glass support. The structure and microstructure of the thin Nd-Fe-B films was studied by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The study of the specific magnetization temperature dependences of the Nd-Fe-B films on the glass substrate in the 80 ≤ T ≤ 800 K temperature range by ponderomotive method showed that the magnetization of the layer of d ≥ 1000 nm thickness are comparable to those for powder samples. The magnetization of film with d < 100 nm thickness at 100 K does not exceed 85 Å m2 kg-1. In such films the long-range structural order is destroyed. The values of the coercive force and magnetic saturation field of Nd-Fe-B thin layers are determined. The corrosion process of the thin Nd-Fe-B films magnets was studied experimentally in 3.5 wt% NaCl solution. X-ray photoelectron spectroscopy (XPS) analysis showed that the different electrochemical corrosion performance was associated with the ability of the thin films to form a big and continuous Nd2O3 passive film, while the formation of Nd(OH)3 lead to a decrease of the corrosion resistance.

  1. Influence of Demagnetization-Temperature on Magnetic Performance of Recycled Nd-Fe-B Magnets

    DEFF Research Database (Denmark)

    Högberg, Stig; Bendixen, Flemming Buus; Mijatovic, Nenad

    2015-01-01

    Recycling rare earth permanent magnets is becoming an important alternative source of supply of raw materials for neodymium-iron-boron (Nd-Fe-B) permanent magnets. This article documents a recycling case-study in which isotropic binder-free magnet powder is extracted and recycled from hermetically......-sealed rotors. The extraction process is detailed, and the influence of demagnetization-temperature on the magnetic performance of the recycled product is studied and reported on. Both intrinsic coercivities and the squareness factor of the demagnetization curves are observed to decrease...

  2. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...

  3. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    OpenAIRE

    Ling Li; Angelica Tirado; I. C. Nlebedim; Orlando Rios; Brian Post; Vlastimil Kunc; Lowden, R.R.; Edgar Lara-Curzio; Robert Fredette; John Ormerod; Lograsso, Thomas A.; M. Parans Paranthaman

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer...

  4. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  5. Liquid metal extraction of Nd from NdFeB magnet scrap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanchen [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    This research involves using molten magnesium (Mg) to remove neodymium (Nd) from NdFeB magnet scrap by diffusion. The results show that liquid metal extraction of Nd may be a viable and inexpensive method for recovering the expensive rare earth element Nd for use in Mg castings.

  6. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mural, Zorjana, E-mail: zorjana.mural@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Kollo, Lauri [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Xia, Manlong; Bahl, Christian R.H. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Abrahamsen, Asger Bech [Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Bez, Henrique Neves [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Veinthal, Renno [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m{sup 3}. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively. - Highlights: • Improvement of thermal stability of Nd-Fe-B magnets by introducing nano-TiC prior sintering is proposed. • The mechanism relies on nano-TiC particles behaving as grain growth inhibitors between thin RE-rich phase regions. • The concentration of up to 1 wt% of nano-TiC appears to increase coercivity without a significant decrease in remanence. • The maximum working point and the Curie temperature of the developed magnets are 373 K and 623 K respectively.

  7. Production of NdFeB powders by HDDR from sintered magnets; Obtencao de pos de NdFeB por HDDR a partir de imas sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Janasi, S.R.; Rodrigues, D.; Landgraf, F.J.G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Lab. de Metalurgia e Materiais Ceramicos; Silva, B.F.A. da; Takiishi, H [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Campos, M.F. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2010-07-01

    The production of NdFeB powders by the HDDR process from metallic alloys has been widely investigated. Different HD and DR conditions have been used to induce anisotropy and to improve the intrinsic coercivity of the obtained powders. The purpose of this study is to apply the HDDR process in the reprocessing of NdFeB sintered magnet scraps. There were investigated different processing conditions as temperature and time of desorption and recombination (DR). The results of X ray diffraction show the formation of the magnetic phase Nd{sub 2}Fe{sub 14}B in all the investigated conditions. Magnetic measurements by vibrating sample magnetometer indicate that powders with intrinsic coercivity up to 790 kA/m were obtained. (author)

  8. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    Science.gov (United States)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  9. Hydrogen Decrepitation Press-Less Process Recycling of NdFeB sintered magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered...... in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d magnets for d > 100 μm. The coercivity reached Hci = 957 kA/m being 86 % of the original N48M material without addition of rare earth...

  10. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  11. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  12. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339

  13. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  14. Material Flow Analysis of NdFeB magnets for Denmark: A comprehensive waste flow sampling and analysis approach

    DEFF Research Database (Denmark)

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter

    2014-01-01

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key Rare Earth Elements (REEs) i.e. neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets allowing...... of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global level by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products....... Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge....

  15. Hydrogen Decrepitation Press-Less Process recycling of NdFeB sintered magnets

    Science.gov (United States)

    Xia, Manlong; Abrahamsen, Asger B.; Bahl, Christian R. H.; Veluri, Badrinath; Søegaard, Allan I.; Bøjsøe, Poul

    2017-11-01

    A Hydrogen Decrepitation Press-Less Process (HD-PLP) recycling method for recycling of anisotropic NdFeB magnets is demonstrated. The method combines hydrogen decrepitation (HD) disintegration of the initial magnet, powder sieving and the Press-Less Process (PLP), where hydride powder is sintered in a graphite mold. Coercivities up to 534 kA/m were obtained in porous samples based on powder size d 100 μm. The coercivity reached Hci = 957 kA/m being 86% of the original N48M material without addition of rare earth elements.

  16. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  17. Effect of washing process on the magnetic properties of Nd-Fe-B nanoparticles prepared by reduction-diffusion method

    Science.gov (United States)

    Wang, Y.; Ahn, J.; Kim, D.; Ren, W. J.; Liu, W.; Zhang, Z. D.; Choi, C. J.

    2017-10-01

    Nd-Fe-B nanoparticles with a particle size below 50 nm and excellent magnetic properties were obtained via a novel route which makes use of both spray drying and reduction-diffusion processes. Uniform Nd-Fe-B particles were formed by the optimization of Ca amount as a reducing agent and additional washing by milling in ethanol media. Especially, we implemented a two-step washing process which contributed to the excellent magnetic properties with high remanence and coercivity. After the removal of CaO by novel washing process, the maximum energy product (BH)max of the particles showed 22.1 MGOe. This value is superior to those reported in reduction-diffusion process. We used Henkel plot to assume the mechanism of magnetic interactions of the Nd-Fe-B nanoparticles.

  18. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  19. An environmentally friendly electro-oxidative approach to recover valuable elements from NdFeB magnet waste

    NARCIS (Netherlands)

    Venkatesan, P.; Sun, Z.; Sietsma, J.; Yang, Y.

    2018-01-01

    In this manuscript, we demonstrate a room temperature electrochemical process for efficiently recycling NdFeB magnet waste. First, the magnet waste was completely leached with HCl and then, in-situ electrochemical oxidation was performed to selectively oxidize Fe(II) in the leachate to Fe(III).

  20. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap : A Critical Review

    NARCIS (Netherlands)

    Yang, Y.; Walton, A; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O; Buchert, M; Steenari, B-M,; Van Gerven, T; Jones, PT; Binnemans, K

    2017-01-01

    NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid

  1. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    Science.gov (United States)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  2. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Golovnia, O.A., E-mail: golovnya@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Protasov, A.V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation)

    2017-04-15

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 µm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 – 1.2 T to the filling density 2.6 – 3.2×10{sup 3} kg/m{sup 3}. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×10{sup 3} kg/m{sup 3}, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with B{sub r} ≥1.34 T, H{sub c} ≥950 kA/m, (BH){sub max} ≥340 kJ/m{sup 3}, and the degree of alignment exceeding 96% were produced. - Highlights: • The pressless process (PLP) in magnet production is studied. • A new method of the loading of powder in an applied DC magnetic field is suggested. • The method allows achieving higher degree of alignment in moderate magnetic field. • Density of sintered magnets is studied experimentally and via DEM simulation. • Low density is caused by the formation of magnetostatic chains of powder particles.

  3. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    DEFF Research Database (Denmark)

    Xia, Manlong; Abrahamsen, Asger Bech; Bahl, Christian

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon...... and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 104 ppm and 4·104 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting...

  4. Corrosion Resistance Analysis of Sintered NdFeB Magnets Using Ultrasonic-Aided EDM Method

    Science.gov (United States)

    Li, L.; Wei, X. T.; Li, Z. Y.; Cheng, X.

    2015-01-01

    Sintered neodymium-iron-boron (NdFeB) permanent magnets are widely used in many fields because of their excellent magnetic property. However, their poor corrosion resistance has been cited as a potential problem that limits their extensive application. This paper presents an experimental investigation into the improvement of surface corrosion resistance with the ultrasonic-aided electrical discharge machining (U-EDM) method. A scanning electron microscope was used to analyze the surface morphology of recast layers formed through the EDM and U-EDM processes. The chemical structure and elements of these recast layers were characterized using x-ray diffraction and energy dispersive spectroscopy. Corrosion resistance was also studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion tests in 0.5 mol/L H2SO4 solution. Experimental results show that an amorphous structure was formed in the recast layer during the EDM and U-EDM processes and that this structure could improve the corrosion resistance of sintered NdFeB magnets. Moreover, the corrosion resistance of U-EDM-treated surface was better than that of the EDM-treated surface.

  5. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  6. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  7. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  8. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Ching; Chang, Fan-Yu [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Tu, Shu-Ju [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Chen, Jyh-Ping [Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Ma, Yunn-Hwa, E-mail: yhma@mail.cgu.edu.tw [Department of Physiology and Pharmacology & Healthy Aging Research Center, Guishan, Taoyuan City 33302, Taiwan, ROC (China); Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan City 33305, Taiwan, ROC (China)

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNP{sub cell}) appeared to be magnetic field- and concentration-dependent. In H-field, MNP{sub cell} reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNP{sub cell}, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNP{sub cell} in the L-field may reach as high as 80% of that in H-field during 1–6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNP{sub cell} analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo. - Graphical abstract: Averaged MNP uptake by glioma cells in the low and non-uniformed magnetic field reached as high as 80% of that in uniformed magnetic field, which is probably due to both heterogeneous distributions of MNPs in the non-uniformed magnetic field and high capacity of the MNP uptake by these cells. - Highlights:

  9. Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity

    Directory of Open Access Journals (Sweden)

    Cui X.G.

    2009-01-01

    Full Text Available To decrease the temperature coefficients of sintered Nd-Fe-B magnets, the influencing factors on temperature coefficients, especially the reversible temperature coefficient β of intrinsic coercivity Hcj, were analyzed. The results showed that the absolute value of β decreased with increasing Hcj and also the ratio of microstructure parameter c to Neff, indicating that the increase of magnetocrystalline anisotropy field HA and c/Neff can effectively decrease the absolute value of β. On the basis of this analysis, a sintered Nd-Fe-B magnet with a low temperature coefficient of Hcj was fabricated through composition design, and the value of β was only -0.385%/ºC in the temperature interval of 20-150ºC.

  10. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  11. EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Constantin D. STĂNESCU

    2013-05-01

    Full Text Available In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T.

  12. Effects of Mg nanopowders intergranular addition on the magnetic properties and corrosion resistance of sintered Nd-Fe-B

    Science.gov (United States)

    Li, Zhi-jie; Wang, Xiao-er; Li, Jia-yang; Li, Jia; Wang, Hong-zhi

    2017-11-01

    In order to improve the magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets, the (PrNd)29.9Dy0.1B1Co1Cu0.15Febal (wt%) powders were mixed with Mg nanopowders, as grain boundary modifiers. For Nd-Fe-B magnets with 0.1-0.4 wt% Mg addition, the result showed that addition amount of 0.1 wt% Mg, Hcj reaches the maximum value of 999.1 kA/m, Br reaches 1.436T, (BH)max reaches 396.9 kJ/m3 and magnet density is 7.42 g/cm3, which are related to the microstructural modification of grain boundaries and the magnet density. Effects of Mg addition on corrosion behavior in sulphuric acid and sodium chloride solution were researched by electrochemical workstation. With increase of Mg addition level, the magnet turns to have a higher corrosion potential and lower corrosion current density, the corrosion poverty is improved. However, temperature coefficient remained nearly unchanged with Mg addition.

  13. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  14. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  15. Fabrication of highly dense isotropic Nd-Fe-B bonded magnets via extrusion-based additive manufacturing

    OpenAIRE

    Li, Ling; Jones, Kodey; Sales, Brian; Pries, Jason L.; I. C. Nlebedim; Jin, Ke; Bei, Hongbin; Post, Brian; Kesler, Michael; Rios, Orlando; Kunc, Vlastimil; Fredette, Robert; Ormerod, John; Williams, Aaron; Lograsso, Thomas A.

    2017-01-01

    Isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts for the first time. The density of the printed magnet is 5.15 g/cm3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 Tesla), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m3). The as-printed magnets are then coated wit...

  16. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  17. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    Science.gov (United States)

    Li, Ling; Tirado, Angelica; Conner, B. S.; Chi, Miaofang; Elliott, Amy M.; Rios, Orlando; Zhou, Haidong; Paranthaman, M. Parans

    2017-09-01

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd3Cu0.25Co0.75 (NdCuCo) and Pr3Cu0.25Co0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity Hci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  18. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  19. Effect Of DyMn Alloy-Powder Addition On Microstructure And Magnetic Properties Of NdFeB Sintered Magnets

    Directory of Open Access Journals (Sweden)

    Lee M.-W.

    2015-06-01

    Full Text Available Micostructural change and corresponding effect on coercivity of a NdFeB sintered magnet mixed with small amount of DyMn powder was investigated. In the sintered magnet mixed with the DyMn alloy-powder Dy-rich shell was formed at outer layer of the main grains, while Mn was mostly concentrated at Nd-rich triple junction phase (TJP, lowering melting temperature of the Nd-rich phase that eventually improved the microstructural characteristics of the gain boundary phase. The coercivity of a magnet increased more than 3.5 kOe by the mixing of the DyMn alloy-powder.

  20. A new method of assembling large magnetic blocks from permanent NdFeB magnets

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2007-01-01

    Roč. 4, č. 3 (2007), 75-83 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnet assembly * magnet ic circuits * magnet ic separation Subject RIV: BM - Solid Matter Physics ; Magnet ism www.irsm.cas.cz

  1. Nanocomposite permanent magnetic materials Nd-Fe-B type: The influence of nanocomposite on magnetic properties

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2005-01-01

    Full Text Available The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others – the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.

  2. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Y. Kataoka

    2015-11-01

    Full Text Available The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn2O3-type Nd2O3. The estimated recovery-ratio of Nd reaches to 97%.

  3. Magnetic Behavior of Sintered NdFeB Magnets on a Long-Term Timescale

    Directory of Open Access Journals (Sweden)

    Minna Haavisto

    2014-01-01

    Full Text Available Stable polarization of permanent magnets over the lifetime of the application is an important aspect in electrical machine design. Specification of the long-term stability of magnet material is difficult, since knowledge of the phenomenon is incomplete. To be able to optimize magnet material selection, the long-term magnetic behavior of the material must also be understood. This study shows that material with a very square JH curve is stable until a certain critical operating temperature is reached. Major losses are detected as the critical temperature is exceeded. Material with a rounder JH curve does not show a well-defined critical temperature, but increasing losses over a large temperature range. The critical temperature of a material is also dependent on the field conditions. Results differ whether the tests are performed in an open or closed magnetic circuit. In open-circuit tests, the opposing field is not homogeneously distributed throughout the volume of the magnet and thus the long-term behavior is different than that in closed-circuit conditions. Open-circuit tests seem to give bigger losses than closed-circuit tests in cases where the permeance coefficient of the open-circuit sample is considered to be the average permeance coefficient, calculated according to the dimensions of the magnet.

  4. Magnetic properties of (misch metal, Nd-Fe-B melt-spun magnets

    Directory of Open Access Journals (Sweden)

    R. Li

    2017-05-01

    Full Text Available The effect of replacing Nd with misch metal (MM on magnetic properties and thermal stability has been investigated on melt-spun (Nd1-xMMx13.5Fe79.5B7 ribbons by varying x from 0 to 1. All of the alloys studied crystallize in the tetragonal 2:14:1 structure with single hard magnetic phase. Curie temperature (Tc, coercivity (Hcj, remanence magnetization (Br and maximum energy product ((BHmax all decrease with MM content. The melt-spun MM13.5Fe79.5B ribbons with high ratio of La and Ce exhibit high magnetic properties of Hcj = 8.2 kOe and (BHmax= 10.3 MGOe at room temperature. MM substitution also significantly strengthens the temperature stability of coercivity. The coercivities of the samples with x = 0.2 and even 0.4 exhibit large values close to that of Nd13.5Fe79.5B7 ribbons above 400 K.

  5. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  6. Solidification process in melt spun Nd-Fe-B type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changping [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A generalized solidification model has been developed based on a systematic investigation on the microstructure of melt spun Nd-Fe-B alloys. Melt spinning was conducted on initial stoichiometric and TiC added Nd2Fe14B (2-14-1) compositions to produce under, optimally and over quenched microstructures. Microstructural characterization was carried out by TEM, SEM, Optical microscopy, XRD, DTA, VSM and DC SQUID techniques. By taking the dendritic breakup during recalescence into consideration, this generalized model has successfully explained the solidification process of the melt spun Nd-Fe-B alloys. Challenging the conventional homogeneous nucleation models, the new model explains the fine and uniform equiaxed 2-14-1 microstructure in optimally quenched ribbons as a result of the breakup of the 2-14-1 dendrites which nucleate heterogeneously from the wheel surface and grow dendritically across the ribbon thickness due to the recalescence. Besides this dendritic breakup feature, the under quenched microstructure is further featured with another growth front starting with the primary solidification of Fe phase near the free side, which results in a coarsely grained microstructure with Fe dendritic inclusions and overall variation in microstructure across the ribbon thickness. In addition, because a epitaxy exists between the Fe phase and the 2-14-1, the so-formed coarse 2-14-1 grains may be textured. C-axis texturing was observed in under quenched ribbons. As a constraint to solidification models in this system, the cause and characteristics of this phenomenon has been studied in detail to test the authors proposed model, and agreement has been found. An extension has also been made to understand the solidification process when TiC is added, which suggests that Ti and C slow down the growth front of both Fe and 2-14-1 phase.

  7. The use of polytetrafluoroethylene in the production of high-density bonded Nd-Fe-B magnets

    Science.gov (United States)

    Tattam, C.; Williams, A. J.; Hay, J. N.; Harris, I. R.; Tedstone, S. F.; Ashraf, M. M.

    1994-11-01

    Rotary forging has been used to produce high-density bonded magnets from rapidly quenched Nd-Fe-B based ribbons (MQP-D, of nominal composition 28%Nd-56%Fe-15%Co-1%B (wt%)). Polytetrafluoroehtylene (PTFE), when used as an additive (5%-15% by volume) has been found to act as an effective binder and greatly enhances the forgeability of the MQI, allowing higher forging pressures to be used. Densities of up to 98% of the fully dense composite have been achieved. The forging process can be undertaken in air at room temperature. Magnetically, the compacts are comparable to conventional epoxy resin bonded MQI, with energy products of up to 84 kJ/cu m. Equivalent volume fractions of MQI (approximately 83.5 vol %) have been achieved in the compacts with increased PTFE content due to the displacement of pores by the PTFE. The effect of PTFE content on the mechanical strength of the compacts has been assessed and it has been found that strength increases with increasing PTFE content, consistent with the reduction in porosity.

  8. The Effect of Grinding and Roasting Conditions on the Selective Leaching of Nd and Dy from NdFeB Magnet Scraps

    Directory of Open Access Journals (Sweden)

    Ho-Sung Yoon

    2015-07-01

    Full Text Available The pretreatment processes consisting of grinding followed by roasting were investigated to improve the selective leaching of Nd and Dy from neodymium-iron-boron (NdFeB magnet scraps. The peaks of Nd(OH3 and Fe were observed in XRD results after grinding with NaOH as the amount of water addition increased to 5 cm3. These results indicate that the components of Nd and Fe in NdFeB magnet could be changed successfully into Nd(OH3 and Fe, respectively. In the roasting tests using the ground product, with increasing roasting temperature to 500 °C, the peaks of Nd(OH3 and Fe disappeared while those of Nd2O3 and Fe2O3 were shown. The peaks of NdFeO3 in the sample roasted at 600 °C were observed in the XRD pattern. Consequently, 94.2%, 93.1%, 1.0% of Nd, Dy, Fe were leached at 400 rpm and 90 °C in 1 kmol·m−3 acetic acid solution with 1% pulp density using a sample prepared under the following conditions: 15 in stoichiometric molar ratio of NaOH:Nd, 550 rpm in rotational grinding speed, 5 cm3 in water addition, 30 min in grinding time, 400 °C and 2 h in roasting temperature and time. The results indicate that the selective leaching of Nd and Dy from NdFeB magnet could be achieved successfully by grinding and then roasting treatments.

  9. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.

    Science.gov (United States)

    Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar

    2018-01-31

    Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of effect of surface treatment on corrosion resistance of Nd-Fe-B magnets; Avaliacao do efeito de tratamentos superficiais na resistencia a corrosao de magnetos de Nd-Fe-B

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Emerson Alves

    2009-07-01

    Nd-Fe-B magnets produced by powder metallurgy are highly susceptible to corrosion due to their complex microstructure and intrinsic porosity due to their fabrication process. Moreover, these magnets have excellent magnetic properties and find many applications. In the nuclear area, permanent magnets based on rare earth transition-iron-boron (Ne-Fe-B) are used in the manufacture of magnetic media (magnetic levitation) for ultra-centrifuges used for isotopic enrichment of uranium employed in nuclear reactors. In dentistry these types of magnets are used to fix total and partial prostheses on implants; in orthodontics to correct dental malocclusion and make moves; in buco-maxillo-facial surgery for setting facial prostheses of large defects of the face. In electronic equipment, they are used in scales, locks, electric motors and particularly in the manufacturing of hard drives of computers. The objective of this study is to evaluate the corrosion resistance of the magnet tested and surface treatments that could replace chromating that generates toxic residues and present high cost of processing waste with treatments that are environmentally friendly. The evaluation of the corrosion resistance was carried out through the analysis potentiodynamic polarization curves, electrochemical impedance spectroscopy, monitoring of corrosion potential as a function of test time and scanning electron microscopy to try to correlate the magnet microstructure with its corrosion resistance. The results show that these magnets are highly susceptible to corrosion that occurs preferentially in the Nd-rich phase, located in the boundaries of the magnetic matrix phase ({psi}). Treatment with silane, cerium, sam, Cr 6{sup +}, tricationic phosphate followed by bath of chromium trioxide and in NaH{sup 2}PO{sup 4} solution for 24 hours followed by bath of zinc sulphate did not improve the corrosion resistance of the magnet. Among the treatments used, immersion in NaH{sup 2}PO{sup 4} solution for

  11. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    NARCIS (Netherlands)

    Li, L; Tirado, A.; Nlebedim, I.C.; Rios, O.; Post, B.; Kunc, V.; Lowden, R.R.; Lara-Curzio, E.; Fredette, R.; Ormerod, J.; Lograsso, T.A.; Paranthaman, M.P.

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing

  12. Corrosion Behaviour of a Silane Protective Coating for NdFeB Magnets in Dentistry

    Directory of Open Access Journals (Sweden)

    Luigi Calabrese

    2015-01-01

    Full Text Available The corrosion behavior of coated and uncoated Ni/Cu/Ni rare earth magnets was assessed at increasing steps with a multilayering silanization procedure. Magnets’ durability was analyzed in Fusayama synthetic saliva solution in order to evaluate their application in dental field. Corrosion performance was evaluated by using polarization and electrochemical impedance spectroscopy in synthetic saliva solution up to 72 hours of continuous immersion. The results show that the addition of silane layers significantly improved anticorrosion properties. The coating and aging effects, in synthetic saliva solution, on magnetic field were evaluated by means of cyclic force-displacement curves.

  13. Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2013-01-01

    Full Text Available In this study the SPS method was applied for low RE content (8,5% at. and high RE content (13,5 % at. MQ powders. The powders were sintered in a wide range of temperature, for 5 min., under pressure of 35 MPa. The low RE content grade, densified reluctantly and gained the density close to the theoretical value only for 850 °C. The coercivity decreased gradually with increasing sintering temperature. On the other hand, the densification of the higher RE content grade powder occurred much easier and the coercivity, close to the theoretical value, was achieved already at 650 °C. The coercivity of this material also decreased with increasing sintering temperature. Microstructural studies revealed that the SPS sintering process leads to partial decomposition of the Nd2Fe14B phase. The proportion of the RE-rich and iron phases increases parallel to the increasing sintering temperature. On the basis of the current results one can conclude that fabrication of high density MQ powders based magnets by the SPS method is possible, however the powders having higher RE content should be used for this purpose and the sintering temperature as low as possible, related to density, should be kept.

  14. Transmission electron microscopy study of nanostructured Nd-Fe-B hard magnetic materials

    CERN Document Server

    Marashi, S P H

    2001-01-01

    route. Inferior magnetic properties especially for sub j H sub c and (BH) sub m sub a sub x , were observed for over-quenched and annealed alloys compared with those prepared by directly quenching. The Ga addition did however result in some improvement in sub j H sub c and (BH) sub m sub a sub x , especially for the directly quenched alloy containing 1.5 at.% Ga. The microstructure of ribbon samples were studied extensively by TEM and, in addition to normal polygonal Nd sub 2 Fe sub 1 sub 4 B grains, other more unusual morphologies such as spherical and plate like grains, were found in a number of samples. Various grain size distributions were also observed. Texture and the orientation relationship between alpha-Fe precipitates and Nd sub 2 Fe sub 1 sub 4 B matrix were studied in the near stoichiometric sample containing 3 at.% Ga, melt spun at low roll speeds, and an attempt was made to identify additional phases observed in this sample. Some dislocation-type features found in some samples were also studied....

  15. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bin; Sun, Aizhi, E-mail: sunaizhi@126.com; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-15

    This paper presents effects of surface modification of Nd–Fe–B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd–Fe–B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd–Fe–B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd–Fe–B magnets prepared at room temperature are much higher than that of non-parylene Nd–Fe–B magnets. (BH)max, DOA and actual density of parylene Nd–Fe–B magnets (70 kJ/m{sup 3}, 0.342, 5.82 g/cm{sup 3}) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd‐Fe‐B magnets prepared at 140 °C (59 kJ/m{sup 3}, 0327, 5.70 g/cm{sup 3}) and room temperature (55 kJ/m{sup 3}, 0.265, 5.40 g/cm{sup 3}), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders’ sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd–Fe–B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd–Fe–B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd–Fe–B powders. - Highlights: • Parylene Nd–Fe–B magnets prepared at room temperature show higher (BH)max and DOA. • Actual density of parylene Nd–Fe–B magnet is improved greatly. • Problems such as powders’ sticking wall, mould damage and so on are solved. • Parylene NdFeB magnets have better corrosion resistance. • Low friction cofficient of

  16. Effect of hydrogenation disproportionation conditions on magnetic anisotropy in Nd-Fe-B powder prepared by dynamic hydrogenation disproportionation desorption recombination

    Directory of Open Access Journals (Sweden)

    Masao Yamazaki

    2017-05-01

    Full Text Available Various anisotropic Nd-Fe-B magnetic powders were prepared by the dynamic hydrogenation disproportionation desorption recombination (d-HDDR treatment with different hydrogenation disproportionation (HD times (tHD. The resulting magnetic properties and microstructural changes were investigated. The magnetic anisotropy was decreased with increasing tHD. In the d-HDDR powders with higher magnetic anisotropy, fine (200–600 nm and coarse (600–1200 nm Nd2Fe14B grains were observed. The coarse Nd2Fe14B grains showed highly crystallographic alignment of the c-axis than fine Nd2Fe14B grains. In the highly anisotropic Nd2Fe14B d-HDDR powder, a large area fraction of lamellar-like structures consisting of NdH2 and α-Fe were observed after HD treatment. Furthermore, the mean diameter of the lamellar-like regions, where lamellar-like structures orientate to the same direction in the HD-treated alloys was close to that of coarse Nd2Fe14B grains after d-HDDR treatment. Thus, the lamellar-like regions were converted into the crystallographically aligned coarse Nd2Fe14B grains during desorption recombination treatment, and magnetic anisotropy is closely related to the volume fraction of lamellar-like regions observed after HD treatment.

  17. Effect of Titanium Substitution on Magnetic Properties and Microstructure of Nanocrystalline Monophase Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Wang Cong

    2012-01-01

    Full Text Available Nd12.3Fe81.7−xTixB6.0  (x=0.5–3.0 ribbons have been prepared by rapid quenching and subsequent annealing treatment. Effect of Ti substitution and annealing treatment on the microstructure, magnetic properties, and crystallization behavior of the ribbons was systematically investigated by the methods of differential scanning calorimeter (DSC, X-ray diffraction (XRD, transmission electron microscopy (TEM, and vibrating sample magnetometer (VSM. It is found that Ti addition may increase the crystallization temperature and stabilize the amorphous phase. Ti element inhibits the grain growth during crystallization process and finally refines the microstructure. The exchange coupling interactions and magnetic properties of the ribbons increase with increasing x from 0.5 to 1 and then decrease with further increasing x≥1.5. Optimum magnetic properties with (BHmax⁡=151.6 kJ/m3, Hci=809.2 kA/m, Jr=1.02 T are achieved in the Nd12.3Fe80.7Ti1B6.0 ribbons annealed at 600°C for 10 min.

  18. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Science.gov (United States)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  19. W-Cu composites subjected to heavy hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong [Harbin Institute of Technology-Weihai (China). School of Materials Science and Engineering

    2017-04-15

    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  20. Microstructure of Hot-Deformed Cu-3Ti Alloy

    Directory of Open Access Journals (Sweden)

    Szkliniarz A.

    2016-03-01

    Full Text Available In the paper, results of investigations regarding temperature and strain rate effects on hot-deformed Cu-3Ti alloy microstructure are presented. Evaluation of the alloy microstructure was performed with the use of a Gleeble HDS-V40 thermal-mechanical simulator on samples subjected to uniaxial hot compression within 700 to 900ºC and at the strain rate of 0.1, 1.0 or 10.0 s-1 until 70% (1.2 strain. It was found that within the analyzed temperature and strain rate ranges, the alloy deformation led to partial or complete recrystallization of its structure and to multiple refinement of the initial grains. The recrystallization level and the average diameter of recrystallized grains increase with growing temperature and strain rate. It was shown that entirely recrystallized, fine-grained alloy structure could be obtained following deformation at the strain rate of min 10.0 s-1 and the temperature of 800°C or higher.

  1. EBSD study of a hot deformed austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, H., E-mail: h-m@gmx.com [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Calvillo, P.R. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Microstructural characterization of an austenitic stainless steel by EBSD. Black-Right-Pointing-Pointer The role of twins in the nucleation and growth of dynamic recrystallization. Black-Right-Pointing-Pointer Grain refinement through the discontinuous dynamic recrystallization. Black-Right-Pointing-Pointer Determination of recrystallized fraction using the grain average misorientation. Black-Right-Pointing-Pointer Relationship between recrystallization and the frequency of high angle boundaries. - Abstract: The microstructural evolution of a 304 H austenitic stainless steel subjected to hot compression was studied by the electron backscattered diffraction (EBSD) technique. Detailed data about the boundaries, coincidence site lattice (CSL) relationships and grain size were acquired from the orientation imaging microscopy (OIM) maps. It was found that twins play an important role in the nucleation and growth of dynamic recrystallization (DRX) during hot deformation. Moreover, the conventional discontinuous DRX (DDRX) was found to be in charge of grain refinement reached under the testing conditions studied. Furthermore, the recrystallized fraction (X) was determined from the grain average misorientation (GAM) distribution based on the threshold value of 1.55 Degree-Sign . The frequency of high angle boundaries showed a direct relationship with X. A time exponent of 1.11 was determined from Avrami analysis, which was related to the observed single-peak behavior in the stress-strain flow curves.

  2. Experimental Investigation and Thermodynamic Modeling of the B2O3-FeO-Fe2O3-Nd2O3 System for Recycling of NdFeB Magnet Scrap

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tranell, Gabriella; Jung, In-Ho

    2017-02-01

    NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.

  3. Modeling of Microstructure Development during Hot Deformation and Subsequent Annealing of Precipitates Containing AA6016

    NARCIS (Netherlands)

    Jiao, F.; Mohles, V.; Miroux, A.G.; Bollmann, C.

    2014-01-01

    Microstructure and microchemistry evolution during hot deformation and subsequent annealing of a commercial Al-Mg-Si alloy were experimentally investigated using electron backscatter diffraction (EBSD) and SEM. Meanwhile, a through-process model framework consisting of the deformation model

  4. Specification Requirement for Thermal Stability of Sintered NdFeB Materials for Electrical Machines

    Institute of Scientific and Technical Information of China (English)

    Lin Yan; Jiang Daiwei; Chen Lixiang; Chen Hailing; Bi Haitao; Tang Renyuan

    2004-01-01

    Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials for electrical machines were measured and analyzed.These materials are produced by ten representative manufactories in China.Combined with the analysis results, the paper points out that the magnetic properties of sintered NdFeB materials for electrical machines should meet not only the specific values in standards, such as Br, (BH)max ,HcJ ,but also the requirement of temperature coefficients a (Br) , a (HcJ).

  5. Overview on the permanent magnets technology of rare earth based on Nd-Fe-B; Panorama general sobre tecnologia de imanes permanentes de tierras raras a base de Nd-Fe-B

    Energy Technology Data Exchange (ETDEWEB)

    Rosales Vazquez, Maria Ines [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this paper the technological development in the area of permanent magnetic materials, is shown, from the 1930`s when the first aluminum-nickel-cobalt (Al-Ni-Co) magnets appeared. As a result of the continuous worldwide research in this field, it was made known, during the 1980`s decade of a new type of magnets based on Neodymium (Nd). In accordance with the outstanding magnetic properties of these magnets, at the Instituto de Investigaciones Electricas (IIE), their development was initiated, focussed on the stages and parameters definition of their manufacturing process. Up to now, the research has been oriented to the preparation of magnets of the isotropic agglutinated type and the manufacturing process encompasses the following stages: a) Alloy preparation; b) Microcrystals obtainment; c) Magnet preparation. The preliminary results that have been obtained in the magnetic characterization show that the quality of the prepared magnets is comparable to the quality of the imported magnets and/or to the ones other research groups report. [Espanol] En este trabajo se muestra el desarrollo tecnologico del area de materiales magneticos permanentes a partir de los anos treinta en que surgieron los primeros imanes de aluminio-niquel-cobalto (Al-Ni-Co). Como resultado de la constante investigacion a nivel mundial en ese campo, durante el decenio de los ochenta se informo en torno a un nuevo tipo de imanes a base de neodimio (Nd). Atendiendo a las propiedades magneticas sobresalientes de estos imanes, en el Instituto de Investigaciones Electricas (IIE), se inicio el desarrollo de los mismos, enfocandolo a la definicion de las etapas y parametros del proceso de fabricacion. Hasta ahora, la investigacion se ha orientado a la preparacion de imanes de tipo isotropico aglutinado y el proceso de fabricacion comprende las etapas: a) preparacion de la aleacion; b) obtencion de microcristales, y c) preparacion de los imanes. Los resultados preliminares que se han obtenido en la

  6. Electrodeposition and Properties of Copper Layer on NdFeB Device

    Directory of Open Access Journals (Sweden)

    LI Yue

    2017-06-01

    Full Text Available To decrease the impact of the regular Ni/Cu/Ni coating on the magnetic performance of sintered NdFeB device, alkaline system of HEDP complexing agent was applied to directly electro-deposit copper layer on NdFeB matrix, then nickel layer was electrodeposited on the copper layer and Cu/Ni coating was finally obtained to replace the regular Ni/Cu/Ni coating. The influence of concentration of HEDP complexing agent on deposition course was tested by electrochemical testing; morphology of copper layer was characterized by SEM, XRD and TEM; the binding force of copper layer and the thermal reduction of magnetic of NdFeB caused by electrodeposited coating were respectively explored through the thermal cycle test and thermal demagnetization test. The results show that the concentration of HEDP has great impact on the deposition overpotential of copper. In the initial electrodepositing stage, copper particles precipitate at the grain boundaries of NdFeB magnets with a preferred (111 orientation. The copper layer is compact and has enough binding force with the NdFeB matrix to meet the requirements in SJ 1282-1977. Furthermore, the thermal demagnetization loss rate of the sintered NdFeB with the protection of Cu/Ni coating is significantly less than that with the protection of Ni/Cu/Ni coating.

  7. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    Science.gov (United States)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  8. MRT letter: In situ observation method for microstructural changes of steel during hot deformation.

    Science.gov (United States)

    Yogo, Yasuhiro; Takeuchi, Hirohisa; Tanaka, Kouji; Iwata, Noritoshi; Nakanishi, Koukichi; Ishikawa, Takashi

    2009-12-01

    We report on the result of an in situ method for observing microstructural changes during hot deformation. The observation of microstructural changes of steel at 1,473 K under tensile strain is demonstrated using the reported method. The development of deformed structures and the formation of a new grain boundary, which subsequently moved with increased strain, were clearly observed. The effectiveness of this method was confirmed by the results of several examples.

  9. Simulation of Flow Stress Characteristic During Two-stage Hot Deformation Process in AZ31B Magnesium Alloy

    OpenAIRE

    Deng, Xiaohu; Hu, Xiaodong; Zhao, Hongyang; Ju, Dongying

    2017-01-01

    A 2-D CA model has been developed to simulate two-stage hot deformation processing of magnesium (Mg) alloy. Based on the fact that Mg has an HCP crystal structure with six-fold symmetry, the model employs hexagonal CA lattice. The physically-based model has integrated the effects of individual metallurgical phenomena related with the hot deformation, including dynamic recrystallization (DRX), static recovery, static recrystallization (SRX), meta-dynamic recrystallization (MDRX) and grain grow...

  10. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    OpenAIRE

    Yang, Zhi-Qiang; Liu, Zheng-Dong; HE Xi-kou; Liu, Ning

    2017-01-01

    The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak...

  11. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  12. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation.

    Science.gov (United States)

    Zhang, Wenfeng; Su, Qingyong; Xu, Mi; Yan, Wei

    2015-09-01

    The stress relaxation curves for three different hot deformation processes in the temperature range of 750-1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015) [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  13. Methods of assembling large magnetic blocks from NdFeB magnets with a high value of (BH)max and their influence on the magnetic induction reached in an air gap of magnetic circuit

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2008-01-01

    Roč. 44, č. 4 (2008), s. 485-491 ISSN 0018-9464 Institutional research plan: CEZ:AV0Z30460519 Keywords : assembly * demagnetization * magnet ic circuits Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.129, year: 2008

  14. Hot deformation behavior of 6061 Al-SiC{sub p} composites synthesised by casting route

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, J.; Surappa, M.K. [Indian Institute of Science, Bangalore (India). Dept. of Metallurgy

    1993-12-31

    The constitutive flow behavior of 6061 Al-SiC particle composite has been studied at temperatures varying from 300{degree}C to 550{degree}C as a function of strain and strain rate in the range of 0.001 to 1.0 s{sup {minus}1}. Limited strain hardening is observed at very low strain, but steady-state flow is found to be the main feature of hot deformation. The stress exponent varies from 9.09 to 4.34 with increasing temperature, which is as high as twice the stress exponent of base alloy in the same temperature range. The apparent activation energy for hot deformation has been calculated and compared to that computed from creep studies reported in the literature. The value is as high as three times the activation energy of self diffusion in aluminum. 6061 Al-SiC particle composite did not show any transition in mechanical behavior, the characteristic which had been observed in many two phase alloys including short fiber and whisker reinforced composites. This has been attributed to faster stress relaxation in particle composites.

  15. Dynamic recrystallization of a biomedical Co–Cr–W-based alloy under hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Kenta, E-mail: k_yamanaka@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Mori, Manami [Department of Materials and Environmental Engineering, Sendai National College of Technology, 48 Nodayama, Medeshima-Shiote, Natori 981-1239 (Japan); Chiba, Akihiko [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-13

    Grain refinement in Ni-free biomedical alloy Co–28Cr–9W–1Si–0.05C (mass%) under hot deformation was studied. Hot compression tests were performed at deformation temperatures ranging from 1323 to 1473 K at strain rates of 10{sup −3}–10 s{sup −1}. The microstructures, which were subjected to true strains of up to 0.92 (60% in compression), were characterized using electron backscatter diffraction analysis and transmission electron microscopy. Dynamic recrystallization (DRX) was found to occur during hot deformation. The grain size (d) decreased considerably, from the initial 60 μm–1.4 μm, with an increase in the value of the Zener-Hollomon (Z) parameter. However, because of the static recrystallization that occurred after deformation, grains coarser than those predicted from the d–Z relationship for low strain rates were formed when the alloy specimens were deformed at higher strain rates. The critical strain rates corresponding to this deviation were around 10{sup −2}–0.1 s{sup −1}, depending on the deformation conditions. The nucleation of DRX grains resulted from the bulging of the grain boundaries, and the evolution of DRX grains was limited in the vicinities of grain boundaries. The stacking fault energy of the alloy investigated, which was lower than that of conventional alloys, might be responsible for the complete replacement of the microstructure of the alloy, which occurred owing to an increase in the degree of DRX.

  16. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.

    Science.gov (United States)

    Sprecher, Benjamin; Xiao, Yanping; Walton, Allan; Speight, John; Harris, Rex; Kleijn, Rene; Visser, Geert; Kramer, Gert Jan

    2014-04-01

    Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).

  17. Modeling Material Flow Behavior during Hot Deformation Based on Metamodeling Methods

    Directory of Open Access Journals (Sweden)

    Gang Xiao

    2015-01-01

    Full Text Available Modeling material flow behavior is an essential step to design and optimize the forming process. In this context, four popular metamodel types Kriging, radial basis function, multivariate polynomial, and artificial neural network are investigated as potential methods for modeling the flow behavior of 6013 aluminum alloy. Based on the experimental data from hot compression tests, the modeling performance of these four methods was tested and subsequently compared from different aspects. It is found that all the methods are capable of constructing models for describing the hot deformation behavior. The merits of Kriging method over other three methods are highlighted when the sample size for modeling is decreased. Furthermore, the applicability of Kriging method is validated while decreasing the sample uniformity with respect to temperature or strain rate. It is proved that Kriging method is competent in modeling the material flow behavior and is the most effective one among the four popular types of metamodeling method.

  18. Physical simulation of hot deformation and microstructural evolution of AISI 1016 steel using processing maps

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, S.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667 (India); Dikovits, M. [IWS—Institute for Materials Science and Welding, Graz University of Technology Kopernikusgasse 24, A-8010 Graz (Austria); Chaudhari, G.P., E-mail: chaudfmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667 (India); Poletti, C. [IWS—Institute for Materials Science and Welding, Graz University of Technology Kopernikusgasse 24, A-8010 Graz (Austria); Warchomicka, F. [IWS—Institute for Materials Science and Welding, Graz University of Technology Kopernikusgasse 24, A-8010 Graz (Austria); IMST—Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13/E308, A-1040 Vienna (Austria); Pancholi, V.; Nath, S.K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee 247667 (India)

    2013-12-10

    The hot deformation behavior of AISI 1016 steel is studied by performing hot compression tests in the Gleeble{sup ®} 3800 physical simulator in the temperature range 750–1050 °C after austenitization at 1050 °C for 5 min. The strain rates used vary from 0.01 to 80 s{sup −1} and the total true strain achieved is 0.7. The microstructural evolution is described based on light optical and scanning electron microscopy of the deformed and water quenched samples. An EBSD measurement on selected sample in the two-phase field is used to determine the microstructural changes in the ferritic phase. Then, processing windows are created using dynamic materials model, modified dynamic materials model, and strain rate sensitivity maps, which are correlated with the microstructural development. In order to determine the flow instability ranges produced by flow localization, different instability parameters are employed and compared. The processing map obtained using the power dissipation efficiency, η, correlates well with microstructural changes observed due to the dependency of this parameter on strain rate sensitivity m. Although instability zones predicted by the instability parameter κ{sub j} are similar to these predicted by flow localization parameter α, the latter approach is physically explained by the thermal softening due to adiabatic flow at high strain rates. Using sinh type constitutive equation, the average apparent activation energy for hot deformation of AISI 1016 steel is 290 kJ/mol and the stress exponent n is 3.8, indicating plastic deformation by dislocation gliding and climbing.

  19. Microstructure evolution and modeling of 2024 aluminum alloy sheets during hot deformation under different stress states

    Science.gov (United States)

    Deng, Lei; Zhou, Peng; Wang, Xinyun; Jin, Junsong; Zhao, Ting

    2018-01-01

    In this work, specimens of the 2024 aluminum alloy sheet were compressed and stretched along the original rolling direction at elevated temperatures. The microstructure evolution was investigated by characterizing the metallographic structures via electron backscattered diffraction technology before and after deformation. It was found that while recrystallization occurred in the compressed specimens, it was not observed to the same extent in the stretched specimens. This difference in the grain morphology has been attributed to the different movement behaviors of the grain boundaries, i.e., their significant migration in the compression deformation and the transformation from low-angle to high-angle boundaries observed mainly during tension deformation. The empirical model, which can describe the grain size evolution during compression, is not suitable in the case of tension, and therefore, a new model which ignores the detailed recrystallization process has been proposed. This model provides a description of the grain size change during hot deformation and can be used to predict the grain size in the plastic deformation process.

  20. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  1. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Al-Samman, T., E-mail: alsamman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Mu, S.; Gottstein, G. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany)

    2011-10-15

    Highlights: {yields} Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. {yields} New off-basal sheet texture during c-axis compression at low Z conditions. {yields} Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T{sub m}. {yields} Prismatic slip becomes equally important to deformation at 0.6T{sub m}. {yields} Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  2. Changes in the state of heat-resistant steel induced by repeated hot deformation

    Science.gov (United States)

    Lyubimova, Lyudmila L.; Fisenko, Roman N.; Tashlykov, Alexander A.; Tabakaev, Roman B.

    2018-01-01

    This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

  3. Effect of Composition on the Formation of Delta Ferrite in 304L Austenitic Stainless Steels During Hot Deformation

    Science.gov (United States)

    Soleymani, S.; Ojo, O. A.; Richards, N.

    2015-01-01

    Four different AISI 304L austenitic stainless steels with chromium equivalent-to-nickel equivalent (Creq/Nieq) ratios of 1.57, 1.59, 1.62, and 1.81 were chosen for this study. The influence of chemical composition on solid-state formation of delta ferrite phase during hot deformation was investigated. Compression tests were performed at temperature, strain, and strain rate ranges of 1200 to 1300 °C, 10 to 70%, and 0.1 to 10 s-1, respectively. Increasing the temperature, strain, and strain rate led to increased formation of delta ferrite. The results show that the formation of delta ferrite during hot deformation is also strongly dependent on chemical composition. The higher the Creq/Nieq ratio, the higher the tendency for the formation of delta ferrite. The observed behavior may be attributed to plastic deformation-induced formation of crystallographic defects such as dislocations affecting the diffusion rate.

  4. Simulation of Flow Stress Characteristic During Two-stage Hot Deformation Process in AZ31B Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    DENG Xiaohu

    2017-06-01

    Full Text Available A 2-D CA model has been developed to simulate two-stage hot deformation processing of magnesium (Mg alloy. Based on the fact that Mg has an HCP crystal structure with six-fold symmetry, the model employs hexagonal CA lattice. The physically-based model has integrated the effects of individual metallurgical phenomena related with the hot deformation, including dynamic recrystallization (DRX, static recovery, static recrystallization (SRX, meta-dynamic recrystallization (MDRX and grain growth, etc. The model is validated by simulating single-stage and two-stage hot compression tests of AZ31B. The effects of temperature, strain rate, the interval and pre-strain on stress-strain curves are investigated. The calculated results are compared with the available experimental findings in AZ31B Mg alloy, and the simulated results agree well with the experimental results and theoretical models.

  5. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  6. Mechanism of Martensitic to Equiaxed Microstructure Evolution during Hot Deformation of a Near-Alpha Ti Alloy

    Science.gov (United States)

    Shams, Seyed Amir Arsalan; Mirdamadi, Shamsoddin; Abbasi, Seyed Mahdi; Kim, Daehwan; Lee, Chong Soo

    2017-06-01

    In this study, mechanisms of microstructural evolution during hot deformation of Ti-1100 were investigated by EBSD analysis. Misorientation angle distribution of initial microstructure showed that diffusionless martensitic phase transformation in Ti-1100 obeys Burgers orientation relationship, and most of the high-angle-grain boundaries consist of angles of 60 and 63 deg. Calculated activation energy of hot deformation ( 338 kJ/mol) and EBSD grain boundary maps revealed that continuous dynamic recrystallization (CDRX) is the dominant mechanism during hot compression at 1073 K (800 °C) and strain rate of 0.005 s-1. At a temperature range of 1073 K to 1173 K (800 °C to 900 °C), not only the array of variants lying perpendicular to compression axis but also CDRX contributes to flow softening. Increasing the rolling temperature from 1123 K to 1273 K (850 °C to 1000 °C) brought about changes in spheroidization mechanism from CDRX to conventional boundary splitting and termination migration correlated with the higher volume fraction of beta phase at higher temperatures.

  7. Hot Deformation and Processing Window Optimization of a 70MnSiCrMo Carbide-Free Bainitic Steel

    Directory of Open Access Journals (Sweden)

    Ying Han

    2017-03-01

    Full Text Available The hot deformation behavior of a high carbon carbide-free bainitic steel was studied through isothermal compression tests that were performed on a Gleeble-1500D thermal mechanical simulator at temperatures of 1223–1423 K and strain rates of 0.01–5 s−1. The flow behavior, constitutive equations, dynamic recrystallization (DRX characteristics, and processing map were respectively analyzed in detail. It is found that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the single-peak DRX can be easily observed at high temperatures and/or low strain rates. The internal relationship between the flow stress and processing parameters was built by the constitutive equations embracing a parameter of Z/A, where the activation energy for hot deformation is 351.539 kJ/mol and the stress exponent is 4.233. In addition, the DRX evolution and the critical conditions for starting DRX were discussed. Then the model of the DRX volume fraction was developed with satisfied predictability. Finally, the processing maps at different strains were constructed according to the dynamic material model. The safety domains and flow instability regions were identified. The best processing parameters of this steel are within the temperature range of 1323–1423 K and strain rate range of 0.06–1 s−1.

  8. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  9. Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel

    Science.gov (United States)

    Chatterjee, Arya; Dutta, A.; Sk, Md Basiruddin; Mitra, R.; Bhaduri, A. K.; Chakrabarti, D.

    2017-05-01

    Microalloying elements like Nb and V are added to modified 9Cr-1Mo steel to ensure excellent creep resistance by the formation of fine MX precipitates during tempering treatment. The effect of those elements on the evolution of microstructure (and texture) in hot-deformed steel has hardly been studied. Industrial processing of modified 9Cr-1Mo steel often develops deformed and elongated prior-austenite grain structure, which can be detrimental from property point of view. The present study shows that the formation of such structure can primarily be attributed to the pinning effect from strain-induced Nb(C,N) precipitation, which can effectively retard the static recrystallization of deformed-γ at high-deformation temperature and short inter-pass times ( 10 seconds). Based on the results, the application of either heavy deformation pass at high-temperature or multiple-lighter passes maintaining sufficient inter-pass interval (30 to 50 seconds) is recommended to achieve fine and equiaxed γ-grain structure by dynamic recrystallization and static recrystallization, respectively.

  10. Comparative study of microstructure and texture of cast and homogenized TX32 magnesium alloy after hot deformation

    Science.gov (United States)

    Dharmendra, C.; Rao, K. P.; Prasad, Y. V. R. K.; Hort, N.; Kainer, K. U.

    2015-01-01

    The effect of homogenization on the hot deformation behavior and texture evolution of Mg-3Sn-2Ca (TX32) alloy is investigated. The cast-homogenized alloy samples were hot compressed in the temperature and strain rate ranges of 300-500 °C and 0.0003-10 s-1, respectively, and a processing map has been developed by using the flow stress data. The map revealed two dynamic recrystallization (DRX) domains with a peak efficiency of 44% at 360 °C/0.0003 s-1 (Domain 1) and 43% at 485 °C/0.1 s-1 (Domain 2). When compared with the map for as-cast condition, it is observed that both the domains moved towards higher temperatures although the shift of Domain 1 is more noticeable. The apparent activation energy values in the two domains and the regime of flow instability are nearly unchanged by homogenization, suggesting that Mg2Ca and CaMgSn particles in the microstructure are thermally stable. Specimens deformed under conditions in Domain 1 have high Schmid factors for {0001} slip and {1bar 100} slip, while in Domain 2 the deformation progressed due to {11bar 2 bar 2} slip.

  11. Magnetic properties of NdFeB-coated rubberwood composites

    Science.gov (United States)

    Noodam, Jureeporn; Sirisathitkul, Chitnarong; Matan, Nirundorn; Rattanasakulthong, Watcharee; Jantaratana, Pongsakorn

    2013-01-01

    Magnetic properties of composites prepared by coating lacquer containing neodymium iron boron (Nd-Fe-B) powders on rubberwood were characterized by vibrating sample magnetometry (VSM), magnetic moment measurements, and attraction tests with an iron-core solenoid. The Nd-Fe-B powders were recycled from electronic wastes by the ball-milling technique. Varying the milling time from 20 to 300 min, the magnetic squareness and the coercive field of the Nd-Fe-B powders were at the minimum when the powders were milled for 130 min. It followed that the coercive field of the magnetic wood composites was increased with the milling time increasing from 130 to 300 min. For the magnetic wood composites using Nd-Fe-B obtained from the same milling time, the magnetic squareness and the coercive field were rather insensitive to the variation of Nd-Fe-B concentration in coating lacquer from 0.43 to 1.00 g/cm3. By contrast, the magnetization and magnetic moment were increased with the Nd-Fe-B concentration increasing. Furthermore, the electrical current in the solenoid required for the attraction of the magnetic wood composites was exponentially reduced with the increase in the amount of Nd-Fe-B used in the coating.

  12. SEM/EBSD Analysis on Globularization Behavior of Lamellar Microstructure in Ti-6Al-4V During Hot Deformation and Annealing

    Science.gov (United States)

    Ito, Yoshinori; Murakami, Shogo; Tsuji, Nobuhiro

    2017-09-01

    Scanning electron microscope/electron back-scattering diffraction was used to investigate local misorientation development within an individual α plate of a Ti-6Al-4V alloy with an α lamellar microstructure during hot deformation at 1223 K (950 °C) and a strain rate of 0.1 s-1. The correlation between the local misorientation development and the globularization behavior of α plates during subsequent annealing at 1223 K (950 °C) was discussed. The misorientation profile along an individual α plate showed that not only a continuous and smooth change in orientation but also a discontinuous change in orientation was developed by the hot deformation. We assume that the points where discontinuous change in orientation occurs, P d, became α/ α boundaries and resulted in splitting α plates the annealing. The mean length between adjacent discontinuous points, L I, was determined and compared with the actual mean length of the α plates after hot deformation and subsequent annealing, L a, as measured by optical microscopy. The two kinds of length parameters coincided at lower strains, but significant differences were observed at higher strains, i.e., L I was larger than L a. Further analysis showed that rotation axes (R.A.s) changed even within regions where orientation changes were continuous. By taking into account the points where the R.A.s changed, P r and P d, the mean length between adjacent points, L II, appeared to coincide with L a at higher strains. A higher lattice distortion is expected near points P r at higher strains, which results in the formation of new α/ α boundaries in subsequent annealing. Consequently, points P d already developed by hot deformation were considered to become α/ α boundaries and led to splitting α plates in annealing. New α/ α boundaries formed at points P r in subsequent annealing after a higher strain deformation, which led to a splitting of α plates as well.

  13. A comparative thermomagnetic study of melt-spun Nd-Fe-B alloys with different Nd content

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2009-01-01

    Full Text Available Changes in the phase composition and magnetic properties of three types of commercial Nd-Fe-B alloys with different Nd content - low (10-12 wt%, near stoichiometric (21-25 wt% and rich (26-29 wt% caused by thermomagnetic analysis (TM were observed in regard to optimal magnetic state. Phase compositions of investigated alloys before and after TM measurement up to 800°C were compared using 57Fe Mössbauer spectroscopy and X-Ray analysis. The TM measurements decompose all three materials and the main products of decomposition process α-Fe and Fe2B phase. Observed changes in structure and phase composition had direct influence on magnetic properties. Loss of magnetic properties induced by thermal decomposition is clearly illustrated on corresponding SQUID hysteresis loops.

  14. Hot deformation behavior of 51.1Zr–40.2Ti–4.5Al–4.2V alloy in the single β phase field

    Directory of Open Access Journals (Sweden)

    Jingli Duan

    2015-02-01

    Full Text Available The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 °C and strain rate range from 10−3 to 100 s−1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.

  15. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.

    Science.gov (United States)

    Jin, Hongyue; Afiuny, Peter; Dove, Stephen; Furlan, Gojmir; Zakotnik, Miha; Yih, Yuehwern; Sutherland, John W

    2018-02-27

    Neodymium-iron-boron (NdFeB) magnets offer the strongest magnetic field per unit volume, and thus, are widely used in clean energy applications such as electric vehicle motors. However, rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade. NdFeB magnet-to-magnet recycling has recently emerged as a promising strategy to mitigate this supply risk. This paper assesses the environmental footprint of NdFeB magnet-to-magnet recycling by directly measuring the environmental inputs and outputs from relevant industries and compares the results with production from 'virgin' materials, using life cycle assessments. It was found that magnet-to-magnet recycling lowers environmental impacts by 64-96%, depending on the specific impact categories under investigation. With magnet-to-magnet recycling, key processes that contribute 77-95% of the total impacts were identified to be 1) hydrogen mixing & milling (13-52%), 2) sintering & annealing (6-24%), and 3) electroplating (6-75%). The inputs from industrial sphere that play key roles in creating these impacts were electricity (24-93% of the total impact) and nickel (5-75%) for coating. Therefore, alternative energy sources such as wind and hydroelectric power are suggested to further reduce the overall environmental footprint of NdFeB magnet-to-magnet recycling.

  16. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.

    Science.gov (United States)

    Liu, Debao; Liu, Yichi; Zhao, Yue; Huang, Y; Chen, Minfang

    2017-08-01

    The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s-1, and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate. Under the same processing conditions, the flow stresses of the 1HA/Mg-3Zn-0.8Zr specimens are higher than those of the Mg-3Zn-0.8Zr alloy specimens, and the difference is getting closer with increasing deformation temperature. The hot deformation behaviors of Mg-3Zn-0.8Zr and 1HA/Mg-3Zn-0.8Zr can be described by constitutive equation of hyperbolic sine function with the hot deformation activation energy being 124.6kJ/mol and 125.3kJ/mol, respectively. Comparing with Mg-3Zn-0.8Zr alloy, the instability region in the process map of 1HA/Mg-3Zn-0.8Zr expanded to a bigger extent at the same conditions. The optimum process conditions of 1HA/Mg-3Zn-0.8Zr composite is concluded as between the temperature window of 573-623K with a strain rate range of 0.001-0.1s-1. A higher volume fraction and smaller grain size of dynamic recrystallization (DRX) grains was observed in 1HA/Mg-3Zn-0.8Zr specimens after the hot compression deformation compared with Mg-3Zn-0.8Zr alloy, which was ascribed to the presence of the HA particles that play an important role in particle-stimulated nucleation (PSN) mechanism and can effectively hinder the migration of interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical mech...

  18. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  19. A comparative study of magnetoresistance and magnetic structure in recycled vs. virgin NdFeB-type sintered magnets

    Science.gov (United States)

    Shen, Shida; Tsoi, Maxim; Prosperi, Davide; Tudor, Catalina O.; Dove, Stephen K.; Bevan, Alex I.; Furlan, Gojmir; Zakotnik, Miha

    2017-11-01

    Recycled NdFeB magnets are emerging as a viable alternative to virgin NdFeB, because of lower production costs and environmental impacts. Recycled NdFeB magnets produced via the recently reported magnet-to-magnet (m2 m™) recycling process display unanticipated enhancements of magnetic and physical properties that may arise because of their unique microstructure. In the present study, we compare electrical transport and magnetic properties of these recycled magnets (Grade: N42SH, Br = 1289 mT, Hcj = 1876 kA/m, BHmax = 323.4 kJ/m3, Dy content = 4.0 wt%) with an equivalent grade of commercial NdFeB magnet produced from virgin material by conventional techniques (Grade: N42SH, Br = 1215 mT, Hcj = 1943 kA/m, BHmax = 285.0 kJ/m3, with Dy content = 4.6 wt%). Atomic force microscopy (AFM) and magnetic force microscopy (MFM) analyses revealed very similar surface morphology and magnetic structure for the virgin and recycled samples. However, bulk electrical transport measurements demonstrated a 27% enhancement in the resistivity of the recycled magnets. This suggests that the electrical properties of NdFeB alloys are enhanced during Grain Boundary Engineering™ (GBE™). Moreover, point-contact measurements, used to probe the electrical transport properties on the microscopic scale, found similar results to those of the bulk measurements.

  20. The Design of a Device for the Generation of a Strong Magnetic Field in an Air Gap Using Permanent Magnets

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2017-01-01

    Roč. 22, č. 2 (2017), s. 250-256 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnetic field * permanent magnets * NdFeB magnets * Halbach arrays Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.713, year: 2016

  1. Quantitative description of the flow-stress dependence of aluminum alloys at the stage of steady flow upon hot deformation on the Zener–Hollomon parameter

    Science.gov (United States)

    Churyumov, A. Yu.; Teleshov, V. V.

    2017-09-01

    The deformation behavior of a 1981 aluminum alloy has been studied using a complex for simulating thermomechanical processes in the temperature range of 200-400°C at a deformation rate in the range of 0.001-10 s-1. The models of the relationships between the flow stress, temperature, and deformation rate have been constructed using a power-law dependence, exponential dependence, and hyperbolic-sine function on the Zener-Hollomon parameter ( Z). In the calculations according to the power-law and exponential equations, discrepancies between the calculated and experimental values of the Zener-Hollomon parameter have been revealed at low and high values. These discrepancies are caused by the fact that the experimentally obtained dependences of the flow stress on the Z parameter over the entire range of its change with a single magnitude of the effective activation energy of the plastic deformation consist of two linear parts that correspond to the hot and warm deformation and have different magnitudes of the effective activation energy of plastic deformation with a lower value of the activation energy for hot deformation.

  2. Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel

    Science.gov (United States)

    Barcellona, A.; Palmeri, D.

    2009-05-01

    The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s-1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermomechanical treatments were performed using the thermomechanical simulator Gleeble 1500. The results showed that increasing hot prestrain (HPS) values generate, at the same cooling rate, lower hardness values; this means that the increasing of HPS generates a shift of the CCT diagram toward a lower starting time for each transformation. Therefore, high values of hot deformations during the hot stamping process require a strict control of the cooling process in order to ensure cooling rate values that allow maintaining good mechanical component characteristics. This phenomenon is amplified when the prestrain occurs at lower temperatures, and thus, it is very sensitive to the temperature level.

  3. Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5Al-1.5Si-0.4C TWIP steels microalloyed with Nb, V, and Ti

    OpenAIRE

    Reyes Calderón, F.; Mejía Granados, Ignacio; Cabrera Marrero, José M.

    2013-01-01

    The activation energy for hot deformation ( Q HW ) of high-Mn microalloyed TWIP steels was determined from experimental uniaxial hot compression curves. The presence of microalloying elements such as Nb, V, and Ti, increases the Q HW value from 366 in the non-microalloyed one to 446 kJ/mol in the V-microalloyed TWIP steel. This change represents an increase from 16% up to 22% of Q HW values. Peer Reviewed

  4. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field

    Science.gov (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.

    2017-04-01

    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  5. Design and characteristics analysis of linear oscillatory actuator with ferrite permanent magnet for refrigerator compressor

    Science.gov (United States)

    Kim, Kwan-Ho; Jang, Seok-Myeong; Ahn, Ji-Hun; Choi, Jang-Young; Jeong, Sang-Sub

    2015-05-01

    Actuators using NdFeB permanent magnets (PMs) are widely used, but they are costly and are affected by unstable material supply. In this study, a linear oscillatory actuator (LOA) using a ferrite PM is designed for use in the compressor for refrigerators, instead of the NdFeB PM. In spite of benefits of ferrite PM, it has not been widely used because the residual magnetic flux density of the ferrite PM is normally 35% less than that of a NdFeB PM. To overcome this shortcoming, we analyze the mover features of the LOA using two types of the ferrite PMs: interior PM type and Halbach PM type. The LOA designed has the same outer stator outer radius and number of coil turns as a conventional LOA with the NdFeB PM. The validity of the designed model is verified by comparing the analysis results using the nonlinear finite element method.

  6. Permanent magnet design methodology

    Science.gov (United States)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  7. Effect of pretreating technologies on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengjie [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Jiaqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Yi, Xiaofei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, JingWu [Earth-Panda Advance Magnetic Material Co. Ltd., Hefei (China); Anhui Province Key Laboratory of Rare Earth Permanent Magnet Materials, Hefei (China); State Key Laboratory of Rare Earth Permanent Magnet Materials (Earth-Panda Advance Magnetic Material Co., Ltd.), Hefei (China)

    2016-02-15

    Graphical abstract: Zn coated NdFeB specimens pretreated with different technologies possess different adhesive strengths and anticorrosion properties. And the combined technology of sandblasting and pickling (5 s) achieves the best comprehensive performance. - Highlights: • Zn coated NdFeB specimens are achieved with different pretreating technologies. • Combined technology possesses the highest adhesive strength. • Combined technology possesses excellent anticorrosion property. - Abstract: Zinc coated NdFeB specimens were prepared with different pretreating technologies, such as polishing, pickling (50 s), sandblasting and combined technology of sandblasting and pickling (5 s). Morphologies of the NdFeB substrates pretreated with different technologies were observed with a scanning electron microscope equipped with an energy dispersive spectrometer and an atomic force microscope. The tensile test was performed to measure the adhesive strength between Zn coating and NdFeB substrate. The self-corrosion behavior of the NdFeB specimen was characterized by potentiodynamic polarization curve. The anticorrosion properties of Zn coated NdFeB specimens were characterized by neutral salt spray tests. The pretreating technologies possess obvious impact on the adhesive strength and anticorrosion property of Zn coated NdFeB specimens. Combined pretreating technology of sandblasting and pickling (5 s) achieves the highest adhesive strength (25.56 MPa) and excellent anticorrosion property (average corrosion current density of 21 μA/cm{sup 2}) in the four pretreating technologies. The impacting mechanisms of the pretreating technology on the adhesive strength and anticorrosion properties are deeply discussed.

  8. Mechanical and magnetic properties of composite materials with polymer matrix

    Directory of Open Access Journals (Sweden)

    Grujić A.

    2010-01-01

    Full Text Available Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their production. This study investigates the mechanical and magnetic properties of compression molded Nd-Fe-B magnets with different content of magnetic powder in epoxy matrix. Mechanical properties were investigated at ambient temperature according to ASTM standard D 3039-00. The obtained results show that tensile strength and elongation decrease with an increase of Nd-Fe-B particles content in epoxy matrix. The modulus of elasticity increases, which means that in exploitation material with higher magnetic powder content, subjected to the same level of stress, undergoes 2 to 3.5 times smaller deformation. Scanning Electron Microscopy (SEM was used to examine the morphology of sample surfaces and fracture surfaces caused by the tensile strength tests. The results of SQUID magnetic measurements show an increase of magnetic properties of the investigated composites with increasing content of Nd-Fe-B particles.

  9. Interference of neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators: an in vitro study.

    Science.gov (United States)

    Ryf, Salome; Wolber, Thomas; Duru, Firat; Luechinger, Roger

    2008-01-01

    Permanent magnets may interfere with the function of cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). Neodymium-iron-boron (NdFeB) magnets have become widely available in recent years and are incorporated in various articles of daily life. We conducted an in-vitro study to evaluate the ability of NdFeB magnets for home and office use to cause interference with cardiac pacemakers and ICDs. The magnetic fields of ten NdFeB magnets of different size and shape were measured at increasing distances beginning from the surface until a field-strength (B-field) value of 0.5 mT was reached. Furthermore, for each magnet the distance was determined at which a sample pacemaker switched from magnet mode to normal mode. Depending on the size and remanence of individual magnets, a B-field value of 0.5 mT was found at distances ranging from 1.5 cm to 30 cm and a value of 1 mT at distances from 1 cm to 22 cm. The pacemaker behavior was influenced at distances from 1 cm to 24 cm. NdFeB magnets for home and office use may cause interference with cardiac pacemakers and ICDs at distances up to 24 centimeters. Patient education and product declarations should include information about the risk associated with these magnets.

  10. Current status and recent topics of rare-earth permanent magnets

    Science.gov (United States)

    Sugimoto, S.

    2011-02-01

    After the development of Nd-Fe-B magnets, rare-earth magnets are now essential components in many fields of technology, because of their ability to provide a strong magnetic flux. There are two, well-established techniques for the manufacture of rare earth magnets: powder metallurgy is used to obtain high-performance, anisotropic, fully dense magnet bodies; and the melt-spinning or HDDR (hydrogenation, disproportionation, desorption and recombination) process is widely used to produce magnet powders for bonded magnets. In the industry of sintered Nd-Fe-B magnets, the total amount of production has increased and their dominant application has been changed to motors. In particular, their use for motors in hybrid cars is one of the most attractive applications. Bonded magnets have also been used for small motors, and the studies of nanocomposite and Sm-Fe-N magnets have become widespread. This paper reviews the current status and future trend in the research of permanent magnets.

  11. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...... force values is less than 10%....

  12. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus

    We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... is not available.We will illustrate the results for magnet design problems from different areas, such as electric motors/generators (as the example in the picture), beam focusing for particle accelerators and magnetic refrigeration devices....... magnets[1][2]. However, the powerful rare-earth magnets are generally expensive, so both the scientific and industrial communities have devoted a lot of effort into developing suitable design methods. Even so, many magnet optimization algorithms either are based on heuristic approaches[3...

  13. The Behavior Of Asymmetric Frontal Couplings With Permanent Magnets In Magnetic Powder And High Temperature Environments

    Directory of Open Access Journals (Sweden)

    Ion DOBROTA

    2002-12-01

    Full Text Available The main purpose of this paper is the comparative analysis of the behavior of frontal couplings with Nd-Fe-B permanent magnets in difficult environments, specific to metallurgy – such as environments with magnetic powders and high temperature – in two constructive variants: symmetric couplings and asymmetric couplings (with divided poles. The results show the superior performance of asymmetric couplings under the given conditions

  14. Mechanical and magnetic properties of composite materials with polymer matrix

    OpenAIRE

    Grujić A.; Talijan N.; Stojanović D.; Stajić-Trošić J.; Burzić Z.; Balanović Lj.; Aleksić R.

    2010-01-01

    Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their ...

  15. Permanent magnet microstructures using dry-pressed magnetic powders

    Science.gov (United States)

    Oniku, Ololade D.; Bowers, Benjamin J.; Shetye, Sheetal B.; Wang, Naigang; Arnold, David P.

    2013-07-01

    This paper presents microfabrication methods and performance analysis of bonded powder permanent magnets targeting dimensions ranging from 10 µm to greater than 1 mm. For the structural definition and pattern transfer, a doctor blade technique is used to dry press magnetic powders into pre-etched cavities in a silicon substrate. The powders are secured in the cavities by one of the three methods: capping with a polyimide layer, thermal reflow of intermixed wax-binder particles, or conformal coating with a vapor-deposited parylene-C film. A systematic study of micromagnets fabricated using these methods is conducted using three different types of magnetic powders: 50 µm Nd-Fe-B, 5 µm Nd-Fe-B and 1 µm barium ferrite powder. The isotropic magnets are shown to exhibit intrinsic coercivities (Hci) as high as 720 kA m-1, remanences (Br) up to 0.5 T and maximum energy products (BHmax) up to 30 kJ m-3, depending on the magnetic powder used. Process compatibility experiments demonstrate the potential for the magnets to withstand typical microfabrication chemical exposure and thermal cycles, thereby facilitating their integration into more complex process flows. The remanences are also characterized at elevated temperatures to determine thermal sensitivities and maximum operating temperature ranges.

  16. Interaction domains in permanent-magnetic rare-earth transition-metal compounds; Wechselwirkungsdomaenen in permanentmagnetischen Seltenerd-Uebergangsmetall-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Thielsch, Juliane

    2015-02-05

    In the framework of this dissertation the phenomenon of the interaction domains was studied both experimentally and by means of micromagnetic simulation. Object of the study were one-phase NdFeB magnets, which were fabricated from commercial MQU-F powders of the Magnequench Inc. company by hot pressing and subsequent warm deformation in the IWF Dresden. Additionally via the same fabrication way also composite samples of NdFeB and Fe with different original particle sizes ere obtained and studied. Supported wer the experimental works by simulations with the FEMME software package, which is based on a hybrid finite-element method/boundary-element method.

  17. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    Science.gov (United States)

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Life cycle assessment of electric power generation by wind turbines containing rare earth magnets

    OpenAIRE

    Venås, Christoffer

    2015-01-01

    Direct-drive permanent magnet generator (DD-PMG) wind turbines are becoming a larger part of the growing offshore wind turbine market. The strong permanent magnets used, the NdFeB magnets, contains neodymium metal. The neodymium metal is a rare earth element (REE), and there are large environmental concerns regarding the mining and processing of the REEs. The research within the field is scarce. Consequently, there is a lack of knowledge of the environmental consequences of a shift away from ...

  19. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    CERN Document Server

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  20. Additive Manufacturing of Near-net Shaped Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  1. The Influence Of The Temperature Of Liquid Nitrogen On The Physical Properties Of Powder Magnetic Composites

    Directory of Open Access Journals (Sweden)

    Kapelski D.

    2015-06-01

    Full Text Available The paper presents the physical properties of soft magnetic iron composites and Nd-Fe-B bonded permanent magnets measured at room temperature and at liquid nitrogen. The objective of research was a determination of influence of liquid nitrogen temperature on the magnetic properties, resistivity and mechanical properties of different powder magnetic materials. Research was carried out for three powder materials: soft magnetic, i.e. Somaloy 700, AncorLam and hard magnetic powder MQP-B used for production of bonded magnets. Composite specimens were prepared by compression moulding technology.

  2. Evaluation of magnetic loss in a YBa sub 2 Cu sub 3 O sub x superconductor

    CERN Document Server

    Konishi, H; Futamura, M

    2003-01-01

    We measured the magnetic force between a YBa sub 2 Cu sub 3 O sub x (YBCO) superconductor and a Nd-Fe-B magnet while reciprocating the superconductor under the magnet. The magnetic force showed a hysteretic characteristic against the displacement of the superconductor. Magnetic loss calculated from the hysteresis curve decreased as the drive frequency increased. A mechanical model was used to analyze the characteristics of the magnetic loss. By adding the contribution of viscous force and repined flux lines to the mechanical model, we obtained good agreement between the analytical and experimental results. (author)

  3. CRADA/NFE-15-05779 Report: Fabrication of Large Area Printable Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-09-29

    The technical objective of this technical collaboration phase I proposal was to fabricate large area NdFeB composite magnets at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). The goal was to distribute domestically produced isotropic and highly anisotropic high energy density magnetic particles throughout the composite structure in order to enable site specific placement of magnetic phases and minimize the generated waste associated with permanent magnet manufacturing. Big area additive manufacturing (BAAM) and magnet composite fabrication methods were used in this study. BAAM was used to fabricate 65 vol % isotropic MQP NdFeB magnets in nylon polymer matrix. BAAM magnet cylinder was sliced to two magnetic arc-shaped braces. The density of the small BAAM magnet pieces reached 4.1 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.8 kOe, Remanence Br = 4.2 kG, and energy product (BH)max = 3.7 MGOe. Also, 1.5” x 1.5” composite magnets with anisotropic MQA NdFeB magnet in a resin were also fabricated under magnetic field. The unaligned sample had a density of 3.75 g/cm3. However, aligned sample possessed a density of 4.27 g/cm3. The magnetic properties didn’t degrade during this process. This study provides a pathway for preparing composite magnets for various magnetic applications.

  4. Evaluation of the attractive force of different types of new-generation magnetic attachment systems.

    Science.gov (United States)

    Akin, Hakan; Coskun, M Emre; Akin, E Gulsah; Ozdemir, A Kemal

    2011-03-01

    Rare earth magnets have been used in prosthodontics, but their tendency for corrosion in the oral cavity and insufficient attractive forces limit long-term clinical application. The purpose of this study was to evaluate the attractive force of different types of new-generation magnetic attachment systems. The attractive force of the neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) magnetic attachment systems, including closed-field (Hilop and Hicorex) and open-field (Dyna and Steco) systems, was measured in a universal testing machine (n=5). The data were statistically evaluated with 1-way ANOVA and post hoc Tukey-Kramer multiple comparison test (α=.05). The closed-field systems exhibited greater (Pforce than the open-field systems. Moreover, there was a statistically significant difference in attractive force between Nd-Fe-B and Sm-Co magnets (Pforce was found with the Hilop system (9.2 N), and the lowest force was found with the Steco system (2.3 N). The new generation of Nd-Fe-B closed-field magnets, along with improved technology, provides sufficient denture retention for clinical application. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  6. Evidence of anti free volume creation during deformation induced nanocrystallization of Nd-Fe-B metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shashwat; Ramanujan, Raju [School of Materials Science and Engineering, Nanyang Technological University, Singapore (Singapore); Banas, Agnieszka [Singapore Synchrotron Light Source, National University of Singapore (Singapore)

    2011-06-15

    The extended X-ray absorption fine-structure (EXAFS) technique was used to study the time evolution of the structure of Nd-Fe-B metallic glass undergoing nanocrystallization during mechanical milling. Negative as well as positive fluctuations in atomic density were observed, providing direct evidence of the creation of deformation-induced pairs of free volume and anti-free volume defects. These defects migrated during milling, leading to the atomic redistribution and precipitation of nanocrystals. Our results demonstrate that atomic defects caused by deformation of metallic glasses involve more extensive athermal changes in short-range order than nearest neighbour bond breaking as suggested by the free volume model. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The force-distance properties of attracting magnetic attachments for tooth movement in combination with clear sequential aligners.

    Science.gov (United States)

    Phelan, Angie; Petocz, Peter; Walsh, William; Darendeliler, M Ali

    2012-11-01

    The demand for clear sequential aligner therapy has increased dramatically in recent years. An improved system utilising small neodymium-iron-boron (NdFeB) magnetic attachments has been proposed to enhance appliance capabilities. The aim of the investigation was to analyse the force system diagrams produced by small attracting NdFeB magnets to determine, 1) whether the force levels were sufficient to induce tooth movement, 2) the effect of magnet morphology on force characteristics and, 3) the most appropriate magnet dimensions that could be utilised for this application. Twenty-nine NdFeB rectangular magnets of varying dimensions were tested. A Mach-1 universal testing machine (Biosyntech Inc, Quebec, Canada) was used to measure the attractive force of pairs of magnets. Measurements commenced with a magnetic pair in contact and subsequently vertically separated a distance of 10 mm at a speed of 12 mm/minute. For all magnetic configurations four repeat measurements were performed on five magnetic pairs of the same size. The force-distance diagrams for all magnet configurations demonstrated a dramatic decrease in force with increasing magnet separation. Rather than a suggested inverse square law, the experimental data followed an inverse fourth law when an offset determined by a regression analysis was applied to the distance. For the majority of magnets, insignificant forces were attained beyond 2 mm of separation. Magnets with large pole face areas and longer magnetic axes provided the greatest force. A select range of magnet configurations exhibited suitable and reliable attractive forces and therefore could be advocated for prescribed clinical application.

  8. Magnetic repulsion of linear accelerator contaminates.

    Science.gov (United States)

    Butson, M J; Wong, T P; Law, A; Law, M; Mathur, J N; Metcalfe, P E

    1996-06-01

    Neodymium Iron Boron (NdFeB) rare earth permanent magnets have unique properties that enable them to fit easily onto the accessory mount of a clinical linear accelerator to partially sweep away electron contamination produced by the treatment head and block trays and thus increase skin sparing. Using such magnets the central axis entrance surface dose has been reduced by 11% for a 20 x 30 cm field size from 32% to 21% of maximum dose by the magnetic device. A reduction of 14% from 32% to 18% was seen for a 20 x 20 cm field size with a 6 mm perspex block tray positioned above the magnet. The magnetic device is light weight and thus clinically usable.

  9. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    Science.gov (United States)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  10. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  11. Study on magnetic mirror array image intensifier to work at room temperature.

    Science.gov (United States)

    Tang, Yuanhe; Yu, Yang; Gao, HaiYang; Liu, Shulin; Wang, Xiaolin

    2015-09-10

    In order to improve the detection capability of the current low-light-level (LLL) imaging systems at room temperature, a new device, a magnetic mirror array image intensifier (MMAII), is proposed in this paper. A magnetic mirror array device (MMAD) is coupled into an image intensifier which sits between the photocathode and the microchannel plate (MCP). The trace photoelectrons, one after another, are first sufficiently accumulated by the MMAD over a long time at room temperature, and then they are released and enter the MCP for further gain. These two steps are used to improve the detection capability at the LLL imaging system at room temperature. After the two-dimensional magnetic field distribution of the magnetic mirror array (MMA) is calculated, the MMA is designed and optimized with a rubidium Nd-Fe-B permanent magnet. Three groups of ideal parameters for the Nd-Fe-B permanent magnet MMAD, with a magnetic mirror ratio of 1.69, for all of them have been obtained. According to the research results on the noise of the escape cone of the MMAII, the angle between the incident direction and the axis is greater than 57°, so the trace electrons must be constrained by the magnetic mirror. We made 54 MMAs from Nd-Fe-B permanent magnets and packaged them in a container. Then the system was evacuated to 10-3  Pa at room temperature. It was found by experiment that the trace electrons could be actually constrained by the MMAD. The MMAII can be applied to images for static LLL objects.

  12. Magnetic

    National Research Council Canada - National Science Library

    Essam Aboud; Nabil El-Masry; Atef Qaddah; Faisal Alqahtani; Mohammed R.H. Moufti

    2015-01-01

    .... A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  16. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    OpenAIRE

    Mohamad Javad Tahmasebi-Birgani; Mohamad Reza Bayatiani; Fatemeh Seif; Mansur Zabihzadeh; Hojatolah Shahbazian

    2014-01-01

    Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D) through the non-uniform magnetic field, the Percentage Depth Dose(PDDs) on central axi...

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  2. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  4. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  5. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  6. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Cui, Weibin [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China); Northeastern University, Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Shenyang (China); Li, Guojian; Wang, Qiang [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China)

    2017-01-15

    Ultrahigh ambient coercivities of ∝4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy{sub 70}Cu{sub 30} and Dy{sub 80}Ag{sub 20} alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased. (orig.)

  7. Quantum Hall effect in epitaxial graphene with permanent magnets.

    Science.gov (United States)

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  8. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  9. The development of microstructure during hydrogenation-disproportionation-desorption-recombination treatment of sintered neodymium-iron-boron-type magnets

    Science.gov (United States)

    Sheridan, R. S.; Harris, I. R.; Walton, A.

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets.

  10. Dependence Of The Structure And Magnetic Properties Of Cast Plate-Shaped Nd60Fe30Al10 Samples On Their Thickness

    OpenAIRE

    Michalski B.; Kaszuwara W.; Latuch J.; Pawlik P.

    2015-01-01

    The hard magnetic Nd-Fe-Al alloys are inferior to Nd-Fe-B magnets as far as the magnetic properties are concerned, but their great advantage is that they need no additional annealing to achieve good magnetic properties. These properties depend on the cooling rate from the melting state, and on the thickness of the sample - the best values are achieved at the quenching rates at which the samples have a thickness of 0.3-2 mm. The present study is concerned with the correlation between the magne...

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  12. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  13. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  14. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    Science.gov (United States)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo; Dias, André; Dempsey, Nora M.; Bonfim, Marlio; Simonet, Pascal; Frénéa-Robin, Marie

    2017-04-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters.

  15. Effect of partial saturation of bonded neo magnet on the automotive accessory motor

    Science.gov (United States)

    Sheth, Nimitkumar K.; Angara, Raghu C. S. Babu

    2017-05-01

    In this paper the effects of using a partially magnetized bonded neo (NdFeB) magnet in an automotive accessory motor are presented. The potential reason for partial saturation of the bonded neo magnet is explained and a simple method to ensure saturation of the magnet is discussed. A magnetizing fixture design using the 2-D Finite element analysis (FEA) is presented. The motor performance at various magnet saturation levels has been estimated using the 2-D FEA. Details of the thermal demagnetization test adopted by the automotive industry is also discussed and results of the motor performance for four saturation levels are detailed. These results indicate that the effect of demagnetization is more adverse in a motor with partially saturated magnets.

  16. The microstructural characterisation of Nd-Fe-B alloys. Pt. 1; Light element microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yin, X.J. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom)); Hall, M.G. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom)); Jones, I.P. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom)); Faria, R.N. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom)); Harris, I.R. (School of Metallurgy and Materials, Univ. of Birmingham (United Kingdom))

    1993-07-01

    Analyses of oxygen and boron with spatial resolutions of a few [mu]m have been carried out using wavelength dispersive X-ray spectrometry (WDX) in a SEM on an as-cast Nd[sub 15]Fe[sub 77]B[sub 8] alloy (annealed at 1100 C for 1 h, followed by furnace cooling) and a laboratory produced hydrogen decrepitation (HD) route Nd[sub 16]Fe[sub 76]B[sub 8] sintered magnet. The optimum experimental parameters including standards, accelerating voltage and analysing crystal were determined. Excellent apparent concentration reproducibility has been achieved. Area/peak factors (APFs) for boron K for the Nd[sub 2]Fe[sub 14]B matrix phase and Nd[sub (1+[epsilon])]Fe[sub 4]B[sub 4] ([epsilon] [approx] 0.1) boron-rich phase have been determined with a Pb stearate crystal on a JEOL 840A SEM relative to a pure boron standard. (orig.)

  17. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  18. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  1. Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials

    Science.gov (United States)

    Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing

    2015-05-01

    This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.

  2. High coercivity in rare-earth lean nanocomposite magnets by grain boundary infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Madugundo, Rajasekhar, E-mail: mraja@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Salazar-Jaramillo, Daniel [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Manuel Barandiaran, Jose [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Department of Electricity & Electronics, University of the Basque Country (UPV/EHU), E-48080 Bilbao (Spain); Hadjipanayis, George C., E-mail: hadji@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-02-15

    A significant enhancement in coercivity was achieved by grain boundary modification through low temperature infiltration of Pr{sub 75}(Cu{sub 0.25}Co{sub 0.75}){sub 25} eutectic alloy in rare-earth lean (Pr/Nd)–Fe–B/α-Fe nanocomposite magnets. The infiltration procedure was carried out on ribbons and hot-deformed magnets at 600–650 °C for different time durations. In Nd{sub 2}Fe{sub 14}B/α-Fe ribbons, the coercivity increased from 5.3 to 23.8 kOe on infiltration for 4 h. The Pr{sub 2}Fe{sub 14}B/α-Fe hot-deformed magnet shows an increase in coercivity from 5.4 to 22 kOe on infiltration for 6 h. The increase in the coercivity comes at the expense of remnant magnetization. X-ray diffraction studies confirm the presence of both the hard Nd{sub 2}Fe{sub 14}B and soft α-Fe phases. A decrease in the soft α-Fe phase content was observed after infiltration. - Highlights: • Enhancement in coercivity was achieved by grain boundary modification. • Coercivity increased from 5.3 to 23.8 kOe in Nd{sub 2}Fe{sub 14}B/α-Fe on infiltration. • Pr{sub 2}Fe{sub 14}B/α-Fe deformed magnet shows an increase in coercivity from 5.4 to 22 kOe. • The increase in the coercivity comes at the expense of remnant magnetization. • A decrease in the soft α-Fe phase content was observed after infiltration.

  3. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai, E-mail: lihai7772006@126.com [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Liu, Xiaowei [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150001 (China); Dong, Changchun [School of Software, Harbin University of Science and Technology, Harbin, 150001 (China); Zhang, Haifeng [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China)

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  4. Mechanical properties of hot deformed Inconel 718 and X750

    OpenAIRE

    A. Nowotnik; P. Pędrak; J. Sieniawski; M. Góral

    2012-01-01

    Purpose: Variations of a flow stress vs. true strain illustrate behavior of material during plastic deformation. Stress-strain relationship is generally evaluated by a torsion, compression and tensile tests.Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloys of Inconel 718 and X750 at constant true strain rates of 10-4, 4x10-4s-1 within temperature through which precipitation hardening phases process occurred (720-1150°C) using...

  5. Effect of V on Hot Deformation Characteristics of TWIP Steels

    OpenAIRE

    Reyes,Francisco; Calvo Muñoz, Jessica; Cabrera Marrero, José M.; Mejía, Ignacio

    2012-01-01

    Twinning induced plasticity (TWIP) steels, which rely on high Mn contents to promote twinning as the deformation mechanism, exhibit high ultimate strengths together with outstanding combinations of ultimate strength and ductility. In terms of mechanical properties, one of the most important microstructural features is grain size. The knowledge of the kinetics of recrystallization mechanisms, i.e., dynamic recrystallization (DRX) and static recrystallization (SRX), can be used i...

  6. Magnetic levitation in the analysis of foods and water.

    Science.gov (United States)

    Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M

    2010-06-09

    This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains.

  7. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K J; Rodak, K, E-mail: kazimierz.ducki@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s{sup -1}. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called {sup f}reezing{sup .} The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  8. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Science.gov (United States)

    Ducki, K. J.; Rodak, K.

    2011-05-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 °C, at a strain rate 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called "freezing". The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  9. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  10. On the magnetic field architecture required to capture superparamagnetic nanoparticles in a microcapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Darton, Nicholas J., E-mail: njd28@cam.ac.uk; Hallmark, Bart; Agrawal, Pulkit; James, Tom; Ho, Vincent H. B.; Slater, Nigel K. H. [New Museums Site, Department of Chemical Engineering and Biotechnology (United Kingdom)

    2010-01-15

    The magnetic field required for the capture of superparamagnetic nanoparticles flowing in a microcapillary array under a constant pressure regime was investigated in vitro. It was found that the nanoparticles were captured in locations that varied significantly in magnetic field strength, and that the location of capture was strongly related to the net volumetric flow through the microcapillary array. A hypothesis is presented to explain these data in which the magnetic field of the trapping Neodymium Iron Boron (NdFeB) block magnet is divided into two zones that act differently on the nanoparticles. In the first 'steering zone', nanoparticles are moved closer to the capillary wall where they can be captured downstream in the second 'capture zone'. This hypothesis can be used in the future to design magnetic field shapes for more effective particle capture at higher flow rates with lower field strengths.

  11. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Katebi, Samira; Esmaeili, Abolghasem, E-mail: aesmaeili@sci.ui.ac.ir; Ghaedi, Kamran

    2016-03-15

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer. - Highlights: • Core/shell type Iron oxide nanoparticles were used as a novel and efficient method. • This method increases exogenous DNA uptake by rooster spermatozoa. • Static magnetic field decreased DNA uptake by rooster spermatozoa.

  12. The Rare Earth Magnet Industry and Rare Earth Price in China

    Directory of Open Access Journals (Sweden)

    Ding Kaihong

    2014-07-01

    Full Text Available In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  13. A portable, low-cost, 3D-printed main magnetic field system for magnetic imaging.

    Science.gov (United States)

    Iksung Kang

    2017-07-01

    In this paper, a portable, low-cost, 3D-printed system for main magnetic field is proposed to suggest a solution for accessibility problems of current magnetic imaging systems, e.g. MRI scanner, their size and cost. The system consists of twelve pairs of NdFeB N35 permanent magnets arranged in a Halbach array in a 3D-printed, cylindrical container based on FEM simulation results by COMSOL Multiphysics 4.4b. Its magnetic field homogeneity and field strength were measured by Hall sensors, WSH-135 XPAN2 by Wilson Semiconductor, and the container was printed by 3DISON H700 by Rokit. The system generated a 5-mm imaging quality FOV and main magnetic field of 120 mT with a 12 % error in the field strength. Also, a hundred dollar was enough for the manufacture of the system with a radius of 6 cm and height of 10 cm. Given the results, I believe the system will be useful for some magnetic imaging applications, e.g. EPRI and low-field MRI.

  14. COMPARATIVE ANALYSIS OF THE BEHAVIOR OF COAXIAL AND FRONTAL COUPLINGS – WITH PERMANENT MAGNETS – IN HIGH TEMPERATURE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Marcel Oanca

    2004-12-01

    Full Text Available This paper presents a comparative analysis of the behavior of coaxial and frontal couplings – with permanent magnets – in high temperature environments specific to iron and steel industry. The comparative analysis is made at the level of the specific forces developed in the most difficult environments. The maximum temperature was limited for reasons of thermal stability of the Nd-Fe-B permanent magnets. In this context it was studied, by the help of the PDE-ase soft that uses the finite element method, the way magnetic induction modifies, the specific forces developed and the distribution of temperature within the coaxial and frontal couplers with permanent magnets, for variations of the distance between the magnets (air gap within the limits 2-20 mm.

  15. The use of a neodymium-iron-boron magnet device for positioning a multi-stranded wire retainer in lingual retention--a pilot study in humans.

    Science.gov (United States)

    Hahn, Wolfram; Fricke, Julia; Fricke-Zech, Susanne; Zapf, Antonia; Gruber, Rudolf; Sadat-Khonsari, Reza

    2008-10-01

    The aim of this study was to evaluate the time requirement of a newly developed device made of neodymium-iron-boron (NdFeB) magnets for positioning a multi-stranded, canine-to-canine retainer during bonding compared with dental floss and a transfer tray. Forty-five patients aged between 12 and 33 years (26 male, 19 female) previously treated with fixed appliances were enrolled in the study. The patients were randomly allocated to three groups (15 per group). For each group a mandibular canine-to-canine retainer of 0.018 inch Dentaflex multi-stranded wire (Dentaurum) was prefabricated for each patient on a cast. The bonding procedure was identical, except for the method of positioning the wire during adhesive fixation: group A dental floss, group B a small prefabricated transfer tray of dental resin and group C the NdFeB magnet device. For each group, the time required for the complete bonding process was measured. Kruskal-Wallis and Wilcoxon-Mann-Whitney tests were used for group and pairwise comparisons, respectively. The three methods required statistically significant different times (P < 0.001). The Wilcoxon-Mann-Whitney test revealed that wire positioning with the magnet device was significantly faster [4.98 minutes; standard deviation (SD) 0.68 minutes] than with dental floss (7.65 minutes, SD 1.14 minutes; P = 0.0001) or with transfer tray (5.75 minutes, SD 0.57 minutes; P = 0.001). The NdFeB magnet device is a timesaving appliance for positioning a multi-stranded, canine-to-canine retainer during bonding when compared with dental floss and an individually prefabricated transfer tray.

  16. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering.

    Science.gov (United States)

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-03-01

    A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

  17. {open_quotes}Exchange-spring{close_quotes} Nd-Fe-B alloys: Investigations into reversal mechanisms and their temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.H.; Welch, D.O. [Brookhaven National Labs., Upton, NY (United States); Panchanathan, V. [Magnequench International, (MQI), Inc., Anderson, IN (United States)

    1996-10-01

    In order to investigate factors affecting coercivity a series of two-phase Nd{sub 2}Fe{sub 14}B-based nanocomposite alloys with different excess iron concentrations were produced by melt-spinning methods. The constituent grain size was estimated by diffraction methods to be in the range of 150 {Angstrom} - 500 {Angstrom}, and room-temperature demagnetization curves verify that the alloys studied exhibit a modest remanence enhancement. Isothermal remanence magnetization (IRM) and dc-demagnetization (DCD) measurements performed at temperatures in the range 275 K {le} T {le} 350 K illustrate that the coercivity and irreversible magnetization develops in a bimodal, incoherent manner from a demagnetized state but upon demagnetization from a saturated state the system evinces collective, exchange-coupled behavior as illustrated by the reversible magnetization M{sub rev}. The temperature dependencies and values of the irreversible susceptibility X{sub irr} (DCD) suggest that a moderating phase with a magnetic anisotropy intermediate to the two constituent main phases may be present in the alloys.

  18. Effects of external magnetic field on biodistribution of nanoparticles: A histological study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tony [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Hua, M.-Y. [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Chen Jyhping [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Wei, K.-C. [Department of Neurosurgery, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Chang, Y.-J. [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jou, M.-J. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)]. E-mail: yhma@mail.cgu.edu.tw

    2007-04-15

    This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe{sub 3}O{sub 4} NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP.

  19. Investigation of nanoparticle distribution formed by the rotation of the magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Andrej; Kozireva, Svetlana; Avotiņa, Dace; Chernobayeva, Lidija; Baryshev, Mikhail, E-mail: mbarisevs@latnet.lv

    2014-11-15

    An even dispersion of nanoparticles onto a cell monolayer may open up new options for the gene transfer into cells and this could be a valuable achievement in the field of nanotechnology based drug delivery. Here we report on our evaluation of superparamagnetic iron oxide nanoparticle (SPION) patterning formed by magnetic arrays with unipolar NdFeB magnet arrangements and describe a rotating magnetic array as well as underlying mechanisms of the nanoparticle pattern formation. SPION pattern derived from static magnetic array represents line-like pattern, while the pattern formed by orbital magnetic array is homogenously distributed nanoparticles. Our results show that the SPION sedimentation under the time-phase varying action of magnetic field occurs with horizontal motion of nanoparticles and forms a homogenous distribution of them on the target. In the process, the amplitude of nanoparticle displacement reaches up to 0.5 µm at the magnet boundary, at the greatest linear speed tested of 60 mm/s (magnetic field gradient: 50 T/m). Application of the orbital magnetic array increases the probability of nanoparticle-cell interactions and enhances the efficiency of the gene delivery. - Highlights: • Rotating magnet array distributes the nanoparticles uniformly onto the bottom of plate. • SPION pattern formation occurs with displacement of nanoparticles in the x–y plane. • Rotating magnet array allows the protocol to be tailored to suit specific cell types. • Two magnets moving in particular orbits form a hyper concentrated pattern of SPIONs.

  20. Ferrites and Different Winding Types in Permanent Magnet Synchronous Motor

    Science.gov (United States)

    Sekerák, Peter; Hrabovcová, Valéria; Pyrhönen, Juha; Kalamen, Lukáš; Rafajdus, Pavol; Onufer, Matúš

    2012-05-01

    This paper deals with design of permanent magnet synchronous machines with ferrites. The ferrites became popular due to their low cost and cost increasing of NdFeB. The progress in ferrite properties in the last decade allows the use of ferrites in high power applications. Three models of ferrite motors are presented. It is shown that also the type of stator winding and the shape of the slot opening have an important effect on the PMSM properties. The first motor has a distributed winding, the second motor has concentrated, non-overlapping winding and open stator slots. The third motor has a concentrated non-overlapping winding and semi - open slots. All models are designed for the same output power and they do not have the same dimensions. The paper shows how important the design of an electric machine is for excellent motor properties or better to say how the motor properties can be improved by an appropriate design.

  1. Magnetic Materials: Novel Monitors of Long-Term Evolution of Engineered Barrier Systems

    Directory of Open Access Journals (Sweden)

    Simon L. Harley

    2016-12-01

    Full Text Available Most safety cases for the deep geological disposal of radioactive waste are reliant on the swelling of bentonite in the engineered barrier system as it saturates with groundwater. Assurance of safety therefore requires effective monitoring of bentonite saturation. The time- and fluid-dependent corrosion of synthetic magnets embedded in bentonite is demonstrated here to provide a novel and passive means of monitoring saturation. Experiments have been conducted at 70 °C in which neo magnets, AlNiCo magnets, and ferrite magnets have been reacted with saline (NaCl, KCl, CaCl2 solutions and alkaline fluids (NaOH, KOH, Ca(OH2 solutions; pH = 12 in the presence of bentonite. Nd-Fe-B magnets undergo extensive corrosion that results in a dramatic change from ferromagnetic to superparamagnetic behaviour concomitant with bentonite saturation. AlNiCo magnets in saline solutions show corrosion but only limited decreases in their magnetic intensities, and ferrite magnets are essentially unreactive on the experimental timescales, retaining their initial magnetic properties. For all magnets the impact of their corrosion on bentonite swelling is negligible; alteration of bentonite is essentially governed by the applied fluid composition. In principle, synthetic magnet arrays can, with further development, be designed and embedded in bentonite to monitor its fluid saturation without compromising the integrity of the engineered barrier system itself.

  2. First order reversal curve analysis on NdFeB nanocomposite ribbons subjected to Joule heating treatments

    Energy Technology Data Exchange (ETDEWEB)

    Pampillo, L.G. [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina); Saccone, F.D., E-mail: fsaccone@fi.uba.ar [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina); Knobel, M. [Instituto de Fisica Gleb Wataghin-Departamento de Fisica de Materia Condensada-Universidade Estadual de Campinas, Cidade Universitaria Zeferino Vaz, Barao Geraldo 13083-970, Campinas, Sao Paulo (Brazil); Sirkin, H.R.M. [INTECIN-Instituto de Tecnologias y ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850 (C1063ACV), C. A. B. A. (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nd-lean amorphous precursors subjected to Joule heating. Black-Right-Pointing-Pointer Exchange-spring magnets. Black-Right-Pointing-Pointer FORC diagrams of irreversible switching fields. Black-Right-Pointing-Pointer This last techniques helped us to verify the optimized treatments conditions. - Abstract: Amorphous precursors with composition Nd{sub 4.5}Fe{sub 72-x}Co{sub 3+x}Cr{sub 2}Al{sub 1}B{sub 17.5} (x = 0, 2, 7, 12) were thermally treated by the Joule heating technique with a linearly varying electrical current. The crystallization kinetics was followed by monitoring the resistance of the ribbons during the heating up to the final applied current. Crystallized nanostructured phases coexist with an amorphous matrix, as it was observed by means of Moessbauer Spectroscopy and X-ray diffraction. The irreversible magnetic response of the Joule heated ribbons was analyzed by the First Order Reversal Curves (FORC) diagram technique. For the optimal treatments, associated with the higher maximum energy products for each sample composition, it was found that the main interaction is of a strongly dipolar characteristic. Over annealed samples show a FORC diagram that gives into account of softening, due to grain growth, for those phases precipitated at the first crystallization stage. When it is measured at 20 K, the hardest magnetic sample (Fe = 72 at.%, Co = 3 at.%, I{sub final} = 0.5 A), exhibits a diagram with characteristics corresponding to dipolar interactions of soft phases. This fact is consistent with an enhancement of the exchange length due to the increase in the soft phase stiffness as it is expected at low temperatures.

  3. Influence on flux density of intraoral dental magnets during 1.5 and 3.0 Tesla MRI; Beeinflussung der Flussdichte intraoraler Dentalmagnete im 1,5 und 3 Tesla-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Blankenstein, F.H.; Peroz, I. [Charite, Berlin (Germany). Charite Centrum 3 - Zahn-, Mund- und Kieferheilkunde; Truong, B. [Zahnarztpraxis Berlin (Germany); Thomas, A. [Charite, Berlin (Germany). Charite Centrum 6 - Diagnostische und Interventionelle Radiologie und Nuklearmedizin; Boeckler, A. [Halle-Wittenberg Univ. (Germany). Zentrum fuer Zahn-, Mund- und Kieferheilkunde

    2011-08-15

    Purpose: When using dental duo-magnet systems, a mini-magnet remains in the jaw after removal of the prosthesis. In some cases, implant-borne magnets may be removed, whereas tooth-borne magnets are irreversibly fixed on a natural tooth root. The goal of this paper is to identify the impacts of the duration and orientation of exposure on these magnets in a 1.5 or 3 Tesla MRI. Materials and Methods: For this study, 30 SmCo and 60 NdFeB magnets were used. During the first experiment, they were exposed with free orientation for 64 minutes. During the second experiment, the magnets were fixed in position and exposed at 1.5 and 3 Tesla while aligned in a parallel or antiparallel direction. Results: While the duration of exposure in MRI is irrelevant, the orientation is not. The coercive field strength of these NdFeB and SmCo alloys is not sufficient to reliably withstand demagnetization in a 1.5 or 3 T MRI when aligned in an antiparallel direction. At 1.5 T neodymium magnets were reduced to approx. 34 % and samarium magnets to approx. 92 % of their initial values. At 3 T all magnets were reversed. Conclusion: As a precaution, the worst-case scenario, i.e. an antiparallel orientation, should be assumed when using a duo-magnet system. If an MRI can be postponed, the general dentist should remove implant-borne magnets. If there is a vital indication, irreversible damage to the magnets is acceptable in consultation with the patient since the replacement costs are irrelevant given the underlying disease. (orig.)

  4. A Review of Permanent Magnet Stirring During Metal Solidification

    Science.gov (United States)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-12-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  5. A Review of Permanent Magnet Stirring During Metal Solidification

    Science.gov (United States)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-08-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  6. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    Science.gov (United States)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd-Fe-B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  7. A study on the changes in attractive force of magnetic attachments for overdenture.

    Science.gov (United States)

    Leem, Han-Wool; Cho, In-Ho; Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-02-01

    Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (Pforce was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (Pmagnetic attachments showed detachment of keeper or assembly. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

  8. MAGNETIC STRUCTURE AND MAGNETIC IMAGING OF RE{sub 2}Fe{sub 14}B (RE=Nd,Pr) PERMANENT MAGNETS

    Energy Technology Data Exchange (ETDEWEB)

    ZHU,Y.; VOLKOV,V.V.

    2000-04-20

    This chapter aims to review the magnetic structures observed in the RE{sub 2}Fe{sub 14}B (RE = Nd, Pr) system using various TEM magnetic imaging techniques. The authors focus on studies of die-upset Nd-based permanent magnets conducted mainly at Brookhaven National Laboratory in the past several years. Investigations on Nd-Fe-B sintered magnets and single crystals, as well as Pr-Fe-B die-upset magnets also will be covered. In Sec.2 and Sec.3 they review the microstructure, including grain alignment and secondary phases of the materials, and grain boundary structure and composition of the intergranular phase. Sec.4 is devoted to the domain structure, such as the width of domain and domain wall and domain-wall energy. Monte Carlo simulation of the effects of demagnetization fields will be presented in Sec.5. In-situ experiments on the dynamic behavior of domain reorientation as a function of temperature, pinning, grain boundary nucleation related to coercivity under various fields are described in Sec.6. Finally, in Sec.7 the correlation between microstructure and properties are discussed.

  9. Construction of CHESS compact undulator magnets at Kyma

    Science.gov (United States)

    Temnykh, Alexander B.; Lyndaker, Aaron; Kokole, Mirko; Milharcic, Tadej; Pockar, Jure; Geometrante, Raffaella

    2015-05-01

    In 2014 KYMA S.r.l. has built two CHESS Compact Undulator (CCU) magnets that are at present installed and successfully operate at the Cornell Electron Storage Ring. This type of undulator was developed for upgrade of Cornell High Energy Synchrotron Source beam-lines, but it can be used elsewhere as well. CCU magnets are compact, lightweight, cost efficient and in-vacuum compatible. They are linearly polarized undulators and have a fixed gap. Magnetic field tuning is achieved by phasing (shifting) top magnetic array relative bottom. Two CCUs constructed by KYMA S.r.l. have 28.4 mm period, 6.5 mm gap, 0.93 T peak field. Magnetic structure is of PPM type, made with NdFeB (40UH grade) permanent magnet material. Transitioning from the laboratory to industrial environment for a novel design required additional evaluation, design adjusting and extensive testing. Particular attention was given to the soldering technique used for fastening of the magnetic blocks to holders. This technique had thus far never been used before for undulator magnet construction by industry. The evaluation included tests of different types of soldering paste, measurements of strength of solder and determining the deformations of the soldered magnet and holder under simulated loading forces. This paper focuses on critical features of the CCU design, results of the soldering technique testing and the data regarding permanent magnets magnetization change due to soldering. In addition it deals with optimization-assisted assembly and the performance of the assembled devices and assesses some of the results of the CCU magnets operation at CESR.

  10. Comparison of Achievable Magnetic Fields with Superconducting and Cryogenic Permanent Magnet Undulators – A Comprehensive Study of Computed and Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dejus, R. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sasaki, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Magnetic modeling was performed to estimate achievable magnetic field strengths of superconducting undulators (SCUs) and to compare them with those of cryogenically cooled permanent magnet undulators (CPMUs). Starting with vacuum (beam stay-clear) gaps of 4.0 and 6.0 mm, realistic allowances for beam chambers (in the SCU case) and beam liners (in the CPMU case) were added. (A 6.0-mm vacuum gap is planned for the upgraded APS). The CPMU magnetic models consider both CPMUs that use NdFeB magnets at ~150 K and PrFeB magnets at 77 K. Parameters of the magnetic models are presented along with fitted coefficients of a Halbach-type expression for the field dependence on the gap-to-period ratio. Field strengths for SCUs are estimated using a scaling law for planar SCUs; an equation for that is given. The SCUs provide higher magnetic fields than the highest-field CPMUs – those using PrFeB at 77 K – for period lengths longer than ~14 mm for NbTi-based SCUs and ~10 mm for Nb3Sn-based SCUs. To show that the model calculations and scaling law results are realistic, they are compared to CPMUs that have been built and NbTi-based SCUs that have been built. Brightness tuning curves of CPMUs (PrFeB) and SCUs (NbTi) for the upgraded APS lattice are also provided for realistic period lengths.

  11. Measuring densities of solids and liquids using magnetic levitation: fundamentals.

    Science.gov (United States)

    Mirica, Katherine A; Shevkoplyas, Sergey S; Phillips, Scott T; Gupta, Malancha; Whitesides, George M

    2009-07-29

    This paper describes an analytical system that uses magnetic levitation to measure densities of solids and water-immiscible organic liquids with accuracies ranging from +/-0.0002 to +/-0.02 g/cm(3), depending on the type of experiment. The technique is compatible with densities of 0.8-3 g/cm(3) and is applicable to samples with volumes of 1 pL to 1 mL; the samples can be either spherical or irregular in shape. The method employs two permanent NdFeB magnets positioned with like poles facing one another--with the axis between the poles aligned with the gravitational field--and a container filled with paramagnetic medium (e.g., MnCl(2) dissolved in water) placed between these magnets. Density measurements are obtained by placing the sample into the container and measuring the position of the sample relative to the bottom magnet. The balance of magnetic and gravitational forces determines the vertical position of the sample within the device; knowing this position makes it possible to calculate the density of the sample.

  12. High temperature superconducting axial field magnetic coupler: realization and test

    Science.gov (United States)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  13. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    Energy Technology Data Exchange (ETDEWEB)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo [Univ Lyon, ECL, UCB Lyon1, CNRS, Ampere, F-69134 Ecully (France); Dias, André; Dempsey, Nora M. [Univ. Grenoble Alpes - CNRS, Inst Neel, F-38042 Grenoble (France); Bonfim, Marlio [Universidade Federal do Paraná, DELT, Curitiba (Brazil); Simonet, Pascal; Frénéa-Robin, Marie [Univ Lyon, ECL, UCB Lyon1, CNRS, Ampere, F-69134 Ecully (France)

    2017-04-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters. - Highlights: • Soft and hard magnetic PDMS composites were microstructured by injection molding. • Tunable or autonomous magnetic microdevices can be fabricated using this approach. • Continuous-flow bacterial cell trapping and deviation were demonstrated.

  14. Influence of static magnetic fields on S. cerevisae biomass growth

    Directory of Open Access Journals (Sweden)

    João B. Muniz

    2007-05-01

    Full Text Available Biomass growth of Saccharomyces cerevisiae DAUFPE-1012 was studied in eight batch fermentations exposed to steady magnetic fields (SMF running at 23ºC (± 1ºC, for 24 h in a double cylindrical tube reactor with synchronic agitation. For every batch, one tube was exposed to 220mT flow intensity SMF, produced by NdFeB rod magnets attached diametrically opposed (N to S magnets on one tube. In the other tube, without magnets, the fermentation occurred in the same conditions. The biomass growth in culture (yeast extract + glucose 2% was monitored by spectrometry to obtain the absorbance and later, the corresponding cell dry weight. The culture glucose concentration was monitored every two hours so as the pH, which was maintained between 4 and 5. As a result, the biomass (g/L increment was 2.5 times greater in magnetized cultures (n=8 as compared with SMF non-exposed cultures (n=8. The differential (SMF-control biomass growth rate (135% was slightly higher than the glucose consumption rate (130 % leading to increased biomass production of the magnetized cells.O crescimento da biomassa da Saccharomyces cerevisiae DAUFPE-1012 foi estudado em oito bateladas de fermentação, cada uma exposta aos campos magnéticos contínuos (CMC, à 23ºC (± 1ºC, durante um período de 24 horas em um reator duplo com agitação sincrônica. Em cada batelada,um tubo foi exposto ao CMC, com 220mT de intensidade de fluxo, produzidos por imãs de NdFeB fixados diametralmente opostos (N para S em um tubo do reator de fermentação. Em outro tubo, sem imãs, a fermentação ocorreu nas mesmas condições. O crescimento da biomassa nas culturas (extrato de fermento + glicose 2% foi monitorado através de espectrometria e correlacionado ao peso seco de levedura. A concentração de glicose nas culturas foi monitorada a cada duas horas e o pH foi mantido entre 4 e 5. Como resultado, a biomassa (g/L aumentou 2,5 vezes nas culturas magnetizadas (n=8 quando comparadas com as

  15. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  16. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  17. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  18. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  19. Magnetic composite Hydrodynamic Pump with Laser Induced Graphene Electrodes

    KAUST Repository

    Khan, Mohammed Asadullah

    2017-05-24

    A polymer based magneto hydrodynamic pump capable of actuating saline fluids is presented. The benefit of this pumping concept to operate without any moving parts is combined with simple and cheap fabrication methods and a magnetic composite material, enabling a high level of integration. The operating principle, fabrication methodology and flow characteristics of the pump are detailed. The pump electrodes are created by laser printing of polyimide, while the permanent magnet is molded from an NdFeB powder - polydimethylsiloxane (PDMS) composite. The cross-section area of the pump is 240 mm $^2$ . The electrode length is 5 mm. The magnetic characteristics of the NdFeB-PDMS composite indicate high degree of magnetization, which increases the pump efficiency. Using a saline solution similar to seawater, the pump produces 3.4 mm/s flow velocity at a voltage of 7.5V and a current density of 30 mA/cm $^2$ .

  20. Global use structures of the magnetic materials neodymium and dysprosium. A scenario-based analysis of the effect of the diffusion of electromobility on the demand for rare earths; Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium. Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilitaet auf den Bedarf an Seltenen Erden

    Energy Technology Data Exchange (ETDEWEB)

    Gloeser-Chahoud, Simon; Kuehn, Andre; Tercero Espinoza, Luis

    2016-06-15

    Neodymium-iron-boron magnets (NdFeB) have experienced a significant demand as the most powerful permanent magnet in recent years, especially for the manufacture of compact electric servomotors with high efficiency and high power density, especially for mobile applications in hybrid traction motors and electric vehicles or for electric bikes. However, NdFeB magnets are also increasingly being used in general mechanical engineering (conveying and pumping systems, tools, air conditioning systems, lift motors, etc.), in the small electric motors of conventional passenger cars or in the generators of large wind power plants with permanent magnetic direct drive. Nevertheless, there is still high uncertainty in the use structures of NdFeB magnets and the contained rare earth elements neodymium and dysprosium. An effective instrument for increasing the market transparency and the understanding of complex anthropogenic material cycles is the dynamic material flow modeling. In the present work paper, this instrument is used for an in-depth analysis of the use structures of NdFeB magnets and the contained rare earths on a global scale. The dynamic modeling of product usage cycles reveals today's usage structures and quantifies future magnetic quantities in obsolete product flows. It could be shown that the magnets in today's scrap volume are mainly contained in obsolete electronics applications such as hard disks (HDD), CD and DVD drives, which makes the recycling hardly seem to be economical due to the small magnets and the high material spread, but in the foreseeable future with larger magnetic quantities from synchronous servomotors and generators can be expected, which significantly increases the recycling potential. In a further step, the effect of the diffusion of alternative drives in the automotive market on the dysprosium requirement is analyzed using a system dynamics model and possible adaptation mechanisms in the form of different substitution effects in

  1. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  2. Anisotropic magnetic property of nanocomposite Nd2Fe14B/Mo/α-Fe multilayer films

    Science.gov (United States)

    Kobayashi, K.; Ogawa, D.; Koike, K.; Kato, H.; Oogane, M.; Miyazaki, T.; Ando, Y.; Itakura, M.

    2017-10-01

    We fabricated the MgO(100)/Mo/[Nd2Fe14B/Mo/Fe/Mo]5/Mo multilayer films, in which we tried to avoid the negative J ex interfaces and thermal diffusion between Nd2Fe14B and α–Fe layers by forming the stacked structure with ultra thin Mo interlayer. The films without Mo interlayer showed isotropic magnetic properties, while films with Mo interlayer thickness t Mo = 1 nm exhibited the perpendicular anisotropy with the coercivity of 7 kOe. Shapes for the major loop and the first order reversal curves (FORCs) suggested an existence of positive exchange coupling between the Nd-Fe-B and the α–Fe layers via the 1 nm thick Mo interlayer.

  3. Design and Analysis of the AlNiCo Hybrid Magnet in EMS Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Lv Chao

    2017-01-01

    Full Text Available In order to solve the problem of hybrid electromagnet lock orbit, we design a new type of AlNiCo-NdFeB hybrid levitation electromagnet. The theoretical analysis has be carried on and mathematical model is established for AlNiCo-NdFeB hybrid levitation electromagnet. Through two dimensional simulation, the electromagnetic characteristics of the suspended electromagnet are analyzed in the 3 typical operating conditions , which are in heavy load at gap 8mm, in full load at gap 16mm and in no-load at gap 3mm. And it’s compared with the traditional electromagnetic magnet and NdFeB hybrid electromagnet. Calculation and analysis show that the new hybrid levitation electromagnet can effectively solve the problems of the electromagnet lock orbit, at the same time, have a good dynamic performance and suspension regulation performance.

  4. The status of Chinese permanent magnet industry and R&D activities

    Science.gov (United States)

    Dong, Shengzhi; Li, Wei; Chen, Hongsheng; Han, Rui

    2017-05-01

    It has been 15 years since China dominated the rare earth permanent magnet market in 2001. The annual output of sintered Nd-Fe-B magnets in China reached a new record of 126,300 tonnages in 2015 while the output in 2001 is only 6,500 tonnages. The average growth rate from 2001 to 2015 is about 23.5% though the output in 2012 suffers a deep drop due to the well known rare earth crisis in 2011. Currently, the RE magnet production capability in China seems to be over developed compared to actual requirements. Needless to say the oversupply situation implies a hard time for RE magnet manufacturers due to the fierce competition but maybe a good time for the whole industry. The motivation for a company to develop new technology and more competitive products with better performance and/or lower costs is greatly enhanced. The objective of this paper is to give a general picture of Chinese REPM industry and market including the output capability, the status of competition, the development of magnet application and the market trend. Some new research hot points potentially being applied, for example the Cerium magnet, will be introduced as well.

  5. Novel microwave assisted chemical synthesis of Nd₂Fe₁₄B hard magnetic nanoparticles.

    Science.gov (United States)

    Swaminathan, Viswanathan; Deheri, Pratap Kumar; Bhame, Shekhar Dnyaneswar; Ramanujan, Raju Vijayaraghavan

    2013-04-07

    The high coercivity and excellent energy product of Nd2Fe14B hard magnets have led to a large number of high value added industrial applications. Chemical synthesis of Nd2Fe14B nanoparticles is challenging due to the large reduction potential of Nd(3+) and the high tendency for Nd2Fe14B oxidation. We report the novel synthesis of Nd2Fe14B nanoparticles by a microwave assisted combustion process. The process consisted of Nd-Fe-B mixed oxide preparation by microwave assisted combustion, followed by the reduction of the mixed oxide by CaH2. This combustion process is fast, energy efficient and offers facile elemental substitution. The coercivity of the resulting powders was ∼8.0 kOe and the saturation magnetization was ∼40 emu g(-1). After removal of CaO by washing, saturation magnetization increased and an energy product of 3.57 MGOe was obtained. A range of magnetic properties was obtained by varying the microwave power, reduction temperature and Nd to Fe ratio. A transition from soft to exchange coupled to hard magnetic properties was obtained by varying the composition of NdxFe1-xB8 (x varies from 7% to 40%). This synthesis procedure offers an inexpensive and facile platform to produce exchange coupled hard magnets.

  6. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  7. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray∕MR system

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T.; Pelc, Norbert J.

    2008-01-01

    In this x-ray∕MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is ∼0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner. PMID:18841840

  8. Portacaval shunt established in six dogs using magnetic compression technique.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Yan

    Full Text Available BACKGROUND AND AIMS: Installing the transjugular intrahepatic portosystemic shunt for portal hypertension is relatively safe, but complications are still high. To explore a new method of portacaval shunt, the magnetic compression technique was introduced into the shunting procedure. METHODS: A portal-inferior vena cava shunt was performed on 6 male mongrel dogs by two hemocompatible Nd-Fe-B permanent magnets, parent and daughter. The parent magnet was applied to the inferior vena cava guided by a catheter through the femoral vein. The daughter magnet was moved to the anastomosis position on the portal vein with a balloon catheter through the splenic vein. After the daughter magnet reached the target position, the two magnets acted to compress the vessel wall and hold it in place. Five to 7 days later, under X-ray guidance, the magnets were detached from the vessel wall with a rosch-uchida transjugular liver access set. One month later, histological analysis and portal venography were performed. RESULTS: 5-7 days after the first surgery, a mild intimal hyperplasia in the portal vein and the inferior vena cava, and continuity of the vascular adventitia from the portal vein to the inferior vena cava as observed. During the second surgery, the contrast media could be observed flowing from the portal vein into the inferior vena cava. Portal venography revealed that the portosystemic shunt was still present one month after the second surgery. CONCLUSIONS: Magnamosis via a device of novel design was successfully used to establish a portacaval shunt in dogs.

  9. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  10. Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports.

    Science.gov (United States)

    Mirica, Katherine A; Phillips, Scott T; Shevkoplyas, Sergey S; Whitesides, George M

    2008-12-31

    This communication describes a density-based method that uses magnetic levitation for monitoring solid-supported reactions and for distinguishing differences in chemical composition of polymers. The method is simple, rapid, and inexpensive and is similar to thin-layer chromatography (TLC; for solution-phase chemistry) in its potential for monitoring reactions in solid-phase chemistry. The technique involves levitating a sample of beads (taken from a reaction mixture) in a cuvette containing a paramagnetic solution (e.g., GdCl(3) dissolved in H(2)O) positioned between two NdFeB magnets. The vertical position at which the beads levitate corresponds to the density of the beads and correlates with the progress of a chemical reaction on a solid support. The method is particularly useful for monitoring the kinetics of reactions occurring on polymer beads.

  11. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Tahmasebi-Birgani

    2014-04-01

    Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.

  12. Magnetic microparticles for harvesting Dunaliella tertiolecta microalgae

    Science.gov (United States)

    Manousakis, Emmanouil; Manariotis, Ioannis D.

    2016-04-01

    Microalgae based biofuels have been considered as a sustainable alternative to traditional fuels due to the higher biomass yield and lipid productivity, and the ability to be cultivated in non arable land making them not antagonistic with food supply chain. Due to the dilute nature of algal cultures and the small size of algae cells, the cost of microalgae harvesting is so far a bottleneck in microalgal based biofuel production. It is estimated that the algal recovery cost is at least 20-30% of the total biomass production cost. Various processes have been employed for the recovery of microalgal biomass, which include centrifugation, gravity separation, filtration, flocculation, and flotation. Recently, magnetophoric harvesting has received increased attention for algal separation, although it has been first applied for algal removal since the mid of 1970s. The magnetic separation process is based on bringing in contact the algal cells with the magnetic particles, and separating them from the liquid by an external magnetic force. The aim of this work was to investigate the harvesting of microalgae cells using Fe3O4 magnetic microparticles (MPs). Dunaliella tertiolecta was selected as a representative for marine microalgae. D. tertiolecta was cultivated under continuous artificial light, in 20 L flasks. Fe3O4 MPs were prepared by microwave irradiation of FeSO4 7H2O in an alkaline solution. Numerous batch and flow-through experiments were conducted in order to investigate the effect of the magnetic material addition on microalgae removal. Batch experiments were conducted examining different initial algal and MPs concentration, and algal culture volume. Flow-through experiments were conducted in a laboratory scale column made of Plexiglass. External magnetic field was applied by arranging at various points across the column length NdFeB magnets. Algal removal in flow-through experiments ranged from 70 to 85% depending on the initial MPs concentration and the hydraulic

  13. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    Science.gov (United States)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  14. Field Distribution of Transcranial Static Magnetic Stimulation in Realistic Human Head Model.

    Science.gov (United States)

    Tharayil, Joseph J; Goetz, Stefan M; Bernabei, John M; Peterchev, Angel V

    2017-10-10

    The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 . This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature. © 2017 International Neuromodulation Society.

  15. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy.

    Science.gov (United States)

    Zhou, Zhiguo; Sun, Yanan; Shen, Jinchao; Wei, Jie; Yu, Chao; Kong, Bin; Liu, Wei; Yang, Hong; Yang, Shiping; Wang, Wei

    2014-08-01

    The development of photothermal agents (PTAs) with good stability, low toxicity, highly targeting ability and photothermal conversion efficiency is an essential pre-requisite to near-infrared photothermal therapy (PTT) in vivo. Herein, we report the readily available PEGylated Fe@Fe3O4 NPs, which possess triple functional properties in one entity - targeting, PTT, and imaging. Compared to Au nanorods, they exhibit comparable photothermal conversion efficiency (∼20%), and much higher photothermal stability. They also show a high magnetization value and transverse relaxivity (∼156 mm(-1) s(-1)), which should be applied for magnetic targeting MRI. With the Nd-Fe-B magnet (0.5 T) beside the tumour for 12 h on the xenograft HeLa tumour model, PEGylated Fe@Fe3O4 NPs exhibit an obvious accumulation. In tumour, the intensity of MRI signal is ∼ three folds and the increased temperature is ∼ two times than those without magnetic targeting, indicating the good magnetic targeting ability. Notably, the intrinsic high photothermal conversion efficiency and selective magnetic targeting effect of the NPs in tumour play synergistically in highly efficient ablation of cancer cells in vitro and in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    Science.gov (United States)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-08-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.

  17. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  18. A novel all-in-one magnetic pump and power harvester design for bio-medical applications

    Science.gov (United States)

    Kim, Sung Hoon; Shin, Jaewon; Hashi, Shuichiro; Ishiyama, Kazushi

    2011-03-01

    This paper presents a magnetic centrifugal pump with a magnetic power harvester (all-in-one system) for medical applications. The proposed pump is driven by an external rotating magnetic field. To produce pressure and electrical power, an all-in-one device consisting of a pump and a power harvester was designed. It consists of a multi-stage impeller, a disc type NdFeB permanent magnet, and a fixed wound coil on the pump case. The rotation of the rotor creates a continuous flow of liquid through the pump, with a pressure head, and an electrical power is generated in the wound coil because of the rotating magnetic field. The maximum flow rate and pressure are 5000 ml min-1 and 16 kPa, respectively, at 100 Hz. These results meet the requirements of an artificial heart assistance blood pump. Under these operating conditions, the harvested voltage can reach a maximum of 8.2 Vp-p. With this configuration and control method, wireless and battery-free operation is possible, which is required in the medical field. Moreover, the power harvester can monitor the pump conditions without additional electrical power and can provide electrical power to other implanted electrical devices. The performances of the pump and power harvester were verified in a laboratory experiment. Overall, the proposed system acts as a pump and a power harvester that is fully wireless and battery-free.

  19. INFLUENCE OF QUANTITATIVE ALLOYING OF TOOL STEELS FOR HOT DEFORMATION ON THE LEVEL OF HARDENING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2015-01-01

    Full Text Available The influence of complexly experimental tool steels: C (0,4–0,50%, Si (0,6–1,2%, Mn (0,17–0,8%, Cr (0,8–3%, W (0,9– 4%, Mo (0,01–3.5% and V (0,28–1,8% on their ability to hardening due to only high-temperature tempering after induction melting, casting in the ceramic mold and air cooling (without deformation and after the various modes of complete heat treatment cycle

  20. Influence o the microstructure of duplex stainless steels on their failure characteristics during hot deformation

    Directory of Open Access Journals (Sweden)

    Reis G.S.

    2000-01-01

    Full Text Available Two types of duplex stainless steels were deformed by torsion at a temperature range of 900 to 1200 °C and strain rate of 1.0 s-1 and their final microstructures were observed. The austenite volume fraction of steel A (26.5Cr - 4.9Ni - 1.6Mo is approximately 25% at room temperature, after conventional annealing, while that of steel B (24Cr - 7.5Ni - 2.3Mo is around 55%. Experimental data show that steel A is ductile at high temperatures and displays low ductility at low temperatures, while steel B has low ductility in the entire range of temperatures studied. At high temperatures, steel A is essentially ferritic and shows dynamic recrystallized grains after deformation. When steel A is strained at low temperatures and displays low austenite volume fraction, microstructural observations indicate that failure is triggered by grain boundary sliding due to the formation of an austenite net structure at the ferrite grain boundaries. At intermediate volume fraction, when austenite forms a dispersed second-phase in steels A and B, failure begins at the ferrite/ferrite boundaries since some of the new ferrite grains may become immobilized by the austenite particles. When steel B is strained at volume fraction of around 50% of austenite and both phases percolate the microstructure, failure occurs after low straining as a consequence of the different plastic behaviors of each of the phases. The failure characteristics of both steels are correlated not only with the volume fraction of austenite but also with its distribution within the ferrite matrix, which limits attainable strain without failure.

  1. Constitutive Analysis and Hot Deformation Behavior of Fine-Grained Mg-Gd-Y-Zr Alloys

    Science.gov (United States)

    Alizadeh, R.; Mahmudi, R.; Ruano, O. A.; Ngan, A. H. W.

    2017-11-01

    Mg-Gd-Y-Zr alloys are among the newly developed magnesium alloys with superior strength properties at elevated temperatures. Accordingly, the hot shear deformation behavior of fine-grained extruded Mg-9Gd-4Y-0.4Zr (GWK940), Mg-5Gd-4Y-0.4Zr (GWK540), and Mg-5Gd-0.4Zr (GK50) alloys was investigated using the localized shear punch testing (SPT) method. Shear punch tests were performed at 573 K, 623 K, 673 K, 723 K, and 773 K (300 °C, 350 °C, 400 °C, 450 °C, and 500 °C) under shear strain rates in the range of 6.7 × 10-3 to 6.7 × 10-2 s-1. The new fitting method of Rieiro, Carsi, and Ruano was used for direct calculation of the Garofalo constants. It was concluded that the Garofalo equation can be used satisfactorily for describing the deformation behavior of the alloys in the entire studied ranges of strain rates and temperatures. In addition, stability maps were obtained by calculations based on the Lyapunov criteria using the Garofalo constants. The predicted stability ranges of temperature and strain rate were similar for the studied alloys. At an intermediate strain rate of 0.05 s-1, the optimal temperature at which a stable region is expected was found to be 648 K to 673 K (375 °C to 400 °C) for all three materials. The most pronounced effect of the Gd and Y elements was to enhance the high-temperature strength of the alloys.

  2. Hot-deformation behaviour of α+β Ti-Al-V-Fe experimental alloys

    Science.gov (United States)

    Prozesky, Dawid J.; Bodunrin, Michael O.; Chown, Lesley H.

    2017-10-01

    To reduce the cost of metallic alloys the first approach considered is to substitute expensive alloying elements with inexpensive elements that fulfil similar functions. The second approach is to optimise the microstructure and mechanical properties of the alloys by adjusting processing conditions. Iron, a cheap β-stabilising element in titanium alloys, was added to partially substitute vanadium in experimental Ti-6Al-xV-yFe alloys (where x = 1-4, y = 0-3 and x+y = 4). Unlike other studies where vanadium was totally replaced by iron, in this work partial substitution of V by 1-3 wt % Fe was made to limit the possibility of forming intermetallic phases in the alloys. The experimental alloys were produced by vacuum arc melting and the small ingots were machined to produce plane strain compression samples for hot isothermal testing on a Gleeble 3500. The tests were done at a temperature of 900°C, strain rate of 1s-1 and total strains of 0.6 and 1.2, under plane strain conditions. The microstructures of the as-cast and deformed samples were analysed using optical and scanning electron microscopy (SEM) to assess the deformation mechanisms. The flow stress curves showed that the as-cast Ti-6Al-4V had a higher resistance to deformation than the iron-added experimental alloys. The amount of total strain had a significant effect on the flow behaviour of the alloys. Microscopy showed that deformation bands were more prominent in the deformed Ti-6Al-4V alloy than in the deformed Ti-Al-V-Fe alloys. SEM images revealed rotation and bending of α-laths in the deformed experimental Ti-Al-V-Fe alloys. The low resistance to deformation observed in the experimental alloys at 900°C was sensitive to the higher ratio of iron to vanadium.

  3. Hot Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)

    Science.gov (United States)

    2008-02-01

    back-reflection x - ray system operated at 40 kV and 200 mA. The resulting Laue patterns were indexed using the OrientExpress™ software. The software was...direction both lay at 45° to the compression axis. The predicted rotations were then applied to the material using standard x - ray goniometers. Last, a Laue ...electron-backscatter diffraction (EBSD) in a Leica scanning electron microscope (SEM) operated at 20 kV and 10 nA. By this means, the crystallographic

  4. PRODUCTION OF BLADE WOOD-CUTTING INSTRUMENT OF HOT-DEFORMED ALLOYED WHITE IRONS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2005-01-01

    Full Text Available Optimization of chemical composition of white cast iron is carried out in the present work. The results of the carried out testings allow to recommend alloyed white cast irons for using for outfit of the woodworking instruments cutting edges.

  5. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  6. Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Wan, L.; Guo, Z. H.; Sun, C. Y.; Yang, D. J.; Zhang, Q. D.; Li, Y. L.

    2017-02-01

    Isothermal compression experiment of AZ80 magnesium alloy was conducted by Gleeble thermo-mechanical simulator in order to quantitatively investigate the work hardening (WH), strain rate sensitivity (SRS) and temperature sensitivity (TS) during hot processing of magnesium alloys. The WH, SRS and TS were described by Zener-Hollomon parameter (Z) coupling of deformation parameters. The relationships between WH rate and true strain as well as true stress were derived from Kocks-Mecking dislocation model and validated by our measurement data. The slope defined through the linear relationship of WH rate and true stress was only related to the annihilation coefficient Ω. Obvious WH behavior could be exhibited at a higher Z condition. Furthermore, we have identified the correlation between the microstructural evolution including β-Mg17Al12 precipitation and the SRS and TS variations. Intensive dynamic recrystallization and homogeneous distribution of β-Mg17Al12 precipitates resulted in greater SRS coefficient at higher temperature. The deformation heat effect and β-Mg17Al12 precipitate content can be regarded as the major factors determining the TS behavior. At low Z condition, the SRS becomes stronger, in contrast to the variation of TS. The optimum hot processing window was validated based on the established SRS and TS values distribution maps for AZ80 magnesium alloy.

  7. Hot Deformation Behavior of 1Cr12Ni3Mo2VN Martensitic Stainless Steel

    Science.gov (United States)

    He, Xiaomao; Jiang, Peng; Zhou, Leyu; Chen, Chao; Deng, Xiaochun

    2017-08-01

    1Cr12Ni3Mo2VN is a new type of martensitic stainless steel for the last-stage blades of large-capacity nuclear and thermal power turbines. The deformation behavior of this steel was studied by thermal compression experiments that performed on a Gleeble-3500 thermal simulator at a temperature range of 850°C to 1200°C and a strain rate of 0.01s-1 to 20s-1. When the deformation was performed at high temperature and low strain rate, a necklace type of microstructures was observed, the plastic deformation mechanism is grain boundary slip and migration, when at low temperature and lower strain rate, the slip bands were observed, the mechanism is intracrystalline slips, and when at strain rate of 20s-1, twins were observed, the mechanism are slips and twins. The Arrhenius equation was applied to describe the constitutive equation of the flow stress. The accuracy of the equation was verified by using the experimental data and the correlation coefficient R2 = 0.9786, and the equation can provide reasonable data for the design and numerical simulation of the forging process.

  8. The Effect of Nd Content Variation on Crystal Structure and Microstructure to Improve Magnetic Properties Performance

    Science.gov (United States)

    Rusnaeni, Nenen; Sarjono, Priyo; Taufik; Hanifah; Muljadi

    2017-07-01

    Nd2Fe14B magnet powder has been fabricated by mixing Fe, B, and Nd powder based on their stoichiometric proportion at 650°C for 2 hours. Heat treatment series were applied at 720°C for one hour and continued with annealing at 100°C for 4 hours on different Nd stoichiometric variations; 26.6 %wt, 32.6 %wt, and 40.6 %wt. The results obtained from the X-ray Diffraction (XRD) phase analysis of Nd-rich Nd-Fe-B alloy suggested that the alloy has monophasic composition with hard magnetic Nd2Fe14B phase as a composition. The mean of the crystal grain size was determined using XRD analysis, while the microstructure and composition of the alloys were analyzed using the Scanning Electron Microscope - Energy Dispersive X-ray (SEM-EDX). The magnetic properties characterization were determined using the Vibrating Sample Magnetometer (VSM), which indicates that the sample with 40.6 %wt Nd was able to achieve the highest remanence of 446.50 G and BHmax of 17.83 kGOe. Despite the high remanence result, the coercivity and BHmax value of the third sample was still lower than the commercial’s but has adequate potential value.

  9. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  10. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  11. Development of cryogenic undulators with PrFeB magnets at SOLEIL

    Energy Technology Data Exchange (ETDEWEB)

    Valléau, M., E-mail: valleau@synchrotron-soleil.fr; Benabderrahmane, C.; Briquez, F.; Berteaud, P.; Tavakoli, K.; Zerbib, D.; Chapuis, L.; Marteau, F.; Marcouillé, O.; El Ajjouri, T.; Vétéran, J.; Sharma, G.; Tilmont, M.; Castro, J. Da Silva; N’Guyen, M.-H.; Béchu, N.; Rommeluère, P.; Louvet, M.; Nadji, A.; Herbeaux, C. [Synchrotron-Soleil, L’Orme des Merisisers, 91192 BP 34, Gif Sur Yvette (France); and others

    2016-07-27

    Short period high field undulators are of interest for X-ray brilliance enhancement in synchrotron radiation applications and for compact Free Electron Lasers. Cryogenic in-vacuum undulators [1] are one of the possible solutions. At SOLEIL, PrFeB magnets were directly chosen, even if still under development at that time. Indeed, they enable to avoid the spin transition reorientation phenomenon which occurs with NdFeB magnets [2] and the magnets can be cooled down directly at 77 K. The first selected grade CR53 from Hitachi presents a remanence of 1.35 T at 293 K and 1.57 T at 77 K, with a coercivity of 1355 kA/m at 293 K and 6000 kA/m at 77 K. A 2 m long cryogenic undulator of period 18 mm was first built in-house, with a specific Hall probe bench directly installed in the final vacuum chamber. This first cryogenic undulator has been in operation on the storage ring for 4 years [3]. A second U18 cryo-ready undulator using a slightly different magnet grade with a higher coercivity and modules with magnets surrounded by two half poles for easier magnetic optimization is under construction. A third 3 m long cryo-ready undulator U15 with a period of 15 mm is under development. It will be first used for the LUNEX5 FEL [4, 5] project (COXINEL demonstration of FEL amplification with a laser wakefield acceleration [6]). The measurement bench will include a correction of the Hall probe position and angle, the field integrals will be measured with a stretched wire.

  12. Dependence Of The Structure And Magnetic Properties Of Cast Plate-Shaped Nd60Fe30Al10 Samples On Their Thickness

    Directory of Open Access Journals (Sweden)

    Michalski B.

    2015-09-01

    Full Text Available The hard magnetic Nd-Fe-Al alloys are inferior to Nd-Fe-B magnets as far as the magnetic properties are concerned, but their great advantage is that they need no additional annealing to achieve good magnetic properties. These properties depend on the cooling rate from the melting state, and on the thickness of the sample - the best values are achieved at the quenching rates at which the samples have a thickness of 0.3-2 mm. The present study is concerned with the correlation between the magnetic properties of the plate-shaped Nd60Fe30Al10 samples and their size - thickness. Two casting ways: with the melt stream perpendicular direction and parallel to the surface of the plates were used. The plates were produced by pressure casting and suction casting. The studies have shown that the cooling rates depends on local propagation on liquid metal in the mold resulting in heterogeneity of structure and properties.

  13. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  14. Magnetic Spinner

    Science.gov (United States)

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  15. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  16. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  17. Influence of Annealing Temperature on the Magnetic Properties of Rapidly Quenched (Nd,Pr2-(Fe,Co,Ga,Ti,C14B/α-Fe Nanocomposite Ribbons

    Directory of Open Access Journals (Sweden)

    Rahim Sabbaghizadeh

    2013-01-01

    Full Text Available The effects of different heat treatment temperatures on the structure and magnetic properties of Nd-Fe-B nanocomposite permanent magnetic alloys with nominal composition of Nd9.4Pr0.6Fe74.5Co6B6Ga0.5Ti1.5C1.5 have been investigated. The most practical method to produce nanostructured metallic materials is rapid solidification. Melt spinning with constant wheel speed of V=40 m/s was employed to produce ribbons. As-spun ribbons were examined by using differential scanning calorimetry (DSC and X-ray diffractometer (XRD with Cu-kα radiation. The ribbons were annealed at different temperatures in order to extract the best magnetic properties. The XRD and electron microscopy technique results confirm that grains are in the size of less than 50 nm. In addition, optimum magnetic properties were obtained at 700°C annealed temperature.

  18. Biodegradable porous sheet-like scaffolds for soft-tissue engineering using a combined particulate leaching of salt particles and magnetic sugar particles.

    Science.gov (United States)

    Hu, Chengzhi; Tercero, Carlos; Ikeda, Seiichi; Nakajima, Masahiro; Tajima, Hirotaka; Shen, Yajing; Fukuda, Toshio; Arai, Fumihito

    2013-07-01

    Scaffolds serving as artificial extracellular matrixes (ECMs) play a pivotal role in the process of tissue regeneration by providing optimal cellular environments for penetration, ingrowth, and vascularization. Stacks of sheet-like scaffold can be engineered to become artificial ECMs, suggesting a great potential for achieving complex 3-D tissue regeneration to support cell survival and growth. In this study, we proposed and investigated a combined particulate leaching of magnetic sugar particles (MSPs) and salt particles for the development of a sheet-like scaffold. MSPs were fabricated by encapsulating NdFeB particles inside sugar spheres and were controlled using magnetic fields as a porogen to control pore size, pore structure and pore density while fabricating the scaffold. We studied the influence of the strength of the magnetic fields in controlling the coating thickness of the unmagnetized MSPs during the fabrication of the sheet-like scaffolds. The experimental relationship between magnetic flux density and the thickness of the MSP layer was illustrated. Furthermore, we investigated the infiltration capacity of different concentrations of poly(L-lactide-co-ɛ-caprolactone) (PLCL) as a scaffold material on MSP clusters. Following polymer casting and removal of the sugar template, spherical pores were generated inside the scaffolds. Cultivation of NIH/3T3 fibroblasts on the fabricated scaffold proves that the proposed method can be applied in the cell sheet fabrication. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Superconducting Magnets

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Starting from the beam requirements for accelerator magnets, we will outline the main issues and the physical limitations for producing strong and pure magnetic fields with superconductors. The seminar will mainly focus on the magnets for the accelerator, and give some hints on the magnets for the experiments. Prerequisite knowledge: Basic knowledge of Maxwell equations, and linear optics for particle accelerators (FODO cell, beta functions).

  20. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  1. Improvement of Thermal Stability of Nd-Tb-Fe-Co-B Sintered Magnets by Additions of Pr, Ho, Al, and Cu

    Directory of Open Access Journals (Sweden)

    A. A. Lukin

    2012-01-01

    Full Text Available The present work investigates the influence of Pr, Al, Cu, B and Ho which were introduced into the Co-containing sintered magnets of Nd-Dy-Tb-Fe-Co-B type on the magnetic parameters (α, Hci, Br, BHmax⁡. The effect of heat treatment parameters on magnetic properties was also studied. It was revealed that the essential alloying of NdFeB magnets by such elements as Dy, Tb, Ho, Co as well as by boron-forming elements, for example, by titanium, may lead to reducing of F-phase quantity, and, as a consequence, to decreasing of magnetic parameters. It was also shown that additional doping of such alloys by Pr, B, Al and Cu leads to a significant increase of the quantity of F-phase in magnets as well as solubility of the Dy, Tb, Ho and Co in it. This promotes the increase of magnetic parameters. It was possible to attain the following properties for the magnets (Nd0,15Pr0,35Tb0,25Ho0,2515(Fe0,71Co0,29bal ⋅ Al0,9Cu0,1B8,5 (at. % after optimal thermal treatment {1175 K (3,6–7,2 ks with slow (12–16 ks cooling to 675 K and subsequently remaining at T=775 K for 3,6 ks—hardening}: Br=0,88 T, Hci=1760 kA/m, BHmax⁡=144 kJ/m3, α<|0,01|%/K in the temperature interval 223–323 K.

  2. Magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  3. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Directory of Open Access Journals (Sweden)

    Jui-Che Huang

    2017-06-01

    Full Text Available An in-vacuum undulator (IVU provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced–heat load, phase errors, and the deformation of support girders.

  4. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Science.gov (United States)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chang, Cheng-Hsing; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2017-06-01

    An in-vacuum undulator (IVU) provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs) has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced-heat load, phase errors, and the deformation of support girders.

  5. Magnetic nanocomposites.

    Science.gov (United States)

    Behrens, Silke; Appel, Ingo

    2016-06-01

    Magnetic nanocomposites are multi-component materials, typically containing nanosized magnetic materials to trigger the response to an external stimulus (i.e., an external static or alternating magnetic field). Up to now, the search for novel nanocomposites has lead to the combination of a plethora of different materials (e.g., gels, liquid crystals, renewable polymers, silica, carbon or metal organic frameworks) with various types of magnetic particles, offering exciting perspectives not only for fundamental investigations but also for application in various fields, including medical therapy and diagnosis, separations, actuation, or catalysis. In this review, we have selected a few of the most recent examples to highlight general concepts and advances in the preparation of magnetic nanocomposites and recent advances in the synthesis of magnetic nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  7. Magnetic Hysteresis

    CERN Document Server

    Della Torre, Edward

    2000-01-01

    Understanding magnetic hysteresis is vitally important to the development of the science of magnetism as a whole and to the advancement of practical magnetic device applications. Magnetic Hysteresis, by acclaimed expert Edward Della Torre, presents a clear explanation of the connection between physical principles and phenomenological hysteresis. This comprehensive book offers a lucid analysis that enables the reader to save valuable time by reducing trial-and-error design. Dr. Della Torre uses physical principles to modify Preisach modeling and to describe the complex behavior of magnetic media. While Pretsach modeling is a useful mathematical tool, its congruency and deletion properties present limitations to accurate descriptions of magnetic materials. Step-by-step, this book describes the modifications that can overcome these limitations. Special attention is given to the use of feedback around a Preisach transducer to remove the congruency restriction, and to the use of accommodation and aftereffect model...

  8. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Guendogdu, Tayfun, E-mail: tgundogdu@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey); Koemuergoez, Gueven, E-mail: komurgoz@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey)

    2012-08-15

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: Black-Right-Pointing-Pointer Importance of the design of electrical machines and the determination of criteria are emphasized. Black-Right-Pointing-Pointer Machines were investigated in terms of

  9. Reversal mechanisms and interactions in magnetic systems: coercivity versus switching field and thermally assisted demagnetization

    Directory of Open Access Journals (Sweden)

    Cebollada, F.

    2005-06-01

    Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.

    En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de

  10. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  11. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  12. Electro-magnetically Actuated Minute Polymer Pump Fabricated using Packaging Technology

    Science.gov (United States)

    Balaji, G.; Singh, A.; Ananthasuresh, G. K.

    2006-04-01

    Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 µm diameter to serve as a coil. The overall size of the first pump is 25 mm × 25 mm × 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm × 20 mm × 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm × 35 mm × 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

  13. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  14. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  15. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  16. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... forces and motion of the inner cylindrical magnet....

  17. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  18. Magnetism. Blowing magnetic skyrmion bubbles.

    Science.gov (United States)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. Copyright © 2015, American Association for the Advancement of Science.

  19. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  20. Magnetic monopoles and dipoles

    CERN Multimedia

    Dominguez, Daniel

    2016-01-01

    Conventional bar magnets are also called ‘magnetic dipoles’ because they have two magnetic poles (a “North” and a “South” magnetic pole, like the Earth). In theory, “magnetic monopoles” could exist that act like an isolated “magnetic charge”, i.e. either a “North” or a “South” magnetic pole.

  1. Effect of Microstructure on the Hot Deformation Behavior of TiAl-Based Alloys Prepared by Powder Metallurgy Method

    Science.gov (United States)

    Wang, DongJun; Zhang, Rui; Yuan, Hao; Qiang, JianMing

    2017-10-01

    To investigate microstructural influence on deformation behavior, TiAl-based alloys were prepared by spark plasma sintering and heat treatment was conducted to optimize the microstructures of as-sintered samples. The near-γ microstructure of the sintered alloy transformed into a duplex microstructure after heat treatment. Furthermore, isothermal compression tests were carried out at different temperatures in the range 1100-1200°C with a strain rate of 0.01 s-1. The resistances to deformation of the heat-treated samples were smaller than those of the as-sintered samples under the same deformation conditions. In particular, the heat-treated sample had fewer and smaller α2 phases than did the sintered alloy, and it exhibited a well-deformed appearance and homogeneous microstructure after deformation at a temperature 100°C lower than the sintered alloy. The results revealed that TiAl-based alloys with an optimal microstructure fabricated by powder metallurgy had good formability and a homogeneous deformed microstructure, which was preferable for hot-working and further secondary processing.

  2. The characteristic of deformability and quantitative description of the microstructure of hot-deformed Ni-Fe superalloy

    Directory of Open Access Journals (Sweden)

    Ducki K. J.

    2017-03-01

    Full Text Available The paper presents the results of research concerning the influence of hot plastic working parameters on the deformability and microstructure of a Ni-Fe superalloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150°C, at a strain rates 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so-called “freezing”. The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the maximum yield stress and the average grain area have been developed and the activation energy for hot working has been estimated.

  3. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D

    2003-08-28

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  4. Effects of strain rate on the hot deformation behavior and dynamic recrystallization in China low activation martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Xizhang, E-mail: kernel.chen@gmail.com [School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035 (China); Madigan, Bruce [Montana Tech, Butte, MT (United States); Cao, Hongyan [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Konovalov, Sergey [Center for Collective Use Material Science, Siberian State Industrial University, Novokuznetsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Average grain sizes of 1.8 μm are observed at strain rate of 10 s{sup −1}. • Peak stress value increased, but strain decreased with increasing of strain rate. • A catenuliform recrystallized occurred at a strain rate of 5 s{sup −1}. • DRX effect improved with increasing of deformation amounts. - Abstract: To investigate the effects of strain rate on dynamic recrystallization (DRX) behavior on China low activation martensitic steel, hot uniaxial compression tests with strain rates ranging from 0.1 s{sup −1} to 10 s{sup −1} and deformations amounts of 40% and 70% where conducted. The true stress–true strain curves were analyzed for the occurrence of DRX under the different strain rates and compressive deformation amounts. The steel microstructures were examined and linked to the observed stress-strain diagrams to study DRX. Results show that DRX was responsible for refining the grain structure over a wide range of strain rates under 70% deformation. However, significant DRX occurred only at the relatively low strain rate of 0.1 s{sup −1} under 40% deformation. The original elongated microstructure of the rolled plate from which the specimens were taken was replaced by dynamic recrystallization grains. At 70% deformation, the average grain size was 4.2 μm at a strain rate of 0.1 s{sup −1}, 2.5 μm at a strain rate of 5 s{sup −1}, 1.8 μm at a strain rate of 10 s{sup −1}. In conclusion, with increasing strain rate, the recrystallized grain size decreased and the peak stress increased.

  5. Study on Static Recrystallization Behavior of Medium-Carbon Cr-Ni-Mo Alloyed Steel During Hot Deformation

    Science.gov (United States)

    Xia, Yingnan; Zhang, Chi; Zhang, Liwen; Shen, Wenfei; Xu, Qianhong

    2017-11-01

    A series of two-pass hot compression tests were conducted on Gleeble-1500 thermo-mechanical simulator to investigate the static recrystallization (SRX) behavior of a medium-carbon Cr-Ni-Mo alloyed steel 34CrNiMo. The compression tests were performed at a deformation temperature range of 950-1150 °C, a strain rate range of 0.1-3.5 s-1, and an interval time range of 1-100 s. The experimental flow stress curves and microstructural observation indicate that deformation temperature, pass interval time, strain rate, and pre-strain have significant influences on the recrystallization behavior of 34CrNiMo steel. It is identified that the softening fraction increases with the increasing deformation temperature, pre-strain, and interval time, while it decreases with the increasing strain rate. Based on the experimental data, the SRX kinetics equations of 34CrNiMo steel were developed. And the calculated results are in good agreement with the experimental ones, which demonstrates that the established equations can be used to describe the SRX behavior of 34CrNiMo steel at elevated temperatures.

  6. Load partition and microstructural evolution during in situ hot deformation of Ti–6Al–6V–2Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Canelo-Yubero, David, E-mail: david.caneloyubero@tugraz.at [Graz University of Technology, Institute of Materials Science and Welding, Kopernikusgasse 24/I, 8010 Graz (Austria); Vienna University of Technology, Institute of Materials Science and Technology, Karlsplatz 13/308, A-1040 Vienna (Austria); Requena, Guillermo [German Aerospace Centre, Institute of Materials Research, Linder Höhe, 51147 Cologne (Germany); Sket, Federico [IMDEA Materials Institute, C/Erik Kandel 2, Getafe, 28906 Madrid (Spain); Poletti, Cecilia; Warchomicka, Fernando [Graz University of Technology, Institute of Materials Science and Welding, Kopernikusgasse 24/I, 8010 Graz (Austria); Daniels, John [School of Materials Science and Engineering, UNSW Australia, Sidney 2052 (Australia); Schell, Norbert [Structural Research on New Materials, Helmholtz-Zentrum Geesthacht Outstation at DESY, Hamburg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2016-03-07

    Two Ti–6Al–6V–2Sn alloys, with globular and lamellar microstructures, are deformed at 750 °C during tensile and compression tests. The lamellar microstructure shows softening and higher peak stress values than the globular microstructure as a consequence of the Hall–Petch effect. In-situ high energy synchrotron diffraction experiments allow characterization of the load partition between α- and β-phases, plastic deformation mechanisms and texture evolution. The α-phase deforms mainly by rotation while the β-phase deforms by misorientation formation, acting merely as load transfer agent. The Taylor factor evolution of the α-phase and the annihilation of dislocations are analyzed qualitatively and quantitatively. The Taylor factor is connected to both the softening observed in the alloy with the lamellar microstructure and the texture development.

  7. Peculiarities of the influence of hot deformation and heat treatment on the corrosion resistance of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rabinovich, M.Kh.; Trifonov, V.G. [Russian Academy of Sciences, Ufa (Russian Federation). Inst. for Metals Superplasticity Problems

    1998-07-03

    The question about the influence of superplastic deformation (SPD) on mechanical properties of materials and the reliability of articles made out of these materials was studied sufficiently thoroughly. However, the information about the influence of microcrystalline (MC) structure processed by SPD on corrosion properties is rather limited. In respect to aluminum alloys this question was considered in some works. As known, the corrosion resistance plays a significant role in determining such an important aspect of reliability as endurance. The present paper is devoted to this problem.

  8. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R.

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  9. Magnetic Materials

    Science.gov (United States)

    1985-03-01

    L -:• •.1 S..+.: s• S,’S .+m • , ++ d ’N .,.++.+ ii L+ i+- -..’ *4’.. ’-t. COMM4ITTEE ON MAGNETIC MATERIALS Chairman ROBERT M. WRITE, Principal...Motors; Sung Ho Jin, AT&T Bell Labs; G. Rodrigue, ... -- =.• Georgia Tech; J. Houze , Allegheny-Ludlum; R. Sundahl, AT&T Bell Labs; (. I... R. O’Handley...this report. Robert M. White Chairman *’-’ . ,i-.. .- ABSTRACT Magnetic materials play a fundamental role in many of the electrical and electronic

  10. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  11. Magnetic properties

    Indian Academy of Sciences (India)

    Unknown

    Texturing of the fluid was carried out when the paraffin wax was in a molten state. Special care was taken during texturing so that the particles did not aggre- gate. The texturing of the sample was carried out using an electromagnet having field uniformity within 1% un- der different texturing magnetic fields (HT). In the pre-.

  12. Magnetically textured ferrofluid in a non-magnetic matrix: Magnetic ...

    Indian Academy of Sciences (India)

    Texturing of two different magnetic fluids were carried out in paraffin wax under the influence of an external magnetic field. The textured samples were characterized using magnetization measurement and a.c. susceptibility techniques. The results are discussed in the light of ratio of anisotropic energy to magnetic and ...

  13. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Magnetic Resonance (MR) Defecography Magnetic resonance (MR) defecography is a ... the limitations of MRI defecography? What is magnetic resonance (MR) defecography? Magnetic resonance imaging (MRI) is a ...

  14. LHC prototype magnet

    CERN Multimedia

    1991-01-01

    1.5 metre superconducting magnet. This prototype magnet for the LHC was cooled to a few degrees above absolute zero, which allowed it to obtain the world record for the highest magnetic field for an accelerator magnet in 1991.

  15. Ferroelectricity in spiral magnets

    NARCIS (Netherlands)

    Mostovoy, M

    2006-01-01

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric

  16. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  17. Magnetism of elementary particles

    CERN Document Server

    Vonsovsky, S V

    1975-01-01

    Spin magnetic moment of the electron ; magnetism of the atomic electron shell ; magnetism of nucleons (protons and neutrons) and atomic nuclei ; anomalous magnetic moments of elementary particles ; the magnetic monopole ; non-linear quantum-electrodynamic effects in a magnetic field.

  18. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  19. Magnetic Surgery

    Science.gov (United States)

    Rivas, Homero; Robles, Ignacio; Riquelme, Francisco; Vivanco, Marcelo; Jiménez, Julio; Marinkovic, Boris; Uribe, Mario

    2018-01-01

    Objective: To evaluate a new magnetic surgical system during reduced-port laparoscopic cholecystectomy in a prospective, multicenter clinical trial. Background: Laparoscopic instrumentation coupled by magnetic fields may enhance surgeon performance by allowing for shaft-less retraction and mobilization. The movements can be performed under direct visualization, generating different angles of traction and reducing the number of trocars to perform the procedure. This may reduce well-known associated complications of trocars, including incisional pain, scarring, infection, bowel, and vascular injuries, among others. Methods: A prospective, multicenter, single-arm, open-label study was performed to assess the safety and performance of a magnetic surgical system (Levita Magnetics’ Surgical System). The investigational device was used during a 3-port laparoscopic technique. The primary endpoints evaluated were safety and feasibility of the device to adequately mobilize the gallbladder to achieve effective exposure of the targeted surgical site. Patients were followed for 30 days postprocedure. Results: Between January 2014 and March 2015, 50 patients presenting with benign gallbladder disease were recruited. Forty-five women and 5 men with an average age of 39 years (18–59), average body mass index of 27 kg/m2 (20.4–34.1) and an average abdominal wall thickness of 2.6 cm (1.8–4.6). The procedures were successfully performed in all 50 patients. No device-related serious adverse events were reported. Surgeons rated as “excellent” (90%) or “sufficient” (10%) the exposure of the surgical site. Conclusions: This clinical trial shows that this new magnetic surgical system is safe and effective in reduced-port laparoscopic cholecystectomy. PMID:27759614

  20. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  1. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  2. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  3. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  4. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR...

  5. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.

    Science.gov (United States)

    Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori

    2017-07-01

    The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture. Their topological spin arrangements and consequent emergent electromagnetic fields give rise to striking features in transport and magnetoelectric properties in metals and insulators, such as the topological Hall effect, efficient electric-drive of skyrmions, and multiferroic behavior. Such electric controllability and nanometric particle natures highlight magnetic skyrmions as a potential information carrier for high-density magnetic storage devices with excellent energy efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnet ic gun * magnet ostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  7. Ferroelectricity in spiral magnets.

    Science.gov (United States)

    Mostovoy, Maxim

    2006-02-17

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric susceptibility anomalies at magnetic transitions and sudden flops of electric polarization in an applied magnetic field. We show that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge.

  8. Magnetic fluids - suspensions of magnetic dipoles and their magnetic control

    CERN Document Server

    Odenbach, S

    2003-01-01

    Suspensions of magnetic nanoparticles exhibit normal liquid behaviour coupled with superparamagnetic properties. This leads to the possibility to control the properties and the flow of these liquids with moderate magnetic fields. The magnetic control enables various experiments in fluid mechanics and gives rise to the development of numerous technical and medical applications. Ferrofluids and their general properties will be introduced and, as examples for the magnetic control of their flow and properties, thermomagnetic convection and magnetoviscous effects will be discussed in some detail.

  9. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2009-11-01

    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  10. Electrically Tunable Magnetism in Magnetic Topological Insulators.

    Science.gov (United States)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-17

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  11. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  12. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  13. Cure and mechanical properties of recycled NdFeB–natural rubber ...

    Indian Academy of Sciences (India)

    NdFeB) powder and natural rubber (NR) were prepared by the two-roll mill technique. Their mechanical and cure properties were studied as a function of NdFeB loading from 0–120 phr. With increasing magnetic loading, the cure time of the ...

  14. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  15. Magnetic Resonance Imaging

    Science.gov (United States)

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  16. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  17. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  18. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  19. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...

  20. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets with a sim...

  1. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  2. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  3. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  4. Environmental magnetism

    CERN Document Server

    Thompson, Roy

    1986-01-01

    The scientist will be forced, in the unenthusiastic words of one of my scientific colleagues, 'to slosh about in the primordial ooze known as inter-disciplinary studies'. John Passmore Man's responsibility for nature The present text has arisen from some thirteen years advances in our perception, appraisal and creative use of collaboration between the two authors. During that of order in natural systems. Out of this can come period, upwards of a dozen postgraduates in enhanced insight into processes, structures and Edinburgh, the New University of Ulster and Liver­ systems interactions on all temporal and spatial scales pool have been closely involved in exploring many of and at all integrative levels from subatomic to cosmic. the applications of magnetic measurements described In the environment, elements of order are often in the second half of the book. Much of the text is difficult to appraise and analyse, not only because of based on their work, both published and unpublished. intrinsic complexity, but ...

  5. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  6. Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles

    Science.gov (United States)

    Ilg, Patrick

    2017-06-01

    Multicore magnetic nanoparticles show promising features for biomedical applications. Their magnetic properties, however, are not well understood to date, so that several ad hoc assumptions are often needed to interpret experimental results. Here, we present a comprehensive computer simulation study on the effect of dipolar interactions and magnetic anisotropy on the equilibrium magnetization and magnetization relaxation dynamics of monodisperse multicore magnetic nanoparticles in viscous solvents. We include thermal fluctuations of the internal Néel relaxation via the stochastic Landau-Lifshitz-Gilbert equation coupled to rotational Brownian motion of the cluster. We find that the effective magnetic moment of the cluster is reduced compared to the noninteracting case due to frustrated dipole-dipole interactions. Furthermore, the magnetization relaxation is found to proceed in a two-step fashion with a fast initial decay being followed by a long-time relaxation. For moderate dipolar interaction strengths, the latter can be approximated quite well by an exponential decay with rate given by the sum of the relaxation rates in the immobilized state and the Brownian rotation. These findings can be helpful for a better interpretation of experimental data obtained from magnetization relaxation measurements.

  7. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    for magnetic bioseparation, MRI contrast agent and drug delivery. For bioapplications (e.g. MRI contrast agent, bioseparation etc.), superparamagnetic particles are found superior to ferro/ferri magnetic particles due to absence of remanance. Since a magnetic mateiral exhibits magnetic properties only in the presence of a ...

  8. Molecule-based magnets

    Indian Academy of Sciences (India)

    Keywords. Molecular lattices; spin–spin interaction; photo-induced magnetism; single molecule magnets. ... Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be categorized on the basis of the chemical nature of the magnetic units involved: organic-, ...

  9. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    Magnetism in health care; magnetic biomaterials; magnetic intracellular hyperthermia. Abstract. Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is ... Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology – Bombay, Mumbai 400 076, India ...

  10. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  11. Fundamentals of magnetism

    CERN Document Server

    Reis, Mario

    2013-01-01

    The Fundamentals of Magnetism is a truly unique reference text, that explores the study of magnetism and magnetic behavior with a depth that no other book can provide. It covers the most detailed descriptions of the fundamentals of magnetism providing an emphasis on statistical mechanics which is absolutely critical for understanding magnetic behavior. The books covers the classical areas of basic magnetism, including Landau Theory and magnetic interactions, but features a more concise and easy-to-read style. Perfect for upper-level graduate students and industry researchers, The Fu

  12. Facility Measures Magnetic Fields

    Science.gov (United States)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  13. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, S.

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  14. Magnetizing the universe

    Indian Academy of Sciences (India)

    Maintaining magnetic fields. Magnetic fields decay if not maintained, because of: Resistance dissipating currents (∼ 20,000 yr for earth) ... Motion in a magnetic field induces electric fields. If this electric field has a curl, can re-generate magnetic fields. ∂B. ∂t. = ∇ × (U × B) + η∇. 2. B. Magnetic Field almost frozen to moving ...

  15. Heteropolar Magnetic Suspension

    Science.gov (United States)

    Misovec, Kathleen; Johnson, Bruce; Downer, James; Eisenhaure, David; Hockney, Richard

    1990-01-01

    Compact permanent-magnet/electromagnet actuator has six degrees of freedom. Heteropolar magnetic actuator conceived for use as actively controlled vibration-isolating suspension device. Exerts forces along, and torques about, all three principal coordinate axes to resist all three components of translational vibration and all three components of rotational vibration. Inner cylinder suspended magnetically within outer cylinder. Electro-magnet coils interact with fields of permanent magnets to provide active control of suspending force and torque.

  16. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  17. Cosmological magnetic fields

    Science.gov (United States)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  18. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  19. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  20. Magnet and device for magnetic density separation

    NARCIS (Netherlands)

    Polinder, H.; Rem, P.C.

    2014-01-01

    A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is

  1. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  2. Experiments on Magnetic Materials

    Science.gov (United States)

    Schneider, C. S.; Ertel, John P.

    1978-01-01

    Describes the construction and use of a simple apparatus to measure the magnetization density and magnetic susceptibility of ferromagnetic, paramagnetic, and the diamagnetic solids and liquids. (Author/GA)

  3. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  4. Magnetic resonance angiography

    Science.gov (United States)

    MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular magnetic resonance imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, Braunwald E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular ...

  5. An integrated magnetics component

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an integrated magnetics component comprising a magnetically permeable core comprising a base member extending in a horizontal plane and first, second, third and fourth legs protruding substantially perpendicularly from the base member. First, second, third...... and fourth output inductor windings are wound around the first, second, third and fourth legs, respectively. A first input conductor of the integrated magnetics component has a first conductor axis and extends in-between the first, second, third and fourth legs to induce a first magnetic flux through a first...... flux path of the magnetically permeable core. A second input conductor of the integrated magnetics component has a second coil axis extending substantially perpendicularly to the first conductor axis to induce a second magnetic flux through a second flux path of the magnetically permeable core...

  6. Enhanced Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  7. ISR magnet power supplies

    CERN Multimedia

    1970-01-01

    At the left, for the main magnets, the 18 kV switchgear is in the foreground and at the rear are cubicles with rectifiers and filters. At the right, rear, are rectifiers for pole face windings and auxiliary magnets.

  8. Enhanced Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  9. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  10. Three - dimensional magnetic field observation vessel using magnetic fluid

    OpenAIRE

    櫻井, 勇良

    2011-01-01

    In this study, an observation vessel which could depict magnetic field distributions in threedimensionswas produced. The magnetic field observation vessel was made by putting magnetic fluid and water in a transparent square shaped glass container. Observation of both permanent magnet andelectromagnets was carried out. The movement of the magnetic fluid is different depending on the placement of the magnetic poles. The magnetic fluid showed a tendency to gather near each magnetic pole, when it...

  11. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  12. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  13. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    opaque classical magnet 'cousins' listed above, possibilities of photomagnetic switching exist. Persistent efforts also continue to design the ever-elusive polymer magnets towards applications in industry. While pro- viding a brief overview of the field of molecular magnetism, this article highlights some recent developments.

  14. Magnetism in meteorites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.

    1974-01-01

    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  15. Magnetic polarizability of pion

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2016-10-01

    Full Text Available We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3 lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.

  16. Iron dominated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  17. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  18. Common Magnets, Unexpected Polarities

    Science.gov (United States)

    Olson, Mark

    2013-01-01

    In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational…

  19. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  20. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  1. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  2. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  3. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  4. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  5. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  6. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  7. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  8. Microscale magnetic compasses

    Science.gov (United States)

    Shiozawa, Hidetsugu; Zhang, Desai; Eisterer, Michael; Ayala, Paola; Pichler, Thomas; McCartney, Martha R.; Smith, David J.

    2017-09-01

    Microscale magnetic compasses have been synthesized with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their orientation in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of only a few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these micro-compasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction that can be understood as a result of the anisotropic demagnetizing field of a non-spherical single-domain particle. This novel type of material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

  9. Wood construction and magnetic characteristics of impregnated type magnetic wood

    Science.gov (United States)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-02-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability.

  10. Injection and extraction magnets: kicker magnets

    CERN Document Server

    Barnes, M J; Fowler, T; Senaj, V; Sermeus, L

    2010-01-01

    Each stage of an accelerator system has a limited dynamic range and therefore a chain of stages is required to reach high energy. A combination of septa and kicker magnets is frequently used to inject and extract beam from each stage. The kicker magnets typically produce rectangular field pulses with fast rise- and/or fall-times, however, the field strength is relatively low. To compensate for their relatively low field strength, the kicker magnets are generally combined with electromagnetic septa. The septa provide relatively strong field strength but are either DC or slow pulsed. This paper discusses injection and extraction systems with particular emphasis on the hardware required for the kicker magnet.

  11. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  12. Magnetization and magnetic susceptibility of kunzite

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowska, J.A. E-mail: jobart@polsl.katowice.pl; Cisowski, J.; Voiron, J.; Heimann, J.; Czaja, M.; Mazurak, Z

    2000-11-01

    We have studied the high-field magnetization up to 14.5 T and magnetic susceptibility in the temperature range 1.6-400 K of three different samples of natural kunzite crystals, being a variety of spodumene (LiAlSi{sub 2}O{sub 6}) and containing transition metal ions. It appears that the total magnetization and susceptibility consist of the paramagnetic contribution following from the temperature-dependent Brillouin-type behavior of magnetic ions and temperature-independent diamagnetic contribution of the spodumene matrix which we have found as being equal to -3.5x10{sup -7} emu/g. We have identified the Mn{sup 2+} ions as the dominant ones in the kunzites studied and we have determined the molar concentration of these ions as lying in the range 0.2-0.4%.

  13. Localization of magnetic pills

    Science.gov (United States)

    Laulicht, Bryan; Gidmark, Nicholas J.; Tripathi, Anubhav; Mathiowitz, Edith

    2011-01-01

    Numerous therapeutics demonstrate optimal absorption or activity at specific sites in the gastrointestinal (GI) tract. Yet, safe, effective pill retention within a desired region of the GI remains an elusive goal. We report a safe, effective method for localizing magnetic pills. To ensure safety and efficacy, we monitor and regulate attractive forces between a magnetic pill and an external magnet, while visualizing internal dose motion in real time using biplanar videofluoroscopy. Real-time monitoring yields direct visual confirmation of localization completely noninvasively, providing a platform for investigating the therapeutic benefits imparted by localized oral delivery of new and existing drugs. Additionally, we report the in vitro measurements and calculations that enabled prediction of successful magnetic localization in the rat small intestines for 12 h. The designed system for predicting and achieving successful magnetic localization can readily be applied to any area of the GI tract within any species, including humans. The described system represents a significant step forward in the ability to localize magnetic pills safely and effectively anywhere within the GI tract. What our magnetic pill localization strategy adds to the state of the art, if used as an oral drug delivery system, is the ability to monitor the force exerted by the pill on the tissue and to locate the magnetic pill within the test subject all in real time. This advance ensures both safety and efficacy of magnetic localization during the potential oral administration of any magnetic pill-based delivery system. PMID:21257903

  14. Magnetic force microscopy

    Science.gov (United States)

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel WCE; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  15. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Tsouris, C. [Oak Ridge National Lab., TN (United States); Yiacoumi, Sotira

    1997-10-01

    Magnetic-seeding filtration is a technology under development for the enhanced removal of magnetic and non-magnetic particulates from liquids. This process involves the addition of a small amount of magnetic seed particles (such as naturally occurring iron oxide) to a waste suspension, followed by treatment with a magnetic filter. Non-magnetic and weakly magnetic particles are made to undergo nonhomogeneous flocculation with the seed particles, forming flocs of high magnetic susceptibility that are readily removed by a conventional high-gradient magnetic filter. This technology is applicable to a wide range of liquid wastes, including groundwater, process waters, and tank supernatants. Magnetic-seeding filtration may be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes. Waste stream characteristics for which the technology may be applicable include (1) particle sizes ranging from relatively coarse (several microns) to colloidal particles, (2) high or low radiation levels, (3) broad-ranging flow rates, (4) low to moderate solids concentration, (5) cases requiring high decontamination factors, and (6) aqueous or non-aqueous liquids. At this point, the technology is at the bench-scale stage of development; laboratory studies and fundamental modeling are currently being employed to determine the capabilities of the process.

  16. Magnetism in Medicine

    Science.gov (United States)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  17. Magnetic particle separation using controllable magnetic force switches

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zunghang [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Lee, C.-P. [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan (China); Lai, M.-F., E-mail: mflai@mx.nthu.edu.t [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2010-01-15

    Magnetic particle separation is very important in biomedical applications. In this study, a magnetic particle microseparator is proposed that uses micro magnets to produce open/closed magnetic flux for switching on/off the separation. When all magnets are magnetized in the same direction, the magnetic force switch for separation is on; almost all magnetic particles are trapped in the channel side walls and the separation rate can reach 95%. When the magnetization directions of adjacent magnets are opposite, the magnetic force switch for separation is off, and most magnetic particles pass through the microchannel without being trapped. For the separation of multi-sized magnetic particles, the proposed microseparator is numerically demonstrated to have high separation rate.

  18. Elasticity of a magnetic fluid in a strong magnetic field

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Sheldeshova, E. V.; Karpova, G. V.; Aref'ev, I. M.

    2017-07-01

    Complex measurements of the following elastic-magnetic parameters of a magnetic fluid suspended by magnetic levitation within a horizontal tube in a strong magnetic field were performed: the oscillation frequency and decay coefficient; the static, ponderomotive, and dynamic elasticity coefficients; the fluid displacement under hydrostatic pressure; magnetization curve; and the magnetic field strength and gradient. Calculations based on a model of ponderomotive elasticity with correction for the resistance of a viscous fluid in motion and on the fluid column displacement for two magnetic fluid samples agree well with the experimental magnetization curve. The discussed technique holds promise for research into magnetophoresis and nanoparticle aggregation in magnetic colloids.

  19. Permanent magnet based dipole magnets for next generation light sources

    Directory of Open Access Journals (Sweden)

    Takahiro Watanabe

    2017-07-01

    Full Text Available We have developed permanent magnet based dipole magnets for the next generation light sources. Permanent magnets are advantageous over electromagnets in that they consume less power, are physically more compact, and there is a less risk of power supply failure. However, experience with electromagnets and permanent magnets in the field of accelerators shows that there are still challenges to replacing main magnets of accelerators for light sources with permanent magnets. These include the adjustability of the magnetic field, the temperature dependence of permanent magnets, and the issue of demagnetization. In this paper, we present a design for magnets for future light sources, supported by experimental and numerical results.

  20. The 2017 Magnetism Roadmap

    Science.gov (United States)

    Sander, D.; Valenzuela, S. O.; Makarov, D.; Marrows, C. H.; Fullerton, E. E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A. D.; Jungwirth, T.; Gutfleisch, O.; Kim, C. G.; Berger, A.

    2017-09-01

    Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics. Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an

  1. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  2. Magnetic conditioning in superfluid

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.

    1988-08-01

    Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs.

  3. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)

    2003-09-21

    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)

  4. Organic magnetic field sensor

    Science.gov (United States)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  5. Magnetic latching solenoid

    Science.gov (United States)

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  6. SPS : the magnet system

    CERN Multimedia

    CERN Neyrac Films

    1974-01-01

    English version. Part of a series of films about the SPS. This one ois from May 1974 to December 1974. Roy Billinge, Vince Hatton explain about magnet system. Technical requirements, accuracy checks, installation, magnetic measurements, mechanical measurements. Discussion of a particular problem which can come from variation in the thickness of the vacuum chambers. Dipoles, quadrapoles and other speciality magnets. Necessity for close international cooperation to coordinate the work. Nice meeting sequence at end. (calculator on the table.)

  7. Magnetic study of turbidites

    Science.gov (United States)

    Tanty, Cyrielle; Valet, Jean Pierre; Carlut, Julie

    2015-04-01

    Turbidites induce sedimentary reworking and re-deposition caused by tsunami, earthquake, volcanic processes, and other catastrophic events. They result from rapid depositional processes and are thus considered not being pertinent for comparison with pelagic sediments. Turbidites are evidently ruled out from paleomagnetic records dealing with time-series. Consequently, no attention has ever been paid to the magnetization of turbidites which is fully justified if the high level of turbulence governing the depositional processes influences the acquisition of magnetization. In certain conditions like channeled turbidity currents, levees of sediment are generated and then associated with relatively calm although very fast redeposition processes. Such conditions will thus govern the subsequent acquisition of magnetization through mechanical lock-in of the magnetic grains. This situation is actually quite similar to what happens during the experiences of artificial redeposition that are conducted in laboratory. Therefore, combining laboratory experiments and studies of natural turbidites could reveal important information on the processes involved in the acquisition of magnetization, especially if the comparison with the overlying hemipelagic sediments does not show any striking difference. We will present the results of magnetic measurements performed on four different and relatively recent turbidites. We selected different origins associated either with spillover of channeled turbidity currents or with co-seismic faulting. Each event is characterized by a different thickness (ten to few tens of cm), lithology and mean granulometry (few tens of μm to hundreds of μm). We have carried out measurements of magnetic susceptibility, magnetic remanence, anisotropy of magnetic susceptibility (AMS) and we also scrutinize the evolution of various rock magnetic parameters (ARM, IRM, S ratio, magnetic grain sizes, hysteresis parameters…). The magnetic characteristics of the

  8. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  9. Magnetism v.5

    CERN Document Server

    Suhl, Harry

    1973-01-01

    Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har

  10. Magnetic Structure of Sunspots

    Directory of Open Access Journals (Sweden)

    Juan M. Borrero

    2011-09-01

    Full Text Available In this review we give an overview about the current state-of-knowledge of the magnetic field in sunspots from an observational point of view. We start by offering a brief description of tools that are most commonly employed to infer the magnetic field in the solar atmosphere with emphasis in the photosphere of sunspots. We then address separately the global and local magnetic structure of sunspots, focusing on the implications of the current observations for the different sunspots models, energy transport mechanisms, extrapolations of the magnetic field towards the Corona, and other issues.

  11. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic......Magnetic torquing is attractive as means of control for small satellites. The actuation principle is to use the interaction between the earth's magnetic field and a magnetic field generated by a coil set in the satellite. This control principle is inherently time-varying, and difficult to use...

  12. The Earth's Magnetic Interior

    CERN Document Server

    Petrovsky, Eduard; Harinarayana, T; Herrero-Bervera, Emilio

    2011-01-01

    This volume combines review and solicited contributions, related to scientific studies of Division I of IAGA presented recently at its Scientific Assembly in Sopron in 2009. The book is aimed at intermediate to advanced readers dealing with the Earth's magnetic field generation, its historical records in rocks and geological formations - including links to geodynamics and magnetic dating, with magnetic carriers in earth materials, electromagnetic induction and conductivity studies of the Earth interior with environmental applications of rock magnetism and electromagnetism. The aim of the book

  13. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  14. A magnetic hysteresis model

    Science.gov (United States)

    Dahl, Philip R.

    Consideration is given to a mathematical model that dynamically characterizes the BH magnetic hysteresis of ferromagnetic materials. A Rowland ring in which the magnetizing current in the excitation coil provides the input and the resulting output is measured using a search coil is examined. A first-order differential equation is developed for the general BH hysteresis characteristics of the magnetic material that will yield the solution for the induction or flux density, when the input magnetizing forces is prescribed. Analogs are drawn between the variables in a simple mechanical system and the Rowland ring. Simulation results show that the mathematical model accounts for the major dynamic characteristics of ferromagnetic materials.

  15. Radial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  16. Modelling of magnetic fluid support

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoi, V.G. E-mail: bashv@reol1.itmo.by; Bossis, G.; Kabachnikov, D.N.; Krakov, M.S.; Volkova, O

    2002-11-01

    One kind of elastic magnetic fluid support representing the magnetic fluid drop with permanent magnet inside is investigated experimentally and numerically. The dependencies between the magneto static force in support and the geometrical parameters and properties of the magnet and the magnetic fluid are established.

  17. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  18. Contactless magnetic manipulation of magnetic particles in a fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tokura, S., E-mail: susumu_tokura@ihi.co.jp [Corporate Research and Development, IHI Corporation, 1 Shin-Nakahara, Isogo, Yokohama, Kanagawa 235-8501 (Japan); Hara, M.; Kawaguchi, N. [Corporate Research and Development, IHI Corporation, 1 Shin-Nakahara, Isogo, Yokohama, Kanagawa 235-8501 (Japan); Amemiya, N. [Department of Electrical Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto 615-8510 (Japan)

    2016-08-01

    The objective of this study was to demonstrate contactless magnetic manipulation of a magnetic particle along a designated orbit among other magnetic particles suspended in a fluid at rest or in motion, and also to understand the behaviors of those surrounding particles during the contactless magnetic manipulation. In addition, the possibility of breaking up chains of clustered magnetic particles under such conditions was also studied. We first describe contactless magnetic manipulation of magnetic particles by feedback control in which the feedback signal was the measured coordinates of the tracked particle. By the feedback control monitoring the location of the tracked particle using a high-speed image analyzer, the reach of the dipole magnetic field created by the magnetized magnetic particles could be kept relatively small. As a result, the tracked magnetic particle could be dragged along the designated orbit by magnetic force. Second, we describe the breaking up of chains of clustered magnetic particles using an alternating magnetic force. The results showed that chain-clustered magnetic particles that had been aggregated under the condition of contactless magnetic manipulation could be broken up reproducibly by an alternating magnetic field. These results constitute useful information for advancements in the handling of magnetic micro- or nanoparticles. - Highlights: • Feedback control with an input signal of the particle coordinates obtained from fast-image analyzer is used. • A magnetic particle can be dragged along the designated orbit by magnetic force. • Behavior of chain-clustering of magnetic particles can be observed during magnetic operation. • Chain-clustered magnetic particles that are aggregated can be broken up reproducibly by an alternating magnetic field.

  19. Magnetic absorption dichroism and sum rules in itinerant magnets

    OpenAIRE

    Strange, Paul

    1994-01-01

    In this letter we discuss X-ray magnetic dichroism in magnetic materials where an itinerant model of the magnetic behaviour is appropriate. Inspired by progress made in interpreting dichroism spectra in a localized approach, we show that dichroism spectra are an excellent measure of the orbital and spin magnetic moments in itinerant magnets. By performing an energy decomposition of the sum rules we show that the structure found in dichroism spectra reflects the energy dependence of the magnet...

  20. Levitation Force Properties of Superconducting Magnetic Bearing Using Bulk Magnet

    OpenAIRE

    齋藤, 友基; 荻原, 宏康

    1999-01-01

    Type II superconductors can be trapped fluxes at pinning centers. The fluxes-trapping superconductor behaves like a permanent magnet, which is called a "bulk magnet". It is reported that its magnetic field is stronger than that of a usual permanent magnet. We propose a novel levitation system using two sets of superconductors, one of which used the bulk magnets. In this paper, we compared the levitation forces of a usual levitation system with a permanent magnet and the novel levitation syste...

  1. Magnetic compasses in insects

    Science.gov (United States)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  2. Selected topics in magnetism

    CERN Document Server

    Gupta, L C

    1993-01-01

    Part of the ""Frontiers in Solid State Sciences"" series, this volume presents essays on such topics as spin fluctuations in Heisenberg magnets, quenching of spin fluctuations by high magnetic fields, and kondo effect and heavy fermions in rare earths amongst others.

  3. Magnetic bipolar transistor

    OpenAIRE

    Fabian, Jaroslav; Zutic, Igor; Sarma, S. Das

    2003-01-01

    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.

  4. Cosmological magnetic fields

    Indian Academy of Sciences (India)

    Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims ...

  5. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  6. Magnetic support system

    NARCIS (Netherlands)

    Nijsse, G.J.P.; Spronck, J.W.

    1999-01-01

    There is described a support system enabling supporting an object such as a platform (1) free from vibration, in that bearing elements (50) have a stiffness (k) which at a working point (z0) equals zero. A bearing element (50) comprises two magnetic couplings (51, 52) provided by permanent magnets

  7. ISR magnet model

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    Field measurements being made on the ISR magnet model. In the foreground, the poleface windings can be seen - as distinct from the large exciting coils - together with their supply cables. These windings are mainly used to compensate the saturation effects at high fields. The steel plates forming the yoke are welded together along the whole length of the magnet.

  8. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  9. Spring magnet films.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S. D.; Fullerton, E. E.; Gornakov, V. S.; Inomata, A.; Jiang, J. S.; Nikitenko, V. I.; Shapiro, A. J.; Shull, R. D.; Sowers, C. H.

    1999-03-29

    The properties of exchange-spring-coupled bilayer and superlattice films are highlighted for Sm-Co hard magnet and Fe or Co soft magnet layers. The hexagonal Sm-Co is grown via magnetron sputtering in a- and b-axis epitaxial orientations. In both cases the c-axis, in the film plane, is the easy axis of magnetization. Trends in coercivity with film thickness are established and related to the respective microstructure of the two orientations. The magnetization reversal process for the bilayers is examined by magnetometry and magneto-optical imaging, as well as by simulations that utilize a one-dimensional model to provide the spin configuration for each atomic layer. The Fe magnetization is pinned to that of the Sm-Co at the interface, and reversal proceeds via a progressive twisting of the Fe magnetization. The Fe demagnetization curves are reversible as expected for a spring magnet. Comparison of experiment and simulations indicates that the spring magnet behavior can be understood from the intrinsic properties of the hard and soft layers. Estimated are made of the ultimate gain in performance that can potentially be realized in this system.

  10. One thousand magnets delivered!

    CERN Document Server

    2005-01-01

    The little matchstick-like objects, neatly lined up like colouring pencils in their box, are in fact LHC magnets seen from the air. These particular ones are being stored at Point 19 just alongside SM18, the magnet assembly and testing hall, which can be seen on the right of the picture. On the right in the background, is the Meyrin site.

  11. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  12. Magnetic fabrics in amphibolites

    Science.gov (United States)

    Biedermann, Andrea Regina; Hirt, Ann M.; Kunze, Karsten

    2017-04-01

    Magnetic fabrics are used as indicators for mineral fabrics and thus tectonic settings. In particular, the maximum and minimum magnetic susceptibilities are often taken as representation of the direction of macroscopic lineation and pole to foliation of a rock, respectively. In rocks consisting mainly of amphiboles, the paramagnetic fabric is controlled by the preferential orientation of the amphibole crystals. These crystals normally have their c-axis aligned with lineation, however, the maximum susceptibility is parallel to the crystallographic b-axis, leading to more complicated relationships between the orientations of the magnetic fabric and mineral fabric. Here we describe magnetic fabrics in two amphibolites, both deformed and containing 70 % hornblende. Both amphibolites possess significant magnetic anisotropy with the minimum susceptibility normal to foliation. However, maximum susceptibility and lineation are parallel in one amphibolite, whereas they deviate in the other. Numerical models, which simulate the magnetic anisotropy based on the measured crystallographic preferred orientation (CPO) of hornblende and single crystal anisotropy, can reproduce the observed magnetic fabrics in these samples. Furthermore, synthetic models help explain for which types of CPO the magnetic and mineral lineations are parallel to each other, and when they are not aligned to one another. The results presented here will help in future interpretation of mineral fabrics in amphibole-bearing rocks.

  13. Magnetic Structure of Erbium

    DEFF Research Database (Denmark)

    Gibbs, D.; Bohr, Jakob; Axe, J. D.

    1986-01-01

    , and at positions split symmetrically about the fundamental. As the temperature is lowered below 52 K the charge and magnetic scattering display a sequence of lock-in transitions to rational wave vectors. A spin-slip description of the magnetic structure is presented which explains the wave vectors...

  14. Wobbly Corner: Magnetism

    Science.gov (United States)

    Corbett, Lisa; Maklad, Rania; Dunne, Mick; Grace, Pierre

    2014-01-01

    During a final seminar with BA year 4 science specialist trainee teachers, the authors posed a question about the difficulties associated with understanding magnetism. The ensuing discussion focused on a number of concerns commonly identified by students, which may also be of interest to classroom teachers teaching magnetism. Issues raised…

  15. PS auxiliary magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  16. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  17. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)], E-mail: ihara@port.kobe-u.ac.jp

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  18. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  19. Halbach Magnets for CBETA

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-01-19

    A principle of the non-scaling Fixed Field Alternating Gradient (NS-FFAG) is that different energy beam has orbit oscillations Δx around the central circular orbit in both positive and negative direction within a small radial aperture as: Δx=Dx*δp/p. For the central circular orbit Δx=0, or for the combined function magnets the field is equal to Bo (B (x) = Bo + G* x). The smallest orbit offsets Δx are obtained when the defocusing magnet provides most of the bending for the central energy, while the focusing magnet could be even the regular quadrupole with the central orbit in the middle. Stable orbits for a very large energy range [in the case of CBETA this is 4 times in energy], is obtained using opposite polarity magnets producing linear magnetic fields, small dispersion, and very strong focusing.

  20. Physics of magnetic nanostructures

    CERN Document Server

    Owens, Frank J

    2015-01-01

    This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage.

  1. Cryogenic permanent magnet undulators

    Directory of Open Access Journals (Sweden)

    Toru Hara

    2004-05-01

    Full Text Available In order to obtain high magnetic fields in a short period undulator, superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, the cryogenic permanent magnet undulator (CPMU design, using permanent magnets at the cryogenic temperature of liquid nitrogen or higher. This cryogenic scheme can be easily adapted to currently existing in-vacuum undulators and it improves the magnetic field performance by 30%–50%. Unlike superconductive undulators operating around the liquid helium temperature, there is no big technological difficulty such as the thermal budget problem. In addition, existing field correction techniques are applicable to the CPMUs. Since there is no quench in the CPMUs, the operation of the CPMUs has the same reliability as conventional permanent magnet undulators.

  2. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  3. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  4. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  5. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... the eect: the isothermal magnetic entropy change and the adiabatic temperature change. Some of the manifestations and utilizations of the MCE will be touched upon in a general way and nally I will talk about the results I have obtained on a sample of Gadolinium Iron Garnet (GdIG, Gd3Fe5O12), which...

  6. Halbach Magnets for CBETA

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-30

    A principle of the non-scaling Fixed Field Alternating Gradient (NS-FFAG) is that different energy beam has orbit oscillations Δx around the central circular orbit in both positive and negative direction within a small radial aperture as: Δx=Dx*δp/p. For the central circular orbit Δx=0, or for the combined function magnets the field is equal to Bo (B (x) = Bo + G*x). The smallest orbit offsets Δx are obtained when the defocusing magnet provides most of the bending for the central energy, while the focusing magnet could be even the regular quadrupole with the central orbit in the middle. Stable orbits for a very large energy range [in the case of CBETA this is 4 times in energy], is obtained using opposite polarity magnets producing linear magnetic fields, small dispersion, and very strong focusing.

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful magnetic field, radio waves and a computer to produce ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  10. Magnetic Resonance Imaging (MRI) - Spine

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Spine Magnetic resonance imaging (MRI) of the spine ... limitations of MRI of the Spine? What is MRI of the Spine? Magnetic resonance imaging (MRI) is ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  13. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  14. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K, in agr...

  15. Falling hammer use evaluation for hot deformation hardness testing; Avaliacao do uso de um martelo de queda, para a determinacao da resistencia a deformacao a quente

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.C.P.C.; Cauduro, Carlos R.; Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)

    1990-12-31

    This work performs a evaluation of the characteristics hot leaking of a 8620 stainless steel, deformed at 870 deg C. The tools associated with the measurements was described and a comparison between the theoretical values and the values experimentally obtained from the performed tests. 5 figs., 3 refs.

  16. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a unified elasto-viscoplastic constitutive model

    Science.gov (United States)

    Chen, Ming-Song; Lin, Y. C.; Li, Kuo-Kuo; Chen, Jian

    2016-09-01

    In authors' previous work (Chen et al. in Appl Phys A. doi: 10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain.

  17. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a new elasto-viscoplastic constitutive model

    Science.gov (United States)

    Chen, Ming-Song; Lin, Y. C.; Li, Kuo-Kuo; Chen, Jian

    2016-09-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi: 10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain.

  18. Hot deformation regimes, their influence on structure and mechanical properties of silumin based composite materials and specific features of this influence

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, V.G.; Kamalova, I.V. [Acad. of Sci., Ufa (Russian Federation). Inst. for Metall. Superplasticity Problems; Romanova, V.S. [All Institute of Light Alloys (Russian Federation); Platonov, V.N. [Scientific-Technology Concern, `Modoos-Motor` (Russian Federation)

    1997-08-30

    The effect of strain rate at 500 C on structure and properties of Al30/30%SiC composites produced by liquid forging was investigated. Hot working results in reduction in size of silicon and intermetallics particles, formation of defects such as microcracks and micropores, size and shape of which depend on strain rate. Working conditions allowing a noticeable improvement in mechanical properties have been found. (orig.) 4 refs.

  19. Modeling and simulation of austenite grain evolution for heavy forging steel 30Cr2Ni4MoV undergoing hot deformation

    Science.gov (United States)

    Cui, Zhenshan; Li, Cuidong; Chen, Fei; Sui, Dashan

    2013-05-01

    30Cr2Ni4MoV is widely used as heavy forging materials for low pressure rotors which equips the ultra-supercritical power generations. The final properties of the heavy forging products relies apparently on the grain size of the material, so that the grain should be refined and homogenized during forming process through controlling the working parameters during forming process. For this purpose, the research on the modeling and simulation of austenite grain evolution is conducted for different forming stages: the grain growth during heating, dynamic recrystallization (DRX) during hitting, and meta-dynamic (MDRX) and static recrystallization (SRX) during hitting intervals. Experiment-based phenomenological models, as easy ways to characterize the grain evolution, are established for the process of heating and single-hit, while the Cellular Automaton simulations are applied for tracing more complex recrystallization process during multi-hit deformations. The research shows that, for heavy forgings, the long-time heating process can cause very coarse grains which are harmful to the final properties. Therefore, in order to refine and homogenize the grain size for the heavy forgings, the working parameters for forging should be determined to ensure the recrystallization can be completed and the deformation can be uniformly distributed. Some applications of the models and simulation method in multi-hit process are also demonstrated.

  20. Compressive strength and hot deformation mechanisms in as-cast Mg-4Al-2Ba-2Ca (ABaX422) alloy

    Science.gov (United States)

    Rao, K. P.; Ip, H. Y.; Suresh, K.; Prasad, Y. V. R. K.; Wu, C. M. L.; Hort, N.; Kainer, K. U.

    2013-12-01

    The behaviour of an as-cast ABaX422 Mg alloy has been evaluated with regard to its compressive strength in the temperature range 25-250 °C and hot working characteristics in the range 260-500 °C. The microstructure of the as-cast alloy has intermetallic phases Mg17Ba2 and (Al, Mg)2Ca at the grain boundaries and is fine grained. The alloy has compressive strength better than AZ31 with Ca and Zn, which was attributed to the finer grain size. A processing map developed to characterize its hot working behaviour revealed two dynamic recrystallization domains in the temperature and strain rate ranges of (1) 300-390 °C/0.0003-0.001 s-1 and (2) 400-500 °C/0.0003-0.5 s-1. In the first domain, basal + prismatic slip occurs along with recovery by climb while in the second domain, second-order pyramidal slip dominates and recovery occurs by cross-slip. The apparent activation energy estimated in Domains 1 and 2 are 169 and 263 kJ/mol respectively, both being higher than that for self-diffusion suggesting that the intermetallic particles in the matrix cause considerable back stress. Bulk metal working of this alloy may be done in Domain 2 which ensures high workability while finish working may be done in Domain 1 in order to achieve a fine grained component. The alloy exhibits flow instability regimes at higher strain rates, in both the lower and higher temperature regions of the processing map, the manifestation being adiabatic shear band formation and flow localization respectively.

  1. Review and comparison of magnet designs for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving...... the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated...... and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, Λcool. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis...

  2. Active Magnetic Regenerative Liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, John A. [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Oseen-Send, Kathryn [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ferguson, Luke [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Pouresfandiary, Jamshid [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Cousins, Anand [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Ralph, Heather [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States); Hampto, Tom [Heracles Energy Corporation d.b.a. Prometheus Energy, Washington, DC (United States)

    2016-01-12

    This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designs indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature

  3. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  4. Magnetism a very short introduction

    CERN Document Server

    Blundell, Stephen J

    2012-01-01

    Magnetism: A Very Short Introduction explains the mysteries and importance of magnetism. For centuries magnetism has been used for various exploits: as a great healer, a navigation aid through compasses, and through motors, generators, and turbines it has given us power. Our understanding of electricity and magnetism, from the work of Galvani, Ampère, Faraday, and Tesla is explored, and how Maxwell and Faraday's work led to the unification of electricity and magnetism is explained. With a discussion of the relationship between magnetism and relativity, quantum magnetism, and its impact on computers and information storage, how magnetism has changed our fundamental understanding of the Universe is shown.

  5. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  6. A Magnetic Wormhole.

    Science.gov (United States)

    Prat-Camps, Jordi; Navau, Carles; Sanchez, Alvaro

    2015-08-20

    Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points in space through an invisible tunnel. However, an actual realization has not been possible until now. Here we construct and experimentally demonstrate a magnetostatic wormhole. Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable. We experimentally show that the magnetic field from a source at one end of the wormhole appears at the other end as an isolated magnetic monopolar field, creating the illusion of a magnetic field propagating through a tunnel outside the 3D space. Practical applications of the results can be envisaged, including medical techniques based on magnetism.

  7. Magnetic-seeding filtration

    Energy Technology Data Exchange (ETDEWEB)

    Depaoli, D. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    This task will investigate the capabilities of magnetic-seeding filtration for the enhanced removal of magnetic and nonmagnetic particulates from liquids. This technology appies to a wide range of liquid wastes, including groundwater, process waters, and tank supernatant. Magnetic-seeding filtration can be used in several aspects of treatment, such as (1) removal of solids, particularly those in the colloidal-size range that are difficult to remove by conventional means; (2) removal of contaminants by precipitation processes; and (3) removal of contaminants by sorption processes.

  8. Magnetic Exitations in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Rainford, B. D.; Jensen, J.

    1979-01-01

    The magnetic excitations in a single crystal of dhcp Pr have been studied by inelastic neutron scattering. The excitations on the hexagonal sites, and their dependence on magnetic fields up to 43 kOe applied in the basal plane, have been analyzed in terms of a Hamiltonian in which exchange, crystal......-field, and magnetoelastic interactions are included. The exchange is found to be strongly anisotropic, and this anisotropy is manifested directly in a splitting of most branches of the dispersion relations. By considering a variety of magnetic properties, we have been able to determine the crystal-field level scheme...

  9. MFTF magnet cryostability

    Energy Technology Data Exchange (ETDEWEB)

    VanSant, J.H.

    1979-11-01

    A pair of large superconducting magnets will be installed in the Mirror Fusion Test Facility (MFTF), which is to begin operation in 1981. To ensure a stable superconducting state for the niobium-titanium (Nb-Ti) conductor, special consideration has been given to certain aspects of the magnet system design. These include the conductor, joints, coil assembly, vapor plenums, liquid-helium (LHe) supply system, and current leads. Heat transfer is the main consideration; i.e., the helium quality and temperature are limited so that the superconductor will perform satisfactorily in the magnet environment.

  10. Frontiers in Magnetic Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

  11. A paradigm called magnetism

    CERN Document Server

    Dattagupta, Sushanta

    2008-01-01

    This book provides an overview of how diverse issues of Magnetism have implications for other areas of physics. Attention will be drawn to different aspects of many-body physics, which first appeared in Magnetism but have had deep impact in different branches of physics. Each of these aspects will be illustrated schematically and in terms of physical examples, chosen from multicritical phenomena, quantum phase transition, spin glasses, relaxation, phase ordering and quantum dissipation. A unique feature of this book is a unified and coherent discussion of magnetic phenomena, presented in a luc

  12. Magnetized CMB anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [Centro ' Enrico Fermi' , Compendio del Viminale, Via Panisperna 89/A, 00184 Rome (Italy); Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland)

    2006-01-21

    Possible effects of large-scale magnetic fields on the cosmic microwave background (CMB) are reviewed. Depending on the specific branch of the spectrum of plasma excitations, magnetic fields are treated either within a two-fluid plasma description or within an effective (one-fluid) approach. The uniform field approximation is contrasted with the fully inhomogeneous field approximation. It is argued that the interplay between CMB physics and large-scale magnetic fields will represent a rather interesting cross-disciplinary arena over the next few years. (topical review)

  13. Magnetic mineral exploration using ground magnetic survey data of ...

    African Journals Online (AJOL)

    Ground magnetic survey is an essential geophysical method employed in locating subsurface magnetic materials for possible exploration. In geophysics, the anomalous magnetization might be associated with local mineralization that is potentially of commercial interest. Hence a ground magnetic survey was carried out at a ...

  14. Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite

    CERN Document Server

    Rosales, Domingo

    2015-01-01

    On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.

  15. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  16. Magnetization analysis of Ba ferrite magnets by electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Aiso, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, 2-Chome, Aobaku, Sendai 980-8577 (Japan); Shindo, D. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, 2-Chome, Aobaku, Sendai 980-8577 (Japan)]. E-mail: shindo@tagen.tohoku.ac.jp; Sato, T. [NEC TOKIN Techno Service Ltd., 6-7-1 Koriyama, Taihaku-ku, Miyagi 982-8510 (Japan)

    2007-11-15

    The magnetization distributions of anisotropic and isotropic Ba ferrite magnets in demagnetized and remanent states are investigated by electron holography. A polar diagram is used to obtain the quantitative mapping of the magnetization distribution. Through the polar diagrams, it is clarified that the magnetization distribution of Ba ferrite magnets closely depends on their magnetic properties. The dispersions of the magnetization direction of the two specimens in the remanent states correlate well with their remanent flux density. In the anisotropic specimen, the magnetization reversal occurs drastically under an applied field of 360 kA/m, while in the isotropic one, the direction of magnetization changes gradually. The results exhibit a good correspondence between the change in the magnetization distribution and the shape of the demagnetization curves.

  17. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  18. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  19. Ghost magnetic resonance angiography

    National Research Council Canada - National Science Library

    Koktzoglou, Ioannis; Edelman, Robert R

    2009-01-01

    Traditional methods for magnetic resonance angiography (MRA) involve the radiofrequency excitation of vascular spins within a selected region of tissue, followed by gradient localization and imaging of those spins within that same region...

  20. Airborne Magnetic Trackline Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  1. Electric & Magnetic Fields

    Science.gov (United States)

    ... Reading Introduction Electric and magnetic fields (EMFs) are invisible areas of energy, often referred to as radiation , ... Abstract ] Staff Directory Freedom of Information Act OIG Web Policies Request Translation Services Employment Verification Contact Us ...

  2. Magnetically Actuated Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  3. Quantum Theory of Magnetism

    CERN Document Server

    Nolting, Wolfgang

    2009-01-01

    Magnetism is one of the oldest and most fundamental problems of Solid State Physics although not being fully understood up to now. On the other hand it is one of the hottest topic of current research. Practically all branches of modern technological developments are based on ferromagnetism, especially what concerns information technology. The book, written in a tutorial style, starts from the fundamental features of atomic magnetism, discusses the essentially single-particle problems of dia- and paramagnetism, in order to provide the basis for the exclusively interesting collective magnetism (ferro, ferri, antiferro). Several types of exchange interactions, which take care under certain preconditions for a collective ordering of localized or itinerant permanent magnetic moments, are worked out. Under which conditions these exchange interactions are able to provoke a collective moment ordering for finite temperatures is investigated within a series of theoretical models, each of them considered for a very spec...

  4. Magnetic S-parameter

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free gauge theories developing an infrared fixed point by computing the S-parameter in the electric and dual magnetic description. In particular we show that at the lower bound of the conformal window...... the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes a simple expression in terms of the elementary magnetic degrees of freedom. The results further support our recent conjecture of the existence of a universal lower bound on the S parameter and indicates...... that it is an ideal operator for counting the active physical degrees of freedom within the conformal window. Our results can be directly used to unveil possible four dimensional gauge duals and constitute the first explicit computation of a nonperturbative quantity, in the electric variables, via nonsupersymmetric...

  5. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  6. World Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  7. Magnetically Actuated Seal

    Science.gov (United States)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  8. Models of Magnetism.

    Science.gov (United States)

    Borges, A. Tarciso; Gilbert, John K.

    1998-01-01

    Investigates the mental models that people construct about magnetic phenomena. Involves students, physics teachers, engineers, and practitioners. Proposes five models following a progression from simple description to a field model. Contains 28 references. (DDR)

  9. Magnetic Catalysis in Graphene

    CERN Document Server

    Winterowd, Christopher; Zafeiropoulos, Savvas

    2015-01-01

    One of the most important developments in condensed matter physics in recent years has been the discovery and characterization of graphene. A two-dimensional layer of Carbon arranged in a hexagonal lattice, graphene exhibits many interesting electronic properties, most notably that the low energy excitations behave as massless Dirac fermions. These excitations interact strongly via the Coulomb interaction and thus non-perturbative methods are necessary. Using methods borrowed from lattice QCD, we study the graphene effective theory in the presence of an external magnetic field. Graphene, along with other $(2+1)$-dimensional field theories, has been predicted to undergo spontaneous breaking of flavor symmetry including the formation of a gap as a result of the external magnetic field. This phenomenon is known as magnetic catalysis. Our study investigates magnetic catalysis using a fully non-perturbative approach.

  10. World Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Magnetic Model is the standard model used by the U.S. Department of Defense, the U.K. Ministry of Defence, the North Atlantic Treaty Organization (NATO)...

  11. Last PS magnet refurbished

    CERN Document Server

    2009-01-01

    PS Magnet Refurbishment Programme Completed. The 51st and final refurbished magnet was transported to the PS on Tuesday 3 February. The repair and consolidation work on the PS started back in 2003 when two magnets and a busbar connection were found to be faulty during routine high-voltage tests. The cause of the fault was a combination of age and radiation on electrical insulation. After further investigation the decision was taken to overhaul half of the PS’s 100 magnets to reduce the risk of a similar fault. As from 20 February the PS ring will start a five-week test programme to be ready for operation at the end of March.

  12. Cosmic magnetic fields

    CERN Document Server

    Sánchez Almeida, Jorge

    2018-01-01

    Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...

  13. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35 tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which finished its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. "The production is proceeding well and we expect to be complete in October as previously foreseen," said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have been delivered.

  14. 1000th magnet delivered!

    CERN Multimedia

    2006-01-01

    On Monday 20 February members of the AT Department marked the delivery of the 1000th superconducting dipole magnet to CERN. Only 232 more of the dipole magnets are needed for the LHC. The 35-tonne-dipoles are 15 meters long and are being manufactured by three companies: Babcock Noell Nuclear in Germany (which completed its contract in November 2005), Ansaldo Superconduttori in Italy and Alstom-Jeumont in France. 'The production is proceeding well and we expect to be complete in October as foreseen,' said Lucio Rossi, Head of the Magnets and Superconductors Group (AT-MAS). In total, 1650 main magnets are needed for the LHC, of which 1300 have already been delivered.

  15. The LHC Insertion Magnets

    CERN Document Server

    Ostojic, R

    2002-01-01

    The Large Hadron Collider comprises eight insertions, four of which are dedicated to the LHC experiments while the others are used for the major collider systems. The various functions of the insertions are fulfilled by a variety of magnet systems, most of them based on the technology of NbTi superconductors cooled by superfluid helium at 1.9 K. A number of stand-alone magnets in the matching sections are operated at 4.5 K, while in the high radiation areas specialised resistive magnets are used. In this paper, we review the concepts underlying the design of the LHC insertions, and report on the design, procurement and testing of the various specialised magnet systems.

  16. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  17. Magnets for Pain Relief

    Science.gov (United States)

    ... better ways to prevent, diagnose, and treat diseases. Web site: www.nih.gov/health/clinicaltrials/ Key References Colbert AP, Markov MS, Souder JS. Static magnetic field therapy: dosimetry considerations. Journal of Alternative ...

  18. Study of Magnetic Nanocomposites by NMR and Bulk Magnetization Techniques

    Directory of Open Access Journals (Sweden)

    Matveev V.

    2014-07-01

    Full Text Available Magnetic nanocomposites possess complex and nonuniform magnetic structure. As a result it is necessary to use different physical methods to describe their properties. In this work we have applied a combination of micro and macro approaches to understand more deeply magnetic properties of some cobaltcontaining nanocomposites. Testing of magnetic structure of the samples at molecular level was done with NMR and Mössbauer techniques whereas static (SQUID and dynamic magnetic (M2, see below measurements – at macro level.

  19. Magnetic Resonance Sensors

    OpenAIRE

    Morris, RH; Newton, MI

    2014-01-01

    Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medica...

  20. Spintronic magnetic anisotropy

    OpenAIRE

    Misiorny, Maciej; Hell, Michael; Wegewijs, Maarten R.

    2014-01-01

    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamag...

  1. Magnetic fluorescent lamp

    Science.gov (United States)

    Berman, S. M.; Richardson, R. W.

    1983-12-01

    The radiant emission of a mercury argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a zeeman splitting of approximately 1.7 times the thermal line width.

  2. AA, bending magnet, BLG

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The very particular lattice of the AA required 2 types of dipole (bending magnets; BLG, long and narrow; BST, short and wide). The BLG had a steel length of 4.70 m, a good field width of 0.24 m, and a weight of about 70 t. Jean-Claude Brunet inspects the lower half of a BLG. For the BST magnets see 7811105 and 8006036.

  3. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  4. Magnetic Resonance Safety

    OpenAIRE

    Sammet, Steffen

    2016-01-01

    Magnetic Resonance Imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropri...

  5. Magnetic fluorescent lamp

    Science.gov (United States)

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  6. Magnetic metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Randolph Quentin [Univ. of California, Berkeley, CA (United States)

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  7. Magnetic anisotropy in nanostructures

    CERN Document Server

    Eisenbach, M

    2001-01-01

    method for solving the LDA Kohn-Sham equation. This extended code allows us to perform fully relativistic calculations to enable us to investigate the spin orbit coupling effects leading to anisotropies and potentially non collinear ordering of magnetic moments in these systems of magnetic inclusions in copper. With this approach we find that depending on the orientation of the atoms along the 100 or 110 direction in copper the ground state orientation of the magnetic moments in the chain is either perpendicular or parallel to the chain direction, when the magnetic dipolar interaction energy is added to the final ab initio result. In this thesis we investigate the effect of magnetic anisotropies in nanostructured materials. The main emphasis in our work presented here is on systems that have an underlying one dimensional structure, like nanowires or atomic chains. In a simple classical one dimensional model we show the rich ground state structure of magnetic orientations one might expect to find in such syste...

  8. Nanolubricant: magnetic nanoparticle based

    Science.gov (United States)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  9. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state of nanoparti......We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  10. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  11. Interaction between two magnetic dipoles in a uniform magnetic field

    Science.gov (United States)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  12. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  13. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  14. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  15. EDITORIAL: Ultrafast magnetization processes

    Science.gov (United States)

    Hillebrands, Burkard

    2008-09-01

    This Cluster Issue of Journal of Physics D: Applied Physics is devoted to ultrafast magnetization processes. It reports on the scientific yield of the Priority Programme 1133 'Ultrafast Magnetization Processes' which was funded by the Deutsche Forschungsgemeinschaft in the period 2002-2008 in three successive two-year funding periods, supporting research of 17-18 groups in Germany. Now, at the end of this Priority Programme, the members feel that the achievements made in the course of the programme merit communication to the international scientific community in a concerted way. Therefore, each of the projects of the last funding period presents a key result in a published contribution to this Cluster Issue. The purpose of the funding by a Priority Programme is to advance knowledge in an emerging field of research through collaborative networked support over several locations. Priority Programmes are characterized by their enhanced quality of research through the use of new methods and forms of collaboration in emerging fields, by added value through interdisciplinary cooperation, and by networking. The aim of the Priority Programme 1133 'Ultrafast Magnetization Processes' may be well characterized by the call for projects in June 2001 after the programme was approved by the Deutsche Forschungsgemeinschaft: 'The aim of the priority programme is the achievement of a basic understanding of the temporal evolution of fast magnetization processes in magnetically ordered films, multilayers and micro-structured systems. The challenge lies in the advancement of the field of ultrafast magnetization processes into the regime of a few femtoseconds to nanoseconds, a topic not yet well explored. A general aim is to understand the fundamental mechanisms needed for applications in ultrafast magneto-electronic devices. The fundamental topic to be addressed is the response of the magnetization of small structures upon the application of pulsed magnetic fields, laser pulses or

  16. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  17. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  18. Magnetic Force Microscopy Images of Magnetic Garnet With Thin-Film Magnetic Tip

    Science.gov (United States)

    Wadas, A.; Moreland, J.; Rice, P.; Katti, R.

    1993-01-01

    We present magnetic force microscopy images of YGdTmGa/YSmTmGa magnetic garnet, usinga thin Fe film deposited on Si_3N_5 tips. We have found correlations between the topography andthe magnetic domain structure. We have observed the domain wall contrast with a iron thin-film tip. We report on domain wall imaging of garnet with magnetic force microscopy.

  19. Rigidly connected magnetic lines: twisting and winding of magnetic lines

    Science.gov (United States)

    Prasad, G.

    2017-10-01

    The dynamical process of magnetic flux variation in a fluid's stream tube is described by constructing 1+1+ (2) decomposition of the gradient of fluid's 4-velocity. The necessary and sufficient conditions are obtained for a spacelike congruence to be a congruence of rigidly connected spacelike curves. The evolution of magnetic flux in a magnetic tube is explored under the assumptions that magnetic lines are rigidly connected and the chemical potential of the fluid is constant along a magnetic tube. The interplay between magnetic and stream tubes is demonstrated. It is shown that the growth of magnetic energy in a magnetic tube cannot exceed to that of a stream tube. It is found that the proper time variation of twist of magnetic lines is caused by gravitation inside a neutron star if magnetic lines are rigidly connected and charge neutrality condition holds. Helmholtz-like magnetic vorticity flux conservation in a magnetic tube constituted by rigidly connected geodetic magnetic lines is derived under the assumption that the charge neutrality condition holds. It is shown that the winding of frozen-in poloidal magnetic field due to differential rotation requires meridional circulation in an axisymmetric stationary hydromagnetic configuration.

  20. Magnetic levitation force between a superconducting bulk magnet and a permanent magnet

    OpenAIRE

    Wang, J. J.; He, C. Y.; Meng, L. F.; Li, C.; Han, R. S.; Gao, Z. X.

    2002-01-01

    The current density in a disk-shaped superconducting bulk magnet and the magnetic levitation force exerted on the superconducting bulk magnet by a cylindrical permanent magnet are calculated from first principles. The effect of the superconducting parameters of the superconducting bulk is taken into account by assuming the voltage-current law and the material law. The magnetic levitation force is dominated by the remnant current density, which is induced by switching off the applied magnetizi...