WorldWideScience

Sample records for hot wire chemical

  1. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  2. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  3. Industrialization of hot wire chemical vapor deposition for thin film applications

    NARCIS (Netherlands)

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  4. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  5. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  6. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    International Nuclear Information System (INIS)

    Schropp, R.E.I.

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  7. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications

    International Nuclear Information System (INIS)

    Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Alleman, J.L.; Blackburn, J.L.; Parillia, P.A.; Heben, M.J.; Engtrakul, C.; Gilbert, K.E.H.; Jones, K.M.; To, R.; Lee, S-H.; Lehman, J.H.

    2006-01-01

    Hot-wire chemical vapor deposition (HWCVD) has been demonstrated as a simple economically scalable technique for the synthesis of a variety of nano-materials in an environmentally friendly manner. For example we have employed HWCVD for the continuous production of both carbon single- and multi-wall nanotubes (SWNTs and MWNTs). Unanticipated hydrogen storage on HWCVD-generated MWNTs has led insight into the adsorption mechanism of hydrogen on metal/carbon composites at near ambient temperatures that could be useful for developing a vehicular hydrogen storage system. Recent efforts have been focused on growing MWNT arrays on thin nickel films with a simple HWCVD process. New data suggests that these MWNT arrays could replace the gold black coatings currently used in pyroelectric detectors to accurately measure laser power. Finally, we have very recently employed HWCVD for the production of crystalline molybdenum and tungsten oxide nanotubes and nanorods. These metal oxide nanorods and nanotubes could have applications in catalysis, batteries and electrochromic windows or as gas sensors. A summary of the techniques for growing these novel materials and their various potential applications is provided

  8. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Nos, O.; Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J.

    2009-01-01

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  9. Hetero- and homogeneous three-dimensional hierarchical tungsten oxide nanostructures by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z.S., E-mail: Silvester.Houweling@asml.com [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Harks, P.-P.R.M.L.; Kuang, Y.; Werf, C.H.M. van der [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, J.W. [Utrecht University, Inorganic Chemistry and Catalysis, Padualaan 8, 3584 CH Utrecht (Netherlands); Schropp, R.E.I. [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics—Physics of Devices, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2015-01-30

    We present the synthesis of three-dimensional tungsten oxide (WO{sub 3−x}) nanostructures, called nanocacti, using hot-wire chemical vapor deposition. The growth of the nanocacti is controlled through a succession of oxidation, reduction and re-oxidation processes. By using only a resistively heated W filament, a flow of ambient air and hydrogen at subatmospheric pressure, and a substrate heated to about 700 °C, branched nanostructures are deposited. We report three varieties of simple synthesis approaches to obtain hierarchical homo- and heterogeneous nanocacti. Furthermore, by using catalyst nanoparticles site-selection for the growth is demonstrated. The atomic, morphological and crystallographic compositions of the nanocacti are determined using a combination of electron microscopy techniques, energy-dispersive X-ray spectroscopy and electron diffraction. - Highlights: • Continuous upscalable hot-wire CVD of 3D hierarchical nanocacti • Controllable deposition of homo- and heterogeneous WO{sub 3−x}/WO{sub 3−y} nanocacti • Introduction of three synthesis routes comprising oxidation, reduction and re-oxidation processes • Growth of periodic arrays of hetero- and homogeneous hierarchical 3D nanocacti.

  10. How deposition parameters control growth dynamics of nc-Si deposited by hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Moutinho, H.R.; To, B.; Jiang, C.-S.; Xu, Y.; Nelson, B.P.; Teplin, C.W.; Jones, K.M.; Perkins, J.; Al-Jassim, M.M.

    2006-01-01

    We studied the growth of silicon films deposited by hot-wire chemical vapor deposition under different values of filament current, substrate temperature, and hydrogen dilution ratio. The physical and electrical properties of the films were studied by Raman spectroscopy, x-ray diffraction, atomic force microscopy, conductive-atomic force microscopy, and transmission electron microscopy. There is an interdependence of the growth parameters, and films grown with different parameters can have similar structures. We discuss why this interdependence occurs and how it influences the properties of the deposited films, as well as the deposition rate. In general, the films have a complex structure, with a mixture of amorphous (220)-oriented crystalline and nanocrystalline phases present in most cases. The amount of each phase can be controlled by the variation of one or more of the growth parameters at a time

  11. Human serum albumin (HSA) adsorption onto a-SiC:H thin films deposited by hot wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2006-01-01

    In the present paper, we report the study of the adsorption behavior of human serum albumin (HSA) onto surfaces of a-SiC:H thin films deposited by using the hot wire chemical vapor deposition (HWCVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, AFM and contact angle measurements. At the immediate effect of HSA interaction with a-SiC:H films N is adsorbed on the surface and stabilized after 3 days. Preliminary observation found that Si and O atom are desorbed from the surface while C and N set adsorbed to the surface of the a-SiC:H film

  12. Human serum albumin (HSA) adsorption onto a-SiC:H thin films deposited by hot wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay (India) and Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, India, Kanpur 208016 (India)]. E-mail: bibhup@iitb.ac.in

    2006-12-15

    In the present paper, we report the study of the adsorption behavior of human serum albumin (HSA) onto surfaces of a-SiC:H thin films deposited by using the hot wire chemical vapor deposition (HWCVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, AFM and contact angle measurements. At the immediate effect of HSA interaction with a-SiC:H films N is adsorbed on the surface and stabilized after 3 days. Preliminary observation found that Si and O atom are desorbed from the surface while C and N set adsorbed to the surface of the a-SiC:H film.

  13. Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires

    International Nuclear Information System (INIS)

    Chong, Su Kong; Goh, Boon Tong; Wong, Yuen-Yee; Nguyen, Hong-Quan; Do, Hien; Ahmad, Ishaq; Aspanut, Zarina; Muhamad, Muhamad Rasat; Dee, Chang Fu; Rahman, Saadah Abdul

    2012-01-01

    High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, X C of ∼82% and are surrounded by a thin layer of SiO x . The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the X C to ∼65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ∼1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text. - Highlights: ► Growth of random oriented silicon nanowires using hot-wire assisted plasma enhanced chemical vapor deposition. ► Increase in rf power reduces the crystallinity of silicon nanowires. ► High density and nanocrystalline structure in silicon nanowires significant enhance the near IR light absorption. ► Oxide defects and silicon nanocrystallites in silicon nanowires reveal photoluminescence in red–orange and red regions.

  14. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  15. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  16. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  17. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  18. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  19. Direct growth of large grain polycrystalline silicon films on aluminum-induced crystallization seed layer using hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua

    2012-01-01

    Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.

  20. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  1. The influence of charge effect on the growth of hydrogenated amorphous silicon by the hot-wire chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Nelson, B.P.; Iwaniczko, E.; Mahan, A.H.; Crandall, R.S.; Benner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors observe at lower substrate temperatures that the scatter in the dark conductivity on hydrogenated amorphous silicon (a-Si:H) films grown on insulating substrates (e.g., Corning 7059 glass) by the hot-wire chemical vapor deposition technique (HWCVD) can be five orders of magnitude or more. This is especially true at deposition temperatures below 350 C. However, when the authors grow the same materials on substrates with a conductive grid, virtually all of their films have acceptable dark conductivity (< 5 {times} 10{sup {minus}10} S/cm) at all deposition temperatures below 425 C. This is in contrast to only about 20% of the materials grown in this same temperature range on insulating substrates having an acceptable dark conductivity. The authors estimated an average energy of 5 eV electrons reaching the growing surface in vacuum, and did additional experiments to see the influence of both the electron flux and the energy of the electrons on the film growth. Although these effects do not seem to be important for growing a-Si:H by HWCVD on conductive substrates, they help better understand the important parameters for a-Si:H growth, and thus, to optimize these parameters in other applications of HWCVD technology.

  2. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  3. On the Humidity Sensitivity of Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Busch, N. E.

    1980-01-01

    The influence of humidity changes on hot-wire measurements is discussed. Indications are that the humidity sensitivity parameters obtained by the authors in an earlier paper should be changed. This means, however, that the agreement between predicted and measured sensitivities ceases to exist...

  4. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  5. Onset temperatures in hot wire Ignition of AN-Based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sek Kwan [Orica Mining Services, Quebec (Canada); Turcotte, Richard [Canadian Explosive Research Laboratory, Ottawa (Canada)

    2009-02-15

    Hot wire ignition experiments were carried out recently at the Canadian Explosives Research Laboratory on a few emulsion formulations. The data indicate that there is a pressure-dependent onset temperature beyond which the wire temperature increases at an accelerated rate. In order to explain this observation and to detect this temperature more consistently, particularly at low pressures, the data are reanalysed by comparing the experimental wire temperature with that predicted from theory for the heating of an inert material. For this purpose, an analytical theory from the literature is reviewed and the numerical solution developed in this report is described. The latter can deal with more general solutions with variable thermal properties and chemical reactions in the condensed medium surrounding the wire. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  7. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  8. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  9. Hot-wire ignition of AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Richard; Goldthorp, Sandra; Badeen, Christopher M. [Canadian Explosives Research Laboratory, Natural Resources Canada, Ottawa, Ontario, K1A 0G1 (Canada); Chan, Sek Kwan [Orica Canada Inc., Brownsburg-Chatham, Quebec (Canada)

    2008-12-15

    Emulsions based on ammonium nitrate (AN) and water locally ignited by a heat source do not undergo sustained combustion when the pressure is lower than some threshold value usually called the Minimum Burning Pressure (MBP). This concept is now being used by some manufacturers as a basis of safety. However, before a technique to reliably measure MBP values can be designed, one must have a better understanding of the ignition mechanism. Clearly, this is required to avoid under ignitions which could lead to the erroneous interpretation of failures to ignite as failures to propagate. In the present work, facilities to prepare and characterize emulsions were implemented at the Canadian Explosives Research Laboratory. A calibrated hot-wire ignition system operated in a high-pressure vessel was also built. The system was used to study the ignition characteristics of five emulsion formulations as a function of pressure and ignition source current. It was found that these mixtures exhibit complicated pre-ignition stages and that the appearance of endotherms when the pressure is lowered below some threshold value correlates with the MBP. Thermal conductivity measurements using this hot-wire system are also reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  11. Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl

    Science.gov (United States)

    Ewing, D.; Pollard, A.

    1996-11-01

    It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.

  12. Comparison of PIV and Hot-Wire statistics of turbulent boundary layer

    International Nuclear Information System (INIS)

    Dróżdż, A; Uruba, V

    2014-01-01

    The paper shows a cross checking of turbulent boundary layer measurements using large field of view PIV and hot-wire anemometry techniques. The time-resolved PIV method was used for the experiments. The measuring plane was oriented perpendicularly to the wall and parallel to the mean flow. Hot wire measurement has been performed using the special probe with perpendicular hot wire. The HW point measurements were performed in the same place as PIV experiments. The hot-wire probe has the wire length of l + < 20 in considered range of Reynolds numbers. Various evaluation methods were applied on PIV data. The profiles of statistical characteristics of streamwise velocity components were evaluated from the data. Mean values, standard deviations as well as skewness and kurtosis coefficients were compared for a few values of Re θ . Reynolds number ranges from 1000 to 5500. The result shows that with the increasing Reynolds number the attenuation of fluctuations maximum in PIV measurements occurs with respect to Hot-Wire measurements, however representation of velocity fluctuations using the PIV method is satisfactory. The influence of wall-normal fluctuation component on Hot-Wire near wall peak was also investigated.

  13. A thermo-electro-mechanical simulation model for hot wire cutting of EPS foam

    DEFF Research Database (Denmark)

    Petkov, Kiril; Hattel, Jesper Henri

    2016-01-01

    A one-dimensional thermo-electro-mechanical mathematical model describing the effects taking place within a Ni-Cr20% wire used in a hot-wire cutting process for free forming and rapid prototyping of expanded polystyrene (EPS) is investigated and simulated. The model implements and solves three semi...... cutting of EPS in contact with a cutting tool made of an electrically heated metal wire attached to a robot device. The finite difference method is used to solve the coupled equations in the two environments (domains) in which the hot-wire operates, namely air and EPS. The model is calibrated against...... experimentally obtained data. Novel findings are a transient temperature-dependent kerfwidth prediction and a relation between kerfwidth and the cutting angle as measured from the horizontal direction. These are important relations in the aim for higher geometrical accuracy of the hot-wire cutting process. (C...

  14. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  15. Rethinking the participatory web : A history of HotWired's 'new publishing paradigm,' 1994-1997

    NARCIS (Netherlands)

    Stevenson, Michael

    2014-01-01

    This article critically interrogates key assumptions in popular web discourse by revisiting an early example of web “participation.” Against the claim that Web 2.0 technologies ushered in a new paradigm of participatory media, I turn to the history of HotWired, Wired magazine’s ambitious web-only

  16. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    downstream of the nozzle contraction. We used two different hot wire probes: a dual sensor miniature wire probe (Dantec 55P61) and a triple sensor fiber film probe (Dantec 55R91). The turbulence intensity measured with the dual sensor probe in the empty tunnel section was significantly lower than the one...

  17. PERSPECTIVES OF MODERNIZATION OF WIRE MILL OF HOT ROLLING 150 AT RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. V. Gontarj

    2004-01-01

    Full Text Available The offered modernization of the mill presumes the increase of capacity of the small-sort wire mill of hot milling 150 approximately till 40% at reduction of cost of the produced on it rolled wire by 15%, that will allow in future as well to grow the volumes of hardware production.

  18. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  19. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  20. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    International Nuclear Information System (INIS)

    Li, Mingji; Guo, Wenlong; Li, Hongji; Xu, Sheng; Qu, Changqing; Yang, Baohe

    2014-01-01

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na 2 SO 4 aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g −1 at current density of 0.5 A g −1 . The capacitance remains at about 84% after 1000 cycles at 10 A g −1 . The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices

  1. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  2. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  3. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  4. Rethinking the participatory web: A history of HotWired's "new publishing paradigm," 1994-1997

    OpenAIRE

    Stevenson, M.

    2014-01-01

    This article critically interrogates key assumptions in popular web discourse by revisiting an early example of web 'participation.' Against the claim that Web 2.0 technologies ushered in a new paradigm of participatory media, I turn to the history of HotWired, Wired magazine's ambitious web-only publication launched in 1994. The case shows how debates about the value of amateur participation vis-à-vis editorial control have long been fundamental to the imagination of the web's difference fro...

  5. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-10-01

    Full Text Available This paper reports on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent...

  6. Defect structures in MgB2 wires introduced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Liao, X Z; Serquis, A; Zhu, Y T; Civale, L; Hammon, D L; Peterson, D E; Mueller, F M; Nesterenko, V F; Gu, Y

    2003-01-01

    The microstructures of MgB 2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. A large amount of crystalline defects including small-angle twisting, tilting and bending boundaries, in which high densities of dislocations reside, was found forming sub-grains within MgB 2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centres that contribute to the high critical current densities of the wires at high temperatures and at high fields

  7. Electrically active, doped monocrystalline silicon nanoparticles produced by hot wire thermal catalytic pyrolysis

    CSIR Research Space (South Africa)

    Scriba, MR

    2011-05-01

    Full Text Available Doped silicon nanoparticles have successfully been produced by hot wire thermal catalytic pyrolysis at 40 mbar and a filament temperature of 1800 °C, using a mixture of silane and diborane or phosphine. All particles are monocrystalline with shapes...

  8. The calibration of (multi-) hot-wire probes. 1. Temperature calibration

    NARCIS (Netherlands)

    Dijk, van A.; Nieuwstadt, F.T.M.

    2004-01-01

    We study the performance of the classical relation for the correction for ambient temperature drift of the signal of a hot-wire anemometer and the influence of practical assumptions. It is shown that most methods to estimate the operational temperature via the temperature/resistance coefficient lead

  9. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    Science.gov (United States)

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  10. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    International Nuclear Information System (INIS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-01

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  11. Calibration Experiments with a DISA Hot-Wire Anemometer

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Hedberg, S.

    1968-11-01

    From Collis' law and the direction sensitivity relation proposed by Hinze it is possible to derive the following relation between the voltage over the wire, the velocity and the angle of incidence of the flow: (V 2 - V 2 0 )/R(R-R a ) = b(ρu) c (sin 2 ψ + k 2 cos 2 ψ) c/2 . T values of the exponent c and the direction sensitivity coefficient k were determined experimentally in the range 20 2 . It was found that, if V 0 is the voltage measured with no net flow past the wire, c and k are decreasing with increasing values of ρu. In order to check these calibration experiments, shear stress and turbulence measurements were made in a circular channel. For this geometry the shear stress distribution can be estimated theoretically and several earlier experiments can be used for comparisons. These experiments were made at Reynolds numbers 3 x 10 5 - 10 6 , Mach numbers 0.1 - 0.3 and a channel length of 61 diameters. Excellent agreement with the theoretical shear stress distribution (corrected for compressibility effects) and earlier data for the axial and radial turbulence components was obtained when the results of the calibration experiments were used for the evaluation of these measurements Evaluation with a constant value of c or with k 2 equal to zero (as often recommended) gave less good agreement

  12. Hot-rolled and cold-finished zirconium and zirconium alloy bars, rod, and wire for nuclear application

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The specification covers hot- and cold-finished zirconium alloy bars, rod, and wire, other than those required for reforging, including rounds, squares, and shapes. One unalloyed grade and three alloy grades for use in nuclear applications are described. The products covered include the following sections and sizes: bars, rounds in coils for subsequent reworking (6.4 to 19 mm) and flats (6.4 to 250 mm); rods, rounds in coils for subsequent reworking (6.4 to 19 mm); wire (9.5 mm). The specification covers ordering information, manufacture, condition, chemical requirements, mechanical properties, corrosion properties, permissible variations in dimensions, significance of numerical limits, lot size, special tests, workmanship, finish, inspection, certification, packaging and marking

  13. Hot wire needle probe for thermal conductivity detection

    Science.gov (United States)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  14. Calibration Experiments with a DISA Hot-Wire Anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Hedberg, S

    1968-11-15

    From Collis' law and the direction sensitivity relation proposed by Hinze it is possible to derive the following relation between the voltage over the wire, the velocity and the angle of incidence of the flow: (V{sup 2} - V{sup 2}{sub 0})/R(R-R{sub a}) = b({rho}u){sup c} (sin{sup 2}{psi} + k{sup 2}cos{sup 2}{psi}){sup c/2}. T values of the exponent c and the direction sensitivity coefficient k were determined experimentally in the range 20 < {rho}u < 180 kg/sm{sup 2}. It was found that, if V{sub 0} is the voltage measured with no net flow past the wire, c and k are decreasing with increasing values of {rho}u. In order to check these calibration experiments, shear stress and turbulence measurements were made in a circular channel. For this geometry the shear stress distribution can be estimated theoretically and several earlier experiments can be used for comparisons. These experiments were made at Reynolds numbers 3 x 10{sup 5} - 10{sup 6}, Mach numbers 0.1 - 0.3 and a channel length of 61 diameters. Excellent agreement with the theoretical shear stress distribution (corrected for compressibility effects) and earlier data for the axial and radial turbulence components was obtained when the results of the calibration experiments were used for the evaluation of these measurements Evaluation with a constant value of c or with k{sup 2} equal to zero (as often recommended) gave less good agreement.

  15. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  16. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  17. Generation and Transport of Hot Electrons in Cone-Wire Targets

    Science.gov (United States)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  18. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  19. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  20. Real-time monitoring of laser hot-wire cladding of Inconel 625

    Science.gov (United States)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  1. Computer programs for evaluation of turbulence characteristics from hot-wire measurements

    International Nuclear Information System (INIS)

    Vosahlo, L.

    1984-06-01

    This report describes the set of the computer programs for evaluation of the turbulent flow characteristics from hot-wire experimental data. Three different methods and, in addition, some variants are solved in these programs. This enables a comparison of the results obtained by these methods and the analysis of the influence of individual calculation parameters and calibration coefficients on the evaluated results. The results are printed in lucid numerical tables and written into files for further processing into graphs by plotting routines. (orig.) [de

  2. Hot-Wire Calibration at Low Velocities: Revisiting the Vortex Shedding Method

    Directory of Open Access Journals (Sweden)

    Sohrab S. Sattarzadeh

    2013-01-01

    Full Text Available The necessity to calibrate hot-wire probes against a known velocity causes problems at low velocities, due to the inherent inaccuracy of pressure transducers at low differential pressures. The vortex shedding calibration method is in this respect a recommended technique to obtain calibration data at low velocities, due to its simplicity and accuracy. However, it has mainly been applied in a low and narrow Reynolds number range known as the laminar vortex shedding regime. Here, on the other hand, we propose to utilize the irregular vortex shedding regime and show where the probe needs to be placed with respect to the cylinder in order to obtain unambiguous calibration data.

  3. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  4. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  5. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  6. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  7. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  8. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    International Nuclear Information System (INIS)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.; Liothin, J.; Destouches, C.; Rempe, J.L.; Matheron, P.; Lambert, T.

    2015-01-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  9. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.E.; Knudson, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415, (United States); Villard, J.F.; Liothin, J.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Rempe, J.L. [Rempe and Associates, LLC, Idaho Falls, ID, 83404 (United States); Matheron, P. [CEA, DEN, DEC, Uranium Fuels Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Lambert, T. [CEA, DEN, DEC, Innovative Fuel Design and Irradiation Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France)

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  10. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    Science.gov (United States)

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Calibration techniques for the hot wire anemometer in a low velocity region

    International Nuclear Information System (INIS)

    Fujimura, Kaoru; Kawamura, Hiroshi

    1980-03-01

    In connection with experiments on coolant flow in the core of multi-purpose VHTR, a low-velocity calibration wind tunnel was made, and techniques for the hot wire anemometer in the air were investigated. Following are the results. 1) A technique using the frequency of von Karman vortex street is not recommended because of the irregular mode in a low velocity region. 2) A Pitot tube is valid only for the flow velocities larger than 1 m/s. 3) The thermal trace technique is suitable in a relatively wide range of velocity, if velocity defect in the wake is compensated for. When flow velocity is larger than 1 m/s, the thermal trace technique is consistent with the Pitot tube method. (author)

  12. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  13. Landing Gear Components Noise Study - PIV and Hot-Wire Measurements

    Science.gov (United States)

    Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.

    2010-01-01

    PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.

  14. A hot-wire method based thermal conductivity measurement apparatus for teaching purposes

    International Nuclear Information System (INIS)

    Alvarado, S; Marín, E; Juárez, A G; Calderón, A; Ivanov, R

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer and a high purity platinum wire). The wire, which is immersed in the investigated sample, is heated by passing a constant electrical current through it, and its temperature evolution, ΔT, is measured as a function of time, t, for several values of the current. A straightforward methodology is then used for data processing in order to obtain the liquid thermal conductivity. The start point is the well known linear relationship between ΔT and ln(t) predicted for long heating times by a model based on a solution of the heat conduction equation for an infinite lineal heat source embedded in an infinite medium into which heat is conducted without convective and radiative heat losses. A criterion is used to verify that the selected linear region is the one that matches the conditions imposed by the theoretical model. As a consequence the method involves least-squares fits in linear, semi-logarithmic (semi-log) and log-log graphs, so that it becomes attractive not only to teach about heat transfer and thermal properties measurement techniques, but also as a good exercise for students of undergraduate courses of physics and engineering learning about these kinds of mathematical functional relationships between variables. The functionality of the experiment was demonstrated by measuring the thermal conductivity in samples of liquids with well known thermal properties. (paper)

  15. USING HOT WIRE TECHNIQUE FOR MEASURING THERMAL CONDUCTIVITY OF INFUSIONS OF ORGANIC AND CONVENTIONAL COFFEE

    Directory of Open Access Journals (Sweden)

    Fernando Gordillo-Delgado

    2016-07-01

    Full Text Available The technique of hot wire, a versatile method of low cost and high accuracy for measuring the thermal conductivity of fluids through the increasing temperature of a wire that is immersed into the liquid and between its ends a potential difference is abruptly applied. Using well-known conductivity liquids: water, ethylene glycol and glycerine, the system was tested and calibrated. In this work, this procedure was used to measure the thermal conductivity of the infusion samples of organic and conventional coffee. The same roast degree of the beans was verified with a colorimeter and the preparation was made by pressing 22g of coffee powder in 110mL of water. The obtained data were subjected to Analysis of Variance (ANOVA and this confirmed that the differences in the thermophysical parameter in the two samples are significant with a confidence level of 95\\%. On this way, it was proved that the thermal conductivity value of the coffee infusion allows differentiate between organic and conventional coffee.

  16. Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow

    International Nuclear Information System (INIS)

    Segalini, A; Cimarelli, A; Rüedi, J-D; De Angelis, E; Talamelli, A

    2011-01-01

    The effort to describe velocity fluctuation distributions in wall-bounded turbulent flows has raised different questions concerning the accuracy of hot-wire measurement techniques close to the wall and more specifically the effect of spatial averaging resulting from the finite size of the wire. Here, an analytical model which describes the effect of the spatial filtering and misalignment of hot-wire probes on the main statistical moments in turbulent wall-bounded flows is presented. The model, which is based on the two-point velocity correlation function, shows that the filtering is directly related to the transverse Taylor micro-scale. By means of turbulent channel flow DNS data, the capacity of the model to accurately describe the probe response is established. At the same time, the filtering effect is appraised for different wire lengths and for a range of misalignment angles which can be expected from good experimental practice. Effects of the second-order terms in the model equations are also taken into account and discussed. In order to use the model in a practical situation, the Taylor micro-scale distribution at least should be provided. A simple scaling law based on classic turbulence theory is therefore introduced and finally employed to estimate the filtering effect for different wire lengths

  17. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  18. Experimental hot-wire measurements in a centrifugal compressor with vaned diffuser

    International Nuclear Information System (INIS)

    Pinarbasi, Ali

    2008-01-01

    The purpose of this study was to improve the understanding of the flow physics in a centrifugal compressor with vaned diffuser. For this reason three component hot wire measurements in the vaneless space and vane region of a low speed centrifugal compressor are presented. A low speed compressor with a 19 bladed backswept impeller and diffuser with 16 wedge vanes were used. The measurements were made at three inter-vane positions and are presented as mean velocity, turbulent kinetic energy and flow angle distributions. The flow entering the diffuser closely resembles the classic jet-wake flow characteristic of centrifugal impeller discharges. A strong upstream influence of the diffuser vanes is observed which results in significant variations in flow quantities between the vane-to-vane locations. The circumferential variations due to the passage and blade wakes rapidly mix out in the vaneless space, although some variations are still discernible in the vaned region. The impeller blade wakes mix out rapidly within the vaneless space and more rapidly than in an equivalent vaneless diffuser. Although the flow is highly non uniform in velocity at the impeller exit, there is no evidence in the results of any separation from the diffuser vanes

  19. Hot-wire substoichiometric tungsten oxide films deposited in hydrogen environment with n-type conductivity

    International Nuclear Information System (INIS)

    Kostis, I; Vasilopoulou, M; Giannakopoulos, K; Papadimitropoulos, G; Davazoglou, D; Michalas, L; Papaioannou, G; Konofaos, N; Iliadis, A A; Kennou, S

    2012-01-01

    Substoichiometric tungsten oxide nanostructured films were synthesized by a hot-wire deposition technique in hydrogen-rich environment and characterized for their structural and electrical properties. A semiconducting behaviour was identified, allowing n-type conductivity even at room temperature which is an important result since it is well known that fully stoichiometric tungsten trioxide is nearly an insulator. Current-voltage characteristics for various temperatures were measured for tungsten oxide/Si heterostructures and analysed using proper modelling. As a result, the conduction mechanism inside the films was identified and found to be of a dual nature, with variable range hopping being dominant at near room temperatures. The saturation current was found to be thermally activated and the activation energy was calculated at 0.40 eV and the grain boundaries barrier at 150 meV. From Hall measurements it was also revealed that the dominant carriers are electrons and a carrier concentration of about 10 14 cm -3 was estimated.

  20. Measurement of the thermal conductivity of liquid D2O by the transient hot-wire method

    International Nuclear Information System (INIS)

    Nagasaka, Y.; Hiraiwa, H.; Nagashima, A.

    1990-01-01

    The measurement of the thermal conductivity of liquid D 2 O (heavy water) started in 1951. Since then, many researchers have measured the thermal conductivity of heavy water mainly with the aid of steady-state methods such as the parallel plate method and the concentric cylinder method. It should be noted here that even in the case of pure H 2 O or D 2 O enclosed in metallic vessel for a couple of days, the electrical conductivity seems to be not low enough for precise transient hot-wire measurements. The purpose of this paper is to obtain precise thermal conductivity data of liquid D 2 O which can be the reference standard values by the transient hot-wire method. The temperature range covered was 4 degrees C to 80 degrees C with pressure up to 40 MPa and the experimental data have an estimated accuracy of ±0.5%

  1. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... expressions taken from the literature will be examined in detail, and it will be demonstrated that the power-law approach suggested by Hilpert is the only useful one for the current purposes because in this case the voltage response from the hot-wire sensor E/E0 shows the same dependency to the water balance...

  2. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe.

    Science.gov (United States)

    Stainback, P. C.; Wagner, R. D.

    1972-01-01

    Disturbance levels were measured in the test section of a Mach 5 blowdown jet using a constant-current, hot-wire anemometer and a pressure transducer. The disturbance levels, measured by the two instruments and normalized by local mean values, agreed within about 30%, with the pitot data higher than the hot-wire data. The rms disturbance levels measured with the hot-wire anemometer and converted to pitot pressures using a quasi-steady flow analysis, were about two-thirds the levels measured with the pitot probe. The variation of the normalized rms disturbance levels with stagnation pressure indicated that transition occurred in the boundary layer on the nozzle wall and influenced the outputs of the instruments located at the exit of the nozzle when the total pressure was about 35 N/sq cm. Below this pressure the disturbance levels decreased markedly. At higher pressures the disturbances were predominantly aerodynamic noise generated by the turbulent boundary layer on the nozzle wall.

  3. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  4. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2016-01-01

    Full Text Available Thermal environment in a vehicular cabin significantly influence drivers’ fatigue and passengers’ thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction and outlet (each vent, and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  5. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  6. Mechanical properties and aesthetics of FRP orthodontic wire fabricated by hot drawing.

    Science.gov (United States)

    Imai, T; Watari, F; Yamagata, S; Kobayashi, M; Nagayama, K; Toyoizumi, Y; Nakamura, S

    1998-12-01

    The FRP wires 0.5 mm in diameter with a multiple fiber structure were fabricated by drawing the fiber polymer complex at 250 degrees C for an esthetic, transparent orthodontic wire. Biocompatible CaO-P2O5-SiO2-Al2O3 (CPSA) glass fibers of 8-20 microm in diameter were oriented unidirectionally in the longitudinal direction in PMMA matrix. The mechanical properties were investigated by 3-point flexural test. The FRP wire showed sufficient strength and a very good elastic recovery after deformation. Young's modulus and the flexural load at deflection 1 mm were nearly independent of the fiber diameter and linearly increased with the fiber fraction. The dependence on fiber fraction obeys well the rule of mixture. This FRP wire could cover the range of strength corresponding to the conventional metal orthodontic wires from Ni-Ti used in the initial stage of orthodontic treatments to Co-Cr used in the final stage by changing the volume ratio of glass fibers with the same external diameter. The estheticity in external appearance was excellent. Thus the new FRP wire can satisfy both mechanical properties necessary for an orthodontic wire and enough estheticity, which was not possible for the conventional metal wire.

  7. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  8. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  9. Efficient production of hot plasmas through multiple-wire implosion in transmission line generators

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1980-01-01

    Model equations for the implosion of multiple-wire arrays mounted across the electrodes of a transmission line generator are used to obtain an expression for the energy-coupling efficiency. For a useful class of imploding loads, the efficiency is shown to depend on a single dimensionless parameter. Furthermore, the efficiency curve has a maximum, and this permits an explicit optimization of the wire load parameters in terms of the machine parameters

  10. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  11. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique

    International Nuclear Information System (INIS)

    Amini, Noushin; Hassan, Yassin A.

    2014-01-01

    Highlights: • Coolant flow behavior in near wall gaps of a pebble bed reactor is studied. • Hot wire anemometry is applied for high frequency velocity measurements. • Bypass flow is identified within the velocity profiles of near wall gaps. • Effect of gap geometry and Reynolds number on bypass flow is investigated. • Variation of velocity power spectra with radial location and Reynolds number is studied. - Abstract: Coolant flow behavior through the core of an annular pebble bed reactor is investigated in this experimental study. A high frequency hot wire anemometry system coupled with an X-probe is used for measurement of axial and radial velocity components at different points within two near wall gaps at five different modified Reynolds numbers (Re m = 2043–6857). The velocity profiles within the gaps verify the presence of an area of increased velocity close to the pebble bed outer reflector wall, which is known as the bypass flow. Moreover, the characteristics of the coolant flow profile are seen to be highly dependent on the gap geometry. The effect of Reynolds number on the velocity profiles varies as the geometry of the gap changes. The time histories of the local velocities measured with considerably high frequency are further analyzed using power spectral density technique. Power spectral plots illustrate substantial spatial variation of the energy content, spectral shape, and the slope of the energy cascade region. A significant correlation between Reynolds number and characteristics of the velocity power spectra is observed

  12. Determination of burning velocity of methane-air mixtures using soap bubbles and a hot-wire anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yukio

    1987-12-25

    The rate of combustion of the mixture of methane and air under a constant atmospheric pressure was determined using a soap bubble and a hot-wire anemometer. The flame propagation velocity, Ss, of the specified ratio of mixed gas confined in a soap bubble regarded as a transparent vessel was recorded using the multi-exposurement schlieren method by igniting the gas at the centre of bubble. The velocity of mixed gas, Sg, in front of the flame was measured by the hot-wire anemometer installed in the soap bubble to obtain the rate of combustion Su (Ss-Sg). The maximum Su was 45 cm/s obtained at the ratio of equivalent amounts of 1.08, which agreed with the theoretical value of one-dimensional flame. This is because the measuring method accords with the definition of rate of combustion. Su was 12.5 and 11.0 cm/s at the ratio of equivalent amounts of 0.6 and 1.6, respectively. The measurements by this method considerably agreed with those by conventional similar methods and other high-accuracy methods. The method is applicable accurately to various combustible mixed gas. (6 figs, 1 tab, 18 refs)

  13. Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geo Materials: Microstructure and Saturation Effect

    Directory of Open Access Journals (Sweden)

    B. Merckx

    2012-01-01

    Full Text Available The thermal conductivity measurement by a simplified transient hot-wire technique is applied to geomaterials in order to show the relationships which can exist between effective thermal conductivity, texture, and moisture of the materials. After a validation of the used “one hot-wire” technique in water, toluene, and glass-bead assemblages, the investigations were performed (1 in glass-bead assemblages of different diameters in dried, water, and acetone-saturated states in order to observe the role of grain sizes and saturation on the effective thermal conductivity, (2 in a compacted earth brick at different moisture states, and (3 in a lime-hemp concrete during 110 days following its manufacture. The lime-hemp concrete allows the measurements during the setting, desiccation and carbonation steps. The recorded Δ/ln( diagrams allow the calculation of one effective thermal conductivity in the continuous and homogeneous fluids and two effective thermal conductivities in the heterogeneous solids. The first one measured in the short time acquisitions (<1 s mainly depends on the contact between the wire and grains and thus microtexture and hydrated state of the material. The second one, measured for longer time acquisitions, characterizes the mean effective thermal conductivity of the material.

  14. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  15. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  16. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    Science.gov (United States)

    2015-10-01

    Turbulence intensities. uv , uw Reynolds stresses. xP, yP, zP Probe body coordinate system (right-handed). For a single-wire probe, the xP axis...Figure 8), i.e. UNCLASSIFIED DST-Group-TN-1467 UNCLASSIFIED 2 vVV += (2) and wWW += (3) Turbulence terms such as 2u , 2v , 2w , uv and uw...traverse. A very small amount of phosphoric acid can be placed on the tips of the prongs and the Wollaston wire is soldered to the prongs using a

  17. Effects of reprocessing on chemical and morphological properties of guide wires used in angioplasty

    Directory of Open Access Journals (Sweden)

    Rogério Valentim Gelamo

    2013-09-01

    Full Text Available OBJECTIVE: To investigate the influence of the reprocessing technique of enzymatic bath with ultrasonic cleaning and ethylene oxide sterilization on the chemical properties and morphological structure of polymeric coatings of guide wire for regular guiding catheter. METHODS: These techniques simulated the routine of guide wire reprocessing in many hemodynamic services in Brazil and other countries. Samples from three different manufacturers were verified by scanning electron microscopy and X-ray photoelectron spectroscopy. RESULTS: A single or double sterilization of the catheters with ethylene oxide was not associated with morphological or chemical changes. However, scanning electron microscopy images showed that the washing method was associated with rough morphological changes, including superficial holes and bubbles, in addition to chemical changes of external atomic layers of polymeric coating surfaces, as detected by the X-ray photoelectron spectroscopy method, which is compatible with extended chemical changes on catheter surfaces. CONCLUSION: The reprocessing of the catheters with ethylene oxide was not associated with morphological or chemical changes, and it seemed appropriate to maintain guide wire coating integrity. However, the method combining chemical cleaning with mechanical vibration resulted in rough anatomical and chemical surface deterioration, suggesting that this reprocessing method should be discouraged.

  18. Methods of Measurement of High Air Velocities by the Hot Wire Method

    Science.gov (United States)

    1943-02-01

    to that of the heating current, as indicated by the minus sign. The cathode bias of the linearizing stage 1» then adjusted to obtain readings that...and tungsten wire. ! MM Taobaloai lot* lo. tifx» 3.- Heating aunnt of a bot «in at ooutaat-railitaae* operation. ? a UM tMMlMl nta Fe. IN nca . 4

  19. Chemical wiring and soldering toward all-molecule electronic circuitry.

    Science.gov (United States)

    Okawa, Yuji; Mandal, Swapan K; Hu, Chunping; Tateyama, Yoshitaka; Goedecker, Stefan; Tsukamoto, Shigeru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2011-06-01

    Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction "chemical soldering". First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed. © 2011 American Chemical Society

  20. Transverse vorticity measurements using an array of four hot-wire probes

    Science.gov (United States)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  1. An explanation for anomalous thermal conductivity behaviour in nanofluids as measured using the hot-wire technique

    International Nuclear Information System (INIS)

    Marín, E; Bedoya, A; Alvarado, S; Calderón, A; Ivanov, R; Gordillo-Delgado, F

    2014-01-01

    Several efforts have been made to explain thermal conductivity enhancements in fluids due to the addition of nanoparticles. However, until now, there has been no general consensus on this issue. In this work a simple experiment is described that demonstrates a possible cause of misinterpretation of the experimental data of thermal conductivity obtained when using the hot-wire technique (HWT) in these systems. It has been demonstrated that the thermal conductivity of a two-layer sample of two non-miscible phase systems determined by means of the HWT must be modelled using a series thermal resistance model with consideration of the interfacial layers between different phases. This result sheds light on the thermal conductivity enhancement in nanofluids with respect to the values corresponding to the base fluid, suggesting that this increase can be explained using the above-mentioned model and not by application of empirical formulae for effective media, as done before. (paper)

  2. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  3. Long-range distributed optical fiber hot-wire anemometer based on chirped-pulse ΦOTDR.

    Science.gov (United States)

    Garcia-Ruiz, Andres; Dominguez-Lopez, Alejandro; Pastor-Graells, Juan; Martins, Hugo F; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel

    2018-01-08

    We demonstrate a technique allowing to develop a fully distributed optical fiber hot-wire anemometer capable of reaching a wind speed uncertainty of ≈ ±0.15m/s (±0.54km/h) at only 60 mW/m of dissipated power in the sensing fiber, and within only four minutes of measurement time. This corresponds to similar uncertainty values than previous papers on distributed optical fiber anemometry but requires two orders of magnitude smaller dissipated power and covers at least one order of magnitude longer distance. This breakthrough is possible thanks to the extreme temperature sensitivity and single-shot performance of chirped-pulse phase-sensitive optical time domain reflectometry (ΦOTDR), together with the availability of metal-coated fibers. To achieve these results, a modulated current is fed through the metal coating of the fiber, causing a modulated temperature variation of the fiber core due to Joule effect. The amplitude of this temperature modulation is strongly dependent on the wind speed at which the fiber is subject. Continuous monitoring of the temperature modulation along the fiber allows to determine the wind speed with singular low power injection requirements. Moreover, this procedure makes the system immune to temperature drifts of the fiber, potentially allowing for a simple field deployment. Being a much less power-hungry scheme, this method also allows for monitoring over much longer distances, in the orders of 10s of km. We expect that this system can have application in dynamic line rating and lateral wind monitoring in railway catenary wires.

  4. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    Science.gov (United States)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  5. Design and Development of Embedded System for the Measurement of Thermal Conductivity of Liquids by Transient Hot Wire Method

    Directory of Open Access Journals (Sweden)

    Nagamani GOSALA

    2011-06-01

    Full Text Available Thermal conductivity of polymers is an important property for both polymer applications and processing industry. The successful application of thermal insulating fluids in the last several years has demonstrated that such fluids can effectively control the heat loss. Understanding and controlling the thermal environment for oilfield operations has been a concern and research topic. As a consequence of this trend, there is huge demand for new methods of instrumentation to evaluate the performance of material properties and characterization. The main aim of the present study is the development of hardware and software for measuring the thermal conductivity of liquids using transient hot wire method. Because of the relatively short experimental times and large amounts of parametric data involved in the measurement process, embedded control of the measurement is essential. The experimental implementation requires a suitable temperature sensing, automatic control, data acquisition, and data analysis systems accomplished using an embedded system that has been built around the ARM LPC 2103 mixed signal controller.

  6. Transition over C4 leading edge and measurement of intermittency factor using PDF of hot-wire signal

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, B.K.; Hirsch, C. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Fluid Mechanics

    1997-07-01

    The variation of intermittency factors in the transition region of a C4 leading edge flat plate is measured at three incidence angles in a low-turbulence free stream. During the determination of intermittency factor, the threshold value of the detector function and the validity of conditional averaging are verified by a method based on the direct application of PDF of the hot-wire output. As the angle of incidence is increased, the transition progressively moves through all the three modes on the suction surface: at zero incidence the bypass transition, at 2 deg incidence the natural transition, and at 4 deg incidence the separated-flow transition occur, respectively. All three modes of transition exhibited the chordwise intermittency factor variation in accordance with Narasinha`s universal intermittency distribution; thus, the method based on spot production rate is applicable to all the three modes of transition. In the transition zone of the attached boundary layers, the conditionally averaged interturbulent profiles are fuller than the Blasius profile, while the conditionally averaged turbulent profiles follow a logarithmic profile with a variable additive parameter.

  7. The Laser Welding with Hot Wire of 316LN Thick Plate Applied on ITER Correction Coil Case

    CERN Document Server

    Fang, Chao; Wu, Weiyue; Wei, Jing; Zhang, Shuquan; Li, Hongwei; Dolgetta, N; Libeyre, P; Cormany, C; Sgobba, S

    2014-01-01

    ITER correction coil (CC) cases have characteristics of small cross section, large dimensions, and complex structure. The cases are made of heavy thick (20 mm), high strength and high toughness austenitic stainless steel 316LN. The multi-pass laser welding with hot wire technology is used for the case closure welding, due to its low heat input and deformation. In order to evaluate the reliability of this welding technology, 20 mm welding samples with the same groove structure and welding depth as the cases were welded. High purity argon was used as the shielding gas to prevent oxidation because of the narrowness and depth of the weld. In this paper investigation of, microstructure characteristics and mechanical properties of welded joints using optimized welding parameters are presented. The results show that the base metal, fusion metal, and heat affected zone (HAZ) are all have fully austenitic microstructure, and that the grain size of fusion metal was finer than that of the base metal. The welding resulte...

  8. Formation of a Molecular Wire Using the Chemically Adsorbed Monomolecular Layer Having Pyrrolyl Groups

    Directory of Open Access Journals (Sweden)

    Kazufumi Ogawa

    2011-01-01

    Full Text Available A molecular wire containing polypyrrolyl conjugate bonds has been prepared by a chemical adsorption technique using 1,1,1-trichloro-12-pyrrolyl-1-siladodecane (PNN and an electrooxidative polymerization technique, and the conductivity of the molecular wire without any dopant has been measured by using AFM/STM at room temperature. When sample dimension measured was about 0.3 nm (thickness of the conductive portion in the PNN monomolecular layer ×100 μm (the average width of an electric path ×2 mm (the distance between Pt positive electrode and the AFM tip covered with Au, the conductivity of the polymerized PNN molecular wire at room temperature was larger than 1.6 × 105 S/cm both in an atmosphere and in a vacuum chamber of 10−5 Torr. The activation energy obtained by Arrhenius' plots was almost zero in the temperature range between 320 and 450 K.

  9. Si Nano wires Produced by Very High Frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) via VLS Mechanism

    International Nuclear Information System (INIS)

    Yussof Wahab; Yussof Wahab; Habib Hamidinezhad; Habib Hamidinezhad

    2013-01-01

    Silicon nano wires (SiNWs) with diameter of about a few nanometers and length of 3 μm on silicon wafers were synthesized by very high frequency plasma enhanced chemical vapor deposition. Scanning electron microscopy (SEM) observations showed that the silicon nano wires were grown randomly and energy-dispersive X-ray spectroscopy analysis indicates that the nano wires have the composition of Si, Au and O elements. The SiNWs were characterized by high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. SEM micrographs displayed SiNWs that are needle-like with a diameter ranged from 30 nm at the top to 100 nm at the bottom of the wire and have length a few of micrometers. In addition, HRTEM showed that SiNWs consist of crystalline silicon core and amorphous silica layer. (author)

  10. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Science.gov (United States)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  11. Isotopic and chemical features of hot springs in Akita Prefecture

    International Nuclear Information System (INIS)

    Matsubaya, Osamu

    1997-01-01

    All over the Akita Prefecture, many hot springs are located. Most of them are of meteoric water, fossil sea water and volcanic gas origins. In the Ohdate-Kazuno area, moderate temperature hot springs of meteoric water origin are found, which may exist as rather shallow formation water in the Green Tuff formations. On the contrary, high temperature geothermal waters of meteoric origin, which are used for power generation, are obtained in two volcanic area of Hachimantai and Oyasu. Those geothermal waters are expected to come up through vertical fissures from depth deeper than 2 km. The difference of these two manners of meteoric water circulation should be necessarily explained to understand the relationship of shallow and deep geothermal systems. About some hot springs of fossil sea water origin, the relationships of δ D and Cl - don't agree to the mixing relation of sea water and meteoric water. This may be explained by two different processes, one of which is mixing of sea water with saline meteoric water (Cl - ca. 12 g/kg). The other is modification of δD by hydrogen isotopic exchange with hydrous minerals underground, or by exchange with atmospheric vapor during a relic lake before burying. (author)

  12. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    Science.gov (United States)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the

  13. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  14. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  15. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  16. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  17. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    Science.gov (United States)

    Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.

    2015-11-01

    In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.

  18. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    International Nuclear Information System (INIS)

    Maraeva, E V; Alexandrova, O A; Levitskiy, V S; Mazing, D S; Moshnikov, V A; Shupta, A A; Spivak, Yu M; Forostyanaya, N A; Maskaeva, L N; Markov, V Ph; Tulenin, S S

    2015-01-01

    In this study lead sulphide – cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements. (paper)

  19. Chemical composition of hot spring waters in the Oita river basins, Oita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Tamio

    1988-01-30

    The source of the water from Oita River comes from the Kuju and Yubu-Tsurumi Volcanos, pouring into Beppu Bay. Its drainage area is 646 km/sup 2/ with a total length of 55 km. Hot springs are exist throughout most of the basin of the main and branches of Oita River. The chemical components of the hot springs in the Ota River basin -Yufuin, Yunotaira, Nagayu, Shonai/Hazama, and Oita City - have been analyzed. The equivalent of magnesium exceeds that of calcium in the carbonate springs of the above. Ca+Mg has positive correlations with HCO/sub 3/ in these carbonate springs. The water from these springs flows into the rivers and pours into Beppu Bay. The flow rate and chemical component concentration were measured at Fudai bridge. The concentration of chemical components having an average flow rate (30 ton/sec) were calculated. (4 figs, 7 tabs, 10 refs)

  20. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  1. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    International Nuclear Information System (INIS)

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  2. Effect of time and pH on physical-chemical properties of orthodontic brackets and wires.

    Science.gov (United States)

    Dos Santos, Aretha Aliny Ramos; Pithon, Matheus Melo; Carlo, Fabíola Galbiatti Carvalho; Carlo, Hugo Lemes; de Lima, Bruno Alessandro Silva Guedes; Dos Passos, Tibério Andrade; Lacerda-Santos, Rogério

    2015-03-01

    To test the hypothesis that treatment time, debris/biofilm, and oral pH have an influence on the physical-chemical properties of orthodontic brackets and arch wires. One hundred twenty metal brackets were evaluated. They were divided into four groups (n  =  30) according to treatment time: group C (control) and groups T12, T24, and T36 (brackets recovered after 12, 24, and 36 months of treatment, respectively). Rectangular stainless-steel arch wires that remained in the oral cavity for 12 to 24 months were also analyzed. Dimensional stability, surface morphology, composition of brackets, resistance to sliding of the bracket-wire set, surface roughness of wires, and oral pH were analyzed. One-way analysis of variance, followed by a Tukey multiple comparisons test, was used for statistical analysis (P bracket slots were shown to have more influence on the degradation process and frictional force of these devices than did oral pH.

  3. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  4. EFFECT OF CHEMICAL MODIFICATION AND HOT-PRESS DRYING ON POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Guo-Feng Wu

    2010-11-01

    Full Text Available Urea-formaldehyde prepolymer and hot-press drying were used to improve the properties of poplar wood. The wood was impregnated with the prepolymer using a pulse-dipping machine. The impregnated timbers were compressed and dried by a multilayer hot-press drying kiln. The drying rate was more rapid during the chemical modification and hot-press drying than conventional kiln-drying. In addition, the properties of timber were also enhanced obviously. When the compression rate was 28.6%, the basic density, oven dry density and air-dried density of modified wood improved 22%, 71%, and 70%, respectively. The bending strength and compressive strength parallel to grain increased 60% and 40%. The water uptake of treated wood was significantly decreased compared with the untreated wood. The FTIR analysis successfully showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which was attributed to a reaction of the NHCH2OH of urea-formaldehyde prepolymer with the wood carboxyl (C=O and hydroxyl (-OH groups. The XRD results indicated that the degree of crystallinity increased from 35.09% to 36.91%. The morphologic models of chemical within wood were discovered by SEM.

  5. Chemical segregation in hot cores with disk candidates. An investigation with ALMA

    Science.gov (United States)

    Allen, V.; van der Tak, F. F. S.; Sánchez-Monge, Á.; Cesaroni, R.; Beltrán, M. T.

    2017-07-01

    Context. In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive YSO. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. Aims: We investigate the chemical makeup of several hot molecular cores to determine physical and chemical structure. We use high spectral and spatial resolution submillimeter observations to determine how this stage fits into the formation sequence of a high-mass star. Methods: The submillimeter interferometer ALMA (Atacama Large Millimeter Array) was used to observe the G35.20-0.74N and G35.03+0.35 hot cores at 350 GHz in Cycle 0. We analyzed spectra and maps from four continuum peaks (A, B1, B2 and B3) in G35.20-0.74N, separated by 1000-2000 AU, and one continuum peak in G35.03+0.35. We made all possible line identifications across 8 GHz of spectral windows of molecular emission lines down to a 3σ line flux of 0.5 K and determined column densities and temperatures for as many as 35 species assuming local thermodynamic equilibrium (LTE). Results: In comparing the spectra of the four continuum peaks, we find each has a distinct chemical composition expressed in over 400 different transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic and inorganic species but few nitrogen-bearing species whereas A and B3 are strong sources of O-, S-, and N-bearing organic and inorganic species (especially those with the CN bond). Column densities of vibrationally excited states are observed to be equal to or greater than the ground state for a number of species. Deuterated methyl cyanide is clearly detected in A and B3 with D/H ratios of 8 and 13%, respectively, but is much weaker at B1 and undetected at B2. No deuterated species are detected in G35.03, but similar molecular abundances to G35.20 were found in other species. We also

  6. CHEMICAL SEGREGATION TOWARD MASSIVE HOT CORES: THE AFGL2591 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Serra, I.; Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Martin-Pintado, J. [Centro de Astrobiologia (CSIC/INTA), Ctra. de Torrejon a Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); De Wit, W.-J., E-mail: ijimenez-serra@cfa.harvard.edu, E-mail: qzhang@cfa.harvard.edu, E-mail: sv@star.ucl.ac.uk, E-mail: jmartin@cab.inta-csic.es, E-mail: wdewit@eso.org [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2012-07-01

    We present high angular resolution observations (0.''5 Multiplication-Sign 0.''3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star-forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Types I, II, and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales {<=}3000 AU within a hot core. While Type I species (H{sub 2}S and {sup 13}CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC{sub 3}N, OCS, SO, and SO{sub 2}) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH{sub 3}OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO{sub 2}, HC{sub 3}N, and CH{sub 3}OH (185 {+-} 11 K, 150 {+-} 20 K, and 124 {+-} 12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H{sub 2}S, SO{sub 2}, and CH{sub 3}OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 M{sub Sun} star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photodissociation and a high-temperature ({approx}1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.

  7. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  8. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    International Nuclear Information System (INIS)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H 2 /minus/> DH + H and the substitution reaction D + C 2 H 2 /minus/> C 2 HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs

  9. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  10. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  11. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  12. The effect of mechano-chemical treatment on structural properties of the drawn TiNi-based alloy wire

    Science.gov (United States)

    Anikeev, Sergey; Hodorenko, Valentina; Gunther, Victor; Chekalkin, Timofey; Kang, Ji-hoon; Kang, Seung-baik

    2018-01-01

    The rapid development of biomedical materials with the advanced functional characteristics is a challenging task because of the growing demands for better material properties in-clinically employed. Modern medical devices that can be implanted into humans have evolved steadily by replacing TiNi-based alloys for titanium and stainless steel. In this study, the effect of the mechano-chemical treatment on structural properties of the matrix and surface layer of the drawn TiNi-based alloy wire was assessed. A range of samples have been prepared using different drawing and etching procedures. It is clear from the results obtained that the fabricated samples show a composite structure comprising the complex matrix and textured oxycarbonitride spitted surface layer. The suggested method of surface treatment is a concept to increase the surface roughness for the enhanced bio-performance and better in vivo integration.

  13. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  14. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  15. Glass Imprint Templates by Spark Assisted Chemical Engraving for Microfabrication by Hot Embossing

    Directory of Open Access Journals (Sweden)

    Lucas Abia Hof

    2017-01-01

    Full Text Available As the field of microelectromechanical systems (MEMS matures, new demands are being placed on the microfabrication of complex architectures in robust materials, such as hard plastics. Iterative design optimization in a timely manner—rapid prototyping—places challenges on template fabrication, for methods such as injection moulding and hot embossing. In this paper, we demonstrate the possibility of using spark assisted chemical engraving (SACE to produce micro patterned glass templates. The direct, write-based approach enabled the facile fabrication of smooth microfeatures with variations in all three-dimensions, which could be replicated by hot embossing different thermoplastics. As a proof of principle, we demonstrated the technique for a high glass transition temperature polycarbonate. Good fidelity over more than 10 cycles provides evidence that the approach is viable for rapid prototyping and has the potential to satisfy commercial-grade production at medium-level output volumes. Glass imprint templates showed no degradation after use, but care must be taken due to brittleness. The technique has the potential to advance microfabrication needs in academia and could be used by MEMS product developers.

  16. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  17. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  18. Thermal and chemical interaction of hot liquid sodium with limestone concrete in argon atmosphere

    International Nuclear Information System (INIS)

    Fakir, Charan Parida; Sanjay, Kumar Das; Anil, Kumar Sharma; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.; Rajan, M.

    2007-01-01

    Sodium cooled fast breeder reactors (FBRs) may experience accidental leakage of hot liquid sodium in the inert equipment cells and reactor cavity. The leaked sodium at temperature ranging from 120degC to 550degC can come in contact with the sacrificial layer of limestone concrete. In order to study the thermal and chemical impact of sodium on the limestone concrete, five experimental runs were carried out under different test conditions simulating accident scenarios as realistically as possible. In each experimental run, a given mass of liquid sodium preheated to a specified temperature was dumped on the surface of concrete specimen housed in a test vessel with argon atmosphere. The sodium pool formed on the concrete was heated with an immersion heater to maintain the pool temperature at pre-selected level. The temperatures at various strategic locations were continuously monitored throughout the test run. Online measurement of pressure, hydrogen gas and oxygen gas in argon atmosphere was conducted. The solid samples of sodium debris were retrieved from the posttest concrete specimen by manual core drilling device for chemical analysis of reacted and un-reacted sodium. After cleaning the sodium debris, a power-drilling machine was employed to collect powder samples at regular depth interval from the concrete block floor to determine residual free and bound water. This paper presents some of the dominant thermal and chemical features related to structural safety of the concrete. Among the thermal parameters, on-set time and residence period for Energetic Thermal Transients (ETT) along with peak and average heat generation rates are evaluated. Chemical parameters such as rate and extent of water release from concrete, sodium consumption, sodium hydroxide production and sodium emission into argon atmosphere are also elucidated. Physicochemical characteristics of post-test sodium and concrete debris were investigated. Moreover spatial distribution of sodium, free and

  19. Chemical reactions involved in the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions; Cr203 + 2 Na2S04(1) + 3/2 02 yields 2 Na2Cr04(1) + 2 S03(g)n TiO2 + Na2S04(1) yields Na20(T102)n + 503(g)n T102 + Na2Cro4(1) yields Na2(T102)n + Cr03(g).

  20. Geologic setting and chemical characteristics of hot springs in central and western Alaska

    Science.gov (United States)

    Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace

    1973-01-01

    Numerous hot springs occur in a variety of geologic provinces in central and western Alaska. Granitic plutons are common to all the provinces and the hot springs are spatially associated with the contacts of these plutons. Of 23 hot springs whose bedrock geology is known, all occur within 3 miles of a granitic pluton. The occurrence of hot springs, however, appears to be independent of the age, composition, or magmatic history of the pluton.

  1. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  2. Chemical Composition of Apricot Pit Shells and Effect of Hot-Water Extraction

    Directory of Open Access Journals (Sweden)

    Derek B. Corbett

    2015-09-01

    Full Text Available Agricultural residues, such as corn stover, wheat straw, and nut shells show promise as feedstocks for lignocellulosic biorefinery due to their relatively high polysaccharide content and low or no nutritional value for human consumption. Apricot pit shells (APS were studied in this work to assess their potential for use in a biorefinery. Hot water extraction (HWE; 160 °C, 2 h, proposed to remove easily accessible hemicelluloses, was performed to evaluate the susceptibility of APS to this mild pretreatment process. The chemical composition of APS before and after HWE (EAPS was analyzed by standard methods and 1H-NMR. A low yield of the remaining HW-extracted APS (~59% indicated that APS are highly susceptible to this pretreatment method. 1H-NMR analysis of EAPS revealed that ~77% of xylan present in raw APS was removed along with ~24% of lignin. The energy of combustion of APS was measured before and after HWE showing a slight increase due to HWE (1.61% increase. Near infrared radiation spectroscopy (NIRS, proposed as a quick non-invasive method of biomass analysis, was performed. NIRS corroborated results of traditional analysis and 1H-NMR. Determination of antioxidizing activity (AOA of APS extracts was also undertaken. AOA of organic APS extracts were shown to be more than 20 times higher than that of a synthetic antioxidizing agent.

  3. Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Cheng, Q.J., E-mail: qijin.cheng@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, PO Box 218, Lindfield 2070, NSW (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-01-15

    Highlights: • Plasma-specific effects in the growth of carbon nanoflakes (CNFs) are studied. • Electic field in the plasma sheath promotes separation of CNFs from the substrate. • The orentention of GNFs is related to the combined electic force and growth effects. • The high growth grates of aligned GNFs are plasma-related. - Abstract: Carbon nanofilms are directly grown on silicon substrates by plasma-enhanced hot filament chemical vapor deposition in methane environment. It is shown that the nanofilms are composed of aligned carbon nanoflakes by extensive investigation of experimental results of field emission scanning electron microscopy, micro-Raman spectroscopy and transmission electron microscopy. In comparison with the graphene-like films grown without plasmas, the carbon nanoflakes grow in an alignment mode and the growth rate of the films is increased. The effects of the plasma on the growth of the carbon nanofilms are studied. The plasma plays three main effects of (1) promoting the separation of the carbon nanoflakes from the silicon substrate, (2) accelerating the motion of hydrocarbon radicals, and (3) enhancing the deposition of hydrocarbon ions onto the substrate surface. Due to these plasma-specific effects, the carbon nanofilms can be formed from the aligned carbon nanoflakes with a high rate. These results advance our knowledge on the synthesis, properties and applications of graphene-based materials.

  4. Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chang Weon Song

    2017-12-01

    Full Text Available To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in a hot filament chemical vapor deposition (HF-CVD system. In this study, the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16, and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software ANSYS-FLUENT. To account for radiative heat-transfer in the HF-CVD reactor, the discrete ordinate (DO model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512–2802 K and 1076–1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with the experimental temperatures measured using a two-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  5. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  6. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  7. Extension of the lifetime of tantalum filaments in the hot-wire (Cat) 3 Chemical Vapor Deposition process

    CSIR Research Space (South Africa)

    Knoesen, D

    2008-01-01

    Full Text Available , the filament is again exposed to pure hydrogen for a minimum of 5 min, the chamber then again evacuated to a vacuum better than 8×10−8 mbar before cutting the power to the filament. This has resulted in a filament life of 11 months, with an accumulated... process only treated by annealing before a deposition run, did not last long, and typically broke after 3 to 5 h of accumulated deposition time. Silicide formation is found along the full length of these tantalum filaments, with severe structural...

  8. Growth kinetics of nc-Si:H deposited at 200 °C by hot-wire chemical vapour deposition

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2011-05-01

    Full Text Available deposited on single-side polished (100) crystalline silicon and Corning 7059 glass substrates using an ultra-high vacuum HWCVD system [3] from various 3 gas mixtures of SiH4 and H2. The H-dilution ratio, defined as )( 42 2 SiHH HR ?+? ? = , where..., South Africa 2 National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040, South Africa 3 CSIR National Centre for Nano-Structured Materials, P. O. Box 395, Pretoria 0001, South Africa Abstract We report...

  9. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  10. TL and OSL studies on undoped diamond films grown by hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Anuj, E-mail: anujsoni.phy@gmail.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Choudhary, R.K. [Materials Processing Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Polymeris, G.S. [Ankara University, Institute of Nuclear Sciences (Turkey); Mishra, D.R. [Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Center, Mumbai 400 085 (India); Kulkarni, M.S. [Radiation Safety Systems Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2016-09-15

    In this work, approximately 0.5 µm thick diamond films were grown on a silicon substrate by hot filament chemical vapour deposition (HFCVD) method in a gas mixture of hydrogen and methane. The batch to batch reproducibility of the sample using this technique was found to be very good. The obtained film was characterized by micro laser Raman spectroscopy (MLRS), grazing incidence X-ray diffractometry (GIXRD), scanning electron microscopy (SEM) and atomic force miscroscopy (AFM) techniques. MLRS and GIXRD results confirmed the formation of diamond whereas SEM and AFM analyses indicated uniform morphology of the film with an average grain size of 200 nm. The deposited film was studied for ionizing radiation dosimetry applications using the thermoluminescence (TL) and optically stimulated luminescence (OSL) techniques after irradiating the film by a calibrated 5 mCi, {sup 90}Sr/{sup 90}Y beta source. In the TL measurement, for a heating rate of 4 K/s, broad glow curve was obtained which was deconvoluted into seven TL peaks. The integrated TL counts were found to vary linearly with increasing the radiation dose up to 10 kGy. The characteristic TL output seen in the temperature range 200–300 °C, may be considered good for thermal stability of the film and it could also avoid TL fading during storage and non-interference of any black body radiation during the measurement. However, in comparison to TL output, the OSL response for 470 nm LED stimulation was found to be lesser. The CW–OSL decay curve has shown two components contributing to the OSL signal, having photoionization cross-section 1.5×10{sup −18} and 5.2×10{sup −19} cm{sup 2} respectively. The studies have revealed the possibility of using diamond film for high dose radiation dosimetry with TL/OSL method.

  11. Characterization of Sludge from the Process of Steel Tubes Chemical Treatment for Hot Galvanizing

    Directory of Open Access Journals (Sweden)

    Sofilić, U.

    2009-10-01

    Full Text Available Inadequate industrial waste management in Croatia is reflected in the non-sanitary waste disposal, low recycling levels, negligible share of waste processing technologies, insufficient control of its flows, etc.Generated industrial wastes are most frequently disposed of at producers’ own, mostly illegal landfills. There are many such landfills on the Croatian territory, and the disposed types of waste often include those that can be hazardous and represent a considerable source of environmental pollution.Past waste management in all industrial branches can be characterized in this way, which at the same time may result in the harmful impact on human health and the environment. It also represents economic loss due to low utilisation of material and energy potential of some industrial wastes. The metallurgical industry collects its production waste separately. Only a part of the generated waste is returned to the production process and some waste is occasionally used by other industries as secondary raw materials, but the largest part of it ends at producers' own landfills on site. Hazardous wastes (dust containing heavy metals, waste oils etc. are mostly disposed of in a controlled and lawful manner. Past handling of metallurgical waste was unacceptable both from the environmental and economic point of view. Therefore a systematic resolving of this important issue was initiated at the beginning of this decade. Sisak Steelworks galvanized steel pipes in the hot-dip galvanizing procedure by immersing in molten zinc. Between 1970 and 2000 Sisak Steelworks produced approximately 900 000 tonnes of galvanized pipes this way and generated around 70 000 m3 of neutralisation sludge, which was subsequently disposed of in the landfill on site. The paper presents the results of examination of physical-chemical properties of neutralisation sludge generated as waste material in the process of neutralisation of waste sulphate acid bath used in Sisak

  12. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  13. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  14. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

  15. Determination of Hot Springs Physico-Chemical Water Quality Potentially Use for Balneotherapy

    International Nuclear Information System (INIS)

    Zaini Hamzah; Nurul Latiffah Abd Rani; Ahmad Saat; Ab Khalik Wood

    2013-01-01

    Hot springs areas are attractive places for locals and foreigners either for excursion or for medical purposes such as for healing of various types of diseases. This is because the hot spring water is believed rich in salt, sulfur, and sulfate in the water body. For many thousands of years, people have used hot springs water both for cozy bathing and therapy. Balneotherapy is the term used where the patients were immersed in hot mineral water baths emerged as an important treatment in Europe around 1800s. In view of this fact, a study of hot springs water was performed with the objective to determine the concentration of Na + , K + , Ca 2+ , S, SO 4 2- and Cl - in hot springs water around the State of Selangor, Malaysia. Energy dispersive X-ray Fluorescent Spectrometry (EDXRF) was used to measure the concentrations of Na + , K + , Ca 2+ and S meanwhile for SO 4 2- and Cl - anion, Ion Chromatography (IC) was used. The concentration of Na + obtained for filtered and unfiltered samples ranged from 33.68 to 80.95 and 37.03 to 81.91 ppm respectively. Meanwhile, the corresponding concentrations of K + ranged from 1.47 to 45.72 and 1.70 to 56.81 ppm. Concentrations of Ca 2+ ranged from 2.44 to 18.45 and 3.75 to 19.77 ppm. The concentration of S obtained for filtered and unfiltered samples ranged from 1.87 to 12.41 and 6.25 to 12.86 ppm. The concentrations for SO 4 2- and Cl - obtained ranged from 0.15 to 1.51 ppm and 7.06 to 20.66 ppm for filtered samples. The data signified higher concentration of salt and other important nutrients in hot spring water. (author)

  16. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  19. Effect of chemical composition of copper alloys on their hot-brittleness and weldability

    International Nuclear Information System (INIS)

    Zakharov, M.V.

    1985-01-01

    Effect of different alloying elements on the hot crack formation in argon-arc welding of M1 copper has been studied. It is shown that the effective crystallization interval has a determining influence on hot-brittleness of low-alloyed high-thermal- and electric conducting welded copper alloys. The narrow is this interval the lower is linear schrinkage and the alloys inclined to the formation of crystallization cracks in welding to a lesser degree. Alloying elements with low solubility in copper in solid state broadening the crystallization interval affect negatively the alloy hot-brittleness. Such additives as zirconium are useful at 0.02-0.O5% content and at > 0.1% content are intolerable. As to cadmium, tin, magnesium, cerium and antimony additives they don't practically strengthen copper and its alloys at 700-800 deg C and they should not be introduced

  20. Effect of chemical composition and cooling conditions on solidification hot cracking of Ni-based alloys

    International Nuclear Information System (INIS)

    De Vito, Sophie

    2000-01-01

    Ni-based alloys 690 present solidification hot cracks during welding of vapour generators. Hot cracks are qualitatively known to be due to the formation of inter-dendritic liquid films and of secondary phases down to low temperatures. This study aims at establishing the link between thermodynamics, solidification and hot cracking. Experimental solidification paths of high purity alloys (with varying Nb and Si contents) are obtained from quenching during directional solidification and TIG-welding experiments. They are compared to Thermo-Calc computations, assuming no diffusion in the solid. From directional solidification samples, good agreement between computed and experimental solidification paths is shown in the quenched liquid. Secondary arms of dendrites are affected by solid state diffusion of Nb. Combined effect of diffusion and solute build-up in the liquid phase modifies micro-segregation in the solid region. Solidification paths from welding specimens are similar to those of the solid region of quenched samples. Nb solid state diffusion is negligible but undercooling compensates the effect of solid state diffusion in directional solidification. Evolution of liquid fraction at the end of the solidification is in accordance with the hot cracking classification of the alloys. Nb favours formation of inter-dendritic liquid films and eutectic-like phases down to low temperature. (author) [fr

  1. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  2. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of chemical composition of steel on the structure of hot – dip galvanized coating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This article describes the effect of the content of conventional steel impurity elements on the thickness and composition of the zinc layer. This article is focused primarily on low-temperature, batch hot-dip galvanizing; however, the continuous coating process is also mentioned. The main discussion covers galvanizing from pure zinc melt, and only touches on galvanizing from melts with the usual amounts of aluminium (0,2 wt. %. Silicon, phosphorus, aluminium and sulfur may have an especially negative effect on the mechanical properties of the coating and its final appearance. The content of ballast carbon and manganese has a rather limited effect on composition and coating thickness.

  8. Hot subluminous stars: On the Search for Chemical Signatures of their Genesis

    Science.gov (United States)

    Hirsch, Heiko Andreas

    2009-10-01

    This thesis deals with the hot subluminous stars of spectral class O. Although the name suggests otherwise, these stars are still 10 to 1000 times more luminous than the sun, they emit most of their radiation energy in the ultraviolet range. First stars of this type have been categorized in the 1950ies. Since they are blue objects like Quasars they often are discovered in surveys at high Galactic latitudes aiming at Quasars and other extragalactic objects. The hot subluminous stars can be divided into two classes, the subluminous O and subluminous B stars, or short sdO and sdB. The sdOs and sdBs play an important role in astronomy, as many old stellar populations, e.g. globular clusters and elliptical galaxies, have strong UV fluxes. UV bright regions often are "stellar nurseries", where new stars are born. Globular clusters and elliptical galaxies, however, do not experience star formation. This UV excess can be explained by population models that include the hot subluminous stars. Many sdB stars show short-period, multiperiodic light variations, which are due to radial and nonradial pulsations. Asteroseismology can explore the inner structure of stars and estimate e.g. the stellar mass, a variable that can only determine in very lucky circumstances (eclipsing binaries). These stars are also important for cosmology because they qualify as supernova Ia progenitors. The nature of the sdO stars is less well understood than that of their cooler and more numerous siblings, the sdBs. The connection of the sdBs to the horizontal branch is established for many years now, accordingly they are old helium core burning objects after their red giant phase. More precisely, they are on the extended horizontal branch (EHB), the hot end of the horizontal branch. EHB stars are characterized by a very low envelope mass, i.e. we see more or less directly the hot helium burning core. Strong mass loss in the RGB phase is regarded as responsible for this phenomenon, the exact mechanism

  9. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    OpenAIRE

    Heesoo Jung; Jin Ah Seo; Seungki Choi

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design?wearable APP (WAPP)?that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully e...

  10. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  11. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Science.gov (United States)

    Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.

    2006-07-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  12. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    Energy Technology Data Exchange (ETDEWEB)

    Winands, G J J [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Liu, Z [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Pemen, A J M [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Heesch, E J M van [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Yan, K [EPS Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Veldhuizen, E M van [EPG Group, Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands)

    2006-07-21

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh){sup -1}. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh){sup -1}, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.

  13. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    International Nuclear Information System (INIS)

    Winands, G J J; Liu, Z; Pemen, A J M; Heesch, E J M van; Yan, K; Veldhuizen, E M van

    2006-01-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh) -1 . For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh) -1 , still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second

  14. Influence of hard particle addition and chemical interdiffusion on the properties of hot extruded tool steel compounds

    International Nuclear Information System (INIS)

    Silva, P.A.; Weber, S.; Inden, G.; Pyzalla, A.R.

    2009-01-01

    Low alloyed steel bars were co-extruded with pre-sintered tool steel powders with the addition of tungsten carbides (W 2 C/WC) as hard particles. During the hot extrusion process of these massive and powdery materials, an extrudate is formed consisting of a completely densified wear resistant coating layer and a bulk steel bar as the tough substrate core. This work combines experimental measurements (EPMA) and diffusion calculations (DICTRA TM ) to investigate the effect of hard particle addition and its dissolution, as well as the formation of M 6 C carbides on the properties of two different PM tool steel coatings hot extruded with a 1.2714 steel bar. A carburization effect resulting from the W 2 C hard particles is responsible for an increase of the 1.2344 steel matrix hardness. The mechanical properties of the interface region between coating matrix and substrate are influenced by chemical interdiffusion of carbon and other alloying elements occurring during heat treatment.

  15. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Djozan, Djavanshir, E-mail: djozan@tabrizu.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Ebrahimi, Bahram [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahkam, Mehrdad [Chemistry Department, Azarbaijan University of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of); Farajzadeh, Mir Ali [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-07-26

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL{sup -1}, respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  16. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Djozan, Djavanshir; Ebrahimi, Bahram; Mahkam, Mehrdad; Farajzadeh, Mir Ali

    2010-01-01

    A new solid-phase microextraction (SPME) fiber is fabricated through ultra violet irradiation polymerization of ametryn-molecularly imprinted polymer on the surface of anodized-silylated aluminum wire. The prepared fiber is durable with very good chemical and thermal stability which can be coupled to GC and GC/MS. The effective parameters on the fabrication and application procedures such as spraying mode, ultra violet irradiation (polymerization) time, number of sprayings and polymerizations, pH and ionic strength of sample and extraction time were optimized. This fiber shows high selectivity with great extraction capacity toward triazines. SPME and GC analysis of ametryn, prometryn, terbutryn, atrazine, simazine, propazine and cyanazine using the fabricated fiber result in the detection limits of 9, 32, 27, 43, 51, 74 and 85 ng mL -1 , respectively. The reliability of the prepared fiber in real samples has been investigated and proved by using spiked tap water, rice, maize and onion samples.

  17. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  18. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  19. Chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-02-01

    Full Text Available , effective, more versatile and easily scalable to large substrate sizes. In this paper, we present a design of the hot-wire CVD system constructed at the CSIR for the deposition of CNTs. Additionally, we will report on the structure of CNTs deposited... exhibit exceptional chemical and physical properties related to toughness, chemical inertness, magnetism, and electrical and thermal conductivity. A variety of preparation methods to synthesise CNTs are known, e.g. carbon-arc discharge, laser ablation...

  20. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  1. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  2. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    International Nuclear Information System (INIS)

    Fassbender, M.; Nortier, F.M.; Phillips, D.R.; Hamilton, V.T.; Heaton, R.C.; Jamriska, D.J.; Kitten, J.J.; Pitt, L.R.; Salazar, L.L.; Valdez, F.O.; Peterson, E.J.

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides 68 Ge, 82 Sr, 109 Cd and 88 Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40 MBq to 75 GBq. (orig.)

  3. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  4. Thermalhydraulic assessment of the Pickering NGS 'B' feed and bleed system for the hot boiler chemical clean (Siemens Process)

    International Nuclear Information System (INIS)

    Lorencez, Carlos M.

    2000-01-01

    The Hot Boiler Chemical Clean (HBCC) process from Siemens, to be used in PNGS, requires that the Heat Transport System (HTS) temperature be maintained in the range 160 to 170 o C for several days. To achieve these thermalhydraulic condition, the core decay power and the pump power of the main circulating pumps in a 3-3 configuration are employed to warm up the HTS from approximately 38 o C to 170 o C. At this point, high Bleed bias is applied to the signal of the HTS pressure controller to provide high Feed and Bleed flows, which are used to control the HTS temperature by means of the Bleed Cooler. To address any concern posed by these infrequently used HTS thermalhydraulic conditions, a detailed thermalhydraulic model of the Feed and Bleed System, that also includes the Gland Supply, Gland Return and Purification systems, was developed for the TUF code to determine the suitability of the Feed and Bleed System to conduct the HBCC. The model was then used to estimate the parameters such as Feed and Bleed flows, valve openings, pressure and temperature distributions throughout the Feed and Bleed System required for the application of HBCC. (author)

  5. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  7. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  8. Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus

    International Nuclear Information System (INIS)

    Hammerschmidt, U.

    1995-01-01

    The thermal conductivity of the refrigerants R22, R123, R134a, R142b, R143a, and R152a has been determined as a function of temperature in the range from 300 to 460 K. Measurements were carried out at atmospheric pressure with an improved guarded hot-plate apparatus. The width of the instrument's gas layer and the temperature difference across the metering section were varied to detect any stray heat transfer. Radiation correction factors were derived from IR absorption spectra. The uncertainty of the measurements is estimated to be 2% at a standard deviation of less than 0.1%. Our data sets are compared with corresponding hot wire results. In contrast to the generally preferred hot wire technique, with its possible electrical and chemical interactions between the wire and the polar refrigerant, there are no such difficulties using a guarded hot-plate apparatus. Our data sets may thus contribute to the discussions on discrepancies in thermal conductivity values from various authors using hot wire as one particular method

  9. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  10. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  11. Hot-wire synthesis of Si nanoparticles

    CSIR Research Space (South Africa)

    Scriba, MR

    2008-01-01

    Full Text Available The viability of producing silicon nanoparticles using the HWCVD process is investigated. A system is assembled and particles are produced from silane at pressures between 0.2 – 48 mbar, with hydrogen dilutions of 0-80%, at a total flow rate of 50...

  12. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    International Nuclear Information System (INIS)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO 2 /CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector

  13. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  14. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    OpenAIRE

    Yuntao Xia; Yanmin Jia; Weiqi Qian; Xiaoli Xu; Zheng Wu; Zichen Han; Yuanting Hong; Huilin You; Muhammad Ismail; Ge Bai; Liwei Wang

    2017-01-01

    A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C) with a high Rhodamine B (RhB) decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-ele...

  15. Chemical vapor deposition of tantalum on graphite cloth for making hot pressed fiber reinforced carbide-graphite composite

    International Nuclear Information System (INIS)

    Hollabaugh, C.M.; Davidson, K.V.; Radosevich, C.L.; Riley, R.E.; Wallace, T.C.

    1977-01-01

    Conditions for the CVD of a uniform coating of Ta on fibers of a woven graphite cloth were established. The effect of gas composition, pressure, and temperature were investigated, and the conditions that gave the desired results are presented. Several layers of the coated cloth were hot pressed to produce a TaC--C composite having uniformly dispersed, fine-grained TaC in graphite. Three compositions were hot pressed: 15, 25, and 40 volume percent carbide. 8 figures, 2 tables

  16. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    Directory of Open Access Journals (Sweden)

    Yuntao Xia

    2017-04-01

    Full Text Available A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C with a high Rhodamine B (RhB decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-electro-chemical catalysis activity after being recycled five times. The pyro-electrically induced pyro-electro-chemical catalysis provides a high-efficient, reusable and environmentally friendly technology to remove organic pollutants from water.

  17. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  18. Decommissioning of the radio chemical hot laboratory of the european commission joint research centre of Ispra - 59207

    International Nuclear Information System (INIS)

    Ugolini, Daniele; Rossi, Francesco; Basile, Francesco

    2012-01-01

    The construction of the Radio Chemical Hot Laboratory (RCHL) of the Joint Research Centre (JRC) of Ispra began in the early 1960's while the laboratory activities started in 1964. In 1976 an annex to the main building was built. At this time the RCHL main research activities were in environment and biochemistry by means of radioactive tracers; neutron activation analyses; extraction of actinides from radioactive liquid waste coming from the nuclear fuel reprocessing plants; and analyses of U, Pu, and Th in samples from the nuclear fuel cycle in order to determine the isotopic ratio and the burn-up. In 1978, a new area of laboratories named 'Stabularium' was built to study the metabolism of heavy metal on laboratory animals. Complementary to the laboratory three pneumatic transfer systems for irradiated sources connected the RCHL to two research reactors. The decommissioning activities of the 2650 m 2 facility started in January 2008 and they were completed at the end of 2010 with the release for unrestricted use of all the buildings of the facility. They consisted in five main tasks: pre-decommissioning, licensing, dismantling, waste management, and final survey. The main pre-decommissioning activities were the physical and radiological characterization of the facility. The principal licensing activity was the preparation of the de-licensing documentation to obtain the license termination from the safety authorities. Dismantling consisted in the removal of all the equipments and ancillary systems, of the pneumatic transfer system, and in the decontamination of the structures of the controlled zone. The waste management was limited to the transfer of the waste and of the clearable material to the centralized waste management facility. The final survey consisted in the final radiological characterization to quantify the concentration of any residual radioactivity remained after the completion of the dismantling activities for the release of the RCHL without any

  19. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that

  20. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  1. Development of scientific and technological basis for the fabrication of thin film solar cells on the basis of a-Si:H and {mu}c-Si:H using the 'hot-wire' deposition technique. Final report; Entwicklung wissenschaftlicher und technischer Grundlagen fuer die Herstellung von Duennschichtsolarzellen auf der Basis des a-Si:H und {mu}c-Si:H mit der 'Hot-Wire'-Depositionstechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, B.

    2002-01-22

    Two new deposition systems were realized enabling the entire and respectively, large area deposition of a-Si:H based solar cells using the so called 'hot-wire' (HW) CVD. The deposition conditions for appropriate n- and p-doped a-Si:H and {mu}c-Si:H layers have been developed. For the first time in the world a-Si:H based pin solar cells were entirely deposited by the HWCVD method. A maximum initial conversion efficiency of {eta}{sub initial}=8.9% was obtained. After the development of a suitable p/n-tunnel/recombination junction pin-pin tandem structures with a-Si:H absorbers could be entirely fabricated by the HWCVD for the first time in the world, too. A conversion efficiency of {eta}=7% was measured for the tandem cell, after some structural degradation took place. In general, the stability of the HWCVD solar cells is not satisfactory, what could be attributed to a structural instability of the HWCVD-p-layers. For the first time we have deposited nip solar cells on stainless steel substrates entirely by HWCVD ({eta}{sub initial}>6%). The incorporation of {mu}c-Si:H absorber layers by HWCVD or ECWR-PECVD into pin solar cells was not successfull until now. Large area deposition of a-Si:H films has been performed in a simple vacuum vessel. Under consideration of appropriate filament and gas supply geometry as well as simulation calculations a good electronic quality and a film thickness uniformity of {delta}d={+-}2.5% of the material was obtained. i-layers for small area solar cells on an area of 20 x 20 cm{sup 2} have been deposited which could be completed to solar cells with very uniform conversion efficiencies of {eta}{sub initial} = 6,1{+-}0.2%. This result represents a proof of concept for the large area deposition of a-Si:H based solar cells using the HWCVD. Also for the first time the HWCVD was used for the deposition of emitter layers on c-Si-wafers to realize hetero solar cells. Hetero solar cells with amorphous, microcrystalline and epitaxial n

  2. Structural evolution of a Ta-filament during hot-wire chemical vapour deposition of Silicon investigated by electron backscatter diffraction

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2012-03-01

    Full Text Available , encapsulating a Ta inner core. The tantalum rich Ta5Si3, Si3Ta5 and Ta2Si phases however formed in addition to TaSi2 at the centre regions. Cracks and porosity were found throughout the length of the filament. The microstructure evolution of the aged tantalum...

  3. Evaluation of treatments with hot water, chemicals and ventilated containers to reduce microbial spoilage in irradiated potatoes

    International Nuclear Information System (INIS)

    Shirsat, S.G.; Thomas, P.; Nair, P.M.

    1991-01-01

    Potatoes irradiated to control sprouting were dipped in: hot water (56°C, 5 min; 52°C, 10, 15 and 20 min); cold (25°C, 5 min) or hot (56°C, 5 min) salicylic acid (1000 and 2000 ppm); or sodium hypochlorite (0.1 and 0.2%, 5 min); or dusted with salicylic acid (1 and 2%), to try to reduce the incidence of bacterial soft rot (Erwinia sp.) during controlled temperature (10°C, 15°C) and ambient temperature (20–34°C) storage. All treatments, particularly hot water and hot salicylic acid dip, increased microbial spoilage, possibly as a result of handling damage during the treatments combined with the inhibition of wound periderm formation as a result of irradiation. Storing irradiated tubers in well ventilated containers reduced soft rot compared to storing them in sacks and after 6 months storage at 10, 15 and 20–34°C, 95, 90 and 77% respectively were healthy and marketable. (author)

  4. Chemical composition and oxidative stability of jussara (Euterpe edulis M.) oil extracted by cold and hot mechanical pressing

    International Nuclear Information System (INIS)

    Da Cunha, A.L.A.; Freitas, S.P.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V.

    2017-01-01

    The aim of this work was to evaluate the effect of mechanical pressing on jussara oil yield, oxidative stability and carotenoid profile with or without heat application. Firstly, jussara pulp was centrifuged for juice extraction, and the resulting cake was dried until reaching 10% moisture content. Then, oil extraction was performed in an expeller press at 25 ºC (cold pressing) and at 50 ºC (hot pressing). The process performance was evaluated by the oil yield, and the crude jussara oil was characterized for fatty acid composition, acid value, carotenoid profile and oxidative stability. Jussara oil contained 74% unsaturated fatty acids, mainly oleic and linoleic acids (48% and 24%, respectively). The oil yield was almost twice as high for the hot process as compared to the cold one. Additionally, hot pressing resulted in 25% higher total carotenoid content as compared to cold pressing, with β-carotene as the most abundant one. Hot and cold pressing showed no difference in oil oxidative stability and fatty acid composition. [es

  5. Estudo do Processo TIG Hot-Wire com Material de Adição AISI-316L Analisando o Efeito do Sopro Magnético do Arco sobre a Diluição do Cordão de Solda

    Directory of Open Access Journals (Sweden)

    Erick Alejandro González Olivares

    Full Text Available Resumo: O processo TIG com adição de arame quente (HotWire é considerado um processo altamente produtivo em comparação ao processo TIG convencional com arame frio (ColdWire, sendo possível alcançar grandes taxas de deposição e baixas porcentagens de diluição, características essas que permitem ao processo ser uma ótima alternativa para aplicações de revestimentos. Existem variadas opções em configurações de circuitos elétricos para aquecer o arame de adição no processo TIG Hot-Wire, entre elas podemos destacar a utilização da corrente contínua pulsada e a corrente alternada. No presente trabalho foi utilizada a corrente contínua constante e foram estudadas duas configurações do circuito elétrico para aquecer o material de adição, as quais em teoria provocam diferentes comportamentos no arco voltaico e, portanto, nas propriedades geométricas do cordão de solda. Uma primeira análise realizada sobre o arco voltaico demonstra que se forma um sopro mágnetico constante ao se aquecer o arame com corrente contínua constante. Segundo os ensaios realizados, a direção do sopro magnético depende da polaridade da corrente para aquecer o arame. Uma análise macrográfica dos cordões de solda obtidos demonstraram que os melhores resultados foram para os ensaios feitos com Hot-Wire, conseguindo diluições de até um 2% aproximadamente para uma velocidade de arame de 7,5 m/min, 1 kW de potência de aquecimento do arame e usando uma velocidade de soldagem de 30 cm/min.

  6. Método de fio quente na determinação das propriedades térmicas de polímeros Hot wire technique in the determination of thermal properties of polymers

    Directory of Open Access Journals (Sweden)

    Wilson N. dos Santos

    2004-12-01

    Full Text Available A técnica de fio quente paralelo normalizada para a determinação da condutividade térmica de materiais cerâmicos foi empregada na determinação das propriedades térmicas de polímeros. As amostras foram preparadas em forma de paralelepípedos retangulares, com dimensões de (230x80x30mm. Neste trabalho, a condutividade térmica e o calor específico foram simultaneamente determinados a partir do mesmo transiente térmico experimental e a difusividade térmica foi calculada a partir dessas duas propriedades. Cinco diferentes polímeros com diferentes estruturas a temperatura ambiente foram selecionados neste trabalho. Os cálculos foram feitos utilizando-se um método de ajuste por regressão não linear, de tal maneira que todos os pontos experimentais obtidos são considerados nos cálculos dessas propriedades térmicas. O equipamento utilizado neste trabalho é totalmente automatizado. A reprodutibilidade dos resultados foi muito boa com respeito à condutividade térmica, obtendo-se um desvio máximo de apenas 0,5% entre os valores máximo e mínimo para todas as amostras ensaiadas, mesmo introduzindo propositadamente alguns defeitos no arranjo experimental, em relação ao modelo teórico. Todavia, pequenos desvios do modelo teórico podem causar drásticas influências nos valores de calor específico, obtendo-se desvios de até 32% em relação ao arranjo experimental correto. Os resultados experimentais foram então comparados com aqueles encontrados na literatura. As discrepâncias observadas entre alguns desses valores podem estar associadas ao grau de cristalinidade ou à história térmica da amostra, ficando assim mostrada a aplicabilidade desta técnica na determinação das propriedades térmicas de polímeros.The hot wire parallel technique standardized for determining thermal conductivity of ceramic materials was employed in the determination of thermal properties of polymers. Samples were prepared in shape of rectangular

  7. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  8. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  9. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  10. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  11. Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy.

    Science.gov (United States)

    Nanjundan, Kavitha; Vimala, G

    2016-01-01

    To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS) brackets (n = 40) and Transcend 6000 polycrystalline alumina (PCA) brackets (n = 40) as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10) and were immersed in vinegar (pH = 3.5 ± 0.5), Pepsi ® (pH = 2.46), Colgate Phos-Flur mouth rinse (pH = 5.1), and artificial saliva (control group pH = 7) for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra) with surface profilometer (single bracket and single wire from each subgroup), and frictional resistance using universal testing machine were evaluated. Highest mean (standard deviation) static frictional force of 2.65 (0.25) N was recorded in Pepsi ® followed by 2.57 (0.25) N, 2.40 (0.22) N, and 2.36 (0.17) N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both) and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both). Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during orthodontic treatment.

  12. Evaluation of frictional resistance and surface characteristics after immersion of orthodontic brackets and wire in different chemical solutions: A comparative in vitrostudy

    Directory of Open Access Journals (Sweden)

    Kavitha Nanjundan

    2016-01-01

    Full Text Available Aim: To evaluate the changes of static and kinetic frictional forces between the brackets and wires following exposure to a soft drink, acidic food ingredient, and acidulated fluoride prophylactic agents. Materials and Methods: Two types of Roth prescription mandibular incisor brackets were used: 3M Unitek Victory stainless steel (SS brackets (n = 40 and Transcend 6000 polycrystalline alumina (PCA brackets (n = 40 as well as eighty 0.019 × 0.025" dimension ortho technology SS wires of 50 mm length each. Subsequently, brackets tied with SS wires divided into eight subgroups (n = 10 and were immersed in vinegar (pH = 3.5 ± 0.5, Pepsi ® (pH = 2.46, Colgate Phos-Flur mouth rinse (pH = 5.1, and artificial saliva (control group pH = 7 for 24 h. Changes in surface morphology under scanning electron microscope ×1000, surface roughness (Ra with surface profilometer (single bracket and single wire from each subgroup, and frictional resistance using universal testing machine were evaluated. Results: Highest mean (standard deviation static frictional force of 2.65 (0.25 N was recorded in Pepsi ® followed by 2.57 (0.25 N, 2.40 (0.22 N, and 2.36 (0.17 N for Vinegar, Colgate Phos-Flur mouth rinse, and artificial saliva groups, respectively. In a similar order, lesser mean kinetic frictional forces obtained. PCA brackets revealed more surface deterioration and higher frictional force values than SS brackets. A significant positive correlation was observed between frictional forces and bracket slot roughness (r = 0.861 and 0.802, respectively, for static and kinetic frictional forces, p < 0.001 for both and wire roughness (r = 0.243 and 0.242, respectively, for static and kinetic frictional forces, p < 0.05 for both. Conclusions: Findings may have long-term implications when acidic food substances are used during fixed orthodontic treatment. Further, in vivo studies are required to analyze the clinical effect of acidic mediums in the oral environment during

  13. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  14. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  15. Modification of REE distribution of ordinary chondrites from Atacama (Chile) and Lut (Iran) hot deserts: Insights into the chemical weathering of meteorites

    Science.gov (United States)

    Pourkhorsandi, Hamed; D'Orazio, Massimo; Rochette, Pierre; Valenzuela, Millarca; Gattacceca, Jérôme; Mirnejad, Hassan; Sutter, Brad; Hutzler, Aurore; Aboulahris, Maria

    2017-09-01

    The behavior of rare earth elements (REEs) during hot desert weathering of meteorites is investigated. Ordinary chondrites (OCs) from Atacama (Chile) and Lut (Iran) deserts show different variations in REE composition during this process. Inductively coupled plasma-mass spectrometry (ICP-MS) data reveal that hot desert OCs tend to show elevated light REE concentrations, relative to OC falls. Chondrites from Atacama are by far the most enriched in REEs and this enrichment is not necessarily related to their degree of weathering. Positive Ce anomaly of fresh chondrites from Atacama and the successive formation of a negative Ce anomaly with the addition of trivalent REEs are similar to the process reported from Antarctic eucrites. In addition to REEs, Sr and Ba also show different concentrations when comparing OCs from different hot deserts. The stability of Atacama surfaces and the associated old terrestrial ages of meteorites from this region give the samples the necessary time to interact with the terrestrial environment and to be chemically modified. Higher REE contents and LREE-enriched composition are evidence of contamination by terrestrial soil. Despite their low degrees of weathering, special care must be taken into account while working on the REE composition of Atacama meteorites for cosmochemistry applications. In contrast, chondrites from the Lut desert show lower degrees of REE modification, despite significant weathering signed by Sr content. This is explained by the relatively rapid weathering rate of the meteorites occurring in the Lut desert, which hampers the penetration of terrestrial material by forming voluminous Fe oxide/oxyhydroxides shortly after the meteorite fall.

  16. Filamentous Morphology as a Means for Thermophilic Bacteria to Survive Steep Physical and Chemical Gradients in Yellowstone Hot Springs

    Science.gov (United States)

    Dong, Y.; Srivastava, V.; Bulone, V.; Keating, K. M.; Khetani, R. S.; Fields, C. J.; Inskeep, W.; Sanford, R. A.; Yau, P. M.; Imai, B. S.; Hernandez, A. G.; Wright, C.; Band, M.; Cann, I. K.; Ahrén, D.; Fouke, K. W.; Sivaguru, M.; Fried, G.; Fouke, B. W.

    2017-12-01

    The filamentous heat-loving bacterium Sulfurihydrogenibium yellowstonense makes up more than 90% of the microbial community that inhabits turbulent, dysoxic hot spring outflow channels (66-71°C, 6.2-6.5 pH, 0.5-0.75 m/s flow rate) at Mammoth Hot Spring in Yellowstone National Park. These environments contain abundantly available inorganic substrates (e.g., CO2, sulfide and thiosulfate) and are associated with extensive CaCO3 (travertine) precipitation driven in part by CO2 off-gassing. Evidence from integrated Meta-Omics analyses of DNA, RNA, and proteins (metagenomics, metatranscriptomics and metaproteomics) extracted from these S. yellowstonense-dominated communities have detected 1499 non-rRNA open reading frames (ORFs), their transcripts and cognate proteins. During chemoautotrophy and CO2 carbon fixation, chaperons facilitate enzymatic stability and functionalities under elevated temperature. High abundance transcripts and proteins for Type IV pili and exopolysaccharides (EPS) are consistent with S. yellowstonense forming strong (up to 0.5 m) intertwined microbial filaments (fettuccini streamers) composed of linked individual cells that withstand hydrodynamic shear forces and extremely rapid travertine mineralization. Their primary energy source is the oxidation of reduced sulfur (e.g., sulphide, sulfur or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. Field observations indicate that the fettuccini microbial filaments build up ridged travertine platforms on the bottom of the springs, parallel to the water flow, where living filaments attach almost exclusively to the top of each ridge. This maximizes their access to miniscule amounts of dissolved oxygen, while optimizing their ability to rapidly form down-flow branched filaments and thus survive in these stressful environments that few other microbes can inhabit.

  17. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  18. The role of catalytic nanoparticle pretreatment on the growth of vertically aligned carbon nanotubes by hot-filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Gohier, Aurélien; Bourée, Jean Eric; Châtelet, Marc; Cojocaru, Costel-Sorin, E-mail: costel-sorin.cojocaru@polytechnique.edu

    2015-01-30

    The effect of atomic hydrogen assisted pre-treatment on the growth of vertically aligned carbon nanotubes using hot-filament chemical vapor deposition was investigated. Iron nanoparticle catalysts were formed on an aluminum oxide support layer by spraying of iron chloride salt solutions as catalyst precursor. It is found that pre-treatment time and process temperature tune the density as well as the shape and the structure of the grown carbon nanotubes. An optimum pre-treatment time can be found for the growth of long and well aligned carbon nanotubes, densely packed to each other. To provide insight on this behavior, the iron catalytic nanoparticles formed after the atomic hydrogen assisted pre-treatment were analyzed by atomic force microscopy. The relations between the size and the density of the as-formed catalyst and the as-grown carbon nanotube's structure and density are discussed. - Highlights: • Effect of the atomic hydrogen assisted pre-treatment on the growth of VACNT using hot-filament CVD. • Pre-treatment time and process temperature tune the density, the shape and the structure of the CNTs. • Correlations between size and density of the as-formed catalyst and the CNT’s structure and density. • Carbon nanotubes synthesized at low temperature down to 500 °C using spayed iron chloride salts. • Density of the CNT carpet adjusted by catalytic nanoparticle engineering.

  19. NASA requirements and applications environments for electrical power wiring

    International Nuclear Information System (INIS)

    Stavnes, M.W.; Hammond, A.N.

    1992-01-01

    Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations have been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. This paper presents the electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications

  20. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  2. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  3. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  4. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  5. An Overt Chemical Protective Garment Reduces Thermal Strain Compared with a Covert Garment in Warm-Wet but Not Hot-Dry Environments

    Directory of Open Access Journals (Sweden)

    Matthew J. Maley

    2017-11-01

    Full Text Available Objectives: A commercial chemical, biological, radiological and nuclear (CBRN protective covert garment has recently been developed with the aim of reducing thermal strain. A covert CBRN protective layer can be worn under other clothing, with equipment added for full chemical protection when needed. However, it is unknown whether the covert garment offers any alleviation to thermal strain during work compared with a traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain and work tolerance times during work in an overt and covert ensemble offering the same level of CBRN protection.Methods: Eleven male participants wore an overt (OVERT or covert (COVERT CBRN ensemble and walked (4 km·h−1, 1% grade for a maximum of 120 min in either a wet bulb globe temperature [WBGT] of 21, 30, or 37°C (Neutral, WarmWet and HotDry, respectively. The trials were ceased if the participants' gastrointestinal temperature reached 39°C, heart rate reached 90% of maximum, walking time reached 120 min or due to self-termination.Results: All participants completed 120 min of walking in Neutral. Work tolerance time was greater in OVERT compared with COVERT in WarmWet (P < 0.001, 116.5[9.9] vs. 88.9[12.2] min, respectively, though this order was reversed in HotDry (P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively. The rate of change in mean body temperature and mean skin temperature was greater in COVERT (0.025[0.004] and 0.045[0.010]°C·min−1, respectively compared with OVERT (0.014[0.004] and 0.027[0.007]°C·min−1, respectively in WarmWet (P < 0.001 and P = 0.028, respectively. However, the rate of change in mean body temperature and mean skin temperature was greater in OVERT (0.068[0.010] and 0.170[0.026]°C·min−1, respectively compared with COVERT (0.059[0.004] and 0.120[0.017]°C·min−1, respectively in HotDry (P = 0.002 and P < 0.001, respectively. Thermal sensation, thermal comfort, and ratings of perceived

  6. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  7. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  8. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  10. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  11. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  12. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  13. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  14. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  15. Water Column Chemical Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT199-227 during 2008-2010 (NODC Accession 0088839)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  16. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  17. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  18. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P 2 O 5 were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m 2 -day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification

  19. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply.

    Science.gov (United States)

    Rakić, Anita; Štambuk-Giljanović, Nives

    2016-02-01

    The purpose of this study was to evaluate the prevalence of Legionella spp. and compare the quality of hot water between four facilities for accommodation located in Southern Croatia (the Split-Dalmatian County). The research included data collection on the technical and technological characteristics in the period from 2009 to 2012. The survey included a type of construction material for the distribution and internal networks, heating system water heater type, and water consumption. Changes in water quality were monitored by determination of the physical and chemical parameters (temperature, pH, free chlorine residual concentrations, iron, zinc, copper and manganese) in the samples, as well as the presence and concentration of bacteria Legionella spp. The temperature is an important factor for the development of biofilms, and it is in negative correlation with the appearance of Legionella spp. Positive correlations between the Fe and Zn concentrations and Legionella spp. were established, while the inhibitory effect of a higher Cu concentration on the Legionella spp. concentration was proven. Legionella spp. were identified in 38/126 (30.2%) of the water samples from the heating system with zinc-coated pipes, as well as in 78/299 (26.1%) of the samples from systems with plastic pipes. A similar number of Legionella spp. positive samples were established regardless of the type of the water heating system (central or independent). The study confirms the necessity of regular microbial contamination monitoring of the drinking water distribution systems (DWDSs).

  20. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  1. Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters

    NARCIS (Netherlands)

    Winands, G.J.J.; Liu, Zhen; Pemen, A.J.M.; Heesch, van E.J.M.; Yan, K.; Veldhuizen, van E.M.

    2006-01-01

    In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of

  2. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.

    Science.gov (United States)

    Liu, Shijie

    2010-01-01

    The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could

  3. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  5. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  6. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  7. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  8. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  9. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  10. Impurity 'hot' atoms 67Ga in a role a physical-chemical studies at an estimation of radiation damage in Zn cyclotron targets after bombardment with charged particles

    International Nuclear Information System (INIS)

    Alekseev, I.E.; Lazarev, V.V.

    2006-01-01

    In this paper, the migration of impurity 'hot atoms' 67 Ga produced from various types of nuclear reaction on zinc targets is reported. The type of charged particles as well as their energy, beam current, total fluency was varied

  11. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  12. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  13. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  14. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  15. Aplicação da técnica de fio quente na determinação das propriedades térmicas de polímeros fundidos Hot wire technique in the determination of thermal properties of melt polymers

    Directory of Open Access Journals (Sweden)

    Wilson N. dos Santos

    2005-11-01

    properties of a material that are needed for heat transfer calculations. Reliable thermal properties values are essential for polymers, both in steady and non-steady state situations. Nowadays, several different techniques for the determination of the thermal diffusivity and thermal conductivity may be found in the literature. In this work, the hot wire parallel technique is employed in the experimental determination of the thermal properties of polymers. Three semi-crystalline polymers (HDPE, LDPE and PP, and two amorphous polymers (PS and HIPS were selected for this work. Samples are prepared through the extrusion process starting from the powder or pellets of the solid polymer. A special mould of stainless steel in the shape of a rectangular parallelepiped provided with ceramic insulators between the hot wire, thermocouple and the mould is employed to store the melt extruded polymer whose thermal properties will be measured. Measurements are carried out from room temperature up to approximately 50 ºC above the melting point. Experimental results obtained are checked against data found in literature and those ones furnished by the manufacturers. A critical analysis of this method shows the advantages and disadvantages of this technique when compared with the laser flash technique.

  16. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  17. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  18. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  19. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  20. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  1. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  2. Microstructure of NiTi orthodontic wires observations using transmission electron microscopy

    OpenAIRE

    Ferčec, J.; Jenko, D.; Buchmeister, B.; Rojko, F.; Budič, B.; Kosec, B.; Rudolf, R.

    2014-01-01

    This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM). Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Microstructure observations showed that ort...

  3. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  4. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  5. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  6. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  7. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  8. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  9. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  10. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  11. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  12. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  13. Heat resistant wire and cable and heat shrinkable tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji [Sumitomo Electric Industries Ltd. (Japan)

    1994-12-31

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR`s, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of E{beta} radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 {approx} 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented.

  14. Heat resistant wire and cable and heat shrinkable tubes

    International Nuclear Information System (INIS)

    Keiji Ueno

    1994-01-01

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR's, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of Eβ radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 ∼ 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented

  15. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  16. Carbon Nanotube Electrodes for Hot-Wire Electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Gründler, P.; Frank, Otakar; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 10, č. 3 (2009), s. 559-563 ISSN 1439-4235 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * electrodes * nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.453, year: 2009

  17. Thermal stability of hot-wire deposited amorphous silicon

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-04-01

    Full Text Available , Utrecht, The Nether- lands, 2001. [9] D. Beeman, R. Tsu, M.F. Thorpe, Phys. Rev., B 32 (1985) 874. [10] D.T. Britton, M. Ha¨rting, M.R.B. Teemane, S. Mills, F.M. Nortier, T.N. van der Walt, Appl. Surf. Sci. 116 (1997) 53. [11] P. Willutzki, J. Sto¨rmer...

  18. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  19. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  20. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  1. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  2. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  3. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  4. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  5. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  6. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  7. Multipurpose reprocessing hot cell

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1975-01-01

    A multipurpose hot cell is being designed for use at the Idaho Chemical Processing Plant for handling future scheduled fuels that cannot be adequately handled by the existing facilities and equipment. In addition to providing considerable flexibility to handle a wide variety of fuel sizes up to 2,500 lb in weight the design will provide for remote maintenance or replacement of the in-cell equipment with a minimum of exposure to personnel and also provide process piping connections for custom processing of small quantities of fuel. (auth)

  8. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  9. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  10. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  11. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  12. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  13. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  14. Crosslinking of wire and cable insulation using electron accelerators

    International Nuclear Information System (INIS)

    Feng Yongxiang; Ma Zueteh

    1992-01-01

    Radiation crosslinking of wire and cable insulation is a well-established technology that is widely used in industry. The advantages of radiation crosslinking over chemical crosslinking have helped maintain its steady growth. Since successful utilization of electron beam processing relies on the formulation of compounds used in insulation, the radiation crosslinking of various polymers is reviewed. The handling technology for crosslinking wire and cable insulation and the throughput capacity of electron beam processors are also discussed. More than 30% of the industrial electron accelerators in the world are used for the radiation crosslinking of wire and cable insulation. Prospects of increased use of electron accelerators for crosslinking of wire and cable insulation are very good. (orig.)

  15. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  16. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  17. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  18. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  19. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Science.gov (United States)

    Yang, Zihao; Codecido, Emilio A.; Marquez, Jason; Zheng, Yuanhua; Heremans, Joseph P.; Myers, Roberto C.

    2017-09-01

    The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15) wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  20. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    2017-09-01

    Full Text Available The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15 wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  1. X-ray line emission and plasma conditions in exploded Fe wires

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Dozier, C.M.; Stallings, C.; Cowan, R.D.

    1978-01-01

    Single-wire Fe spectra collected from two different exploded-wire generators (Gamble II and Owl II) were analyzed to determined the ionization stages produced in the plasmas. The temperature for the hot-plasma pinches for both generators was 1.4 +- 0.2 keV at which an abundance of Fe XXIV transitions is produced. The Fe K spectra from exploded wires are basically similar to those produced in the pinched plasma generated randomly in the vacuum spark; however, the exploded wires have lower plasma temperatures than the hottest pinches produced in the vacuum spark. A detailed interpretation of the Fe L spectra formed in the exploded wires permitted line and ionization stage identifications in the 7-12-A region. Such spectroscopic data is useful for analysis of complex Fe spectra generated in multitemperature plasma devices like Tokamaks

  2. Fabrication of wire and flat strips with elevated recrystallization temperature of Mo monocrystals

    International Nuclear Information System (INIS)

    Mikhajlov, S.M.; Nesgovorov, V.V.; Kabakova, L.G.; Korzukhin, V.E.; Savitskij, E.M.; Burkhanov, G.S.; Ottenberg, E.V.

    1977-01-01

    A technique is developed for manufacturing wire and flat strip of elevated recrystallization point from single crystals fo molybdenum with micro-additions of zirconium and titanium by rotary hot forging with subsequent drawing under hydrodynamic friction conditions. Flat strip is manufactured next from a wire annealed at 1300-1400 deg C in hydrogen. Resultant wire and flat strip feature a high recrystallization point and a good shape stability. Tests on their ultimate strength on the range of temperatures between 20 and 1700 deg C have shown that the maximum temperature of the recrystallization onset is that of a wire from Mo single crystals of orientation [110], containing micro-additions of Zr and Ti, whereas loss of strength is at its highest in a wire from non-alloyed single-crystal molybdenum

  3. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  5. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  6. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  7. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    Science.gov (United States)

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  8. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  9. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  10. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels

    Science.gov (United States)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2015-06-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high-resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model, and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be nontrivial for multispecies transport. This nontriviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks.

  11. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.

    1982-01-01

    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  12. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  13. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  14. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  15. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  16. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  17. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  18. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  19. 40 CFR 68.85 - Hot work permit.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  20. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  1. INFLUENCE OF MICRO-SEGREGATION IN PB-S-ALLOYED FREE MACHINING STEELS ON THE SURFACE QUALITY OF THE ROLLED WIRE-ROD

    OpenAIRE

    Leuschke, U.; Rajesh Puvvada, N.; Puvvada, Rajesh

    2008-01-01

    Free machining steel billets were manufactured at the continuous casting machine. The manufactured billets did not exhibit any kind of surface defects but surface cracks and slivers appeared when the billets were rolled into wires and rods at the wire-rod mill. The defects on rolled wire-rod have been detected by a hot eddy current system. Further investigations in these defects with the help of microprobe analysis system and scanning electron microscope equipped with image analysis system re...

  2. Hot Ta filament resistance in-situ monitoring under silane containing atmosphere

    International Nuclear Information System (INIS)

    Grunsky, D.; Schroeder, B.

    2008-01-01

    Monitoring of the electrical resistance of the Ta catalyst during the hot wire chemical vapor deposition (HWCVD) of thin silicon films gives information about filament condition. Using Ta filaments for silane decomposition not only the well known strong changes at the cold ends, but also changes of the central part of the filament were observed. Three different phenomena can be distinguished: silicide (stoichiometric Ta X Si Y alloys) growth on the filament surfaces, diffusion of Si into the Ta filament and thick silicon deposits (TSD) formation on the filament surface. The formation of different tantalum silicides on the surface as well as the in-diffusion of silicon increase the filament resistance, while the TSDs form additional electrical current channels and that result in a decrease of the filament resistance. Thus, the filament resistance behaviour during ageing is the result of the competition between these two processes

  3. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  4. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  5. Comparative studies on conventional (water-hot acid) and non-conventional (ultrasonication) procedures for extraction and chemical characterization of pectin from peel waste of mango cultivar chaunsa

    International Nuclear Information System (INIS)

    Kausar, S.; Saeed, A.

    2015-01-01

    Pectin, a naturally occurring heteropolysaccharide, is widely used as a functional ingredient in food and pharmaceutical industries due to its gelling and stabilizing properties. During the present study pectin was extracted from peel of mango (cultivar Chaunsa) using conventional (water-hot acid) and non-conventional (ultrasonication) methods. In conventional method, HNO/sub 3/, H/sub 2/SO/sub 4/, or HCl was used under variable conditions of pH (2.0, 2.5, 3.0), temperature (70, 80, 90, 100 degree C), duration of extraction (30, 60, 90, 120 min), and solvents (ethanol, methanol, acetone, isopropyl alcohol). Maximum yield of 16.6 g pectin 100 g/sup -1/ peel was obtained with HNO/sub 3/ at pH 2.5, 90 degree C, 90 min extraction, and ethanol. Whereas in non-conventional method, ultrasonication was used for different time intervals (10, 20, 40 min) using HNO/sub 3/ at pH 2.5 and 90 degree C. Maximum yield of 15.8 g pectin 100 g/sup -1/ peel was obtained by this method in 20 min. Pectin extracted by the above two methods was found to be of high quality as was determined in respect of methoxyl and galacturonic acid contents, degree of esterification, equivalent weight, and FTIR spectra. Extraction of pectin from mango peel by employing non-conventional method (ultrasonication) was observed to be an energy efficient method due to its less extraction time (20 min as compared to 90 min in conventional method) suggesting its suitability on commercial scale for the extraction of pectin from mango and other available fruit peel wastes. (author)

  6. EXPERIENCE OF APPLICATION OF A PORTABLE OPTICO – EMISSION SPECTROMETER FOR MONITORING OF CHEMICAL COMPOSITION OF HOT-ROLLED PRODUCTS TO IMPLEMENT THE CUSTOMER’S REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    E. A. Kazakova

    2017-01-01

    Full Text Available One of requirements of customers in the automotive industry is the guarantee of lack of intermix of various brands of steel in a mill process of manufacture. For ensuring implementation of this requirement, it is necessary to carry out monitoring of chemical composition of each bar just before shipment, after its packing and application of the required marking. An optimal solution of this problem is application of the portable optico-emission spectrometer allowing to carry out tests of samples directly in place of location.

  7. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  8. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  9. Insulation effect on thermal stability of Coated Conductors wires in liquid nitrogen

    Science.gov (United States)

    Rubeli, Thomas; Dutoit, Bertrand; Martynova, Irina; Makarevich, Artem; Molodyk, Alexander; Samoilenkov, Sergey

    2017-02-01

    Superconducting wires are not perfectly homogeneous in term of critical current as well as stabilization. In resistive fault current limiter applications this could lead to hot spots if the fault current is only slightly above the nominal current of the device. Increasing stabilization by using thicker silver coating for example may prevent this problem but this method implies longer wire length to maintain the same impedance during a fault. Very efficient cooling in another way to prevent hot spots, this can be achieved in nucleate boiling regime. Optimal insulation can be used to prevent film boiling regime, staying in nucleate boiling regime in a much broader temperature range. In this work a novel technique is used to monitor in real time the temperature of the wire during the quench. Using this method several increasing insulation thicknesses are tested, measuring for each the heat exchange rate to the nitrogen bath. Exchange rate measurements are made in quasistatic regime and during the re-cooling of the wire. SuperOx wires provided with different insulation thicknesses exhibit an excellent stability, far above a bare wire. On the other side, for very thick insulations the stability gain is lost. Re-cooling speeds dependency on insulation thicknesses is measured too.

  10. THE MAIN CHARACTERISTICS OF LUBRICATION FOR WIRE DRAWING FOR METAL CORD, THEIR INFLUENCE ON DRAWING QUALITY

    Directory of Open Access Journals (Sweden)

    A. A. Truhanovich

    2008-01-01

    Full Text Available The physical-chemical characteristics of lubrications for dry wiredrawing are examined. The connection of some parameters with quality of both the drawing process and finished wire is shown.

  11. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  13. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  14. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  15. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS)

    Garmestani, S.K.; Firouzbakht, M.L.; Rack, E.P.

    1979-01-01

    Reactions of recoil produced iodine-128 with isomers of butyne were studied in gaseous, high pressure, and condensed phase conditions, with rare gas additives and in the presence and absence of radical scavengers (I 2 and O 2 ). It was found that recoil iodine-128 reactions were initiated by thermal electronically excited I + species for both 1-butyne and 2-butyne systems. While the diverse and complex nature of the reactions cannot be explained by simple chemical parameters, comparisons among the alkyne systems demonstrate preferential attack of iodine at the triple bond resulting, mainly, in electronically excited intermediates. A comparison of the various product formation routes results in the characterization of general traits common to the alkynes. 6 figures, 4 tables

  16. Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs

    Directory of Open Access Journals (Sweden)

    Eric D. Becraft

    2017-10-01

    Full Text Available Recent progress based on single-cell genomics and metagenomic investigations of archaea in a variety of extreme environments has led to significant advances in our understanding of the diversity, evolution, and metabolic potential of archaea, yet the vast majority of archaeal diversity remains undersampled. In this work, we coordinated single-cell genomics with metagenomics in order to construct a near-complete genome from a deeply branching uncultivated archaeal lineage sampled from Great Boiling Spring (GBS in the U.S. Great Basin, Nevada. This taxon is distantly related (distinct families to an archaeal genome, designated “Novel Archaeal Group 1” (NAG1, which was extracted from a metagenome recovered from an acidic iron spring in Yellowstone National Park (YNP. We compared the metabolic predictions of the NAG1 lineage to better understand how these archaea could inhabit such chemically distinct environments. Similar to the NAG1 population previously studied in YNP, the NAG1 population from GBS is predicted to utilize proteins as a primary carbon source, ferment simple carbon sources, and use oxygen as a terminal electron acceptor under oxic conditions. However, GBS NAG1 populations contained distinct genes involved in central carbon metabolism and electron transfer, including nitrite reductase, which could confer the ability to reduce nitrite under anaerobic conditions. Despite inhabiting chemically distinct environments with large variations in pH, GBS NAG1 populations shared many core genomic and metabolic features with the archaeon identified from YNP, yet were able to carve out a distinct niche at GBS.

  17. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  18. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  19. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  20. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  1. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  2. Experimental analysis of the velocity field in an anular channel with helicoidal wire

    International Nuclear Information System (INIS)

    Lemos, M.J.S. de.

    1979-06-01

    In general, nuclear reactor fuel elements are rod bundles with coolant flowing axially among them. LMFBR's (Liquid Metal Fast Breeder Reactor) have wire wrapped fuel rods, with the wire working as spacer and mixer. The present work consists in the experimental analysis of the velocity field created by a typical LMFBR fuel rod placed in a cylinder, yielding an annular channel with helicoidal wire. Using hot wire anemometry, the main and secondary velocity fields were measured. The range for Re was from 2.2x 10 4 to 6.1x 10 4 , for air. The aspect ratio, P/D, and the lead-to-diameter ratio, 1/D, were 1.2 and 15, respectively. (Author) [pt

  3. Microwave heating of electric cable insulated wires before their impregnation with a hydrophobic material

    Energy Technology Data Exchange (ETDEWEB)

    Niculae, D; Mihailescu, A [Romanian Electricity Authority (Romania); Indreias, I; Martin, D [Institute of Atomic Physics, Bucharest (Romania); Margaritescu, A [ICPE Electrostatica, Bucharest, (Romania); Zlatonovici, D

    1998-12-31

    Underground insulated telecommunication cables must be impregnated with a hydrophobic material in order to prevent water penetration damage. To do so, the cable wire bundle must be heated to a temperature of 60 to 90 degrees C to ensure proper fluidity of the hydrophobic material that must fill the free spaces between the copper wires of the telephone cable. This paper described the microwave heating method of the wires before their impregnation. A cylindrical applicator was designed to perform a telephone bundle heating test. 800 W of microwave power were used on a telephone cable made up of 800 wires of 0.4 mm in diameter. A uniform heating was obtained throughout the section. Microwave heating was also found to be 53 per cent more energy efficient than hot air heating. 4 refs., 4 figs.

  4. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  5. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  6. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  7. The Effect of Cooling Vest on Heat Strain Indexes and Reaction Time While Wearing Chemical-Microbial-Radioactive Protective Clothing in Hot and Dry Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Dehghan

    2016-09-01

    Full Text Available Background Heat is a harmful factor in workplaces that causes physiologic and cognitive changes in workers. Objectives The purpose of this study was to investigate the effect of cooling vest on heat strain and reaction time while wearing chemical-biological-nuclear protective clothes. Methods Twelve male students with mean age of 25 ± 2 and body mass index (BMI of 23 ± 1.5 were recruited in the experiment. Each student ran on a treadmill with a speed of 2.4 km/hour in the climate chamber at 35°C and 30% relative humidity. physiological strain index score, oral temperature, heart rate, reaction time and number of errors were measured at the end of the two levels and analyzed by the SPSS software. Results Wilcoxon test showed that the differences of physiological strain index score (P = 0.02, oral temperature (P = 0.02, reaction time (P = 0.02, heart Rate (P = 0.02 and errors (P = 0.03 with and without the cooling vest were significant. The mean physiological strain index score without cooling vest was 4.038 ± 0.882 and with the cooling vest was 1.42 ± 0.435. The mean reaction time without and with the cooling vest was 0.769 ± 0.0972 and 0.539 ± 0.977, respectively. Conclusions The results of the study showed that the cooling vest reduces the physiological strain, reaction time and errors rate of workers.

  8. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  9. Status of thermohydraulic studies of wire-wrapped bundles

    International Nuclear Information System (INIS)

    Khairallah, A.; Leteinturier, D.; Skok, J.

    1979-01-01

    A status review is presented of the work undertaken in CEA to acquire good understanding and description of the single-phase thermal-hydraulic problems in LMFBR wire-wrapped bundles. Design-type and reference-type calculational tools developed for the study of forced convection in nominal and distorted bundle geometries are briefly presented. Local hot spots and mixed convection situations are discussed in some more details. Out-of-pile and in-pile experimental programs designed in support to code development are described. (author)

  10. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  11. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  12. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  13. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  14. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  15. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  16. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  17. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  18. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  19. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  20. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  1. Guide to the IET wiring regulations BS 7671:2008 incorporating amendment no 1:2011)

    CERN Document Server

    2012-01-01

    This authoritative, best-selling guide has been extensively updated with the new technical requirements of the IET Wiring Regulations (BS 7671: 2008) Amendment No. 1:2011, also known as the IET Wiring Regulations 17th Edition. With clear description, it provides a practical interpretation of the amended regulations - effective January 2012 - offers real solutions to the problems that can occur in practice. This revised edition features:new material on hot topics such as electromagnetic compatibility (EMC), harmonics, surge protective devices, and new special locations incl

  2. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  3. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  4. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  5. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  6. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  7. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  8. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  9. Hot testing of coke

    Energy Technology Data Exchange (ETDEWEB)

    Balon, I D

    1976-07-01

    Earlier investigations failed to take full account of the factors affecting coke behavior within the blast furnace. An apparatus was accordingly developed for testing coke, based on a cyclone furnace where the sample could be held in a flow of hot oxidizing gases, simulating conditions in the blast furnace hearth. The results are said to be suitable for comprehensive assessment of the coke, including abrasive strength and its rate of gasification in a flow of carbon dioxide. Coke of size 6-10 mm tested at 1,100/sup 0/C in an atmosphere of oxidizing gases close to those obtaining in the blast furnace hearth, indicated that destruction and total gasification of the coke occurs after 5 minutes for a weak coke and 8 minutes for strong coke, depending on the physico-chemical and physico-mechanical properties of the particular coke. When samples were treated for a fixed period (3 minutes), the amount of coke remaining, and the percentage over 6 mm varied between 22 and 40 and between 4 and 7 percent respectively.

  10. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  11. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  12. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  13. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  14. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  15. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  16. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  17. Experimental investigation of the hot point generation in the Z pinch plasma

    International Nuclear Information System (INIS)

    Afonin, V.I.; Podgornov, V.A.; Litvin, D.N.; Senik, A.V.

    1999-01-01

    Experiments to explode thin composite (W-Al-W, W-SiO 2 -W) wires in SIGNAL fast high-current generator diode under about 200 kA load current amplitude and about 50 ns rise duration were carried out to study the possibility to control generation of hot point in Z pinch plasma. The parameters of generated hot points were studied using X-ray techniques. Analysis of the experiment results shows the possibility to control this process [ru

  18. Magnesium diboride(MgB2) wires for applications

    International Nuclear Information System (INIS)

    Patel, Dipak; Kim, Jung Ho

    2016-01-01

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB 2 /Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB 2 structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm -2 for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10 5 Acm -2 at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires

  19. Magnesium diboride(MgB{sub 2}) wires for applications

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Dipak; Kim, Jung Ho [Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong (Australia)

    2016-03-15

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB{sub 2}/Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB{sub 2} structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm{sup -2} for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10{sup 5} Acm{sup -2} at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires.

  20. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  1. THE METHODS OF CALCULATIONS OF THE TEMPERATURE BREAKDOWN FIELD IN THE LINE OF THE MODEM HIGH-SPEED WIRE MILL

    Directory of Open Access Journals (Sweden)

    S. M. Zhuchkov

    2007-01-01

    Full Text Available The calculation methods of the temperature field of the breakdown, being rolled in lines of the modern high-speed wire mill, is developed on the basis of solving of problem of the contact exchange of hot metal with cold rollers.

  2. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  3. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  4. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  5. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  6. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  7. Progress in second-generation HTS wire development and manufacturing

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J.

    2008-01-01

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid

  8. Progress in second-generation HTS wire development and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@superpower-inc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J. [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2008-09-15

    2007 has marked yet another year of continued rapid progress in developing and manufacturing high-performance, long-length second-generation (2G) HTS wires at high speeds. Using ion beam assisted deposition (IBAD) MgO and associated buffer sputtering processes, SuperPower has now exceeded piece lengths of 1000 m of fully buffered tape reproducibly with excellent in-plane texture of 6-7 degrees and uniformity of about 2%. These kilometer lengths are produced at high speeds of about 350 m/h of 4 mm wide tape. In combination with metal organic chemical vapor deposition (MOCVD), 2G wires up to single piece lengths to 790 m with a minimum critical current value of 190 A/cm corresponding to a Critical current x Length performance of 150,100 Am have been achieved. Tape speeds up to 180 m/h have been reached MOCVD while maintaining critical currents above 200 A/cm in 100+ m lengths. Thick film MOCVD technology has been transitioned to Pilot manufacturing system where a minimum critical current of 320 A/cm has been demonstrated over a length of 155 m processed at a speed of 70 m/h in 4 mm width. Finally, nearly 10,000 m of 2G wire has been produced, exhaustively tested, and delivered to the Albany Cable project. The average minimum critical current of the wire delivered in 225 segments of 43-44 m is 70 A in 4 mm widths. A 30 m cable has been fabricated with this wire by Sumitomo Electric and has been installed in the power grid of National Grid in downtown Albany and is the world's first 2G device installed in the grid.

  9. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane

    2013-06-01

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  10. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    Science.gov (United States)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  11. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  12. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  13. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  14. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  15. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  16. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires.

    Science.gov (United States)

    Zhang, Hao; Guo, Shuyu; Wang, Dongyue; Zhou, Tingting; Wang, Lin; Ma, Junqing

    2016-09-01

    To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.

  17. Electrochemically deposited BiTe-based nano wires for thermoelectric applications

    International Nuclear Information System (INIS)

    Inn-Khuan, N.; Kuan-Ying, K.; Che Zuraini Che Abdul Rahman; Nur Ubaidah Saidin; Suhaila Hani Ilias; Thye-Foo, C.

    2013-01-01

    Full-text: Nano structured materials systems such as thin-films and nano wires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nano wires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nano wires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltametry (LSV). Chemical compositions of the nano wires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nano wires indicated that while the Sb content in BiSbTe nano wires increased with more negative deposition potentials, the formation of Te 0 and Bi 2 Te 3 were favorable at more positive potentials. (author)

  18. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  19. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  20. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  1. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  2. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  3. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  4. DETECTORS: Vienna - beyond the wire

    International Nuclear Information System (INIS)

    Krammer, Manfred; Regler, Meinhard

    1995-01-01

    In 1986, at the fourth Vienna Wire Chamber Conference, Georges Charpak, the inventor of the multiwire proportional chamber, had confidently announced ''Les funérailles des chambres à fils''. Was this the writing on the wall for the conference series as well as this type of detector technology? The demand for detector innovation, coupled with imaginative thinking on the part of the organizers, have kept the Vienna venue at the forefront of the physics calendar. An additional boost to the success of the series was certainly the Nobel Prize awarded to Georges Charpak in 1992. While the major topic naturally is still wire chambers, alternative technologies are also covered. However in fields like calorimetry or ring imaging Cherenkovs, a sample of only a few prominent detectors were presented, giving some participants the impression of a biased selection. The fact that silicon detectors, electronics and track reconstruction strategies were, with the exception of the invited talks, restricted to poster presentations led to the same conclusion. As a result the organizing committee saw that it will have to revise its brief for the next conference. The conference opened with philosophical thoughts by Nobel Prizewinner Georges Charpak. The first day at Vienna is traditionally devoted to applications of gaseous detectors outside high energy physics. L. Shektman gave an overview of wire chambers for medical imaging. Further applications in medicine and in other fields like biology and space science were described by subsequent speakers. The exciting idea of flying a spectrometer on a balloon to study the fraction of electrons and positrons in cosmic rays attracted a lot of attention. The next day covered wire chambers in general. V. Polychronakos presented applications of cathode strip chambers in muon spectrometers for experiments at CERN's LHC proton-proton detector. Certainly the challenges of LHC for detector development dominated many

  5. Fulleropyrrolidine end-capped molecular wires for molecular electronics--synthesis, spectroscopic, electrochemical, and theoretical characterization

    DEFF Research Database (Denmark)

    Sørensen, Jakob Kryger; Fock, Jeppe; Pedersen, Anders Holmen

    2011-01-01

    In continuation of previous studies showing promising metal-molecule contact properties a variety of C(60) end-capped "molecular wires" for molecular electronics were prepared by variants of the Prato 1,3-dipolar cycloaddition reaction. Either benzene or fluorene was chosen as the central wire...... state. However, the fluorescence of C(60) was quenched by charge transfer from the wire to C(60). Quantum chemical calculations predict and explain the collapse of coherent electronic transmission through one of the fulleropyrrolidine-terminated molecular wires......., and synthetic protocols for derivatives terminated with one or two fullero[c]pyrrolidine "electrode anchoring" groups were developed. An aryl-substituted aziridine could in some cases be employed directly as the azomethine ylide precursor for the Prato reaction without the need of having an electron...

  6. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  7. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  8. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  9. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  10. Nanosecond electrical explosion of thin aluminum wire in vacuum: experimental and computational investigations

    International Nuclear Information System (INIS)

    Cochrane, Kyle Robert; Struve, Kenneth William; Rosenthal, Stephen Edgar; McDaniel, Dillon Heirman; Sarkisov, Gennady Sergeevich; Deeney, Christopher

    2004-01-01

    The experimental and computational investigations of nanosecond electrical explosion of thin Al wire in vacuum are presented. We have demonstrated that increasing the current rate leads to increased energy deposited before voltage collapse. Laser shadowgrams of the overheated Al core exhibit axial stratification with a ∼100 (micro)m period. The experimental evidence for synchronization of the wire expansion and light emission with voltage collapse is presented. Two-wavelength interferometry shows an expanding Al core in a low-ionized gas condition with increasing ionization toward the periphery. Hydrocarbons are indicated in optical spectra and their influence on breakdown physics is discussed. The radial velocity of low-density plasma reaches a value of ∼100 km/s. The possibility of an overcritical phase transition due to high pressure is discussed. 1D MHD simulation shows good agreement with experimental data. MHD simulation demonstrates separation of the exploding wire into a high-density cold core and a low-density hot corona as well as fast rejection of the current from the wire core to the corona during voltage collapse. Important features of the dynamics for wire core and corona follow from the MHD simulation and are discussed.

  11. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Directory of Open Access Journals (Sweden)

    Jing Bai

    2014-10-01

    Full Text Available With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt% RE(Gd/Y/Nd and 0.4 wt% Zn with the diameter less than 0.4 μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4 μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  12. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes

    Science.gov (United States)

    Pyon, Sunseng; Suwa, Takahiro; Tamegai, Tsuyoshi; Takano, Katsutoshi; Kajitani, Hideki; Koizumi, Norikiyo; Awaji, Satoshi; Zhou, Nan; Shi, Zhixiang

    2018-05-01

    We fabricated (Ba,K)Fe2As2 superconducting wires and tapes using the powder-in-tube method and hot isostatic pressing (HIP). HIP wires and tapes showed a high value of transport critical current density (J c) exceeding 100 kAcm‑2 at T = 4.2 K and the self-field. Transport J c in the HIP wire reached 38 kAcm‑2 in a high magnetic field of 100 kOe. This value is almost twice larger than the previous highest value of J c among round wires using iron-based superconductors. Enhancement of J c in the wires and tapes was caused by improvement of the drawing process, which caused degradation of the core, formation of microcracks, weak links between grains, and random orientation of grains. Details of the effect of the improved fabrication processes on the J c are discussed.

  13. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  14. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  15. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  16. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  17. A FEROS Survey of Hot Subdwarf Stars

    Science.gov (United States)

    Vennes, Stéphane; Németh, Péter; Kawka, Adela

    2018-02-01

    We have completed a survey of twenty-two ultraviolet-selected hot subdwarfs using the Fiber-fed Extended Range Optical Spectrograph (FEROS) and the 2.2-m telescope at La Silla. The sample includes apparently single objects as well as hot subdwarfs paired with a bright, unresolved companion. The sample was extracted from our GALEX catalogue of hot subdwarf stars. We identified three new short-period systems (P = 3.5 hours to 5 days) and determined the orbital parameters of a long-period (P = 62d.66) sdO plus G III system. This particular system should evolve into a close double degenerate system following a second common envelope phase.We also conducted a chemical abundance study of the subdwarfs: Some objects show nitrogen and argon abundance excess with respect to oxygen. We present key results of this programme.

  18. Method for producing superconducting wire and products of the same

    International Nuclear Information System (INIS)

    Marancik, W.G.; Ormand, F.T.

    1975-01-01

    A method is described for producing a composite superconducting wire including one or more strands of high-field Type II superconductor embedded in a conductive matrix of normal material. A composite body is prepared which includes a matrix in which are embedded one or more rods of a metal which is capable of forming a high-field Type II superconductor upon high temperature extruded to an intermediate diameter, and then is hot-drawn to a final diameter at temperatures exceeding about 100 0 C, by multiple passes through drawing dies, the composite being reduced in cross-sectional area approximately 15 to 20 percent per draw. In a preferred mode of practicing the invention, the rods comprise vanadium or niobium, with the matrix being respectively gallium--bronze or tin--bronze, and the superconductive strands being formed by high temperature diffusion of the gallium or tin into the rods subsequent to drawing

  19. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  20. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  1. WIRED magazine announces rave awards nominees

    CERN Document Server

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  2. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  3. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  4. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  5. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  6. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  7. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  8. Wire compensation: Performance, SPS MDs, pulsed system

    CERN Document Server

    Dorda, U

    2008-01-01

    A wire compensation (BBLR) scheme has been proposed in order to improve the long range beam-beam performance of the nominal LHC and its phase 1 and phase 2 upgrades[1]. In this paper we present experimental experience of the CERN SPS wires (BBLR) and report on progress with the RF BBLR.

  9. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  10. The 2d-LCA as an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2015-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  11. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  12. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  13. Wiring Damage Analyses for STS OV-103

    Science.gov (United States)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  14. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  15. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  16. Typing of the sausage-shaped bacteria forming A-type sulfur-turf according to cell length distributions of natural populations and physico-chemical conditions of hot spring waters; Saibo chobunpu to seiiku kankyo kara mita A gata io shiba shizen kotaigun ni okeru okamagata saikin no katabetsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Y. [Iwate University, Iwate (Japan). Faculty of Humanities and Social Sciences

    1996-01-25

    In order to type the sausage-shaped bacteria forming A-type sulfur-turf, cell length distributions and physics-chemical conditions of hot spring waters were investigated on twelve samples collected from all over Japan. The frequency distributions of the cell length of eight samples were bimodal, while the other four samples were unimodal. In seven samples with bimodal distributions, two types (large and small) of the sausage-shaped bacteria could be differentiated. The cell length of the large-type was between 10.1 and 31.9{mu}m, while that of the small-type ranged 2.2 to 6.6{mu}m. The pH of seven hot spring waters were between 6 and 8, and the two types (large and small) formed together sulfur-turf. In contrast, pH of the three hot springs were over 8, and the two types of the sausage-shaped bacteria could not be detected in the sulfur-turf. Therefore, it is reasonable to set a third type of the sausage-shaped bacteria which prefers high-pH (over 8) and low calcium condition. The cell lengths of the third type were in the range of 5.5 to 8.6{mu}m, which correspond to the sausage-shaped bacteria of medium size. 20 refs., 5 figs., 2 tabs.

  17. Wire sawing for the application for dismantling of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Toenshoff, H.K.; Hillmann-Apmann, H. [Hannover Univ. (Germany). Inst. for Production Engineering and Machine Tools

    2001-07-01

    In recent years diamond wire sawing process has been established as a technique for machining of hard and brittle materials in the quarrying and dimensioning of natural stone, i.e. marble and granite /Bor94/, or in machining of concrete and reinforced concrete /NN89, NN90, Rus93, Zil89/. It is more and more applied in different industrial sectors, namely the building and road-building industry, for purposes of reconstruction and decommissioning/. For the application of cutting austenitic steel most of the current wire sawing tools can not be used. First the diamond get in chemical reaction with the steel (graphitisation) and also the plastic flow of the workpiece material (''smearing'') while processing this material, the chip spaces between the diamonds are filled with the steel chips and thus the effective processing is reduced. Only the very tips of the diamonds are in contact with the workpiece, which leads in most cases to rapid wear of the grains. The tool loses its ability to grind in short terms of time. All these problems exclude the wire sawing technique from wide areas of application of cutting ductile steel materials. (orig.)

  18. Wire sawing for the application for dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Toenshoff, H.K.; Hillmann-Apmann, H.

    2001-01-01

    In recent years diamond wire sawing process has been established as a technique for machining of hard and brittle materials in the quarrying and dimensioning of natural stone, i.e. marble and granite /Bor94/, or in machining of concrete and reinforced concrete /NN89, NN90, Rus93, Zil89/. It is more and more applied in different industrial sectors, namely the building and road-building industry, for purposes of reconstruction and decommissioning/. For the application of cutting austenitic steel most of the current wire sawing tools can not be used. First the diamond get in chemical reaction with the steel (graphitisation) and also the plastic flow of the workpiece material (''smearing'') while processing this material, the chip spaces between the diamonds are filled with the steel chips and thus the effective processing is reduced. Only the very tips of the diamonds are in contact with the workpiece, which leads in most cases to rapid wear of the grains. The tool loses its ability to grind in short terms of time. All these problems exclude the wire sawing technique from wide areas of application of cutting ductile steel materials. (orig.)

  19. Localized end states in density modulated quantum wires and rings.

    Science.gov (United States)

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  20. Wiring of electronic evaluation circuits

    International Nuclear Information System (INIS)

    Bauer, R.; Svoboda, Z.

    1977-01-01

    The wiring is described of electronic evaluation circuits for the automatic viewing of photographic paper strip negatives on which line tracks with an angular scatter relative to the spectrograph longitudinal axis were recorded during the oblique flight of nuclear particles during exposure in the spectrograph. In coincidence evaluation, the size of the angular scatter eventually requires that evaluation dead time be increased. The equipment consists of minimally two fixed registers and a block of logic circuits whose output is designed such as will allow connection to equipment for recording signals corresponding to the number of tracks on the film. The connection may be implemented using integrated circuits guaranteeing high operating reliability and life. (J.B.)

  1. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  2. Hot Electron Generation and Transport Using Kα Emission

    International Nuclear Information System (INIS)

    Akli, K.U.; Stephens, R.B.; Key, M.H.; Bartal, T.; Beg, F.N.; Chawla, S.; Chen, C.D.; Fedosejevs, R.; Freeman, R.R.; Friesen, H.; Giraldez, E.; Green, J.S.; Hey, D.S.; Higginson, D.P.; Hund, J.; Jarrott, L.C.; Kemp, G.E.; King, J.A.; Kryger, A.; Lancaster, K.; LePape, S.; Link, A.; Ma, T.; Mackinnon, A.J.; MacPhee, A.G.; McLean, H.S.; Murphy, C.; Norreys, P.A.; Ovchinnikov, V.; Patel, P.K.; Ping, Y.; Sawada, H.; Schumacher, D.; Theobald, W.; Tsui, Y.Y.; Van Woerkom, L.D.; Wei, M.S.; Westover, B.; Yabuuchi, T.

    2010-01-01

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40(micro)m diameter wire emulating a 40(micro)m fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of prepulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  3. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  4. Effects of chemical composition and test parameters on the hot ductility of C-Mn-Al steels; Efeito da composicao quimica e parametros de ensaios sobre a ductilidade a quente de acos C-Mn-Al

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Marcelo C.S. de; Comineli, Osvaldo G; Pancieri, Jose G.P.; Oliveira, Maria A.L. de [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Engenharia Mecanica; Souza Lima Cardoso, Geraldo I. de [Companhia Siderurgica de Tubarao (CST), Serra, ES (Brazil); Mintz, Barry [The City Univ., London (United Kingdom)

    1987-12-31

    The effects of Al content, as well as hot tensile test parameters on hot ductility of two C-Mn-Al steels are presented. Thermal cycle were carried out to study the influence of thermal oscillations during those compositions cooling, consisting of heating the samples up to a solubilization temperature, high enough to dissolve any phase which could possibly be present in the original ingot, and also to produce a coarser grain size. After 5 minutes at 1330 deg C, the steels were cooled in three different ways to reach test temperature and samples remain at this temperature for 5 minutes for stabilization before testing. Further, a preliminary comparison between hot ductility results, obtained when samples are molten and continuously cooled at two different rates, and those obtained for solution treated samples which are cooled at an intermediate cooling rate. For the two composition solution treated, a ductility was observed trough displaced from each other about 50 deg C, being the Al content the responsible for this difference. (author) 14 refs., 11 figs., 1 tab.

  5. Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice.

    Science.gov (United States)

    Hirasawa, Noriyasu; Goi, Yoshiaki; Tanaka, Rina; Ishihara, Kenji; Ohtsu, Hiroshi; Ohuchi, Kazuo

    2010-06-15

    The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation. (c) 2009 Wiley Periodicals, Inc.

  6. Adhesion of nickel–titanium shape memory alloy wires to thermoplastic materials: theory and experiments

    International Nuclear Information System (INIS)

    Antico, F C; Zavattieri, P D; Hector Jr, L G; Mance, A; Rodgers, W R; Okonski, D A

    2012-01-01

    We present a combined experimental/theoretical study aimed at enhancing adhesion between a NiTi wire and a thermoplastic polyolefin (TPO) matrix in which it is embedded. NiTi wire surfaces were subjected to the following surface treatments prior to pull-out tests: (i) treatment with an acid etch or chemical conversion coating and (ii) application of a surface microgeometry to enhance mechanical interlocking between the wire and the TPO matrix. Nanometer to micron-scale NiTi wire surface features were examined with atomic force microscopy. The extent to which each treatment increased the pull-out force was quantified. Existing theoretical models of wire pull-out based upon strength of materials and linear elastic fracture mechanics are reviewed. Results from a finite element model (FEM), wherein the NiTi/TPO matrix interface is modeled with a cohesive zone model, suggest that the interface behavior strongly depends on the cohesive energy. The FEM model properly accounts for energy dissipation at the debonding front and inelastic deformation in a NiTi wire during pull-out. We demonstrate that residual stresses from the molding process significantly influence mode mixity at the debonding front. (paper)

  7. Iodine speciation in the hot cell effluent gases

    International Nuclear Information System (INIS)

    Lee, B.S.; Jester, W.A.; Olynyk, J.M.

    1990-01-01

    The various species of airborne radioiodine can affect the iodine source term of a severe core damage accident because of the different transport and deposition properties. also, the radiobiological hazardness may vary according to their chemical form. The purpose of the work reported in this paper was to characterize the various chemical forms of airborne radioiodine in hot cell effluent gases of a radiopharmaceutical production facility that produces medical radioisotopes from separated fission products of irradiated uranium targets. It is concluded that the methyl iodide is the youngest chemical species in terms of effective decay time age, and the hot cell filter bank is least efficient in removing the methyl iodide

  8. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  9. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  10. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  11. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  12. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  13. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  14. Nickel release from orthodontic retention wires: the action of mechanical loading and pH

    NARCIS (Netherlands)

    Milheiro, A.; Kleverlaan, C.; Muris, J.; Feilzer, A.; Pallav, P.

    2012-01-01

    Nickel (Ni) is a potent sensitizer and may induce innate and adaptive immune responses. Ni is an important component of orthodontic appliances (8-50 wt%). Due to chemical and mechanical factors in the oral environment, Ni is released from these appliances. Retention wires are in situ for a long

  15. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  16. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  17. Application of irradiation process for the production of thin wall wires

    International Nuclear Information System (INIS)

    Saito, E.

    1977-01-01

    The demand for thin wall crosslinked PVC or polyethylene insulated wires in Japan was about 15,000,000 dollars in value in 1975. Their annual sales in 1980 are estimated at about 40 million dollars which will account for approximately 20% of the sales of all thin wall thermoplastic insulated wires expected for the same year. A comparative study was made of the irradiation process and the chemical process for manufacture of wires with crosslinked PVC or polyethylene insulation. Having found the excellence of the irradiation process an accelerator (500 KeV, 65mA) was installed in 1973 and production was begun of several types of thin wall irradiation crosslinked PVC and polyethylene insulated wires ranging from 0.06 mm 2 to 2.0 mm 2 in the cross-sectional area of conductor, successfully putting them in extensive commercial application. This report compares the irradiation process and the chemical process, properties of several types of irradiation crosslinked PVC, and polyethylene insulated wires and their applications. (author)

  18. On the improved adhesion of NiTi wires embedded in polyester and vinylester resins

    Directory of Open Access Journals (Sweden)

    Mattia Merlin

    2015-01-01

    Full Text Available This paper discusses the effect of different surface treatments on shape memory alloy wires embedded in PolyEster (PE and VinylEster (VE polymeric matrices. In particular, two types of chemical etching and a chemical bonding with a silane coupling agent have been performed on the surfaces of the wires. Pull-out tests have been carried out on samples made from a specifically designed Teflon mould. Considering the best results of the pull-out tests obtained with PE resin, the debonding induced by strain recovery of 4%, 5% and 6% pre-strained NiTi wires has been evaluated with the wires being subjected to different surface treatment conditions and then being embedded in the PE matrix. The results prove that the wires functionalised and embedded in the PE resin show the maximum pull-out forces and the highest interfacial adhesion. Finally, it has been found that debonding induced by strain recovery is strongly related to the propagation towards the radial direction of sharp cracks at the debonding region.

  19. Microstructure of NiTi orthodontic wires observations using transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    J. Ferčec

    2014-10-01

    Full Text Available This work presents the results of the microstructure observation of six different types of NiTi orthodontic wires by using Transmission Electron Microscopy (TEM. Within these analyses the chemical compositions of each wire were observed in different places by applying the EDS detector. Namely, the chemical composition in the orthodontic wires is very important because it shows the dependence between the phase temperatures and mechanical properties. Microstructure observations showed that orthodontic wires consist of nano-sized grains containing precipitates of Ti2Ni and/or TiC. The first precipitated Ti2Ni are rich in Ti, while the precipitated TiC is rich in C. Further investigation showed that there was a difference in average grain size in the NiTi matrix. The sizes of grains in orthodontic wires are in the range from approximately 50 to 160 nm and the sizes of precipitate are in the range from 0,3 μm to 5 μm.

  20. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  1. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  2. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  3. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  4. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  5. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  6. Problems associated with iridium-192 wire implants

    International Nuclear Information System (INIS)

    Arnott, S.J.; Law, J.; Ash, D.; Flynn, A.; Paine, C.H.; Durrant, K.R.; Barber, C.D.; Dixon-Brown, A.

    1985-01-01

    Three incidents are reported, from different radiotherapy centres, in which an implanted iridium-192 wire remained in the tissues of a patient after withdrawal of the plastic tubing in which it was contained. In each case the instrument used to cut the wire had probably formed a hook on the end of the wire which caused it to catch in the tissues. Detailed recommendations are made for avoiding such incidents in the future, the most important of which is that the patient should be effectively monitored after the supposed removal of all radioactive sources. (author)

  7. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  8. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  9. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  10. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  11. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  12. Ways of improvement of technological process of copper wire rod production

    OpenAIRE

    Dvoryanyn, Hrystyna; Shvachco, Sergiy

    2015-01-01

    Copper is a unique chemical element which is used since ancient times due to its universal chemical properties. By means of the method of continuous founding, hundreds of items of rod-like billets of different cross-section shapes are manufactured from copper. The problem of production of defectfree copper wire rods is important nowadays, because the market of cable products still increases. As the deposits of cooper ore in the nature are being exhausted, the processing of copper scrap become...

  13. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study.

    Science.gov (United States)

    Brindha, M; Kumaran, N Kurunji; Rajasigamani, K

    2014-07-01

    The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys.

  14. Development of Nb3Sn based multi-filamentary superconductor wires for fusion reactor magnets

    International Nuclear Information System (INIS)

    Kundu, Sayandeep; Singh, A.K.; Hussain, M.M.

    2016-01-01

    Nb 3 Sn is a proposed type II superconductor material to be used as superconducting magnet in fusion reactor for its superior superconducting properties. Fabrication of long single length wire containing Nb 3 Sn filaments is a challenge. The usual manufacturing philosophy involves deforming an assembly of tin and niobium in copper matrix to the final size, followed by the heat treatment to produce superconducting phase at Nb-Cu interface. Multi-filamentary wires were fabricated by hot extrusion of superconductor billet followed by several stages of cold drawing. Heat treatments at various temperature and time were carried out on as formed wire containing multiple filaments in order to see the growth of superconducting intermetallic phase during subsequent characterization. Post heat treatment characterization through SEM, EBSD and EDS revealed the presence of intermetallic phase of Nb and Sn, hypo stoichiometric in Sn, at the Cu-Nb interface growing towards the center of Nb filament. The manufacturing process till the desired final size of the wire happened to be a challenge, mainly because it required extraordinary co-deformability between various materials in such an assembly. Post-trial failure analysis through destructive testing using optical and scanning electron micrographs revealed the propensity of internal radial cracks at Cu-Sn interfaces, while the Nb-Cu interfaces were found to be relatively unaffected. This paper will discuss the details of the fabrication process. (author)

  15. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  16. Wire Bonder: Kulicke and Soffa Model 4526

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Wire BonderNeeds Description.Scientific Opportunities / Applications:Wedge bonderSemi-automatic and manual modesIndependent Z-axis control,...

  17. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  18. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  19. Copyright and Wire Broadcasting Under Belgian Law

    Science.gov (United States)

    Namurois, Albert

    1975-01-01

    A discussion of a case whereby substantial damages, if not criminal proceedings, will sanction, according to circumstances, both television organizations and those who in certain conditions distribute their programs by wire or communicate them to the public. (Author/HB)

  20. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  1. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  2. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.

    1978-01-01

    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  3. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  4. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments.

    Science.gov (United States)

    Pereira, E S J; Peixoto, I F C; Viana, A C D; Oliveira, I I; Gonzalez, B M; Buono, V T L; Bahia, M G A

    2012-05-01

    To compare physical and mechanical properties of one conventional and one thermomechanically treated nickel-titanium (NiTi) wire used to manufacture rotary endodontic instruments. Two NiTi wires 1.0 mm in diameter were characterized; one of them, C-wire (CW), was processed in the conventional manner, and the other, termed M-Wire (MW), received an additional heat treatment according to the manufacturer. Chemical composition was determined by energy-dispersive X-ray spectroscopy, phase constitution by XRD and the transformation temperatures by DSC. Tensile loading/unloading tests and Vickers microhardness measurements were performed to assess the mechanical behaviour. Data were analysed using analysis of variance (α = 0.05). The two wires showed approximately the same chemical composition, close to the 1 : 1 atomic ratio, and the β-phase was the predominant phase present. B19' martensite and the R-phase were found in MW, in agreement with the higher transformation temperatures found in this wire compared with CW, whose transformation temperatures were below room temperature. Average Vickers microhardness values were similar for MW and CW (P = 0.91). The stress at the transformation plateau in the tensile load-unload curves was lower and more uniform in the M-Wire, which also showed the smallest stress hysteresis and apparent elastic modulus. The M-Wire had physical and mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. © 2011 International Endodontic Journal.

  5. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  6. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  7. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  8. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  9. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  10. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  11. Tracking with wire chambers at the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab

  12. Charge Transport Along Phenylenevinylene Molecular Wires

    OpenAIRE

    2006-01-01

    Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...

  13. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  14. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  15. Tracking with wire chambers at high luminosities

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs

  16. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  17. Novel use of the "buddy"wire.

    LENUS (Irish Health Repository)

    O'Hare, A

    2008-12-29

    Summary: During interventional procedures the tortuosity of the vasculature hampers catheter stability. The buddy wire may be used to aid and maintain vascular access.We describe a case of acute subarachnoid haemorrhage secondary to dissecting aneurysm of the vertebral artery.We discuss the value of the buddy wire during balloon occlusion of the vertebral artery not as it is typically used, but to actually prevent the balloon repeatedly entering the posterior inferior cerebellar artery during the procedure.

  18. Hot chocolate effect

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1982-01-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  19. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  20. The hot chocolate effect

    Science.gov (United States)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.